Speciality of Lie-Jordan algebras

A. N. Grishkov Instituto de Matemática e Estatística, Universidade de São Paulo, São Paulo, Brasil

Ivan P. Shestakov^{*} Sobolev Institute of Mathematics, Novosibirsk, Russia

Abstract

The class of so called *Lie-Jordan algebras* is introduced, which have one binary (Lie) operation [x, y] and one ternary (Jordan) operation $\{x, y, z\}$, that satisfy the identities (1)-(5) below. It is proved that any such an algebra is *special*, that is, isomorphic to a subalgebra of a Lie-Jordan algebra of the type A^{\pm} , obtained from an associative algebra A via the operations [x, y] = xy - yx, $\{x, y, z\} = xyz + zyx$. As an application, we prove the conjecture about associativity of a certain loop constructed in [2].

1 Introduction

It is well known that with every associative algebra A one can relate a Lie algebra $A^- = \langle A, +, [,] \rangle$, with the multiplication [x, y] = xy - yx, and a Jordan algebra $A^+ = \langle A, +, \circ \rangle$, with the multiplication $x \circ y = \frac{1}{2}(xy+yx)$. Thus, we have the functors $(.)^-$ and $(.)^+$ from the category <u>Ass</u> of associative algebras into the categories <u>Lie</u> and <u>Jord</u> of Lie and Jordan algebras, respectively. It is easy to see that both functors have left adjoint functors $U : \underline{Lie} \longrightarrow \underline{Ass}$

^{*}Supported by the FAPESP, Proc. 98/2162-6.

and $S : \underline{Jord} \longrightarrow \underline{Ass}$, that is, for any $L \in \underline{Lie}$, $J \in \underline{Jord}$, $A \in \underline{Ass}$ there are bijections

$$\begin{split} Hom_{\underline{Lie}}(L,A^{-}) &\longrightarrow Hom_{\underline{Ass}}(U(L),A), \\ Hom_{\underline{Jord}}(J,A^{+}) &\longrightarrow Hom_{\underline{Ass}}(S(J),A), \end{split}$$

which are functorial in the variables L, J, A. The algebras U(L) and S(J) are called *associative universal enveloping algebras* of L and J, respectively. Furthermore, there are morphisms $\alpha_L^-: L \longrightarrow U(L)^-$ and $\alpha_J^+: J \longrightarrow S(J)^+$ with the universal properties (these morphisms correspond to the identical morphisms of the algebras A = U(L), A = S(J) in the bijections above).

But at this point the Lie and Jordan cases diverge: the mapping α_L^- is always injective when L is a free module over the ring of scalars, due to the celebrated Poincare—Birkhoff—Witt theorem, while the mapping α_J^+ could have nonzero kernel even when J is a finite dimensional algebra over a field (see [4, 7]). A Jordan algebra J for which the universal mapping α_J^+ is injective is called *special*. The condition of speciality plays an important role in the theory of Jordan algebras; there are many results and open problems concerning the speciality of particular Jordan algebras and classes of algebras (see [4, 7]).

One may consider other functors that conserve the additive structure of an algebra, and introduce for them a notion of speciality (see [6]). In this paper we consider the functor $(.)^{\pm}$ that corresponds to an associative algebra A the algebra A^{\pm} , which has the same additive structure and two new multiplications: a Lie one [x, y] = xy - yx and a triple Jordan one $\{x, y, z\} = xyz + zyx$. It is easy to check that the operations [,] and $\{,,\}$ satisfy the identities

$$[x, y] = -[y, x], (1)$$

$$\{x, y, z\} = \{z, y, x\}, \tag{2}$$

$$[[x, y], z] = \{x, y, z\} - \{y, x, z\},$$
(3)

$$[\{x, y, z\}, t] = \{[x, t], y, z\} + \{x, [y, t], z\} + \{x, y, [z, t]\},$$
(4)

$$\{\{x, y, z\}, t, v\} = \{\{x, t, v\}, y, z\} - \{x, \{y, v, t\}, z\} + \{x, y, \{z, t, v\}\}.(5)$$

Observe that the Jacobi identity follows from (2) and (3).

Definition 1 An algebra with two operations [,] and $\{,,\}$ is called a Lie-Jordan algebra (an LJ-algebra for short) if identities (1)-(5) hold.

Note that an LJ-algebra is a Lie algebra relatively to the binary operation and a triple Jordan system relatively to the ternary operation.

Definition 2 An LJ-algebra L is called special if there exists an associative algebra A such that L is isomorphic to a subalgebra of A^{\pm} .

The main result of the present article is the following

Theorem 1 Every LJ-algebra over a field of characteristic $\neq 2$ is special.

In the proof we follow the method developed in [5, 6] and construct the universal enveloping algebra U(L) for a Lie-Jordan algebra L as a deformation of its associated graded algebra gr U(L).

In the last section we apply this result to prove the conjecture from [2] that a certain loop constructed there is a group.

All the algebras considered in the paper are assumed to be over a field F of characteristic $\neq 2$.

2 Universal enveloping algebra and associated graded algebra

Let L be an LJ-algebra; then an associative algebra U(L) is said to be a universal enveloping algebra for L if there exists a homomorphism α_L : $L \longrightarrow U(L)^{\pm}$ such that for any associative algebra A and a homomorphism $\beta : L \longrightarrow A^{\pm}$ there exists a homomorphism π of associative algebras $\pi :$ $U(L) \longrightarrow A$ such that $\beta = \alpha_L \circ \pi$. In other words, there is a bijection

$$Hom_{Lie-Jord}(L, A^{\pm}) \longrightarrow Hom_{Ass}(U(L), A),$$

which is functorial on the variables L and A.

The existence of a universal enveloping algebra U(L) for a given LJalgebra L is obvious. It is isomorphic to the quotient algebra of the tensor algebra T(L) by the ideal I generated by all the elements

$$a \otimes b - b \otimes a - [a, b], \ a \otimes b \otimes c + c \otimes b \otimes a - \{a, b, c\}, \ a, b, c \in L;$$

with the universal homomorphism $\alpha_L : a \longrightarrow a + I$. Theorem 1 is equivalent to the fact that ker $\alpha = 0$.

The subspace $\alpha(L) \subseteq U(L)$ generates U(L), and so it defines in U(L) an ascending filtration $U_1 = \alpha(L) \subseteq U_2 \subseteq \cdots$, where $U_i = U_{i-1} + U_1^i$. Observe that for any $a, b, c \in L$ we have

$$a \otimes b \otimes c - 1/2 \left(\{a, b, c\} + [b, c] \otimes a + b \otimes [a, c] + [a, b] \otimes c \right) \in I,$$

which implies that $U_2 = U_3 = U(L)$. Consider the associated graded algebra $gr U = (gr U)_1 \oplus (gr U)_2$, where $(gr U)_1 = U_1$, $(gr U)_2 = U(L)/U_1$; then it is easy to see that it is commutative and nilpotent of degree 3: $(gr U)^3 = 0$. For more properties of this algebra we need the following

Lemma 1 In $U(L)^{\pm}$ hold the inclusions

$$[U_i, U_j] \subseteq U_{i+j-1},$$

$$\{U_i, U_j, U_k\} \subseteq U_{i+j+k-2}.$$

Proof. Since $U_2 = U(L)$, both inclusions are evident if at least one of the indices is equal to 2. Furthermore, $U_1 = \alpha(L)$, and for any $a, b, c \in L$ we have

$$[\alpha(a),\alpha(b)] = \alpha([a,b]), \ \{\alpha(a),\alpha(b),\alpha(c)\} = \alpha(\{a,b,c\}),$$

which proves the inclusions for i = j = k = 1.

Let $\overline{c_i} = c_i + U_{i-1} \in (gr U)_i$, for some $c_i \in U_i$. It follows from Lemma 1 that the following operations are correctly defined in gr U:

$$\begin{bmatrix} \overline{c}_i, \overline{c}_j \end{bmatrix} = \begin{bmatrix} c_i, c_j \end{bmatrix} + U_{i+j-2},$$

$$\{ \overline{c}_i, \overline{c}_j, \overline{c}_k \} = \{ c_i, c_j, c_k \} + U_{i+j+k-3}.$$

Since these operations are induced by those in the LJ-algebra $U(L)^{\pm}$, they satisfy identities (1) - (5); that is, the space gr U forms an LJ-algebra with respect to the operations $[,], \{,,\}$. Moreover, one can easily check that the following identities hold in U(L):

$$\begin{split} & [xy,z] &= x[y,z] + [x,z]y, \\ & \{x \circ y,z,t\} &= \{x,z,t\} \circ y + 1/2([[t,z],y] \circ x + [[t \circ z,y],x]), \end{split}$$

where $x \circ y = xy + yx$. The proof is straightforward. As a corollary, we obtain that the associated graded algebra gr U satisfies the identities

$$[xy, z] = x[y, z] + [x, z]y, (6)$$

$$\{xy, z, t\} = \{x, z, t\}y + 1/2([[t, z], y]x + [[tz, y], x]).$$
(7)

Identity (6) shows that gr U is a *Poisson algebra*. By this reason, we will call a commutative associative algebra A with additional operations [,] and $\{,,\}$ a *Poisson LJ-algebra* if $\langle A, +, [,], \{,,\}\rangle$ is an *LJ*-algebra, $A^3 = 0$, and identities (6),(7) are satisfied in A. As we just have seen, for every *LJ*-algebra L, the algebra gr U(L) is a Poisson *LJ*-algebra.

Lemma 2 Every Poisson LJ-algebra A satisfies the identities

$$\{x, z, t\}y - \{y, z, t\}x - h(x, y, z, t) = 0,$$
(8)

$$[xy, zt] = \{xy, z, tw\} = \{xy, zt, w\} = 0,$$
(9)

where h(x, y, z, t) = 1/2([z, [x, y]]t + [t, [x, y]]z + [[t, z], x]y - [[t, z], y]x).

Proof. Interchanging x and y in (7) and subtracting the new identity from the former one, by the Jacobi identity and (6), we obtain (8). Furthermore, since $A^3 = 0$, identities (9) follow from (7), (2), (3), and (6).

Notice that $\alpha(L) = U_1 = (gr U)_1$, hence the problem of injectivity of α is reduced to the structure of the graded algebra gr U(L). In the next section we will try to construct this algebra starting with the algebra L.

3 The Poisson LJ-algebra $\overline{V(L)}$

Let L be an LJ-algebra. In this section we will construct a Poisson LJ-algebra $\overline{V(L)}$ which eventually proves to be isomorphic to the algebra gr U(L).

As the first approximation, we consider the space $V(L) = L \oplus S^2(L)$. Here $S^2(L)$ stands for the space of symmetric 2-degree tensors over L, which is spanned by the elements $a \bullet b = 1/2(a \otimes b + b \otimes a)$, $a, b \in L$. Define a multiplication \cdot on V(L) by setting for $a, b, c, d \in L$

$$a \cdot b = a \bullet b, \ a \cdot (b \bullet c) = (b \bullet c) \cdot a = (a \bullet b) \cdot (c \bullet d) = 0;$$

then V(L) becomes a commutative associative algebra with $V(L)^3 = 0$. If no ambiguity occurs, we will write ab instead of $a \cdot b$. Extend now the operations [,] and $\{,,\}$ from L to V(L) by setting

$$\begin{split} & [x \bullet x, y] = -[y, x \bullet x] = 2x[x, y], \\ & \{x \bullet x, y, z\} = \{z, y, x \bullet x\} = \{x, y, z\}x + 1/2([[z, y], x]x + [[zy, x], x]), \\ & \{x, y \bullet y, z\} = \{y \bullet y, x, z\} + [[x, y^2], z], \\ & \{a, b, r\} = \{a, r, b\} = \{r, a, b\} = [a, b] = 0, \end{split}$$

for every $x, y, z \in L$, $a, b, \in S^2(L)$, $r \in V(L)$. Since the space $S^2(L)$ is spanned by the elements $x \bullet x, x \in L$, the operations are correctly defined.

Note that L is an LJ-subalgebra of V(L) though V(L) itself, in general, is not an LJ-algebra with respect to the defined operations.

By construction, we have a homomorphism of graded algebras

$$\rho: \langle V(L), +, \cdot, [,], \{,,\} \rangle \longrightarrow gr U$$

such that $\rho(a) = \alpha(a), a \in L$.

Obviously, the equality that we need, ker $\alpha = 0$, is equivalent to the equality $(\ker \rho) \cap L = 0$. Since ker ρ is a graded ideal, this equality is equivalent to the inclusion

$$\ker \rho \subseteq S^2(L). \tag{10}$$

Therefore, we need an information on the structure of ker ρ .

Notice that, by (8), for every elements $x, y, z, t \in L$ we have

$$j(x, y, z, t) := \{x, z, t\}y - \{y, z, t\}x - h(x, y, z, t) \in \ker \rho.$$
(11)

Let $J = J(L) = \text{vect} \{ j(x, y, z, t) | x, y, z, t \in L \}$ be the vector space generated by all the elements of this kind; then evidently $J \subseteq S^2(L) \cap \ker \rho$. We will eventually show that $J = \ker \rho$; this will imply inclusion (10) and Theorem 1.

Our nearest objective is to prove that certain elements from ker ρ lie in J.

Let $\tilde{L} = LJ[X]$ and A = A[X] be free Lie-Jordan and free associative algebras with free generators $X = \{x_1, x_2, \ldots\}$. Denote by $\widetilde{SL} = SLJ[X]$ a free special LJ-algebra, that is, the LJ-subalgebra of A^{\pm} generated by X. Evidently, there exists an epimorphism $\varphi : \tilde{L} \longrightarrow \widetilde{SL}$, identical on X. By definition of a universal enveloping algebra, φ extends uniquely to a homomorphism of associative algebras $\tilde{\varphi} : U(\tilde{L}) \longrightarrow A$, $\tilde{\varphi}(x) = x, x \in$ X. But A is a free algebra, hence $\tilde{\varphi}$ is an isomorphism. Thus, we have a homomorphism

$$\rho: \langle V(\tilde{L}), +, \cdot, [,], \{,,\} \rangle \longrightarrow gr A = S\tilde{L} \oplus A/S\tilde{L}.$$

such that $\rho(a) = \alpha(a), a \in \tilde{L}$. Notice that the algebras $V(\tilde{L})$ and gr A have natural gradings by degrees with respect to X, and the homomorphism ρ respects this grading.

The following proposition is crucial for our construction.

Proposition 1 In the above notations, every multilinear element of degree ≤ 6 on X from ker ρ lies in $J = J(\tilde{L})$.

Proof. We will prove that J contains the multilinear elements of degree 6 from ker ρ . For the elements of smaller degree the proof is similar but more easy.

Denote by P the subspace of multilinear elements of degree 6 in V(L). A subset W of a vector space V we will call a *pre-basis* of V if vect $\{W\} = V$. We have a decomposition $P = P_1 \oplus P_2$, where $P_1 = P \cap \tilde{L}$ and $P_2 = P \cap S^2(\tilde{L})$. Let us find a pre-basis of the space $(P_2 + J)/J$. Let L[X] be a Lie subalgebra in \tilde{L} generated by X and B be a homogeneous basis of the space of multilinear elements of L[X]. We have $B = \bigcup_{i=1}^{\infty} B_i$, where $B_i = \{b \in B \mid \deg_X b = i\}$. Set

$$\begin{array}{rcl} Q_1 &=& \{a_i b_j \mid a_i \in B_i, b_j \in B_j, \ i+j=6\}, \\ Q_2 &=& \{a_3 \{x, y, z\} \mid a_3 \in B_3, \ x, y, z \in X\}, \\ Q_3 &=& \{a_2 \{b_2, y, z\} \mid a_2, b_2 \in B_2, \ y, z \in X\}, \\ Q_4 &=& \{\{x, y, z\} \{u, v, w\} \mid x, y, z, u, v, w \in X\}. \end{array}$$

Lemma 3 The set $Q = \bigcup_{i=1}^{4} Q_i$ is a pre-basis of $(P_2 + J)/J$.

Proof. Let $v \in P_2$ be a monomial of degree 6. If $v \in L[X] \cdot L[X]$, then $v \in \text{vect} \{Q_1\}$.

If the operation $\{,,\}$ appears only once in v, then we can assume, by (3) and (4), that v has one of the forms

$$v_1 = z\{a_3, x, y\}, v_2 = y\{a_2, b_2, x\}, v_3 = a_2\{b_2, x, y\}, v_4 = a_3\{x, y, z\},$$

where $a_i, b_i \in B_i$, $x, y, z \in X$. Now, for any $a, b, c, d \in \tilde{L}$ we have $h(a, b, c, d) \in$ vect $\{Q_1\}$, hence, by (11),

$$\{a, c, d\}b - \{b, c, d\}a = j(a, b, c, d) + h(a, b, c, d) \in J + \text{vect}\{Q_1\}.$$
 (12)

Therefore, by (3), $v_1, ..., v_4 \in \text{vect} \{Q_1 \cup Q_2 \cup Q_3\} + J.$

Finally, if the operation $\{,,\}$ appears twice in v, then evidently

$$v = \sum_{i} \{\{x_i, y_i, z_i\}, t_i, u_i\} w_i \pmod{\text{vect}\{Q\}},$$

for some $x_i, \ldots, w_i \in X$. By (12), we have

$$\{\{x_i, y_i, z_i\}, t_i, u_i\}w_i \equiv \{x_i, y_i, z_i\}\{w_i, t_i, u_i\} \pmod{\operatorname{vect}\{Q\} + J},$$

so $v \in \text{vect} \{Q\} + J$, and Lemma is proved.

Set $P_2^j = \text{vect} \{Q_1 + \dots + Q_j\} + J$, j = 1, 2, 3, 4, and $\overline{P}_2^j = P_2^j / P_2^{j-1}$, j = 2, 3, 4.

Lemma 4 We have

(i)
$$\dim(P_2^1/J) \le 274$$
, (ii) $\dim \overline{P}_2^2 \le 40$,
(iii) $\dim \overline{P}_2^3 \le 45$, (iv) $\dim \overline{P}_2^4 \le 1$,
(v) $\dim(P_2 + J/J) \le 360$.

Proof. By [1, page 50], the dimension of the space of multilinear elements of degree m in a free n-generated Lie algebra is equal to $B(n,m) = (m-1)!C_m^n$. Therefore, we have

$$\dim P_2^1/J \leq |Q_1| \leq B(6,1)B(5,5) + B(6,2)B(4,4) + B(6,3)B(3,3) = 144 + 90 + 40 = 274.$$

Furthermore, by (2) and (3), we have for any $a_i \in L[X]$, i = 1, 2, 3, and $\sigma \in Sym\{1, 2, 3\}$

$$\{a_{\sigma(1)}, a_{\sigma(2)}, a_{\sigma(3)}\} \equiv \{a_1, a_2, a_3\} \pmod{L[X]}, \tag{13}$$

which implies that $\dim \overline{P}_2^2 \leq B(6,3) = 40.$

To prove (iii), notice that (12) implies

$$a_2\{b_2, x, y\} \equiv b_2\{a_2, x, y\} \ (mod \ L[X] + J),$$

hence $\dim \overline{P}_2^3 \le 1/2 B(6,2)B(4,2) = 45.$

For (iv), we need a certain corollary of identity (5). Adding (5) and the identity obtained from it by interchanging y and z, we get by (3)

$$\begin{split} &\{2\{x,y,z\}-[x,[y,z]],t,v\}=2\{\{x,t,v\},y,z\}-[\{x,t,v\},[y,z]]\\ &-\{x,\{y,v,t\},z\}+\{x,y,\{z,t,v\}\}-\{x,\{z,v,t\},y\}+\{x,z,\{y,t,v\}\}\\ &=2\{\{x,t,v\},y,z\}-[\{x,t,v\},[y,z]]-\{x,\{y,t,v\}+[y,[v.t]],z\}\\ &+\{x,y,\{z,v,t\}+[z,[t,v]]\}-\{x,\{z,v,t\},y\}+\{x,z,\{y,t,v\}\}\\ &=2\{\{x,t,v\},y,z\}-[\{x,t,v\},[y,z]]-\{x,[y,[v.t]],z\}+\{x,y,[z,[t,v]]\}\\ &-[x,[\{y,t,v\},z]]+[x,[y,\{z,v,t\}]]. \end{split}$$

Since \tilde{L} is an *LJ*-algebra, this implies that for any $x_i \in X$, i = 1, ..., 6, we have

$$\{\{x_1, x_2, x_3\}, x_4, x_5\} = \{\{x_1, x_4, x_5\}, x_2, x_3\} + S,$$
(14)

where S is a sum of multilinear elements from \tilde{L} on x_1, \ldots, x_5 , in which the operation $\{,,\}$ appears only once. By the proof of Lemma 3, we have $S \cdot x_6 \in P_2^3$.

Now, for any $x_i \in X$, $i = 1, \ldots, 6$ we have by (12)

$$\{\{x_1, x_2, x_3\}, x_4, x_5\}x_6 \equiv \{x_1, x_2, x_3\}\{x_4, x_5, x_6\} \pmod{P_2^3},$$

which implies by (14) that

$$\{x_1, x_2, x_3\}\{x_4, x_5, x_6\} \equiv \{x_1, x_4, x_5\}\{x_2, x_3, x_6\} \pmod{P_2^3}.$$
(15)

It follows easily from (13) and (15) that for any $\sigma \in Sym\{1,\ldots,6\}$ holds

$$\{x_{\sigma(1)}, x_{\sigma(2)}, x_{\sigma(3)}\}\{x_{\sigma(4)}, x_{\sigma(5)}, x_{\sigma(6)}\} \equiv \{x_1, x_2, x_3\}\{x_4, x_5, x_6\} \pmod{P_2^3},$$

which implies (iv).

Finally, we have

$$\dim(P_2+J/J) \leq \dim P_2^1/J + \dim \overline{P}_2^2 + \dim \overline{P}_2^3 + \dim \overline{P}_2^4 = 274 + 40 + 45 + 1 = 360$$

proving the Lemma. \Box

Lemma 5 dim $P_1 \le 360$.

Proof. Let us write $P_1 = P_1^0 + P_1^1 + P_1^2$, where P_1^i means the space generated by monomials from P_1 in which the operation $\{,,\}$ appears *i* times. Furthermore, for i = 1, 2 we set $\overline{P}_1^i = (P_1^0 + \dots + P_1^i)/(P_1^0 + \dots + P_1^{i-1})$. Clearly, dim $P_1^0 \le B(6, 6) = 5! = 120$.

Let B and B_i be as in Lemma 3. By (13), the union of the sets $\{B_4, X, X\}$, $\{B_3, B_2, X\}$, and $\{B_2, B_2, B_2\}$ forms a pre-basis of \overline{P}_1^1 . Taking in account (13), we obtain

> dim vect { $\{B_4, X, X\}$ $\} \leq B(6, 4) = 90,$ dim vect { $\{B_3, B_2, X\}$ $\} \leq B(6,3)B(3,2) = 120,$ dim vect { $\{B_2, B_2, B_2\}$ } < B(6, 2)B(4, 2)/3! = 15,

which implies that dim $\overline{P}_1^1 \leq 90 + 120 + 15 = 225$. Furthermore, it follows from (14) and (13) that the set $\{\{B_2, x_i, x_j\}, x_k, x_l\}$, where $x_s \in X$, i < j < k < l, forms a pre-basis of \overline{P}_1^2 ; hence dim $\overline{P}_1^2 \leq$ B(6,2) = 15.

Thus, dim $P_1 = \dim P_1^0 + \dim \overline{P}_1^1 + \dim \overline{P}_1^2 \le 120 + 225 + 15 = 360.$

Return to the proof of Proposition 1. By Lemmas 4 and 5 we have that

 $\dim P/P \cap J = \dim(P + J/J) \le \dim P_1 + \dim(P_2 + J/J) \le 360 + 360 = 720.$

On the other hand, the image $\rho(P)$ coincides with the space $(grA)_{(6)}$ of multilinear elements of degree 6 on X in gr A, which has the same dimension as the corresponding space $A_{\langle 6 \rangle}$ in A. Therefore, dim $\rho(P) = \dim A_{\langle 6 \rangle} = 6! =$ 720, and hence $P \cap ker\rho = P \cap J$.

Corollary 1 $J = J(\tilde{L})$ is an ideal of the algebra $\langle V(L), +, \cdot, [,], \{,,\} \rangle$.

Proof. It suffices to prove that

$$[J, \tilde{L}] \subseteq J, \quad \{J, \tilde{L}, \tilde{L}\} \subseteq J.$$

Moreover, the space J is evidently stable with respect to endomorphisms of the space V(L) induced by those of the LJ-algebra L; hence we need only to prove that for any $x, y, z, t, u, v \in X$ hold the inclusions

$$[j(x, y, z, t), u] \in J, \{j(x, y, z, t), u, v\} \in J.$$

Observe that the elements under consideration belong to ker ρ . Since they are multilinear and of degrees 5 and 6, they belong to J as well. **Corollary 2** The quotient algebra $\overline{V(\tilde{L})} = V(\tilde{L})/J(\tilde{L})$ is a Poisson LJ-algebra.

Proof. We have to prove that identities (1)—(5) hold in $V(\tilde{L})$ modulo $J(\tilde{L})$. If an identity contains at least two arguments from $S^2(\tilde{L})$, it holds trivially. Consequently, we can assume, as before, that all but one arguments in identities under consideration belong to X, and one argument belongs to $X \cup X \cdot X$. The identities evidently hold modulo ker ρ . Since they are multilinear and of degree ≤ 6 on X, they hold modulo $J(\tilde{L})$ as well. \Box

Notice that the constructions of V(L) and J(L) are functorial; that is, any LJ-algebra homomorphism $\varphi : L_1 \longrightarrow L_2$ can be extended to a homomorphism

$$\tilde{\varphi}: \langle V(L_1), +, \cdot, [,], \{,,\} \rangle \longrightarrow \langle V(L_2), +, \cdot, [,], \{,,\} \rangle,$$

and $\tilde{\varphi}(J(L_1)) = J(\varphi(L_1)) \subseteq J(L_2)$. Moreover, if φ is surjective then so is $\tilde{\varphi}$. Since every LJ-algebra can be represented as a quotient algebra of a free LJ-algebra, corollaries 1 and 2 imply

Proposition 2 For every LJ-algebra L the space J(L) is an ideal of the algebra V(L) with respect to the operations $\cdot, [,], \{,,\}$, and the quotient algebra $\overline{V(L)} = V(L)/J(L)$ is a Poisson LJ-algebra.

Since $J(L) \subseteq \ker \rho$, the homomorphism $\rho : V(L) \longrightarrow gr U(L)$ induces a Poisson LJ-algebra homomorphism $\tilde{\rho} : \overline{V(L)} \longrightarrow gr U(L)$, such that $\tilde{\rho}(l) = \alpha(l)$ for any $l \in L$. In the next section we will prove that $\tilde{\rho}$ is an isomorphism, which will imply that ker $\rho = J(L)$, proving inclusion (10) and Theorem 1.

4 U(L) is a deformation of $\overline{V(L)}$

As we have seen, for the proving of theorem 1 it suffices to prove that $\overline{V(L)}$ is isomorphic to $\underline{grU(L)}$. We will prove it by constructing an associative multiplication on $\overline{V(L)}$, isomorphic to that in U(L).

Consider the space of polynomials $\overline{V(L)}[t]$ over $\overline{V(L)}$. An associative multiplication * on $\overline{V(L)}[t]$ we will call a quantization deformation of $\overline{V(L)}$,

if it satisfies the conditions:

- $(i) \quad a * a = a^2,$
- $(ii) \quad a * b b * a = [a, b]t,$
- (*iii*) $a * b * c + c * b * a = \{a, b, c\}t^2$,
- $(iv) \quad t * r = r * t,$

for any $a, b, c \in L, r \in \overline{V(L)}$.

The role of this definition is illustrated by the following

Proposition 3 Let L be an LJ-algebra. If the Poisson LJ-algebra $\overline{V(L)}$ admits a quantization deformation, then L is special. Moreover, in this case gr U(L) is isomorphic to $\overline{V(L)}$ and U(L) is isomorphic to the quotient algebra $\langle \overline{V(L)}[t], +, * \rangle / \overline{V(L)}[t](1-t)$.

Proof. Assume that $\overline{V(L)} = L \oplus S^2(L)/J(L)$ admits a quantization deformation *. Define a new multiplication $a \star b = a \star b|_{t=1}$ on $\overline{V(L)}$; then the algebra $B = \langle \overline{V(L)}, +, \star \rangle$ is associative, and, by properties (ii) and (iii), the LJ-algebra L is a subalgebra of the LJ-algebra B^{\pm} . Therefore, L is special.

Consequently, there exists an algebra homomorphism $\pi : U(L) \longrightarrow B$ such that $\pi\alpha(l) = l$ for any $l \in L$. The algebra B is evidently generated by Land has a filtration $B_1 = L \subseteq B_2 = B$, where $B_2 = L + L \star L$; and it is easily seen that $\pi(U_k) \subseteq B_k$. Therefore, π induces a homomorphism of associated graded algebras $\tilde{\pi} : gr U \longrightarrow gr B$, with $\tilde{\pi}\alpha(l) = l$ for any $l \in L$. But gr Bis easily seen to be isomorphic to V(L), and we have seen that there exists a graded algebra homomorphism $\tilde{\rho} : V(L) \longrightarrow gr U(L)$, such that $\tilde{\rho}(l) = \alpha(l)$ for any $l \in L$. This proves that gr U(L) is isomorphic to V(L). Observe that U(L) and gr U(L) are isomorphic as vector spaces. Choose in U(L) a base $\{u_i\}$ such that the set $\{\bar{u}_i\}$ is a graded base of gr U(L); then evidently $\{\pi(u_i)\}$ is a base of the space V(L), and so ker $\pi = 0$ and π is an isomorphism. \Box

Now, everything is finished by the following

Theorem 2 For any LJ-algebra L, the Poisson LJ-algebra $\overline{V(L)}$ admits a quantization deformation.

Proof. We first define a multiplication * on V(L)[t] by setting

$$\begin{array}{rcl} a*b &=& ab+1/2 \ [a,b]t, \\ a^2*b &=& 1/2 \ ([a^2,b]t+\{a,a,b\}t^2), \\ b*a^2 &=& 1/2 \ ([b,a^2]t+\{a,a,b\}t^2), \\ a^2*b^2 &=& 1/2 \ (\{a,a,b^2\}t^2+[\{a,a,b\},b]t^3). \end{array}$$

Let us check that $J(L) * V(L) + V(L) * J(L) \subseteq J(L)[t]$. Let $x, y, z, t \in L$; consider

$$\begin{split} j(x,y,z,t) &= \{x,z,t\}y - \{y,z,t\}x - 1/2[z,[x,y]]t \\ &\quad -1/2\left([t,[x,y]]z + [[t,z],x]y - [[t,z],y]x\right) \\ &= \sum_i j_1^{(i)} j_2^{(i)}. \end{split}$$

We claim that for any $a \in V(L)$ holds

$$\sum_{i} \{j_1^{(i)}, j_2^{(i)}, a\} + \{j_2^{(i)}, j_1^{(i)}, a\} \in J.$$
(16)

In fact, we have

$$\begin{split} &\sum_{i} \{j_{1}^{(i)}, j_{2}^{(i)}, a\} + \{j_{2}^{(i)}, j_{1}^{(i)}, a\} = \\ &= \{\{x, z, t\}, y, a\} + \{y, \{x, z, t\}, a\} - \{\{y, z, t\}, x, a\} \\ &- \{x, \{y, z, t\}, a\} - 1/2\{[z, [x, y]], t, a\} - 1/2\{t, [z, [x, y]], a\} \\ &- 1/2\{[t, [x, y]], z, a\} - 1/2\{z, [t, [x, y]], a\} - 1/2\{[[t, z], x], y, a\} \\ &- 1/2\{y, [[t, z], x], a\} + 1/2\{[[t, z], y], x, a\} + 1/2\{x, [[t, z], y], a\}. \end{split}$$

One can straightforwardly check that this sum is identically zero in the algebra \widetilde{SL} . Since it is of degree 5, by Proposition 1 it is an identity in the free LJ-algebra \tilde{L} . Consequently, this identity holds in the LJ-algebra $\overline{V(L)} = V(L)/J(L)$, which implies inclusion (16).

Now, by definition of the multiplication *, we have

$$j(x, y, z, t) * a = 1/2 [j, a]t + 1/4 \sum_{i} (\{j_1^{(i)}, j_2^{(i)}, a\} + \{j_2^{(i)}, j_1^{(i)}, a\})t^2,$$

which lies in J[t] by Corollary 1 and (16). Furthermore, if $a \in S^2(L)$, $a = b^2$, then

$$\begin{split} j(x,y,z,t)*b^2 &= 1/2\sum_i (\{j_1^{(i)},j_2^{(i)},b^2\} + \{j_2^{(i)},j_1^{(i)},b^2\})t^2 \\ &+ 1/2\sum_i [\{j_1^{(i)},j_2^{(i)},b\} + \{j_2^{(i)},j_1^{(i)},b\},b]t^3, \end{split}$$

which lies in J[t] by the same reasons. Therefore, $V(L) * J(L) \subseteq J(L)[t]$. Similarly, $J(L) * V(L) \subseteq J(L)[t]$. The inclusions just proved show that * can be defined naturally on the quotient algebra $\overline{V(L)}[t]$. Conditions (i)–(iv) are evidently satisfied by *. We have only to prove that * is associative.

We will consider only the most complicated case; the remaining cases are proved similarly.

Compute

$$(a^{2} * b^{2}) * c^{2} = 1/2 \left(\{a, a, b^{2}\} * c^{2} \right) t^{2} + 1/2 \left(\left[\{a, a, b\}, b\right] * c^{2} \right) t^{3}.$$

One can easily check that in any Poisson LJ-algebra hold the identities

$$\{a, a, b^2\} = \{a, a, b\}b + [a, b]^2 + a[[a, b], b].$$

Hence,

$$\begin{split} \{a, a, b^2\} * c^2 &= 1/4 \left(\{\{\{a, a, b\}, b, c^2\} + \{b, \{a, a, b\}, c^2\}\right) t^2 \\ &+ 1/4 \left(\{a, [[a, b], b], c^2\} + \{[[a, b], b], a, c^2\}\right) t^2 \\ &+ 1/2 \left\{[a, b], [a, b], c^2\} t^2 + 1/2 [\{[a, b], [a, b], c\}, c] t^3 \\ &+ 1/4 \left([\{\{a, a, b\}, b, c\}, c] + [\{b, \{a, a, b\}, c\}, c]\right) t^3 \\ &+ 1/4 \left([\{\{a, [[a, b], b], c\}, c] + [\{[[a, b], b], a, c\}, c]\right) t^3 \right) \end{split}$$

Therefore, $(a^2 * b^2) * c^2 = At^4 + Bt^5$, where

$$\begin{split} A &= 1/8 \left(\left(\{\{a, a, b\}, b, c^2\} + \{b, \{a, a, b\}, c^2\} \right. \\ &+ \{a, [[a, b], b], c^2\} + \{[[a, b], b], a, c^2\}, \\ &+ 2 \left[[\{a, a, b\}, b], c^2] \right) + 2 \{[a, b], [a, b], c^2\}, \end{split}$$

and

$$\begin{split} B &= 1/8 \left([\{\{a,a,b\},b,c\},c] + [\{b,\{a,a,b\},c\},c] \right. \\ &+ [\{\{a,[[a,b],b],c\},c] + [\{[[a,b],b],a,c\},c] \right. \\ &+ 2 \left[\{[a,b],[a,b],c\},c] + 2\{c,c,[\{a,a,b\},b]\}. \end{split}$$

Similarly, $a^2 * (b^2 * c^2) = A_1 t^4 + B_1 t^5$, where

$$A_1 = 1/4 \left(\{a, a, \{b, b, c^2\} \} + [a^2, [\{b, b, c\}, c]] \right),$$

and

$$B_{1} = 1/8 \left([\{a, a, b\}, \{b, b, c\}] + [\{a, a, \{b, b, c\}\}, c] + [\{a, a, b\}, [[b, c], c]] + [\{a, a, [[b, c], c]\}, b] + 2 \left[\{a, a, [b, c]\}, [b, c]\right] + 2 \left\{a, a, [\{b, b, c\}, c]\}\right).$$

One can straightforwardly check that $A = A_1$ and $B = B_1$ in the algebra gr A[X] for any $a, b, c \in X$. Since the elements $A - A_1, B - B_1$ are of degree 6, by Proposition 1 we have $A - A_1, B - B_1 \in J(\tilde{L})$, and hence $A = A_1, B = B_1$ in $\overline{V(L)}$.

This proves the theorem.

5 Application

In order to formulate an application of our result, we recall some definitions from [2].

Let A = A[x, y] be the free associative algebra over a field F of characteristic p > 0 on free generators x, y. For any $f = f(x, y) \in A$ we define a space A_f as a minimal subspace of A with the properties:

(i) $x, y \in A_f$,

(ii) If $a, b \in A_f$, then $f(a, b) \in A_f$.

A series $E(x) = \sum_{i=0}^{\infty} a_i x^i$ is called an *f*-exponent if $a_0 = 1$ and in the natural completion \overline{A} of A we have

$$E(x)E(y) = E(z), \tag{17}$$

where $z = \sum_{i=0}^{\infty} z_i$, deg $z_i = i$, $z_i \in A_f$.

A series E(x) we will call a *p*-exponent if E(x) is an *f*-exponent for some polynomial f, and for any other polynomial g we have $A_f \subseteq A_g$.

It was proved in [2] that in the case p = 0 a 0-exponent exists and coincides with the classical exponent $\exp x = \sum_{i=0}^{\infty} x^i/i!$. It was also conjectured there that a *p*-exponent exists (certainly not unique!) and coincides with an f_p exponent, where the element $f_p \in A$ is defined as follows.

It is well known (see for instance [3, section 5.7]) that for every simple p > 0 an equality of the following type holds:

$$(x+y)^p = x^p + y^p + s(x,y) + pf_p(x,y),$$

where s(x, y) and $\tilde{f}_p(x, y)$ are a Lie and associative polynomials on x, y with integer coefficients. Of course, the polynomial $\tilde{f}_p(x, y)$ is not uniquely defined by this equation; but it is unique modulo Lie polynomials.

Now, we fix f_p , reduce its coefficients modulo p, and set $f_p(x, y) = [x, y] + \tilde{f}_p(x, y)$.

For p = 3, it is easy to see that we can take $f_3 = xyx + yxy$; hence $f_3 = xy - yx + xyx + yxy$, and the subspace A_{f_3} coincides with the free special LJ-algebra SLJ[x, y]. Consequently, the elements z_i in equality (17) belong to SLJ[x, y] and can be written as concrete polynomials on x, y in terms of operations [,] and $\{,,\}$. More specifically, it was proved in [2] that the series

$$E(x) = x + \sqrt{1 + x^2} = 1 + x - x^2 + x^4 + \cdots$$

is a 3-exponent and an f_3 -exponent; and the element z from (17) is given by

$$z = E^{-1}(E(x)E(y)) = x * y = x + y - [x, y] + \{x, x, y\} + \{x, y, y\} + \dots$$
(18)

The following Theorem was conjectured in [2].

Theorem 3 Let L = LJ[x, y] be the free LJ-algebra over a field F of characteristic 3 on generators x, y, and \overline{L} be the completion of L; then the operation u * v = w, defined by the right part of (18), introduces on \overline{L} a group structure.

Proof. By Theorem 1, the LJ-algebra L is special; hence it is isomorphic to SL = SLJ[x, y], and by (17) we have $u * v = E^{-1}(E(u)E(v))$ for any $u, v \in L = SL \subseteq A$. This implies easily the statement of the Theorem. \Box

References

- Yu. A. Bahturin, *Identities of Lie algebras*, Moscow, Nauka, 1985 (in Russian); English translation by VNU Science Press: Utrecht, 1987.
- [2] A. Grishkov, An analog of exponential map and Campbell–Hausdorff series in characteristic 3, to appear.
- [3] N. Jacobson, *Lie algebras*, Interscience Publishers, 1962.
- [4] N. Jacobson, Structure and representations of Jordan algebras, AMS, Providence, RI, 1968.

- [5] I. P. Shestakov, Every Akivis algebra is linear, Geometriae dedicata, to appear.
- [6] I. P. Shestakov, Speciality and Deformations of Algebras, Proceedings of the International Algebraic Conference dedicated to memory of A.G.Kurosh, May 1998, Moscow, to appear.
- [7] K. A. Zhevlakov, A. M. Slin'ko, I. P. Shestakov, A. I. Shirshov, *Rings that are nearly associative*, Moscow, Nauka, 1978 (in Russian); English translation by Academic Press: N.Y., 1982.