Speciality of Lie-Jordan algebras

A. N. Grishkov
Instituto de Matemática e Estatística, Universidade de São Paulo, São Paulo, Brasil
Ivan P. Shestakov*
Sobolev Institute of Mathematics, Novosibirsk, Russia

Abstract

The class of so called Lie-Jordan algebras is introduced, which have one binary (Lie) operation $[x, y]$ and one ternary (Jordan) operation $\{x, y, z\}$, that satisfy the identities (1)-(5) below. It is proved that any such an algebra is special, that is, isomorphic to a subalgebra of a LieJordan algebra of the type $A^{ \pm}$, obtained from an associative algebra A via the operations $[x, y]=x y-y x,\{x, y, z\}=x y z+z y x$. As an application, we prove the conjecture about associativity of a certain loop constructed in [2].

1 Introduction

It is well known that with every associative algebra A one can relate a Lie algebra $A^{-}=\langle A,+,[]$,$\rangle , with the multiplication [x, y]=x y-y x$, and a Jordan algebra $A^{+}=\langle A,+, \circ\rangle$, with the multiplication $x \circ y=\frac{1}{2}(x y+y x)$. Thus, we have the functors (. $)^{-}$and (. $)^{+}$from the category $\underline{\text { Ass }}$ of associative algebras into the categories Lie and $\underline{\text { Jord }}$ of Lie and Jordan algebras, respectively. It is easy to see that both functors have left adjoint functors $U: \underline{\text { Lie }} \longrightarrow \underline{\text { Ass }}$

[^0]and $S: \underline{\text { Jord }} \longrightarrow \underline{\text { Ass }}$, that is, for any $L \in \underline{\text { Lie }}, J \in \underline{\text { Jord }}, A \in \underline{\text { Ass }}$ there are bijections
\[

$$
\begin{aligned}
& \operatorname{Hom}_{\underline{\text { Lie }}}\left(L, A^{-}\right) \longrightarrow \operatorname{Hom}_{\underline{\text { Ass }}}(U(L), A), \\
& \operatorname{Hom}_{\underline{\text { Jord }}}\left(J, A^{+}\right) \longrightarrow \operatorname{Hom}_{\underline{\text { Ass }}}(S(J), A),
\end{aligned}
$$
\]

which are functorial in the variables L, J, A. The algebras $U(L)$ and $S(J)$ are called associative universal enveloping algebras of L and J, respectively. Furthermore, there are morphisms $\alpha_{L}^{-}: L \longrightarrow U(L)^{-}$and $\alpha_{J}^{+}: J \longrightarrow S(J)^{+}$ with the universal properties (these morphisms correspond to the identical morphisms of the algebras $A=U(L), A=S(J)$ in the bijections above).

But at this point the Lie and Jordan cases diverge: the mapping α_{L}^{-}is always injective when L is a free module over the ring of scalars, due to the celebrated Poincare-Birkhoff-Witt theorem, while the mapping α_{J}^{+}could have nonzero kernel even when J is a finite dimensional algebra over a field (see $[4,7]$). A Jordan algebra J for which the universal mapping α_{J}^{+}is injective is called special. The condition of speciality plays an important role in the theory of Jordan algebras; there are many results and open problems concerning the speciality of particular Jordan algebras and classes of algebras (see $[4,7]$).

One may consider other functors that conserve the additive structure of an algebra, and introduce for them a notion of speciality (see [6]). In this paper we consider the functor (. $)^{ \pm}$that corresponds to an associative algebra A the algebra $A^{ \pm}$, which has the same additive structure and two new multiplications: a Lie one $[x, y]=x y-y x$ and a triple Jordan one $\{x, y, z\}=x y z+z y x$. It is easy to check that the operations [,] and $\{,$, satisfy the identities

$$
\begin{align*}
{[x, y] } & =-[y, x] \tag{1}\\
\{x, y, z\} & =\{z, y, x\} \tag{2}\\
{[[x, y], z] } & =\{x, y, z\}-\{y, x, z\}, \tag{3}\\
{[\{x, y, z\}, t] } & =\{\{x, t], y, z\}+\{x,[y, t], z\}+\{x, y,[z, t]\} \tag{4}\\
\{\{x, y, z\}, t, v\} & =\{\{x, t, v\}, y, z\}-\{x,\{y, v, t\}, z\}+\{x, y,\{z, t, v\}\} .
\end{align*}
$$

Observe that the Jacobi identity follows from (2) and (3).
Definition 1 An algebra with two operations [,] and \{,, \} is called a LieJordan algebra (an LJ-algebra for short) if identities (1)-(5) hold.

Note that an $L J$-algebra is a Lie algebra relatively to the binary operation and a triple Jordan system relatively to the ternary operation.

Definition 2 An LJ-algebra L is called special if there exists an associative algebra A such that L is isomorphic to a subalgebra of $A^{ \pm}$.

The main result of the present article is the following
Theorem 1 Every LJ-algebra over a field of characteristic $\neq 2$ is special.
In the proof we follow the method developed in $[5,6]$ and construct the universal enveloping algebra $U(L)$ for a Lie-Jordan algebra L as a deformation of its associated graded algebra $\operatorname{gr} U(L)$.

In the last section we apply this result to prove the conjecture from [2] that a certain loop constructed there is a group.

All the algebras considered in the paper are assumed to be over a field F of characteristic $\neq 2$.

2 Universal enveloping algebra and associated graded algebra

Let L be an $L J$-algebra; then an associative algebra $U(L)$ is said to be a universal enveloping algebra for L if there exists a homomorphism α_{L} : $L \longrightarrow U(L)^{ \pm}$such that for any associative algebra A and a homomorphism $\beta: L \longrightarrow A^{ \pm}$there exists a homomorphism π of associative algebras π : $U(L) \longrightarrow A$ such that $\beta=\alpha_{L} \circ \pi$. In other words, there is a bijection

$$
\operatorname{Hom}_{\underline{\text { Lie-Jord }}}\left(L, A^{ \pm}\right) \longrightarrow \operatorname{Hom}_{\underline{\text { Ass }}}(U(L), A),
$$

which is functorial on the variables L and A.
The existence of a universal enveloping algebra $U(L)$ for a given $L J$ algebra L is obvious. It is isomorphic to the quotient algebra of the tensor algebra $T(L)$ by the ideal I generated by all the elements

$$
a \otimes b-b \otimes a-[a, b], a \otimes b \otimes c+c \otimes b \otimes a-\{a, b, c\}, a, b, c \in L
$$

with the universal homomorphism $\alpha_{L}: a \longrightarrow a+I$. Theorem 1 is equivalent to the fact that $\operatorname{ker} \alpha=0$.

The subspace $\alpha(L) \subseteq U(L)$ generates $U(L)$, and so it defines in $U(L)$ an ascending filtration $U_{1}=\alpha(L) \subseteq U_{2} \subseteq \cdots$, where $U_{i}=U_{i-1}+U_{1}^{i}$. Observe that for any $a, b, c \in L$ we have

$$
a \otimes b \otimes c-1 / 2(\{a, b, c\}+[b, c] \otimes a+b \otimes[a, c]+[a, b] \otimes c) \in I
$$

which implies that $U_{2}=U_{3}=U(L)$. Consider the associated graded algebra $\operatorname{gr} U=(g r U)_{1} \oplus(g r U)_{2}$, where $(g r U)_{1}=U_{1},(\operatorname{gr} U)_{2}=U(L) / U_{1}$; then it is easy to see that it is commutative and nilpotent of degree 3: $(g r U)^{3}=0$. For more properties of this algebra we need the following

Lemma 1 In $U(L)^{ \pm}$hold the inclusions

$$
\begin{aligned}
{\left[U_{i}, U_{j}\right] } & \subseteq U_{i+j-1}, \\
\left\{U_{i}, U_{j}, U_{k}\right\} & \subseteq U_{i+j+k-2} .
\end{aligned}
$$

Proof. Since $U_{2}=U(L)$, both inclusions are evident if at least one of the indices is equal to 2. Furthermore, $U_{1}=\alpha(L)$, and for any $a, b, c \in L$ we have

$$
[\alpha(a), \alpha(b)]=\alpha([a, b]),\{\alpha(a), \alpha(b), \alpha(c)\}=\alpha(\{a, b, c\}),
$$

which proves the inclusions for $i=j=k=1$.
Let $\overline{c_{i}}=c_{i}+U_{i-1} \in(g r U)_{i}$, for some $c_{i} \in U_{i}$. It follows from Lemma 1 that the following operations are correctly defined in $g r U$:

$$
\begin{aligned}
{\left[\bar{c}_{i}, \bar{c}_{j}\right] } & =\left[c_{i}, c_{j}\right]+U_{i+j-2}, \\
\left\{\bar{c}_{i}, \bar{c}_{j}, \bar{c}_{k}\right\} & =\left\{c_{i}, c_{j}, c_{k}\right\}+U_{i+j+k-3} .
\end{aligned}
$$

Since these operations are induced by those in the $L J$-algebra $U(L)^{ \pm}$, they satisfy identities (1) - (5); that is, the space $g r U$ forms an $L J$-algebra with respect to the operations [,], $\{,$,$\} . Moreover, one can easily check that the$ following identities hold in $U(L)$:

$$
\begin{aligned}
{[x y, z] } & =x[y, z]+[x, z] y, \\
\{x \circ y, z, t\} & =\{x, z, t\} \circ y+1 / 2([[t, z], y] \circ x+[[t \circ z, y], x]),
\end{aligned}
$$

where $x \circ y=x y+y x$. The proof is straightforward. As a corollary, we obtain that the associated graded algebra $g r U$ satisfies the identities

$$
\begin{align*}
{[x y, z] } & =x[y, z]+[x, z] y \tag{6}\\
\{x y, z, t\} & =\{x, z, t\} y+1 / 2([[t, z], y] x+[[t z, y], x]) \tag{7}
\end{align*}
$$

Identity (6) shows that $g r U$ is a Poisson algebra. By this reason, we will call a commutative associative algebra A with additional operations [,] and $\{,$,$\} a Poisson LJ-algebra if \langle A,+,[],,\{,\}$,$\rangle is an L J$-algebra, $A^{3}=0$, and identities (6),(7) are satisfied in A. As we just have seen, for every $L J$-algebra L, the algebra $\operatorname{gr} U(L)$ is a Poisson $L J$-algebra.

Lemma 2 Every Poisson LJ-algebra A satisfies the identities

$$
\begin{align*}
& \{x, z, t\} y-\{y, z, t\} x-h(x, y, z, t)=0, \tag{8}\\
& {[x y, z t]=\{x y, z, t w\}=\{x y, z t, w\}=0,} \tag{9}
\end{align*}
$$

where $h(x, y, z, t)=1 / 2([z,[x, y]] t+[t,[x, y]] z+[[t, z], x] y-[[t, z], y] x)$.
Proof. Interchanging x and y in (7) and subtracting the new identity from the former one, by the Jacobi identity and (6), we obtain (8). Furthermore, since $A^{3}=0$, identities (9) follow from (7), (2), (3), and (6).

Notice that $\alpha(L)=U_{1}=(\operatorname{gr} U)_{1}$, hence the problem of injectivity of α is reduced to the structure of the graded algebra $\operatorname{gr} U(L)$. In the next section we will try to construct this algebra starting with the algebra L.

3 The Poisson $L J$-algebra $\overline{V(L)}$

Let L be an $L J$-algebra. In this section we will construct a Poisson $L J$-algebra $\overline{V(L)}$ which eventually proves to be isomorphic to the algebra $\operatorname{gr} U(L)$.

As the first approximation, we consider the space $V(L)=L \oplus S^{2}(L)$. Here $S^{2}(L)$ stands for the space of symmetric 2-degree tensors over L, which is spanned by the elements $a \bullet b=1 / 2(a \otimes b+b \otimes a), a, b \in L$. Define a multiplication - on $V(L)$ by setting for $a, b, c, d \in L$

$$
a \cdot b=a \bullet b, a \cdot(b \bullet c)=(b \bullet c) \cdot a=(a \bullet b) \cdot(c \bullet d)=0 ;
$$

then $V(L)$ becomes a commutative associative algebra with $V(L)^{3}=0$. If no ambiguity occurs, we will write $a b$ instead of $a \cdot b$.

Extend now the operations [,] and $\{,$,$\} from L$ to $V(L)$ by setting

$$
\begin{aligned}
{[x \bullet x, y] } & =-[y, x \bullet x]=2 x[x, y], \\
\{x \bullet x, y, z\} & =\{z, y, x \bullet x\}=\{x, y, z\} x+1 / 2([[z, y], x] x+[[z y, x], x]), \\
\{x, y \bullet y, z\} & =\{y \bullet y, x, z\}+\left[\left[x, y^{2}\right], z\right], \\
\{a, b, r\} & =\{a, r, b\}=\{r, a, b\}=[a, b]=0,
\end{aligned}
$$

for every $x, y, z \in L, a, b, \in S^{2}(L), r \in V(L)$. Since the space $S^{2}(L)$ is spanned by the elements $x \bullet x, x \in L$, the operations are correctly defined.

Note that L is an $L J$-subalgebra of $V(L)$ though $V(L)$ itself, in general, is not an $L J$-algebra with respect to the defined operations.

By construction, we have a homomorphism of graded algebras

$$
\rho:\langle V(L),+, \cdot,[,],\{,,\}\rangle \longrightarrow g r U
$$

such that $\rho(a)=\alpha(a), a \in L$.
Obviously, the equality that we need, $\operatorname{ker} \alpha=0$, is equivalent to the equality $(\operatorname{ker} \rho) \cap L=0$. Since $\operatorname{ker} \rho$ is a graded ideal, this equality is equivalent to the inclusion

$$
\begin{equation*}
\operatorname{ker} \rho \subseteq S^{2}(L) \tag{10}
\end{equation*}
$$

Therefore, we need an information on the structure of $\operatorname{ker} \rho$.
Notice that, by (8), for every elements $x, y, z, t \in L$ we have

$$
\begin{equation*}
j(x, y, z, t):=\{x, z, t\} y-\{y, z, t\} x-h(x, y, z, t) \in \operatorname{ker} \rho . \tag{11}
\end{equation*}
$$

Let $J=J(L)=\operatorname{vect}\{j(x, y, z, t) \mid x, y, z, t \in L\}$ be the vector space generated by all the elements of this kind; then evidently $J \subseteq S^{2}(L) \cap \operatorname{ker} \rho$. We will eventually show that $J=\operatorname{ker} \rho$; this will imply inclusion (10) and Theorem 1.

Our nearest objective is to prove that certain elements from ker ρ lie in J.
Let $\tilde{L}=L J[X]$ and $A=A[X]$ be free Lie-Jordan and free associative algebras with free generators $X=\left\{x_{1}, x_{2}, \ldots\right\}$. Denote by $\widetilde{S L}=S L J[X]$ a free special $L J$-algebra, that is, the $L J$-subalgebra of $A^{ \pm}$generated by X. Evidently, there exists an epimorphism $\varphi: \tilde{L} \longrightarrow \widetilde{S L}$, identical on X. By definition of a universal enveloping algebra, φ extends uniquely to a homomorphism of associative algebras $\tilde{\varphi}: U(\tilde{L}) \longrightarrow A, \tilde{\varphi}(x)=x, x \in$ X. But A is a free algebra, hence $\tilde{\varphi}$ is an isomorphism. Thus, we have a homomorphism

$$
\rho:\langle V(\tilde{L}),+, \cdot,[,],\{,,\}\rangle \longrightarrow g r A=\widetilde{S L} \oplus A / \widetilde{S L}
$$

such that $\rho(a)=\alpha(a), a \in \tilde{L}$. Notice that the algebras $V(\tilde{L})$ and $g r A$ have natural gradings by degrees with respect to X, and the homomorphism ρ respects this grading.

The following proposition is crucial for our construction.
Proposition 1 In the above notations, every multilinear element of degree ≤ 6 on X from ker ρ lies in $J=J(\tilde{L})$.

Proof. We will prove that J contains the multilinear elements of degree 6 from $\operatorname{ker} \rho$. For the elements of smaller degree the proof is similar but more easy.

Denote by P the subspace of multilinear elements of degree 6 in $V(\tilde{L})$. A subset W of a vector space V we will call a pre-basis of V if vect $\{W\}=V$. We have a decomposition $P=P_{1} \oplus P_{2}$, where $P_{1}=P \cap \tilde{L}$ and $P_{2}=P \cap S^{2}(\tilde{L})$. Let us find a pre-basis of the space $\left(P_{2}+J\right) / J$. Let $L[X]$ be a Lie subalgebra in \tilde{L} generated by X and B be a homogeneous basis of the space of multilinear elements of $L[X]$. We have $B=\cup_{i=1}^{\infty} B_{i}$, where $B_{i}=\left\{b \in B \mid \operatorname{deg}_{X} b=i\right\}$. Set

$$
\begin{aligned}
Q_{1} & =\left\{a_{i} b_{j} \mid a_{i} \in B_{i}, b_{j} \in B_{j}, i+j=6\right\} \\
Q_{2} & =\left\{a_{3}\{x, y, z\} \mid a_{3} \in B_{3}, x, y, z \in X\right\} \\
Q_{3} & =\left\{a_{2}\left\{b_{2}, y, z\right\} \mid a_{2}, b_{2} \in B_{2}, y, z \in X\right\} \\
Q_{4} & =\{\{x, y, z\}\{u, v, w\} \mid x, y, z, u, v, w \in X\} .
\end{aligned}
$$

Lemma 3 The set $Q=\cup_{i=1}^{4} Q_{i}$ is a pre-basis of $\left(P_{2}+J\right) / J$.
Proof. Let $v \in P_{2}$ be a monomial of degree 6. If $v \in L[X] \cdot L[X]$, then $v \in \operatorname{vect}\left\{Q_{1}\right\}$.

If the operation $\{,$,$\} appears only once in v$, then we can assume, by (3) and (4), that v has one of the forms

$$
v_{1}=z\left\{a_{3}, x, y\right\}, \quad v_{2}=y\left\{a_{2}, b_{2}, x\right\}, \quad v_{3}=a_{2}\left\{b_{2}, x, y\right\}, \quad v_{4}=a_{3}\{x, y, z\}
$$

where $a_{i}, b_{i} \in B_{i}, x, y, z \in X$. Now, for any $a, b, c, d \in \tilde{L}$ we have $h(a, b, c, d) \in$ vect $\left\{Q_{1}\right\}$, hence, by (11),

$$
\begin{equation*}
\{a, c, d\} b-\{b, c, d\} a=j(a, b, c, d)+h(a, b, c, d) \in J+\operatorname{vect}\left\{Q_{1}\right\} . \tag{12}
\end{equation*}
$$

Therefore, by (3), $v_{1}, \ldots, v_{4} \in \operatorname{vect}\left\{Q_{1} \cup Q_{2} \cup Q_{3}\right\}+J$.
Finally, if the operation $\{,$,$\} appears twice in v$, then evidently

$$
v=\sum_{i}\left\{\left\{x_{i}, y_{i}, z_{i}\right\}, t_{i}, u_{i}\right\} w_{i}(\bmod \quad \text { vect }\{Q\}),
$$

for some $x_{i}, \ldots, w_{i} \in X$. By (12), we have

$$
\left\{\left\{x_{i}, y_{i}, z_{i}\right\}, t_{i}, u_{i}\right\} w_{i} \equiv\left\{x_{i}, y_{i}, z_{i}\right\}\left\{w_{i}, t_{i}, u_{i}\right\} \quad(\bmod \quad \text { vect }\{Q\}+J),
$$

so $v \in \operatorname{vect}\{Q\}+J$, and Lemma is proved.
Set $P_{2}^{j}=\operatorname{vect}\left\{Q_{1}+\cdots+Q_{j}\right\}+J, j=1,2,3,4$, and $\bar{P}_{2}^{j}=P_{2}^{j} / P_{2}^{j-1}, j=$ $2,3,4$.

Lemma 4 We have
(i) $\operatorname{dim}\left(P_{2}^{1} / J\right) \leq 274$,
(ii) $\operatorname{dim} \bar{P}_{2}^{2} \leq 40$,
(iii) $\operatorname{dim} \bar{P}_{2}^{3} \leq 45$,
(iv) $\operatorname{dim} \bar{P}_{2}^{4} \leq 1$,
(v) $\operatorname{dim}\left(P_{2}+J / J\right) \leq 360$.

Proof. By [1, page 50], the dimension of the space of multilinear elements of degree m in a free n-generated Lie algebra is equal to $B(n, m)=$ $=(m-1)!C_{m}^{n}$. Therefore, we have

$$
\begin{aligned}
\operatorname{dim} P_{2}^{1} / J & \leq\left|Q_{1}\right| \leq B(6,1) B(5,5)+B(6,2) B(4,4)+B(6,3) B(3,3) \\
& =144+90+40=274
\end{aligned}
$$

Furthermore, by (2) and (3), we have for any $a_{i} \in L[X], i=1,2,3$, and $\sigma \in \operatorname{Sym}\{1,2,3\}$

$$
\begin{equation*}
\left\{a_{\sigma(1)}, a_{\sigma(2)}, a_{\sigma(3)}\right\} \equiv\left\{a_{1}, a_{2}, a_{3}\right\} \quad(\bmod L[X]) \tag{13}
\end{equation*}
$$

which implies that $\operatorname{dim} \bar{P}_{2}^{2} \leq B(6,3)=40$.
To prove (iii), notice that (12) implies

$$
a_{2}\left\{b_{2}, x, y\right\} \equiv b_{2}\left\{a_{2}, x, y\right\}(\bmod L[X]+J),
$$

hence $\operatorname{dim} \bar{P}_{2}^{3} \leq 1 / 2 B(6,2) B(4,2)=45$.
For (iv), we need a certain corollary of identity (5). Adding (5) and the identity obtained from it by interchanging y and z, we get by (3)

$$
\begin{aligned}
&\{2\{x, y, z\}-[x,[y, z]], t, v\}=2\{\{x, t, v\}, y, z\}-[\{x, t, v\},[y, z]] \\
&-\{x,\{y, v, t\}, z\}+\{x, y,\{z, t, v\}\}-\{x,\{z, v, t\}, y\}+\{x, z,\{y, t, v\}\} \\
&= 2\{\{x, t, v\}, y, z\}-[\{x, t, v\},[y, z]]-\{x,\{y, t, v\}+[y,[v . t]], z\} \\
&+\{x, y,\{z, v, t\}+[z,[t, v]]\}-\{x,\{z, v, t\}, y\}+\{x, z,\{y, t, v\}\} \\
&= 2\{\{x, t, v\}, y, z\}-[\{x, t, v\},[y, z]]-\{x,[y,[v \cdot t]], z\}+\{x, y,[z,[t, v]]\} \\
&-[x,[\{y, t, v\}, z]]+[x,[y,\{z, v, t\}]] .
\end{aligned}
$$

Since \tilde{L} is an $L J$-algebra, this implies that for any $x_{i} \in X, i=1, \ldots, 6$, we have

$$
\begin{equation*}
\left\{\left\{x_{1}, x_{2}, x_{3}\right\}, x_{4}, x_{5}\right\}=\left\{\left\{x_{1}, x_{4}, x_{5}\right\}, x_{2}, x_{3}\right\}+S, \tag{14}
\end{equation*}
$$

where S is a sum of multilinear elements from \tilde{L} on x_{1}, \ldots, x_{5}, in which the operation $\{,$,$\} appears only once. By the proof of Lemma 3, we have$ $S \cdot x_{6} \in P_{2}^{3}$.

Now, for any $x_{i} \in X, i=1, \ldots, 6$ we have by (12)

$$
\left\{\left\{x_{1}, x_{2}, x_{3}\right\}, x_{4}, x_{5}\right\} x_{6} \equiv\left\{x_{1}, x_{2}, x_{3}\right\}\left\{x_{4}, x_{5}, x_{6}\right\}\left(\bmod P_{2}^{3}\right)
$$

which implies by (14) that

$$
\begin{equation*}
\left\{x_{1}, x_{2}, x_{3}\right\}\left\{x_{4}, x_{5}, x_{6}\right\} \equiv\left\{x_{1}, x_{4}, x_{5}\right\}\left\{x_{2}, x_{3}, x_{6}\right\}\left(\bmod P_{2}^{3}\right) \tag{15}
\end{equation*}
$$

It follows easily from (13) and (15) that for any $\sigma \in \operatorname{Sym}\{1, \ldots, 6\}$ holds

$$
\left\{x_{\sigma(1)}, x_{\sigma(2)}, x_{\sigma(3)}\right\}\left\{x_{\sigma(4)}, x_{\sigma(5)}, x_{\sigma(6)}\right\} \equiv\left\{x_{1}, x_{2}, x_{3}\right\}\left\{x_{4}, x_{5}, x_{6}\right\}\left(\bmod P_{2}^{3}\right)
$$

which implies (iv).
Finally, we have
$\operatorname{dim}\left(P_{2}+J / J\right) \leq \operatorname{dim} P_{2}^{1} / J+\operatorname{dim} \bar{P}_{2}^{2}+\operatorname{dim} \bar{P}_{2}^{3}+\operatorname{dim} \bar{P}_{2}^{4}=274+40+45+1=360$, proving the Lemma.

Lemma $5 \operatorname{dim} P_{1} \leq 360$.

Proof. Let us write $P_{1}=P_{1}^{0}+P_{1}^{1}+P_{1}^{2}$, where P_{1}^{i} means the space generated by monomials from P_{1} in which the operation $\{,$,$\} appears i$ times. Furthermore, for $i=1,2$ we set $\bar{P}_{1}^{i}=\left(P_{1}^{0}+\cdots+P_{1}^{i}\right) /\left(P_{1}^{0}+\cdots+P_{1}^{i-1}\right)$. Clearly, $\operatorname{dim} P_{1}^{0} \leq B(6,6)=5!=120$.

Let B and B_{i} be as in Lemma 3. By (13), the union of the sets $\left\{B_{4}, X, X\right\}$, $\left\{B_{3}, B_{2}, X\right\}$, and $\left\{B_{2}, B_{2}, B_{2}\right\}$ forms a pre-basis of \bar{P}_{1}^{1}. Taking in account (13), we obtain

$$
\begin{aligned}
\operatorname{dim} \operatorname{vect}\left\{\left\{B_{4}, X, X\right\}\right\} & \leq B(6,4)=90 \\
\operatorname{dim} \text { vect }\left\{\left\{B_{3}, B_{2}, X\right\}\right\} & \leq B(6,3) B(3,2)=120 \\
\operatorname{dim} \operatorname{vect}\left\{\left\{B_{2}, B_{2}, B_{2}\right\}\right\} & \leq B(6,2) B(4,2) / 3!=15
\end{aligned}
$$

which implies that $\operatorname{dim} \bar{P}_{1}^{1} \leq 90+120+15=225$.
Furthermore, it follows from (14) and (13) that the set $\left\{\left\{B_{2}, x_{i}, x_{j}\right\}, x_{k}, x_{l}\right\}$, where $x_{s} \in X, i<j<k<l$, forms a pre-basis of \bar{P}_{1}^{2}; hence $\operatorname{dim} \bar{P}_{1}^{2} \leq$ $B(6,2)=15$.

Thus, $\operatorname{dim} P_{1}=\operatorname{dim} P_{1}^{0}+\operatorname{dim} \bar{P}_{1}^{1}+\operatorname{dim} \bar{P}_{1}^{2} \leq 120+225+15=360$.
Return to the proof of Proposition 1. By Lemmas 4 and 5 we have that $\operatorname{dim} P / P \cap J=\operatorname{dim}(P+J / J) \leq \operatorname{dim} P_{1}+\operatorname{dim}\left(P_{2}+J / J\right) \leq 360+360=720$.

On the other hand, the image $\rho(P)$ coincides with the space $(g r A)_{\langle 6\rangle}$ of multilinear elements of degree 6 on X in $g r A$, which has the same dimension as the corresponding space $A_{\langle 6\rangle}$ in A. Therefore, $\operatorname{dim} \rho(P)=\operatorname{dim} A_{\langle 6\rangle}=6!=$ 720 , and hence $P \cap \operatorname{ker} \rho=P \cap J$.
Corollary $1 J=J(\tilde{L})$ is an ideal of the algebra $\langle V(L),+, \cdot,[],,\{,\}$,$\rangle .$
Proof. It suffices to prove that

$$
[J, \tilde{L}] \subseteq J, \quad\{J, \tilde{L}, \tilde{L}\} \subseteq J
$$

Moreover, the space J is evidently stable with respect to endomorphisms of the space $V(\tilde{L})$ induced by those of the $L J$-algebra \tilde{L}; hence we need only to prove that for any $x, y, z, t, u, v \in X$ hold the inclusions

$$
[j(x, y, z, t), u] \in J, \quad\{j(x, y, z, t), u, v\} \in J
$$

Observe that the elements under consideration belong to ker ρ. Since they are multilinear and of degrees 5 and 6 , they belong to J as well.

Corollary 2 The quotient algebra $\overline{V(\tilde{L})}=V(\tilde{L}) / J(\tilde{L})$ is a Poisson LJalgebra.

Proof. We have to prove that identities (1)-(5) hold in $V(\tilde{L})$ modulo $J(\tilde{L})$. If an identity contains at least two arguments from $S^{2}(\tilde{L})$, it holds trivially. Consequently, we can assume, as before, that all but one arguments in identities under consideration belong to X, and one argument belongs to $X \cup X \cdot X$. The identities evidently hold modulo $\operatorname{ker} \rho$. Since they are multilinear and of degree ≤ 6 on X, they hold modulo $J(\tilde{L})$ as well.

Notice that the constructions of $V(L)$ and $J(L)$ are functorial; that is, any $L J$-algebra homomorphism $\varphi: L_{1} \longrightarrow L_{2}$ can be extended to a homomorphism

$$
\tilde{\varphi}:\left\langle V\left(L_{1}\right),+, \cdot,[,],\{,,\}\right\rangle \longrightarrow\left\langle V\left(L_{2}\right),+, \cdot,[,],\{,,\}\right\rangle
$$

and $\tilde{\varphi}\left(J\left(L_{1}\right)\right)=J\left(\varphi\left(L_{1}\right)\right) \subseteq J\left(L_{2}\right)$. Moreover, if φ is surjective then so is $\tilde{\varphi}$. Since every $L J$-algebra can be represented as a quotient algebra of a free $L J$-algebra, corollaries 1 and 2 imply

Proposition 2 For every LJ-algebra L the space $J(L)$ is an ideal of the algebra $V(L)$ with respect to the operations $\cdot,[],,\{,$,$\} , and the quotient algebra$ $\overline{V(L)}=V(L) / J(L)$ is a Poisson LJ-algebra.

Since $J(L) \subseteq \operatorname{ker} \rho$, the homomorphism $\rho: V(L) \longrightarrow g r U(L)$ induces a Poisson $L J$-algebra homomorphism $\tilde{\rho}: \overline{V(L)} \longrightarrow \operatorname{gr} U(L)$, such that $\tilde{\rho}(l)=$ $\alpha(l)$ for any $l \in L$. In the next section we will prove that $\tilde{\rho}$ is an isomorphism, which will imply that ker $\rho=J(L)$, proving inclusion (10) and Theorem 1.

$4 \quad U(L)$ is a deformation of $\overline{V(L)}$

As we have seen, for the proving of theorem 1 it suffices to prove that $\overline{V(L)}$ is isomorphic to $\operatorname{gr} U(L)$. We will prove it by constructing an associative multiplication on $\overline{V(L)}$, isomorphic to that in $U(L)$.

Consider the space of polynomials $\overline{V(L)}[t]$ over $\overline{V(L)}$. An associative multiplication $*$ on $\overline{V(L)}[t]$ we will call a quantization deformation of $\overline{V(L)}$,
if it satisfies the conditions:

> (i) $a * a=a^{2}$,
> (ii) $a * b-b * a=[a, b] t$,
> (iii) $a * b * c+c * b * a=\{a, b, c\} t^{2}$,
> (iv) $t * r=r * t$,
for any $a, b, c \in L, r \in \overline{V(L)}$.
The role of this definition is illustrated by the following
Proposition 3 Let L be an LJ-algebra. If the Poisson LJ-algebra $\overline{V(L)}$ admits a quantization deformation, then L is special. Moreover, in this case $\operatorname{gr} U(L)$ is isomorphic to $\overline{V(L)}$ and $U(L)$ is isomorphic to the quotient algebra $\langle\overline{V(L)}[t],+, *\rangle / \overline{V(L)}[t](1-t)$.

Proof. Assume that $\overline{V(L)}=L \oplus S^{2}(L) / J(L)$ admits a quantization deformation $*$. Define a new multiplication $a \star b=\left.a * b\right|_{t=1}$ on $\overline{V(L)}$; then the algebra $B=\langle\overline{V(L)},+, \star\rangle$ is associative, and, by properties (ii) and (iii), the $L J$-algebra L is a subalgebra of the $L J$-algebra $B^{ \pm}$. Therefore, L is special.

Consequently, there exists an algebra homomorphism $\pi: U(L) \longrightarrow B$ such that $\pi \alpha(l)=l$ for any $l \in L$. The algebra B is evidently generated by L and has a filtration $B_{1}=L \subseteq B_{2}=B$, where $B_{2}=L+L \star L$; and it is easily seen that $\pi\left(U_{k}\right) \subseteq B_{k}$. Therefore, π induces a homomorphism of associated graded algebras $\tilde{\pi}: g r U \longrightarrow g r B$, with $\tilde{\pi} \alpha(l)=l$ for any $l \in L$. But $g r B$ is easily seen to be isomorphic to $\overline{V(L)}$, and we have seen that there exists a graded algebra homomorphism $\tilde{\rho}: \overline{V(L)} \longrightarrow g r U(L)$, such that $\tilde{\rho}(l)=\alpha(l)$ for any $l \in L$. This proves that $g r U(L)$ is isomorphic to $\overline{V(L)}$. Observe that $U(L)$ and $\operatorname{gr} U(L)$ are isomorphic as vector spaces. Choose in $U(L)$ a base $\left\{u_{i}\right\}$ such that the set $\left\{\bar{u}_{i}\right\}$ is a graded base of $\operatorname{gr} U(L)$; then evidently $\left\{\pi\left(u_{i}\right)\right\}$ is a base of the space $\overline{V(L)}$, and so ker $\pi=0$ and π is an isomorphism.

Now, everything is finished by the following
Theorem 2 For any LJ-algebra L, the Poisson LJ-algebra $\overline{V(L)}$ admits a quantization deformation.

Proof. We first define a multiplication $*$ on $V(L)[t]$ by setting

$$
\begin{aligned}
a * b & =a b+1 / 2[a, b] t \\
a^{2} * b & =1 / 2\left(\left[a^{2}, b\right] t+\{a, a, b\} t^{2}\right) \\
b * a^{2} & =1 / 2\left(\left[b, a^{2}\right] t+\{a, a, b\} t^{2}\right) \\
a^{2} * b^{2} & =1 / 2\left(\left\{a, a, b^{2}\right\} t^{2}+[\{a, a, b\}, b] t^{3}\right)
\end{aligned}
$$

Let us check that $J(L) * V(L)+V(L) * J(L) \subseteq J(L)[t]$. Let $x, y, z, t \in L$; consider

$$
\begin{aligned}
j(x, y, z, t)= & \{x, z, t\} y-\{y, z, t\} x-1 / 2[z,[x, y]] t \\
& -1 / 2([t,[x, y]] z+[[t, z], x] y-[[t, z], y] x) \\
= & \sum_{i} j_{1}^{(i)} j_{2}^{(i)} .
\end{aligned}
$$

We claim that for any $a \in V(L)$ holds

$$
\begin{equation*}
\sum_{i}\left\{j_{1}^{(i)}, j_{2}^{(i)}, a\right\}+\left\{j_{2}^{(i)}, j_{1}^{(i)}, a\right\} \in J \tag{16}
\end{equation*}
$$

In fact, we have

$$
\begin{aligned}
& \sum_{i}\left\{j_{1}^{(i)}, j_{2}^{(i)}, a\right\}+\left\{j_{2}^{(i)}, j_{1}^{(i)}, a\right\}= \\
& =\{\{x, z, t\}, y, a\}+\{y,\{x, z, t\}, a\}-\{\{y, z, t\}, x, a\} \\
& \quad-\{x,\{y, z, t\}, a\}-1 / 2\{[z,[x, y]], t, a\}-1 / 2\{t,[z,[x, y]], a\} \\
& \quad-1 / 2\{[t,[x, y]], z, a\}-1 / 2\{z,[t,[x, y]], a\}-1 / 2\{[[t, z], x], y, a\} \\
& \quad-1 / 2\{y,[[t, z], x], a\}+1 / 2\{[[t, z], y], x, a\}+1 / 2\{x,[[t, z], y], a\} .
\end{aligned}
$$

One can straightforwardly check that this sum is identically zero in the algebra $\widetilde{S L}$. Since it is of degree 5 , by Proposition 1 it is an identity in the free $L J$-algebra \tilde{L}. Consequently, this identity holds in the $L J$-algebra $\overline{V(L)}=V(L) / J(L)$, which implies inclusion (16).

Now, by definition of the multiplication $*$, we have

$$
j(x, y, z, t) * a=1 / 2[j, a] t+1 / 4 \sum_{i}\left(\left\{j_{1}^{(i)}, j_{2}^{(i)}, a\right\}+\left\{j_{2}^{(i)}, j_{1}^{(i)}, a\right\}\right) t^{2}
$$

which lies in $J[t]$ by Corollary 1 and (16). Furthermore, if $a \in S^{2}(L), a=b^{2}$, then

$$
\begin{aligned}
j(x, y, z, t) * b^{2}= & 1 / 2 \sum_{i}\left(\left\{j_{1}^{(i)}, j_{2}^{(i)}, b^{2}\right\}+\left\{j_{2}^{(i)}, j_{1}^{(i)}, b^{2}\right\}\right) t^{2} \\
& +1 / 2 \sum_{i}\left[\left\{j_{1}^{(i)}, j_{2}^{(i)}, b\right\}+\left\{j_{2}^{(i)}, j_{1}^{(i)}, b\right\}, b\right] t^{3},
\end{aligned}
$$

which lies in $J[t]$ by the same reasons. Therefore, $V(L) * J(L) \subseteq J(L)[t]$. Similarly, $J(L) * V(L) \subseteq J(L)[t]$.

The inclusions just proved show that $*$ can be defined naturally on the quotient algebra $\overline{V(L)}[t]$. Conditions (i)-(iv) are evidently satisfied by $*$. We have only to prove that $*$ is associative.

We will consider only the most complicated case; the remaining cases are proved similarly.

Compute

$$
\left(a^{2} * b^{2}\right) * c^{2}=1 / 2\left(\left\{a, a, b^{2}\right\} * c^{2}\right) t^{2}+1 / 2\left([\{a, a, b\}, b] * c^{2}\right) t^{3} .
$$

One can easily check that in any Poisson $L J$-algebra hold the identities

$$
\left\{a, a, b^{2}\right\}=\{a, a, b\} b+[a, b]^{2}+a[[a, b], b] .
$$

Hence,

$$
\begin{aligned}
\left\{a, a, b^{2}\right\} * c^{2}= & 1 / 4\left(\left\{\left\{\{a, a, b\}, b, c^{2}\right\}+\left\{b,\{a, a, b\}, c^{2}\right\}\right) t^{2}\right. \\
& +1 / 4\left(\left\{a,[[a, b], b], c^{2}\right\}+\left\{[[a, b], b], a, c^{2}\right\}\right) t^{2} \\
& +1 / 2\left\{[a, b],[a, b], c^{2}\right\} t^{2}+1 / 2[\{[a, b],[a, b], c\}, c] t^{3} \\
& +1 / 4([\{\{a, a, b\}, b, c\}, c]+[\{b,\{a, a, b\}, c\}, c]) t^{3} \\
& +1 / 4\left([\{\{a,[[a, b], b], c\}, c]+[\{[[a, b], b], a, c\}, c]) t^{3} .\right.
\end{aligned}
$$

Therefore, $\left(a^{2} * b^{2}\right) * c^{2}=A t^{4}+B t^{5}$, where

$$
\begin{aligned}
A= & 1 / 8\left(\left(\left\{\{a, a, b\}, b, c^{2}\right\}+\left\{b,\{a, a, b\}, c^{2}\right\}\right.\right. \\
& +\left\{a,[[a, b], b], c^{2}\right\}+\left\{[[a, b], b], a, c^{2}\right\}, \\
& \left.+2\left[[\{a, a, b\}, b], c^{2}\right]\right)+2\left\{[a, b],[a, b], c^{2}\right\},
\end{aligned}
$$

and

$$
\begin{aligned}
B= & 1 / 8([\{\{a, a, b\}, b, c\}, c]+[\{b,\{a, a, b\}, c\}, c] \\
& +[\{\{a,[[a, b], b], c\}, c]+[\{[[a, b], b], a, c\}, c] \\
& +2[\{[a, b],[a, b], c\}, c]+2\{c, c,[\{a, a, b\}, b]\} .
\end{aligned}
$$

Similarly, $a^{2} *\left(b^{2} * c^{2}\right)=A_{1} t^{4}+B_{1} t^{5}$, where

$$
A_{1}=1 / 4\left(\left\{a, a,\left\{b, b, c^{2}\right\}\right\}+\left[a^{2},[\{b, b, c\}, c]\right]\right),
$$

and

$$
\begin{aligned}
B_{1}= & 1 / 8([\{a, a, b\},\{b, b, c\}]+[\{a, a,\{b, b, c\}\}, c] \\
& +[\{a, a, b\},[[b, c], c]]+[\{a, a,[[b, c], c]\}, b] \\
& +2[\{a, a,[b, c]\},[b, c]]+2\{a, a,[\{b, b, c\}, c]\}) .
\end{aligned}
$$

One can straightforwardly check that $A=A_{1}$ and $B=B_{1}$ in the algebra $\operatorname{gr} A[X]$ for any $a, b, c \in X$. Since the elements $A-A_{1}, B-B_{1}$ are of degree 6 , by Proposition 1 we have $A-A_{1}, B-B_{1} \in J(\tilde{L})$, and hence $A=A_{1}, B=B_{1}$ in $\overline{V(L)}$.

This proves the theorem.

5 Application

In order to formulate an application of our result, we recall some definitions from [2].

Let $A=A[x, y]$ be the free associative algebra over a field F of characteristic $p>0$ on free generators x, y. For any $f=f(x, y) \in A$ we define a space A_{f} as a minimal subspace of A with the properties:
(i) $x, y \in A_{f}$,
(ii) If $a, b \in A_{f}$, then $f(a, b) \in A_{f}$.

A series $E(x)=\sum_{i=0}^{\infty} a_{i} x^{i}$ is called an f-exponent if $a_{0}=1$ and in the natural completion \bar{A} of A we have

$$
\begin{equation*}
E(x) E(y)=E(z), \tag{17}
\end{equation*}
$$

where $z=\sum_{i=0}^{\infty} z_{i}, \operatorname{deg} z_{i}=i, z_{i} \in A_{f}$.
A series $E(x)$ we will call a p-exponent if $E(x)$ is an f-exponent for some polynomial f, and for any other polynomial g we have $A_{f} \subseteq A_{g}$.

It was proved in [2] that in the case $p=0$ a 0 -exponent exists and coincides with the classical exponent $\exp x=\sum_{i=0}^{\infty} x^{i} / i$!. It was also conjectured there that a p-exponent exists (certainly not unique!) and coincides with an $f_{p^{-}}$ exponent, where the element $f_{p} \in A$ is defined as follows.

It is well known (see for instance [3, section 5.7]) that for every simple $p>0$ an equality of the following type holds:

$$
(x+y)^{p}=x^{p}+y^{p}+s(x, y)+p \tilde{f}_{p}(x, y),
$$

where $s(x, y)$ and $\tilde{f}_{p}(x, y)$ are a Lie and associative polynomials on x, y with integer coefficients. Of course, the polynomial $\tilde{f}_{p}(x, y)$ is not uniquely defined by this equation; but it is unique modulo Lie polynomials.

Now, we fix \tilde{f}_{p}, reduce its coefficients modulo p, and set $f_{p}(x, y)=[x, y]+$ $\tilde{f}_{p}(x, y)$.

For $p=3$, it is easy to see that we can take $\tilde{f}_{3}=x y x+y x y$; hence $f_{3}=x y-y x+x y x+y x y$, and the subspace $A_{f_{3}}$ coincides with the free special $L J$-algebra $S L J[x, y]$. Consequently, the elements z_{i} in equality (17) belong to $S L J[x, y]$ and can be written as concrete polynomials on x, y in terms of operations [,] and $\{,$,$\} . More specifically, it was proved in [2] that$ the series

$$
E(x)=x+\sqrt{1+x^{2}}=1+x-x^{2}+x^{4}+\cdots
$$

is a 3 -exponent and an f_{3}-exponent; and the element z from (17) is given by

$$
\begin{equation*}
z=E^{-1}(E(x) E(y))=x * y=x+y-[x, y]+\{x, x, y\}+\{x, y, y\}+\cdots \tag{18}
\end{equation*}
$$

The following Theorem was conjectured in [2].
Theorem 3 Let $L=L J[x, y]$ be the free LJ-algebra over a field F of characteristic 3 on generators x, y, and \bar{L} be the completion of L; then the operation $u * v=w$, defined by the right part of (18), introduces on \bar{L} a group structure.

Proof. By Theorem 1, the $L J$-algebra L is special; hence it is isomorphic to $S L=S L J[x, y]$, and by (17) we have $u * v=E^{-1}(E(u) E(v))$ for any $u, v \in L=S L \subseteq A$. This implies easily the statement of the Theorem.

References

[1] Yu. A. Bahturin, Identities of Lie algebras, Moscow, Nauka, 1985 (in Russian); English translation by VNU Science Press: Utrecht, 1987.
[2] A. Grishkov, An analog of exponential map and Campbell-Hausdorff series in characteristic 3 , to appear.
[3] N. Jacobson, Lie algebras, Interscience Publishers, 1962.
[4] N. Jacobson, Structure and representations of Jordan algebras, AMS, Providence, RI, 1968.
[5] I. P. Shestakov, Every Akivis algebra is linear, Geometriae dedicata, to appear.
[6] I. P. Shestakov, Speciality and Deformations of Algebras, Proceedings of the International Algebraic Conference dedicated to memory of A.G.Kurosh, May 1998, Moscow, to appear.
[7] K. A. Zhevlakov, A. M. Slin'ko, I. P. Shestakov, A. I. Shirshov, Rings that are nearly associative, Moscow, Nauka, 1978 (in Russian); English translation by Academic Press: N.Y., 1982.

[^0]: *Supported by the FAPESP, Proc. 98/2162-6.

