Levels and sublevels of algebras obtained by the Cayley-Dickson process

Cristina Flaut

Abstract. We generalize the concepts of level and sublevel of a composition algebra to algebras obtained by the Cayley-Dickson process. In 1967, R. B. Brown constructed, for every $t \in \mathbb{N}$, a nonassociative division algebra A_t of dimension 2^t over the power-series field $K\{X_1, X_2, ..., X_t\}$. This gives us the possibility to construct a division algebra of dimension 2^t and prescribed level and sublevel 2^k , $k, t \in \mathbb{N}^*$ and a division algebra of dimension and prescribed level and sublevel $2^k + 1, t, k \in \mathbb{N}$.

Key Words: Cayley-Dickson process; Division algebra; Level and sublevel of an algebra.

AMS Classification: 17A35, 17A20, 17A75, 17A45.

0. Introduction

In [Pf; 65], A. Pfister showed that if a field has a finite level this level is a power of 2 and any power of 2 could be realised as the level of a field. In the noncommutative case, the concept of level has many generalisations. The level of division algebras is defined in the same manner as for fields. In [Lew; 87], D. W. Lewis constructed quaternion division algebras of level 2^k and $2^k +$ 1 for all $k \in \mathbb{N}^*$ and he asked if there exist quaternion division algebras whose levels are not of this form. These values were recovered for the quaternions by Laghribi and Mammone in [La,Ma; 01], and for octonion division algebras by Susanne Pumplün in [Pu; 05], using function field techniques. In [Hoff; 08], D. W. Hoffman showed that there are many other values, not of the form 2^k or $2^k + 1$, which could be realised as level of quaternion division algebras. In [Kr, Wa; 91], M. Küskemper and A. Wadsworth constructed the first example of a quaternion algebra of sublevel 3. Starting from this construction, in [O' Sh; 07(1)], J. O' Shea proved the existence of an octonion algebra of sublevel 3 and constructed an octonion algebra of sublevel 5 and, in [O' Sh; 07(2)], he gave the first example of octonion division algebras of level 6 and 7. These were the first examples of composition algebras whose level is not of the form 2^k or $2^k + 1$ for some $k \in \mathbb{N}^*$ and remained the only known values for the level and sublevel of quaternion and octonion algebras. The existence of a quaternion algebra of sublevel 5 was still an open question. Starting from mentioned works and using Brown's construction for division algebras, we give an example of quaternion algebra of level and sublevel 5 in Section 4.

1. Preliminaries

In this paper, we assume that K is a field and $charK \neq 2$.

For the basic terminology of quadratic and symmetric bilinear spaces, the reader is referred to [Sch; 85] or [La, Ma; 01]. In this paper, we assume that all the quadratic forms are nondegenerate.

A bilinear space (V, b) represents $\alpha \in K$ if there is an element $x \in V, x \neq 0$, with $b(x, x) = \alpha$. The space is called *universal* if (V, b) represents all $\alpha \in K$. Every isotropic bilinear space $V, V \neq \{0\}$, is universal. (See [Sch; 85, Lemma 4.11., p. 14])

A subset P of K is called an *ordering* of K if

$$P + P \subset P, P \cdot P \subset P, -1 \notin P,$$

 $\{x \in K \mid x \text{ is a sum of squares in } K\} \subset P, P \cup -P = K, P \cap -P = 0.$

A quadratic semi-ordering (or q-ordering) of a field K is a subset P with the following properties:

$$P + P \subset P, K^2 \cdot P \subset P, 1 \in P, P \cup -P = K, P \cap -P = 0.$$

Obviously, every ordering is a q-ordering [Sch; 85].

Remark 1.1. ([Sch; 85], p.133) Let P_0 be a q-preordering, i.e.

 $P_0 + P_0 \subset P_0, K^2 \cdot P_0 \subset P_0, P_0 \cap -P_0 = 0.$

Then there is a q-ordering P such that $P_0 \subset P$ or $-P_0 \subset P$.

Let V be a vector space over an ordered field K. The quadratic form $q: V \to K$ is called *positive definite* if q(x) > 0 for all $x \neq 0$. If q(x) < 0 for all $x \neq 0$, it is called *negative definite*. If $\varphi \simeq <\alpha_1, ..., \alpha_n >$, it is called *indefinite* if the elements α_i are not all of the same sign and *totally indefinite* if for each ordering P of K there are α_i and α_j depending on P such that $\alpha_i <_P 0 <_P \alpha_j$.

A quadratic form φ is called *strongly anisotropic* if $m \times \varphi$ is anisotropic for all $m \in \mathbb{N}^*$. If the form φ is not strongly anisotropic it is called *weakly isotropic*.

The field K is a formally real field if -1 is not a sum of squares in K. Each formally real field has characteristic zero.

Remark 1.2. ([Sch; 85], p.134) Let K be a formally real field. A quadratic form φ over K is weakly isotropic if and only if φ is indefinite with respect to all q-orderings of K. If φ is strongly anisotropic then the set

 $P_0 = \{ \alpha \mid \alpha = 0 \text{ or } \alpha \text{ is represented by } n \times \varphi, n \in \mathbb{N}^* \}$

is a q-preordering. It follows that there is a q-ordering P such that $P_0 \subset P$ or $-P_0 \subset P$.

A quadratic form ψ is a *subform* of the form φ if $\varphi \simeq \psi \perp \phi$, for some quadratic form ϕ . We denote $\psi < \varphi$.

Let φ be a *n*-dimensional quadratic form over $K, n \in N, n > 1$, which is not isometric to the hyperbolic plane. We may consider φ as a homogeneous polynomial of degree 2, $\varphi(X) = \varphi(X_1, ..., X_n) = \sum a_{ij} X_i X_j, a_{ij} \in K^*$. The functions field of φ , denoted $K(\varphi)$, is the quotient field of the integral domain

$$K[X_1, ..., X_n] / (\varphi(X_1, ..., X_n)).$$

Since $(X_1, ..., X_n)$ is a non-trivial zero, φ is isotropic over $K(\varphi)$. We remark that $\varphi(X)$ is irreducible. (See [Sch;85])

Proposition 1.3. [Ro; 05] Let φ and ψ be two quadratic forms over a field K. The form ψ is isotropic over $K(\varphi)$ if and only if $D_{K'}(\varphi) D_{K'}(\varphi) \subseteq D_{K'}(\psi) D_{K'}(\psi)$, for every extension K' of K, where $D_K(\varphi)$ is the set of elements in K^* which are represented by φ .

Proposition 1.4. (Cassels-Pfister Theorem) Let $\varphi, \psi = 1 \perp \psi'$ be two quadratic forms over a field K, charK $\neq 2$. If φ is anisotropic over K

and $\varphi_{K(\varphi)}$ is hyperbolic, then $\alpha \psi < \varphi$ for each scalar represented by φ . In particular, dim $\varphi \geq \dim \psi$.[La, Ma;01, p.1823, Theorem 1.3.]

For $n \in \mathbb{N}^*$ a *n*-fold Pfister form over K is a quadratic form of the type

$$< 1, a_1 > \otimes ... \otimes < 1, a_n >, a_1, ..., a_n \in K^*.$$

A Pfister form is denoted by $\ll a_1, a_2, ..., a_n \gg .$

Remark 1.5. A Pfister form φ can be written as

 $<1, a_1>\otimes ... \otimes <1, a_n>=<1, a_1, a_2, ..., a_n, a_1a_2, ..., a_1a_2a_3, ..., a_1a_2...a_n>.$

If $\varphi = \langle 1 \rangle \perp \varphi'$, then φ' is called *the pure subform* of φ . A Pfister form is hyperbolic if and only if is isotropic. This means that a Pfister form is isotropic if and only if its pure subform is isotropic. (See [Sch; 85])

Proposition 1.6. [Sch, Lemma 1.3.(ii), p. 143] With the above notations, we have the relations:

 $\begin{array}{l} i) \ll -1, \alpha_2, ..., \alpha_n \gg \simeq < 1, -1, 1, -1, ... > \sim 0; \\ ii) \ll 1, \alpha_2, ..., \alpha_n \gg \simeq 2 \times \ll \alpha_2, ..., \alpha_n \gg . \end{array}$

We recall some definitions and properties for nonassociative algebras.

Let A be an algebra of dimension n over K and let $f_1, ..., f_n$ be a basis for A over K. The multiplication in the algebra A is given by the relations $f_i f_j = \sum_{k=1}^n \alpha_{ijk} f_k$, where $\alpha_{ijk} \in K$ and i, j = 1, ...n. If $K \subset F$ is a field extension, the algebra $A_F = F \otimes_K A$ is called the *scalar extension* of A to an algebra over F. The elements of A_F are the forms $\sum_{i=1}^n \alpha_i \otimes f_i$ and we denote

them
$$\sum_{i=1}^{n} \alpha_i f_i, \ \alpha_i \in F.$$

An algebra A over K is called *quadratic* if A is a unitary algebra and, for all $x \in A$, there are $a, b \in K$ such that $x^2 = ax + b1$, $a, b \in K$. The subset $A_0 = \{x \in A - K \mid x^2 \in K1\}$ is a linear subspace of A and $A = K \cdot 1 \oplus A_0$. This decomposition allows us to define a linear form $t : A \to K$, a linear map $i : A \to A_0$ such that $x = t(x) \cdot 1 + i(x)$, for all $x \in A$, a symmetric bilinear form, $(,) : A \times A \to K$, $(x,y) = -\frac{1}{2}t(xy + yx)$ and a quadratic form $n : A \to K$, $n(x) = (t(x))^2 + (i(x), i(x))$. The element $\overline{x} = t(x) \cdot 1 - i(x)$ is called the *conjugate* of x. The quadratic form n is called anisotropic if n(x) = 0 implies x = 0. In this case, the algebra A is called also anisotropic, otherwise A is isotropic.

We can decompose the algebra A as the form $A = Sym(A) \oplus Skew(A)$, where $Sym(A) = \{x \in A \mid x = \bar{x}\}, Skew(A) = \{x \in A \mid x = -\bar{x}\}.$

A composition algebra is an algebra A with a non-degenerate quadratic form $q: A \to K$, such that q is multiplicative, i.e. $q(xy) = q(x)q(y), \forall x, y \in A$. A unitary composition algebra is called a *Hurwitz algebra*. Hurwitz algebras have dimensions 1, 2, 4, 8.

Since over fields, the classical Cayley-Dickson process generates all possible Hurwitz algebras, in the following, we recall shortly the *Cayley-Dickson* process.

Let A be a finite dimensional unitary algebra over a field K with a scalar involution $-: A \to A, a \to \overline{a}$, where $a + \overline{a}$ and $a\overline{a} \in K \cdot 1$ for all $a \in A$. Since A is unitary, we identify K with $K \cdot 1$ and we consider $K \subseteq A$.

Let $\alpha \in K$ be a fixed non-zero element. We define the following algebra multiplication on the vector space $A \oplus A$.

$$(a_1, a_2) (b_1, b_2) = (a_1 b_1 + \alpha \overline{b_2} a_2, a_2 \overline{b_1} + b_2 a_1).$$
(1.1.)

We obtain an algebra structure over $A \oplus A$. This algebra, denoted by (A, α) , is called the *algebra obtained from* A by the Cayley-Dickson process. A is canonically isomorphic with a subalgebra of the algebra (A, α) (denote (1,0) by 1, this is the identity in (A, α)) and dim $(A, \alpha) = 2 \dim A$. Taking $u = (0,1) \in A \oplus A$, $u^2 = \alpha \cdot 1$ and $(A, \alpha) = A \oplus Au$.

We remark that $x + \overline{x} = a_1 + \overline{a_1} \in K \cdot 1$ and $x\overline{x} = a_1\overline{a_1} + \alpha a_2\overline{a_2} \in K \cdot 1$. The map

$$-: (A, \alpha) \to (A, \alpha) , \quad x \to \bar{x} ,$$

is an involution of the algebra (A, α) , extending the involution $\overline{}$. If $x, y \in (A, \alpha)$, it follows that $\overline{xy} = \overline{y} \overline{x}$.

For $x \in A$, we denote $t(x) \cdot 1 = x + \overline{x} \in K$, $n(x) \cdot 1 = x\overline{x} \in K$, and these are called the *trace*, respectively, the *norm* of the element $x \in A$. If $z \in (A, \alpha)$, z = x + yu, then $z + \overline{z} = t(z) \cdot 1$ and $z\overline{z} = \overline{z}z = n(z) \cdot 1$, where t(z) = t(x) and $n(z) = n(x) - \alpha n(y)$. It follows that $(z + \overline{z})z = z^2 + \overline{z}z = z^2 + n(z) \cdot 1$ and

$$z^{2} - t(z) z + n(z) = 0 \forall z \in (A, \alpha),$$

therefore each algebra obtained by the Cayley-Dickson process is quadratic. All algebras A obtained by the Cayley-Dickson process are *flexible* (i.e. $x(yx) = (xy) x, \forall x, y \in A$) and *power-associative* (i.e. for each $a \in A$, the subalgebra of A generated by a is associative). Moreover, the following conditions are fulfilled:

$$t(xy) = t(yx), t((xy)z) = t(x(yz)), \forall x, y, z \in (A, \alpha).$$
 (1.2.)

Remark 1.7. If we take A = K and apply this process t times, $t \ge 1$, we obtain an algebra over K, $A_t = K\{\alpha_1, ..., \alpha_t\}$. By induction, in this algebra we find a basis $\{1, f_2, ..., f_q\}, q = 2^t$, satisfying the properties:

$$f_i^2 = \alpha_i 1, \ \alpha_i \in K, \alpha_i \neq 0, \ i = 2, ..., q.$$
$$f_i f_j = -f_j f_i = \beta_k f_k, \ \beta_k \in K, \ \beta_k \neq 0, i \neq j, i, j = 2, ...q.$$

 β_k and f_k being uniquely determined by f_i and f_j .

As an example, we consider the generalized octonion algebra $O(\alpha, \beta, \gamma)$, with basis $\{1, f_2, ..., f_8\}$, having the multiplication table:

part of x^2 is represented by the quadratic form

$$T_C = <1, \alpha_1, \alpha_2, -\alpha_1\alpha_2, \alpha_3, \dots, (-1)^t \left(\prod_{i=1}^t \alpha_i\right) > = <1, \beta_2, \dots, \beta_q > (1.3.)$$

and, since $x''^2 = \alpha_1 x_2^2 + \alpha_2 x_3^2 - \alpha_1 \alpha_2 x_4^2 + \alpha_3 x_5^2 - \dots - (-1)^t (\prod_{i=1}^t \alpha_i) x_q^2 \in K$, it is represented by the quadratic form

$$T_P = <\alpha_1, \alpha_2, -\alpha_1\alpha_2, \alpha_3, ..., (-1)^t \left(\prod_{i=1}^t \alpha_i\right) > = <\beta_2, ..., \beta_q > .$$
(1.4.)

The quadratic form T_C is called the trace form, and T_P the pure trace form of the algebra A_t . We remark that $T_C = <1 > \perp T_P$, and the norm $n = n_C = <1 > \perp -T_P$, resulting that

$$n_C = <1, -\alpha_1, -\alpha_2, \alpha_1\alpha_2, \alpha_3, ..., (-1)^{t+1} \left(\prod_{i=1}^{t} \alpha_i\right) > = <1, -\beta_2, ..., -\beta_q > .$$

The trace form n_C has the form $n_C = \langle 1, -\alpha_1 \rangle \otimes ... \otimes \langle 1, -\alpha_t \rangle$ and it is a Pfister form.

Using the above notation, we have that $x^2 = t(x) x - n(x) 1 = -n(x) 1 + 2x_1(x_1 + x'') = 2x_1^2 - n(x) + 2x_1x''$. It results that $T_C(x) = 2x_1^2 - n(x)$, then

$$T_C(x) = \frac{(t(x))^2}{2} - n_C(x)$$
. But $(t(x))^2 = t(x^2) + 2n_C(x)$, then

$$T_C(x) = \frac{t(x^2)}{2}.$$

2. Brown's construction of division algebras

In 1967, R. B. Brown constructed, for every t, a division algebra A_t of dimension 2^t over the power-series field $K\{X_1, X_2, ..., X_t\}$. We briefly demonstrate this construction, using polynomial rings over K and their fields of fractions (the rational functions field) instead of power-series fields over K (as it done by R.B. Brown),.

First of all, we remark that if an algebra A is finite-dimensional, then it is a division algebra if and only if A does not contain zero divisors (See [Sc;66]). For every t we construct a division algebra A_t over a field F_t . Let $X_1, X_2, ..., X_t$ be t algebraically independent indeterminates over the field K and $F_t = K(X_1, X_2, ..., X_t)$ be the rational functions field. For i = 1, ..., t, we construct the algebra A_i over the rational functions field $K(X_1, X_2, ..., X_i)$ by setting $\alpha_j = X_j$ for j = 1, 2, ..., i. Let $A_0 = K$. By induction over i, assuming that A_{i-1} is a division algebra over the field $F_{i-1} = K(X_1, X_2, ..., X_{i-1})$, we may prove that the algebra A_i is a division algebra over the field $F_i = K(X_1, X_2, ..., X_i)$.

Let $A_{F_i}^{i-1} = F_i \otimes_{F_{i-1}} A_{i-1}$. For $\alpha_i = X_i$ we apply the Cayley-Dickson process to algebra $A_{F_i}^{i-1}$. The obtained algebra, denoted A_i , is an algebra over the field F_i and has dimension 2^i .

Let

$$x = a + bv_i, \ y = c + dv_i$$

be nonzero elements in A_i such that xy = 0, where $v_i^2 = \alpha_i$. Since

$$xy = ac + X_i db + (b\bar{c} + da) v_i = 0,$$

we obtain

$$ac + X_i db = 0 \tag{2.1}$$

and

$$b\bar{c} + da = 0. \tag{2.2.}$$

But, the elements $a, b, c, d \in A_{F_i}^{i-1}$ are different from zero. Indeed, we have:

i) If a = 0 and $b \neq 0$, then $c = d = 0 \Rightarrow y = 0$, false;

ii) If b = 0 and $a \neq 0$, then $d = c = 0 \Rightarrow y = 0$, false;

iii) If c = 0 and $d \neq 0$, then $a = b = 0 \Rightarrow x = 0$, false;

iv) If d = 0 and $c \neq 0$, then $a = b = 0 \Rightarrow x = 0$, false.

This implies that $b \neq 0, a \neq 0, d \neq 0, c \neq 0$. If $\{1, f_2, ..., f_{2^{i-1}}\}$ is a

basis in A_{i-1} , then $a = \sum_{j=1}^{2^{i-1}} g_j(1 \otimes f_j) = \sum_{j=1}^{2^{i-1}} g_j f_j, g_j \in F_i, g_j = \frac{g'_j}{g''_j}, g'_j, g''_j \in K[X_1, ..., X_i], g''_j \neq 0, j = 1, 2, ...2^{i-1}$, where $K[X_1, ..., X_t]$ is the polynomial ring. Let a_2 be the less common multiple of $g''_1, ..., g''_{2^{i-1}}$, then we can write

$$a = \frac{a_1}{a_2}$$
, where $a_1 \in A_{F_i}^{i-1}, a_1 \neq 0$. Analogously, $b = \frac{b_1}{b_2}, c = \frac{c_1}{c_2}, d = \frac{a_1}{c_2}$

$$\frac{d_1}{d_2}, b_1, c_1, d_1 \in A_{F_i}^{i-1} - \{0\} \text{ and } a_2, b_2, c_2, d_2 \in K[X_1, ..., X_t] - \{0\}.$$

If we replace in the relations (2.1.) and (2.2.), we obtain

$$a_1c_1d_2b_2 + X_i\bar{d}_1b_1a_2c_2 = 0 (2.3.)$$

and

$$b_1 \bar{c}_1 d_2 a_2 + d_1 a_1 b_2 c_2 = 0. (2.4.)$$

If we denote $a_3 = a_1b_2, b_3 = b_1a_2, c_3 = c_1d_2, d_3 = d_1c_2, a_3, b_3, c_3, d_3 \in A_{F_i}^{i-1} - \{0\}$, the relations (2.3.) and (2.4.) become

$$a_3c_3 + X_i\bar{d}_3b_3 = 0 \tag{2.5.}$$

and

$$b_3\bar{c}_3 + d_3a_3 = 0. \tag{2.6.}$$

Since the algebra $A_{F_i}^{i-1} = F_i \otimes_{F_{i-1}} A_{i-1}$ is an algebra over F_{i-1} with basis $X^i \otimes f_j$, $i \in \mathbb{N}$ and $j = 1, 2, \dots 2^{i-1}$, we can write a_3, b_3, c_3, d_3 under the form $a_3 = \sum_{j \ge m} x_j X_i^j, b_3 = \sum_{j \ge n} y_j X_i^j, c_3 = \sum_{j \ge p} z_j X_i^j, d_3 = \sum_{j \ge r} w_j X_i^j$, where $x_j, y_j, z_j, w_j \in A_{i-1}, x_m, y_n, z_p, w_r \neq 0$. Since A_{i-1} is a division algebra, we have $x_m z_p \neq 0, w_r y_n \neq 0, y_n z_p \neq 0, w_r x_m \neq 0$. Using relations (2.5.) and (2.6.), we have that 2m + p + r = 2n + p + r + 1, which is false. Therefore, the algebra A_i is a division algebra over the field $F_i = K(X_1, X_2, \dots, X_i)$ of dimension 2^i .

3. A division algebra of dimension 2^t and prescribed level and sublevel $2^k, t, k \in \mathbb{N}^*$

In his paper [O' Sh; 07(1)], J. O'Shea gives a classification of the levels of quaternion and octonion algebras. Now we extend some of these results to the algebras obtained by the Cayley-Dickson process.

The *level* of the algebra, A denoted by s(A), is the least integer n such that -1 is a sum of n squares in A. The *sublevel* of the algebra A, denoted by $\underline{s}(A)$, is the least integer n such that 0 is a sum of n + 1 nonzero squares of elements in A. If these numbers do not exist, then the level and sublevel are infinite. Obviously, $\underline{s}(A) \leq s(A)$. We remark that, if in the Cayley-Dickson process, the quaternion algebra A_2 and the octonion algebra are split, then $s(A_2) = s(A_3) = 1$. (See [Pu, 05, Lemma 2.3.])

Let A be an algebra over a field K obtained by the Cayley-Dickson process, of dimension $q = 2^t, T_C$ and T_P be its trace and pure trace forms.

Proposition 3.1. If $s(A) \leq n$ then -1 is represented by the quadratic form $n \times T_C$.

Proof. Let $y \in A, y = x_1 + x_2 f_2 + \ldots + x_q f_q$, $x_i \in K$, for all $i \in \{1, 2, \ldots, q\}$. Using the notations given in the Introduction, we get $y^2 = x_1^2 + \beta_2 x_2^2 + \ldots + \beta_q x_q^2 + 2x_1 y''$, where $y'' = x_2 f_2 + \ldots + x_q f_q$. If -1 is a sum of n squares in A, then $-1 = y_1^2 + \ldots + y_n^2 = (x_{11}^2 + \beta_2 x_{12}^2 + \ldots + \beta_q x_{1q}^2 + 2x_{11} y''_1) + \ldots + (x_{n1}^2 + \beta_2 x_{n2}^2 + \ldots + \beta_q x_{nq}^2 + 2x_{n1} y''_n)$. Then we have $-1 = \sum_{i=1}^n x_{i1}^2 + \beta_2 \sum_{i=1}^n x_{i2}^2 + \ldots + \beta_q \sum_{i=1}^n x_{iq}^2$ and $\sum_{i=1}^n x_{i1} x_{i2} = \sum_{i=1}^n x_{i1} x_{i3} \ldots = \sum_{i=1}^n x_{i1} x_{in} = 0$, then $n \times T_C$ represents $-1.\square$

In Proposition 3.1, we remark that the quadratic form $< 1 > \perp n \times T_C$ is isotropic.

Proposition 3.2. For $n \in \mathbb{N}^*$, if the quadratic form $< 1 > \perp n \times T_P$ is isotropic over K, then $s(A) \leq n$.

Proof. Case 1. If $-1 \in K^{*2}$, then s(A) = 1.

Case 2. $-1 \notin K^{*2}$. Since the quadratic form $< 1 > \perp n \times T_P$ is isotropic then it is universal. It results that $< 1 > \perp n \times T_P$ represent -1. Then, we have the elements $\alpha \in K$ and $p_i \in Skew(A)$, i = 1, ..., n, such that $-1 = \alpha^2 + \beta_2 \sum_{i=1}^n p_{i2}^2 + ... + \beta_q \sum_{i=1}^n p_{iq}^2$, and not all of them are zero. i) If $\alpha = 0$, then $-1 = \beta_2 \sum_{i=1}^n p_{i2}^2 + ... + \beta_q \sum_{i=1}^n p_{iq}^2$. It results $-1 = (\beta_2 p_{12}^2 + ... + \beta_q p_{1q}^2) + ... + (\beta_2 p_{n2}^2 + ... + \beta_q p_{nq}^2)$. Denoting $u_i = p_{i2}f_2 + ... + p_{iq}f_q$, we have that $t(u_i) = 0$ and $u_i^2 = -n(u_i^2) = \beta_2 p_{i2}^2 + ... + \beta_q p_{iq}^2$, for all $i \in \{1, 2, ..., n\}$. We obtain $-1 = u_1^2 + ... + u_n^2$. ii) If $\alpha \neq 0$, then $1 + \alpha^2 \neq 0$ and $0 = 1 + \alpha^2 + \beta_2 \sum_{i=1}^n p_{i2}^2 + ... + \beta_q \sum_{i=1}^n p_{iq}^2$. $\dots + \beta_q \sum_{i=1}^n r_{iq}^2$. Therefore $-1 = \beta_2 \sum_{i=1}^n r_{i2}'^2 + \dots + \beta_q \sum_{i=1}^n r_{iq}'^2$, where $r'_{ij} = r_{ij}(1 + \alpha)^{-1}, j \in \{2, 3, \dots, q\}$ and we apply case i). Therefore $s(A) \le n.\square$

Lemma 3.3. [Sch; 85, p. 151] Let $n = 2^k$, and $a_1, ..., a_n, b_1, ..., b_n \in K$. Then there are elements $c_2, ..., c_n \in K$ such that

$$(a_1^2 + \dots + a_n^2)(b_1^2 + \dots + b_n^2) = (a_1b_1 + \dots + a_nb_n)^2 + c_2^2 + \dots + c_n^2.$$

Now we can state and prove some generalizations of J. O'Shea's results (Lemma 3.9, Proposition 3.2. and Proposition 3.3., Lemma 3.4., Theorem 3.5., Corollary 3.10. and Theorem 3.11. from [O'Sh; 07(1)]):

Proposition 3.4. If $n \in \mathbb{N}^*$, $n = 2^k - 1$ such that $s(K) \ge 2^k$, then $s(A) \le n$ if and only if $< 1 > \perp n \times T_P$ is isotropic.

Proof. From Proposition 3.1, supposing that $s(A) \leq n$, we have $-1 = \sum_{i=1}^{n} p_{i1}^2 + \beta_2 \sum_{i=1}^{n} p_{i2}^2 + \ldots + \beta_q \sum_{i=1}^{n} p_{iq}^2$ such that

$$\sum_{i=1}^{n} p_{i1} p_{i2} = \sum_{i=1}^{n} p_{i1} p_{i3} = \dots = \sum_{i=1}^{n} p_{i1} p_{iq} = 0.$$

Since $s(K) \ge 2^k$, it results that $-1 + \sum_{i=1}^n p_{i1}^2 \ne 0$. Putting $p_{2^{k_1}} = 1$ and $p_{2^{k_2}} = p_{2^{k_3}} = \dots p_{2^{k_q}} = 0$, we have

$$0 = \sum_{i=1}^{n+1} p_{i1}^2 + \beta_2 \sum_{i=1}^{n+1} p_{i2}^2 + \dots + \beta_q \sum_{i=1}^{n+1} p_{iq}^2$$
(3.1)

and
$$\sum_{i=1}^{n+1} p_{i1} p_{i2} = \sum_{i=1}^{n+1} p_{i1} p_{i3} = \dots = \sum_{i=1}^{n+1} p_{i1} p_{iq} = 0$$
. Multiplying (3.1.) by $\sum_{i=1}^{n+1} p_{i1}^2$, since $\left(\sum_{i=1}^{n+1} p_{i1}^2\right)^2$ is a square and using Lemma 3.3. for the products

Since $\left(\sum_{i=1}^{n} p_{i1}^{i}\right)$ is a square and using Lemma 5.5. for the products $\sum_{i=1}^{n+1} p_{i2}^{2} \sum_{i=1}^{n+1} p_{i1}^{2}, ..., \sum_{i=1}^{n+1} p_{iq}^{2} \sum_{i=1}^{n+1} p_{i1}^{2}$, we obtain

$$0 = \left(\sum_{i=1}^{n+1} p_{i1}^2\right)^2 + \beta_2 \sum_{i=1}^{n+1} r_{i2}^2 + \dots + \beta_q \sum_{i=1}^{n+1} r_{iq}^2, \tag{3.2}$$

where $r_{i2}, ..., r_{iq} \in K$, $n + 1 = 2^k$, $r_{12} = \sum_{i=1}^{n+1} p_{i1} p_{i2} = 0$, $r_{13} = \sum_{i=1}^{n+1} p_{i1} p_{i3} = 0$, $..., r_{1q} = \sum_{i=1}^{n+1} p_{i1} p_{iq} = 0$. Therefore, in the sums $\sum_{i=1}^{n+1} r_{i2}^2, ..., \sum_{i=1}^{n+1} r_{iq}^2$ we have n factors. From (3.2), we get that $< 1 > \perp n \times T_P$ is isotropic. \Box

Proposition 3.6. If $s(K) \geq 2^k$, then the quadratic form $2^k \times T_C$ is isotropic if and only if $< 1 > \perp 2^k \times T_P$ is isotropic.

Proof. Since the form $< 1 > \perp 2^k \times T_P$ is a subform of the form $2^k \times T_C$, if the form $< 1 > \perp 2^k \times T_P$ is isotropic, we have that $2^k \times T_C$ is isotropic. For the converse, supposing that $2^k \times T_C$ is isotropic, then we get

$$\sum_{i=1}^{2^{k}} p_{i}^{2} + \beta_{2} \sum_{i=1}^{2^{k}} p_{i2}^{2} + \dots + \beta_{q} \sum_{i=1}^{2^{k}} p_{iq}^{2} = 0, \qquad (3.3)$$

where $p_i, p_{ij} \in K, i = 1, ..., 2^k, j \in 2, ..., q$ and some of the elements p_i and p_{ij} are nonzero.

If $p_i = 0, \forall i = 1, ..., 2^k$, then $2^k \times T_P$ is isotropic, therefore $< 1 > \perp 2^k \times T_P$ is isotropic.

If $\sum_{i=1}^{2^k} p_i^2 \neq 0$, then, multiplying relation (3.3) with $\sum_{i=1}^{2^k} p_i^2$ and using Lemma 3.3. for the products $\sum_{i=1}^{2^k} p_{i2}^2 \sum_{i=1}^{2^k} p_i^2, \dots, \sum_{i=1}^{2^k} p_{iq}^2 \sum_{i=1}^{2^k} p_i^2$, we obtain

$$(\sum_{i=1}^{2^{k}} p_{i}^{2})^{2} + \beta_{2} \sum_{i=1}^{2^{k}} r_{i2}^{2} + \dots + \beta_{q} \sum_{i=1}^{2^{k}} r_{iq}^{2} = 0,$$

then $< 1 > \perp 2^k \times T_P$ is isotropic.

Since $s(K) \ge 2^k$, the relation $\sum_{i=1}^{2^k} p_i^2 = 0$, for some $p_i \ne 0$, does not work.

Indeed, supposing that $p_1 \neq 0$, we obtain $-1 = \sum_{i=2}^{2^k} (p_i p_1^{-1})^2$, false.

Proposition 3.6. Let $n = 2^k - 1$ and $s(K) \ge 2^k$. Then $\underline{s}(A) \le n$ if and only if $< 1 > \perp (n \times T_P)$ is isotropic or $(n + 1) \times T_P$ is isotropic.

Proof. Since $\underline{s}(A) \leq \overline{s}(A)$, if $\langle 1 \rangle \perp (n \times T_P)$ is isotropic, then, from Proposition 3.4, we have $\underline{s}(A) \leq n$. If $(n+1) \times T_P$ is isotropic, then there are

the elements $p_{ij} \in K, i = 1, ..., 2^k, j \in 2, ..., q$, some of them are nonzero, such that $\beta_2 \sum_{i=1}^{2^k} p_{i2}^2 + ... + \beta_q \sum_{i=1}^{2^k} p_{iq}^2 = 0$. We obtain $0 = (\beta_2 p_{12}^2 + ... + \beta_q p_{1q}^2) + ... + (\beta_2 p_{n2}^2 + ... + \beta_q p_{nq}^2)$. Denoting $u_i = p_{i2} f_2 + ... + p_{iq} f_q$, we have $t(u_i) = 0$ and $u_i^2 = -n(u_i^2) = \beta_2 p_{i2}^2 + ... + \beta_q p_{iq}^2$, for all $i \in \{1, 2, ..., n\}$. Therefore $0 = u_1^2 + ... + u_n^2$. It results that $\underline{s}(A) \leq n$.

Conversely, if $\underline{s}(A) \leq n$, then there are the elements $y_1, ..., y_{n+1} \in A$, some of them must be nonzero, such that $0 = y_1^2 + ... + y_{n+1}^2$. As in the proof of Proposition 3.1., we obtain $0 = \sum_{i=1}^{n+1} x_{i1}^2 + \beta_2 \sum_{i=1}^{n+1} x_{i2}^2 + ... + \beta_q \sum_{i=1}^{n+1} x_{iq}^2$ and $\sum_{i=1}^{n+1} x_{i1}x_{i2} = \sum_{i=1}^{n+1} x_{i1}x_{i3}... = \sum_{i=1}^{n+1} x_{i1}x_{in} = 0$. If all $x_{i1} = 0$, then $(n+1) \times T_P$ is isotropic. If $\sum_{i=1}^{n+1} x_{i1}^2 \neq 0$, then $(n+1) \times T_C$ is isotropic, or multiplying the last relation with $\sum_{i=1}^{2^k} x_{i1}^2$ and using Lemma 3.3. for the products $\sum_{i=1}^{2^k} x_{i2}^2 \sum_{i=1}^{2^k} x_{i1}^2, ..., \sum_{i=1}^{2^k} x_{iq}^2 \sum_{i=1}^{2^k} x_{i1}^2$, we obtain that $< 1 > \perp (n \times T_P)$ is isotropic. Since $s(K) \geq 2^k$, the relation $\sum_{i=1}^{n+1} x_{i1}^2 = 0$ for some $x_{i1} \neq 0$ is false. \square

Proposition 3.7. If $-1 \notin K^{*2}$, then $\underline{s}(A) = 1$ if and only if either T_C or $2 \times T_P$ is isotropic.

Proof. We apply Proposition 3.6 for $k = 1.\Box$

Proposition 3.8. Let A be an algebra obtained by the Cayley-Dickson process. The following statements are true:

a) If -1 is a square in K, then $\underline{s}(A) = s(A) = 1$.

b) If $-1 \notin K^{*2}$, then s(A) = 1 if and only if T_C is isotropic.

Proof. a) If $-1 = a^2 \in K \subset A$, then $\underline{s}(A) = s(A) = 1$.

b) If $-1 \notin K^{*2}$ and s(A) = 1, then, there is an element $y \in A$ such that $-1 = y^2$, with $y = y_1 + y_2 f_2 + \ldots + y_q f_q$. Since $y^2 + 1 = 0$, then $y_1 = t(y) = 0$ and so n(y) = 1. Since $2T_C(y) = t(y^2) = -2n(y) = -2$, we obtain $T_C(y) = -1$, then

$$y^2 = -1 = \beta_2 y_2^2 + \dots + \beta_q y_q^2,$$

therefore $0 = 1 + \beta_2 y_2^2 + \ldots + \beta_q y_q^2$. It results that T_C is isotropic.

Conversely, if T_C is isotropic, then there is $y \in A$, $y \neq 0$, such that $T_C(y) = 0 = y_1^2 + \beta_2 y_2^2 + \ldots + \beta_q y_q^2$. If $y_1 = 0$, then $T_C(y) = T_P(y) = 0$, so y = 0, which is false. If $y_1 \neq 0$, then $-1 = \left(\left(\frac{y_2}{y_1} \right) f_2 + \ldots + \left(\frac{y_q}{y_1} \right) f_q \right)^2$, obtaining $s(A) = 1.\square$

Remark 3.9. Using the above notations, if the algebra A is an algebra obtained by the Cayley-Dickson process, of dimension greater than 2 and if n_C is isotropic, then $s(A) = \underline{s}(A) = 1$. Indeed, if -1 is a square in K, the statement results from Proposition 3.8.a). If $-1 \notin K^{*2}$, since $n_C = <1 > \perp$ $-T_P$ and n_C is a Pfister form, we obtain that $-T_P$ is isotropic, therefore T_C is isotropic. Using Proposition 3.8., we have that $s(A) = \underline{s}(A) = 1$.

Proposition 3.10. Let A be an algebra over a field K obtained by the Cayley-Dickson process, of dimension $q = 2^t, T_C$ and T_P be its trace and pure trace forms. If $t \ge 2$ and $2^k \times T_P$ is isotropic over K, $k \ge 0$, then $(1 + [\frac{2}{3}2^k]) \times T_P$ is isotropic over K.

Proof. If $2^k \times T_P$ is isotropic then $2^k \times -T_P$ is isotropic. Since $2^k \times n_C = 2^k \times (<1 > \bot - T_P)$ and n_C is a Pfister form, from Proposition 1.6.(ii), we have $2^k \times n_C$ is a Pfister form. Since $2^k \times -T_P$ is a subform of $2^k \times n_C$, it results that $2^k \times n_C$ is isotropic, then it is hyperbolic. Therefore $2^k \times n_C \simeq <1, 1, ..., 1, -1, ..., -1 >$ (there are 2^{k+t-1} of -1 and 2^{k+t-1} of 1). Multiplying by -1, we have that $2^k \times (<-1 > \bot T_P)$ is hyperbolic, then has a totally isotropic subspace of dimension 2^{k+t-1} . It results that each subform of the form $2^k \times (<-1 > \bot T_P)$ of dimension greater or equal to 2^{k+t-1} is isotropic. Since $(2^t - 1)(1 + [\frac{2}{3}2^k]) > (2^t - 1)(\frac{2}{3}2^k) > 2^{t-1}2^k = 2^{k+t-1}$, then $(1 + [\frac{2}{3}2^k]) \times T_P$ is isotropic over K.

Proposition 3.11. Let A be an algebra over a field K obtained by the Cayley-Dickson process, of dimension $q = 2^t, T_C$ and T_P be its trace and pure trace forms. Let $n = 2^k - 1$, $s(K) \ge 2^k$. If $t \ge 2$ and k > 1 then $\underline{s}(A) \le 2^k - 1$ if and only if $< 1 > \bot(2^k - 1) \times T_P$ is isotropic.

Proof. We use Proposition 3.6. and we have that $\underline{s}(A) \leq 2^k - 1$ if and only if $\langle 1 \rangle \perp (n \times T_P)$ is isotropic or $(n+1) \times T_P$ is isotropic. In this case, we prove that $2^k \times T_P$ is isotropic implies $\langle 1 \rangle \perp (2^k - 1) \times T_P$ is isotropic. If $2^k \times T_P$ isotropic over K then $(1 + [\frac{2}{3}2^k]) \times T_P$ is isotropic over K, from Proposition 3.10. If $k \geq 2$, then $(1 + [\frac{2}{3}2^k]) \leq 2^k - 1$ and we have that $(1 + [\frac{2}{3}2^k]) \times T_P$ is an isotropic subform of the form $\langle 1 \rangle \perp (2^k - 1) \times T_P$.

Proposition 3.12. Let K be a field such that $s(K) \ge 2^k$.

i) If $k \ge 2$, then $\underline{s}(A) \le 2^k - 1$ if and only if $s(A) \le 2^k - 1$. ii) If s(A) = n and $k \ge 2$ such that $2^{k-1} \le n < 2^k$, then $s(A) \le 2^k - 1$. iii) If $\underline{s}(A) = 1$ then $s(A) \leq 2$.

Proof. i) For $k \ge 2$, then $\underline{s}(A) \le 2^k - 1$ if and only if $< 1 > \perp$ $((2^k - 1) \times T_P)$ is isotropic. This is equivalent with $s(A) \leq 2^k - 1$. ii) If $n < 2^k$, $k \ge 2$, it results $n \le 2^k - 1$, and we apply i).

iii) We have that $\underline{s}(A) = 1$ if and only if $\langle 1 \rangle \perp T_P = T_C$ is isotropic or $2 \times T_P$ is isotropic. If $2 \times T_P$ is isotropic, then it is universal and represents -1. Therefore $s(A) \leq 2$. If T_C is isotropic, then T_P is isotropic, then is universal and represents -1. We obtain $s(A) = 1.\Box$

Proposition 3.13. With the above notations, we have: i) For $k \ge 2$, if $s(A) = 2^k - 1$ then $s(A) = 2^k - 1$. ii) For $k \ge 2$, if $s(A) = 2^k$ then $\underline{s}(A) = 2^k$. *iii)* For $k \ge 1$, if $s(A) = 2^k + 1$ then $s(A) = 2^k + 1$ or $s(A) = 2^k$.

Proof. i) From Proposition 3.12., if $\underline{s}(A) = 2^k - 1$ then $s(A) \le 2^k - 1$. Since $\underline{s}(A) \leq \overline{s}(A)$, therefore $s(A) = 2^k - 1$.

ii) If $\underline{s}(A) \leq 2^k - 1$ we have $s(A) \leq 2^k - 1$, false.

iii) For $k \geq 1$, if $s(A) = 2^k + 1$, since $\underline{s}(A) \leq s(A)$, we obtain that $\underline{s}(A) \leq 2^k + 1$. If $\underline{s}(A) \leq 2^k - 1$, then $s(A) \leq 2^k - 1$, false.

In the following, we give an example of division algebra of dimension 2^t and prescribed level 2^k .

Theorem 3.14. Let K be a field such that $s(K) = 2^k$, X be an algebraically independent indeterminate over K, D be a finite-dimensional division K-algebra with scalar involution $\overline{}$ such that $s(D) = s(K), D_1 =$ $K(X) \otimes_K D$ and $B = (D_1, X)$. Then B is a division algebra over K(X)such that s(B) = s(K).

Proof. By straightforward calculations, using the same arguments like in Brown's construction, see Section 2, we obtain that B is a division algebra.

For the second part, since $s(B) \leq s(K) = n = 2^k$, we suppose that $s(B) \leq n-1$. It results that $-1 = y_1^2 + \dots + y_{n-1}^2$, where $y_i \in B$, $y_i = a_{i1} + a_{i2}u$, $u^2 = X$, $a_{i1}, a_{i2} \in D_1$, some of y_i are nonzero. We have $y_i^2 = a_{i1}^2 + X\overline{a}_{i2}a_{i2} + (a_{i2}\overline{a}_{i1} + a_{i2}a_{i1})u$, $i \in \{1, 2, \dots n-1\}$. It follows that $-1 = \sum_{i=1}^{n-1} a_{i1}^2 + X \sum_{i=1}^{n-1} \overline{a}_{i2} a_{i2}$, where $\psi = 1 \otimes \varphi$ is involution in $D_1, \psi(x) = \overline{x}$. We remark that $\overline{a}_{i2}a_{i2} \in K(X)$, $i \in \{1, ..., n-1\}$. If $a_{i1} = \sum_{j=1}^{m} \frac{p_{ji1}(X)}{q_{ji1}(X)} \otimes b_j$,

with
$$b_j \in D$$
, $\frac{p_{ji1}(X)}{q_{ji1}(X)} \in K(X), i \in \{1, 2, ..., n-1\}, j \in \{1, 2, ..., m\}.$

$$a_{i2} = \sum_{j=1}^{m} \frac{r_{ji2}(X)}{w_{ji2}(X)} \otimes d_j, \text{ with } d_j \in D, \ \frac{r_{ji2}(X)}{w_{ji2}(X)} \in K(X), \\ i \in \{1, 2, ..., n-1\}, \ j \in \{1, 2, ..., m\}, \text{ it results}$$

$$-1 = \sum_{i=1}^{n-1} \left(\sum_{j=1}^{m} \frac{p_{ji1}\left(X\right)}{q_{ji1}\left(X\right)} \otimes b_{j}\right)^{2} + X \sum_{i=1}^{n-1} \left(\sum_{j=1}^{m} \frac{r_{ji2}\left(X\right)}{w_{ji2}\left(X\right)} \otimes d_{j}\right) \left(\sum_{j=1}^{m} \frac{r_{ji2}\left(X\right)}{w_{ji2}\left(X\right)} \otimes \bar{d}_{j}\right).$$

After clearing denominators, we obtain

$$-v^{2}(X) = \sum_{i=1}^{n-1} (\sum_{j=1}^{m} p'_{ji1}(X) \otimes b_{j})^{2} + X \sum_{i=1}^{n-1} (\sum_{j=1}^{m} r'_{ji2}(X) \otimes d_{j}) (\sum_{j=1}^{m} r'_{ji2} \otimes \overline{d}_{j}), \quad (3.4.)$$

where $v(X) = lcm\{q_{ji1}(X), w_{ji2}(X)\}, i \in \{1, 2, ..., n-1\}, j \in \{1, 2, ..., m\}$ and $p'_{ji1}(X) = v(X) p_{ji1}(X), r'_{ji2}(X) = v(X) r_{ji2}(X),$ $i \in \{1, ..., n-1\}, j \in \{1, 2, ..., m\}$. We can write

$$v(X) = v_q X^q + v_{q+1} X^{q+1} + \dots, v_q \in K, v_q \neq 0,$$
(3.5.)

$$\sum_{j=1}^{m} p_{ji1}'(X) \otimes b_j = \alpha_{r_i} X^{r_i} + \alpha_{r_i+1} X^{r_i+1} + \dots, \ \alpha_{r_i}, \alpha_{r_i+1}, \dots \in D, \alpha_{r_i} \neq 0,$$
(3.6.)

$$\sum_{j=1}^{m} r'_{ji2}(X) \otimes d_j = \beta_{s_i} X^{s_i} + \beta_{s_i+1} X^{s_i+1} + \dots, \beta_{s_i}, \beta_{s_i+1}, \dots \in D, \beta_{s_i} \neq 0, \quad (3.7.)$$

$$\sum_{j=1}^{m} r'_{ji2} \otimes \overline{d}_j = \overline{\beta}_{s_i} X^{s_i} + \overline{\beta}_{s_i+1} X^{s_i+1} + \dots, \overline{\beta}_{s_i}, \overline{\beta}_{s_i+1}, \dots \in D, \overline{\beta}_{s_i} \neq 0.$$
(3.8.)

By (3.4.), if $s = \min_{i=\overline{1,n-1}} s_i$, $r = \min_{i=\overline{1,n-1}} r_i$, in the left side the minimum degree is 2q (q possible zero) in the right side, the first sum has the minimum degree

 $2r \ (r \text{ possible zero})$ and the second term has the minimum degree 2s+1. It results q = r and 2r < 2s+1. Replacing the relations (3.5.), (3.6.), (3.7.), (3.8.) in the relation (3.4.), if r > 0, we divide relation (3.4.) by X^{2r} , such that, in the new obtained relation the minimum degree in the both sides is zero. Putting X = 0 in this new relation, we have

$$-v_q^2 = \sum_{i=1}^{n-1} \alpha_{r_i}^2, \ \alpha_{r_i} \in D.$$

We obtain

$$-1 = \sum_{i=1}^{n-1} (\frac{\alpha_{r_i}}{v_q})^2$$

It follows that $s(D) \leq n-1$, false.

Corollary 3.15. Let K be a field such that $s(K) \ge 2^k$, X be an algebraically independent indeterminate over K, D be a finite-dimensional division K-algebra with scalar involution - such that $s(D) < \infty$, $D_1 = K(X) \otimes_K D$ and $B = (D_1, X)$. Then:

i) B is a division algebra. ii) s(B) = s(D). iii) $\underline{s}(B) = \underline{s}(D)$.

Proof. i) and ii) result from Theorem 3.14.

iii) We prove that $\underline{s}(B) = \underline{s}(D)$. Since $\underline{s}(B) \le s(B) = s(D)$, then

 $\underline{s}(B) \leq \underline{s}(D) = m \leq 2^k$, we suppose that $\underline{s}(B) \leq m - 1$. It results $0 = y_1^2 + \ldots + y_m^2$, where $y_i \in B$. Using the same notations like

in Theorem 3.14, after straightforward calculations, we obtain $0 = \sum_{i=1}^{m} (\sum_{j=1}^{l} p'_{ji1}(X) \otimes b_j)^2 + X \sum_{i=1}^{m} (\sum_{j=1}^{l} r'_{ji2}(X) \otimes d_j) (\sum_{j=1}^{l} r'_{ji2} \otimes \overline{d}_j)$. It results $0 = \sum_{i=1}^{m} \alpha_{r_i}^2, \ \alpha_{r_i} \in D$, therefore $s(D) \leq m-1$, false. Then s(B) = s(D).

Remark 3.16. Using Example 4.2. from [O' Sh; 07(1)], we have that, if K_0 is a formally real field, then the field $F_0 = K_0((2^k + 1) \times \langle 1 \rangle)$ has the level 2^k . If $D = A_0 = F_0$, $K = F_0$, $D_1 = K(X_1) \otimes_K A_0$, from Brown's construction and Theorem 3.14., the $K(X_1)$ -algebra B, obtained by application of the Cayley-Dickson process with $\alpha = X_1$ to the $K(X_1)$ -algebra D_1 , is a division algebra of dimension 2 and level 2^k .

By induction, supposing that $D = A_{t-1}$ is a division algebra of dimension 2^{t-1} and level 2^k over the field $K = F_0(X_1, ..., X_{t-1})$, then, if $D = A_{t-1}$, $D_1 = K(X_t) \otimes_K A_{t-1}$ and B is the $K(X_t)$ -algebra obtained by application of the Cayley-Dickson process with $\alpha = X_t$ to the $K(X_t)$ -algebra D_1 , then B is a division algebra of dimension 2^t and level 2^k .

Looking to the field F_0 like as an F_0 -algebra, then the field F_0 has the same level and sublevel. Using above proposition, we have that $s(B) = \underline{s}(B) = 2^k$. This is an example of a division algebra of level and sublevel 2^k and dimension $2^t, t, k \in \mathbb{N}^*$.

4. Algebras of sublevels $2^k + 1, k \in \mathbb{N}^*$ obtained by the Cayley-Dickson process

Let F_0 be a formally real field. In their paper [La, Ma; 01], Laghribi and Mammone proved that the quaternion algebras $Q(m) = \binom{X,Y}{F} \otimes_F K$ are division algebras of level m, where $m = 2^k + 1, k \ge 0, F = F_0(X, Y),$ $K = F\left(\langle 1 > \bot m \times T_P^Q\right), Q = \binom{X,Y}{F}$ is a quaternion algebra over F and T_P^Q its pure trace form over F and in her paper [Pu; 05], S. Pumpluen proved that $O(m) = \binom{X,Y,Z}{F} \otimes_F K$ are octonion division algebras of level m, where $m = 2^k + 1, k \ge 0, F = F_0(X,Y,Z), K = F\left(\langle 1 > \bot m \times T_P^O\right), O = \binom{X,Y,Z}{F}$ is an octonion algebra over F and T_P^O its pure trace form over F.

In his paper [O'Sh; 07(1)], Proposition 4.7., J. O'Shea proved that the octonion algebra O(5) is a division algebra of sublevel 5 and, in [O'Sh; 07(2)], he conjectured that the relations

$$s\left(Q\left(m\right)\right) = \underline{s}\left(Q\left(m\right)\right) = m \tag{4.1.}$$

and

$$s\left(O\left(m\right)\right) = \underline{s}\left(O\left(m\right)\right) = m. \tag{4.2.}$$

are true, but he proved them only for $m = 2^k$, $k \in \mathbb{N}$ and $m \leq 7$ for the octonions and $m = 2^k$, $k \in \mathbb{N}$ and $m \leq 3$ for the quaternions.

Starting from some ideas given in the mentioned works, especially in the Proposition 4.7. from [O'Sh; 07(1)] and in the proof of Theorem 3.3. from [O'Sh; 07(2)], in the following, we prove that the quaternion algebra Q(5) has sublevel 5., and finally, we prove that, for $n = 2^k + 1, k \in \mathbb{N}$, relations (4.1) and (4.2.) hold.

Proposition 4.1. Let x be a transcendental element over K, V a vector space over K, dim $V \ge 3$. Let $q: V \to K$ be a regular quadratic irreducible form. We have that K(q)(x) = K(x)(q), where K(q) is the functions field of q over K and K(x)(q) is the functions field of q over K(x).

Proof. Suppose that q has the diagonal representation $\langle a_1, a_2, ..., a_n \rangle$. The function field of q over K is the quotient field of $K[x_2, ..., x_n]/(a_1 + a_2x_2^2 + ... + a_nx_n^2)$. This field is $K(x_2, ..., x_{n-1})(\sqrt{-\alpha})$, where $\alpha = a_n^{-1}(a_1 + a_2x_2^2 + ... + a_{n-1}x_{n-1}^2)$. Since q is irreducible over K(x), its functions field over K(x) is the quotient field of

$$K(x)[x_2,...,x_n]/(a_1+a_2x_2^2+...+a_nx_n^2).$$

This field is $K(x)(x_2, ..., x_{n-1})(\sqrt{-\alpha})$, where $\alpha = a_n^{-1}(a_1 + a_2x_2^2 + ... + a_{n-1}x_{n-1}^2)$. Since $K(x)(x_2, ..., x_{n-1})(\sqrt{-\alpha}) = K(x_2, ..., x_{n-1})(\sqrt{-\alpha})(x)$, it results that K(q)(x) = K(x)(q).

Theorem 4.2. Let $F = F_0(X,Y)$, $K = F\left(\langle 1 \rangle \pm 5 \times T_P^Q\right)$. With the above notations, let Z be an algebraically independent element over F. Let $Q'_5 = Q(5) \otimes_K K(Z)$ and $O'_5 = (Q'_5, Z)$. Then the following statements are true:

i) The algebra O'_5 is a division algebra of level and sublevel 5.

ii) The algebra Q(5) is a division algebra of level and sublevel 5.

Proof. i) Denoting $\varphi = <1 > \bot 5 \times T_P^Q$, where $T_P^Q \simeq < X, Y, -XY >$, from the above proposition, it results that

$$K(Z) = F\left(\langle 1 \rangle \bot 5 \times T_P^Q\right)(Z) = F(Z)\left(\langle 1 \rangle \bot 5 \times T_P^Q\right).$$

Therefore $K(Z) = F(\varphi)(Z) = F(Z)(\varphi)$. Since the algebra Q(5) has the level 5, using Proposition 3.16., we obtain that the algebra O'_5 is a division algebra and has level 5. We prove that the algebra O'_5 has sublevel 5. Suppose $\underline{s}(O'_5) \leq 4$. Then

$$\sum_{i=1}^{5} c_i^2 + \sum_{i=1}^{5} p_i^2 = 0$$
(4.1.)

and

$$\sum_{i=1}^{5} c_i p_i = 0, \tag{4.2.}$$

where $c_i \in F(Z)(\varphi)$, $p_i \in \mathcal{P}, \mathcal{P}$ the $F(Z)(\varphi)$ -vector space spanned by the pure octonions.

Case 1. $c_i = 0$, for all $i \in \{1, 2, ..., 5\}$. From (4.1.), it results that $5 \times T_P^O$ is isotropic over $F(Z)(\varphi)$.

Case 2. If there is at least an element *i* such that $c_i \neq 0$, relation (4.2.) implies that we get a 4-dimensional $F(Z)(\varphi)$ - vector subspace V of \mathcal{P} , containing p_1, p_2, p_3, p_4, p_5 . Let $\beta: V \to F(Z)(\varphi), \beta(p) = p^2$. Therefore β is a 4 dimensional subform of $T_P^O \simeq \langle X, Y, -XY, Z, -XZ, -XY, -YZ, XYZ \rangle$ and, from (4.1.), the form $\gamma = 5 \times (\langle 1 \rangle \perp \beta)$ is isotropic over $F(Z)(\varphi)$. We denote $\delta = \langle 1 \rangle \perp \beta$. Repeated applications of Springer's Theorem implies that $5 \times T_P^O$, γ and $8 \times (\langle -1 \rangle \perp T_P^O)$ are anisotropic over F(Z).

To prove that $\underline{s}(O'_5) \not\leq 4$ it is sufficient to show that $5 \times T_P^O$ and γ are anisotropic over $F(Z)(\varphi)$.

If $5 \times T_P^O$ is isotropic over $F(Z)(\varphi)$, since the form $8 \times (< -1 > \perp T_P^O)$ is a Pfister form, then becomes hyperbolic over $F(Z)(\varphi)$. For each $a \in D_{F(Z)} \left(8 \times (< -1 > \perp T_P^O)\right) a\varphi$ is a subform of $8 \times (< -1 > \perp T_P^O)$, from Cassels-Pfister Theorem. Since $X \in D_{F(Z)} \left(8 \times (< -1 > \perp T_P^O)\right)$, using Lemma 3.7., p.8, from [Sch; 85], it results that

$$X\varphi \simeq < X > \perp 5 \times < 1, XY, -Y, XZ, -Z, -XYZ, YZ >$$

is a subform of $8 \times (< -1 > \perp T_P^O)$, therefore $5 \times < 1 >$ is a subform of $8 \times (< -1 > \perp T_P^O)$, false. Hence $5 \times T_P^O$ is anisotropic over $F(Z)(\varphi)$.

If γ is isotropic over $F(Z)(\varphi)$, from Proposition 1.3., we have

$$D_{F(Z)}(\varphi) D_{F(Z)}(\varphi) \subseteq D_{F(Z)}(\gamma) D_{F(Z)}(\gamma).$$

Since $T_P^Q \simeq \langle X, Y, -XY \rangle$, it results that $X, Y, -XY \in D_{F(Z)}(\varphi)$. Therefore $X, Y, -XY \in D_{F(Z)}(\varphi) D_{F(Z)}(\varphi)$, hence $X, Y, -XY \in D_{F(Z)}(\gamma) D_{F(Z)}(\gamma)$. We prove that $\langle X \rangle, \langle Y \rangle, \langle -XY \rangle$ are subforms of β . If $\langle X \rangle$ is not a subform of β , then we find a multiple of X in $D_{F(Z)}(\gamma) D_{F(Z)}(\gamma)$ of the form $-X \sum_{i=1}^m A_i^2$, $A_i \in F(Z)$. (For example, if $\beta \simeq \langle Y, -XY, Z, -XZ \rangle$, it results $Y, -XY, Z, -XZ \in D_{F(Z)}(\gamma)$, then $-XY^2 \in D_{F(Z)}(\gamma) D_{F(Z)}(\gamma)$). From Springer's Theorem, we have that γ is anisotropic over F(Z). From the same Theorem, it results that $m \times \delta$ is anisotropic over F(Z) for all $m \in \mathbb{N}^*$, therefore δ is strongly anisotropic over F(Z). From Remark 1.1., we have that $D_{F(Z)}(\gamma) \subset P_0 = \{\alpha \mid \alpha = 0 \text{ or } \alpha \text{ is represented by } n \times \delta, n \in \mathbb{N}^* \}$, P_0 is a q-preordering and there is a q-ordering P such that $P_0 \subset P$ or $-P_0 \subset P$. Therefore $D_{F(Z)}(\gamma) D_{F(Z)}(\gamma) \subset P \cdot P \subset P$. If X is positive, then $-X \sum_{i=1}^{5} A_i^2$ is positive and if X is positive, then $-X \sum_{i=1}^{5} A_i^2$ is positive, false

is negative and if X is negative, then $-X\sum_{i=1}^{5}A_{i}^{2}$ is positive, false.

In the same way, we prove that $\langle Y \rangle$, $\langle -XY \rangle$ are subforms of β , therefore $X, Y, -XY \in D_{F(Z)}(\gamma)$. Since $1 \in D_{F(Z)}(\gamma)$, we have that $1 \in P_0 \subset P$, therefore X, Y, -XY are positive, false. We obtain γ is anisotropic over $F(Z)(\varphi)$. It results that $\underline{s}(O'_5) = 5$.

ii) From i), using Corollary 3.15., we have $\underline{s}(Q(5)) = \underline{s}(O'_5) = 5.\Box$

Theorem 4.3. Let $F = F_0(X, Y)$ and $Q = \left(\frac{X, Y}{F}\right)$ be a quaternion algebra over F. Let $K = F\left(\langle 1 \rangle \perp m \times T_P^Q\right)$. The quaternion algebra $Q(m) = \left(\frac{X, Y}{F}\right) \otimes_F K$ is a quaternion division algebra of level and sublevel m, where $m = 2^k + 1, k \ge 0$, and T_P^Q its pure trace form over F.

Proof. Since for $k \leq 1$ the result is proved in [O' Sh; 07(2)] and for k = 2 we prove the result in the above proposition, in the following, we suppose that $k \geq 3$. We denote $\varphi = \langle 1 \rangle \perp (2^k + 1) \times T_P^Q$, where $T_P^Q \simeq \langle X, Y, -XY \rangle$. Let $Z_3, ..., Z_{k+1}$ be algebraic independent elements over $F = F_0(X, Y), K = F(\langle 1 \rangle \perp (2^k + 1) \times T_P^Q)$. From Proposition 4.1., it results that

$$K(Z_3, ..., Z_{k+1}) = F\left(<1> \bot (2^k+1) \times T_P^Q\right) (Z_3, ..., Z_{k+1}) = F(Z_3, ..., Z_{k+1}) \left(<1> \bot (2^k+1) \times T_P^Q\right) = F_0(Z_1, ..., Z_{k+1}) \left(<1> \bot (2^k+1) \times T_P^Q\right).$$

Let $Q'_m = Q(m) \otimes_K K(Z_3)$ and $O'_m = (Q'_m, Z_3)$ be an octonion algebra as in Brown's construction. Then the algebra O'_m is a division algebra of dimension 2^3 and of level m. We repeat this construction until we obtain a division algebra A_t of dimension 2^t , t = k+1, like in the Brown's construction. Let $T_P^{A_t}$ its pure trace form. From Corollary 3.15., the algebra A_t has level m. We suppose that the sublevel is at most $m - 1 = 2^k$.

Then

$$\sum_{i=1}^{m} c_i^2 + \sum_{i=1}^{m} p_i^2 = 0$$
(4.3.)

$$\sum_{i=1}^{m} c_i p_i = 0, \tag{4.4.}$$

where $c_i \in F_0(Z_1, ..., Z_{k+1})(\varphi), \varphi = <1 > \perp (2^k + 1) \times T_P^{A_t}, p_i \in \mathcal{P}, \mathcal{P}$ the $F_0(Z_1, ..., Z_{k+1})(\varphi)$ -vector space spanned by the pure elements in A_t .

Case 1. $c_i = 0$, for all $i \in \{1, 2, ..., m - 1\}$. From (4.3.), it results that $(2^k + 1) \times T_P^{A_t}$ is isotropic over $F_0(Z_1, ..., Z_{k+1})(\varphi)$.

Case 2. If there is at least an element *i* such that $c_i \neq 0$, relation (4.4.) implies that we get a m-1-dimensional $F_0(Z_1, ..., Z_{k+1})(\varphi)$ -vector subspace V of \mathcal{P} , containing $p_1, p_2, ..., p_m$. Let $\beta : V \to F_0(Z_1, ..., Z_{k+1})(\varphi), \beta(p) = p^2$. Therefore β is a m-1 dimensional subform of $T_P^{A_t}$ and, from (4.4.), the form $\gamma = (2^k + 1) \times (<1 > \perp \beta)$ is isotropic over $F_0(Z_1, ..., Z_{k+1})(\varphi)$. We denote $\delta = <1 > \perp \beta$. Repeated applications of Springer's Theorem implies that $(2^k + 1) \times T_P^{A_t}$, γ and $2^{k+1} \times (<-1 > \perp T_P^{A_t})$ are anisotropic over $F_0(Z_1, ..., Z_{k+1})$.

To prove that $\underline{s}(A_t) \not\leq m-1$ it is sufficient to show that $(2^k+1) \times T_P^{A_t}$ and γ are anisotropic over $F_0(Z_1, ..., Z_{k+1})(\varphi)$.

If $(2^{k}+1) \times T_{P}^{A_{t}}$ is isotropic over $F_{0}(Z_{1},...,Z_{k+1})(\varphi)$, since the form $2^{k+1} \times (\langle -1 \rangle \perp T_{P}^{A_{t}})$ is a Pfister form, then this form becomes hyperbolic over $F_{0}(Z_{1},...,Z_{k+1})(\varphi)$. For any $a \in D_{F_{0}(Z_{1},...,Z_{k+1})}(2^{k+1} \times (\langle -1 \rangle \perp T_{P}^{A_{t}}))$ $a\varphi$ is a subform of $2^{k+1} \times (\langle -1 \rangle \perp T_{P}^{A_{t}})$, from Cassels-Pfister Theorem. Since $X = Z_{1} \in D_{F_{0}(Z_{1},...,Z_{k+1})}(2^{k+1} \times (\langle -1 \rangle \perp T_{P}^{A_{t}}))$, it results that

$$X\varphi \simeq < X > \perp \times (2^k + 1) < 1, \dots >$$

is a subform of $2^{k+1} \times (\langle -1 \rangle \perp T_P^{A_t})$, therefore $(2^k + 1) \times \langle 1 \rangle$ is a subform of $2^{k+1} \times (\langle -1 \rangle \perp T_P^{A_t})$, false. Hence $(2^k + 1) \times T_P^{A_t}$ is anisotropic over $F_0(Z_1, ..., Z_{k+1})(\varphi)$.

If γ is isotropic over $F_0(Z_1, ..., Z_{k+1})(\varphi)$, from Proposition 1.3., we have

$$D_{F_0(Z_1,\dots,Z_{k+1})}(\varphi) D_{F_0(Z_1,\dots,Z_{k+1})}(\varphi) \subseteq D_{F_0(Z_1,\dots,Z_{k+1})}(\gamma) D_{F_0(Z_1,\dots,Z_{k+1})}(\gamma)$$

Since $T_P^Q \simeq \langle X, Y, -XY \rangle$, it results that

$$X, Y, -XY \in D_{F_0(Z_1, \dots, Z_{k+1})}(\varphi) D_{F_0(Z_1, \dots, Z_{k+1})}(\varphi).$$

We prove that $\langle X \rangle$, $\langle Y \rangle$, $\langle -XY \rangle$ are subforms of β . If $\langle X \rangle$ is not a subform of β , then we find a multiple of X in $D_{F_0(Z_1,...,Z_{k+1})}(\gamma) D_{F_0(Z_1,...,Z_{k+1})}(\gamma)$

and

of the form $-X\sum_{i=1}^{r}A_{i}^{2}$, $A_{i} \in F_{0}(Z_{1},...,Z_{k+1})$. From Springer's Theorem, we have that γ is anisotropic over $F_{0}(Z_{1},...,Z_{k+1})$. From the same Theorem, it results that $m \times \delta$ is anisotropic over $F_{0}(Z_{1},...,Z_{k+1})$ for all $m \in \mathbb{N}^{*}$, therefore δ is strongly anisotropic over $F_{0}(Z_{1},...,Z_{k+1})$. From Remark 1.1., we have that $D_{F_{0}(Z_{1},...,Z_{k+1})}(\gamma) \subset P_{0} = \{\alpha \mid \alpha = 0 \text{ or } \alpha \text{ is represented by } n \times \delta, n \in \mathbb{N}^{*}\}, P_{0}$ is a q-preordering and there is a q-ordering P such that $P_{0} \subset P$ or $-P_{0} \subset P$. Therefore $D_{F_{0}(Z_{1},...,Z_{k+1})}(\gamma) D_{F_{0}(Z_{1},...,Z_{k+1})}(\gamma) \subset P \cdot P \subset P$. If Xis positive, then $-X\sum_{i=1}^{r}A_{i}^{2}$ is negative and if X is negative, then $-X\sum_{i=1}^{r}A_{i}^{2}$ is positive, false.

In the same way, we prove that $\langle Y \rangle$, $\langle -XY \rangle$ are subforms of β , therefore $X, Y, -XY \in D_{F_0(Z_1,...,Z_{k+1})}(\gamma)$. Since $1 \in D_{F_0(Z_1,...,Z_{k+1})}(\gamma)$, we have that $P_0 \subset P$, therefore X, Y, -XY are positive, false. We obtain γ is anisotropic over $F_0(Z_1,...,Z_{k+1})(\varphi)$.

It results that $\underline{s}(A_t) = 2^k + 1$, therefore, using Corollary 3.15., we have $\underline{s}(Q(m)) = m, m = 2^k + 1.\square$

Theorem 4.4. Let $F = F_0(X, Y, Z)$ and $O = \left(\frac{X, Y, Z}{F}\right)$ an octonion algebra over F.

The octonion algebra $O(m) = \left(\frac{X,Y,Z}{F}\right) \otimes_F K$ is an octonion division algebras of level and sublevel m, where $m = 2^k + 1, k \ge 0, , K = F\left(<1 > \bot m \times T_P^O\right)$, and T_P^O is its pure trace form over F

Proof. The case $k \leq 2$ is proved in [O' Sh; 07(2)], in the following we suppose that $k \geq 3$. We denote $\varphi = \langle 1 \rangle \perp (2^k + 1) \times T_P^O$, where $T_P^O \simeq \langle X, Y, -XY, Z, -XZ, -YZ, XYZ \rangle$. Let $Z_4, ..., Z_{k+1}$ be algebraic independent elements over $F = F_0(X, Y, Z)$, $K = F(\langle 1 \rangle \perp (2^k + 1) \times T_P^Q)$. Proposition 4.1. implies that

$$K(Z_4, ..., Z_{k+1}) = F\left(<1> \perp (2^k+1) \times T_P^Q\right)(Z_3, ..., Z_{k+1}) = F(Z_4, ..., Z_{k+1})\left(<1> \perp (2^k+1) \times T_P^Q\right) = F_0(Z_1, ..., Z_{k+1})\left(<1> \perp (2^k+1) \times T_P^Q\right),$$

where $X = Z_1, Y = Z_2, Z = Z_3$. Let $O'_m = O_m \otimes_K K(Z_4)$ and $S'_m = (O'_m, Z_4)$ be the sedenion algebra as in Brown's construction. Then S'_m is a division algebra of dimension 2^4 and of level m. We repeat this construction

until we obtain a division algebra A_t of dimension $2^t, t = k+1$, like in Brown's construction. Let $T_P^{A_t}$ be its pure trace form. By Corollary 3.15., this algebra has level m. Using the same arguments like in the above proposition, the sublevel of algebra A_t is $2^k + 1$, therefore $\underline{s}(O(m)) = m, m = 2^k + 1.\square$

Acknowledgements. I would like to thank Susanne Pumplün for her many encouragements and suggestions which helped me to improve this paper. I am deeply grateful for all.

References

[Br; 67] Brown, R. B., On generalized Cayley-Dickson algebras, Pacific J. of Math., **20(3)**(1967), 415-422.

[Di; 00] Dieterich, E., *Real quadratic division algebras*, Comm. Algebra, **28(2)**(2000), 941-947.

[Hoff; 08] Hoffman, D. W., *Levels of quaternion algebras*, Archiv der Mathematik, **90(5)**(2008), 401-411.

[Ko; 98] Koprowski P. Sums of squares of pure quaternions, Proc. Roy. Irish Acad., **98(1)**(1998),63-65.

[Kr, Wa; 91], M. Küskemper, A. Wadsworth, A quaternion algebra of sublevel 3, Bull. Soc. Math. Belg. Sér. B, **43(2)**(1991), 181-185.

[La,Ma; 01] Laghribi A., Mammone P., On the level of a quaternion algebra, Comm. Algebra, **29(4)**(2001), 1821-1828.

[Le; 90] Leep D. B., Levels of division algebras, Glasgow Math. J. **32**(1990), 365-370.

[Lew; 87] Lewis D. W., Levels and sublevels of division algebras, Proc. Roy. Irish Acad. Sect. A, 87(1)(1987), 103-106.

[Lew; 89] Lewis D. W., *Levels of quaternion algebras*, Rocky Mountain J, Math. **19**(1989), 787-792.

[Os; 62] Osborn, J. M., *Quadratic Division Algebras*, Trans. Amer. Math. Soc., **115**(1962), 202-221.

[O' Sh; 07(1)] O' Shea, J., Levels and sublevels of composition algebras, Indag. Mathem., **18(1)**(2007), 147-159.

[O' Sh; 07(2)] O' Shea, J., New values for the level and sublevel of composition algebras, preprint, 2007, 1-21.

[Pf; 65] Pfister A., Zur Darstellung von-I als Summe von quadraten in einem Körper, J. London Math. Soc. **40**(1965), 159-165.

[Pu; 05] S. Pumplün, Sums of squares in octonion algebras, Proc. Amer. Math. Soc., **133**(2005), 3143-3152.

[Ro; 05] S. Roussey, *Isotropie, corps de fonctions et équivalences birationnelles des formes quadratiques*, PhD thesis, Université de Franche-Comté, 2005, 175 p.

[Sc; 66] Schafer, R. D., An Introduction to Nonassociative Algebras, Academic Press, New-York, 1966.

[Sc; 54] Schafer, R. D., On the algebras formed by the Cayley-Dickson process, Amer. J. Math., **76**(1954), 435-446.

[Sch; 85] Scharlau, W., *Quadratic and Hermitian Forms*, Springer Verlag, 1985.

"Ovidius" University of Constanta, Romania e-mail: cflaut@univ-ovidius.ro;cristina_flaut@yahoo.com