
Levels and sublevels of algebras obtained by the
Cayley-Dickson process

Cristina Flaut

Abstract. We generalize the concepts of level and sublevel of a compo-

sition algebra to algebras obtained by the Cayley-Dickson process. In 1967, R.

B. Brown constructed, for every t ∈ N, a nonassociative division algebra At of

dimension 2t over the power-series field K{X1, X2, ..., Xt}. This gives us the pos-

sibility to construct a division algebra of dimension 2t and prescribed level and

sublevel 2k, k, t ∈ N∗ and a division algebra of dimension and prescribed level

and sublevel 2k + 1, t, k ∈ N.
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0. Introduction

In [Pf; 65], A. Pfister showed that if a field has a finite level this level is a
power of 2 and any power of 2 could be realised as the level of a field. In the
noncommutative case, the concept of level has many generalisations. The
level of division algebras is defined in the same manner as for fields. In [Lew;
87], D. W. Lewis constructed quaternion division algebras of level 2k and 2k+
1 for all k ∈ N∗ and he asked if there exist quaternion division algebras whose
levels are not of this form. These values were recovered for the quaternions by
Laghribi and Mammone in [La,Ma; 01], and for octonion division algebras by
Susanne Pumplün in [Pu; 05], using function field techniques. In [Hoff; 08],
D. W. Hoffman showed that there are many other values, not of the form 2k

or 2k + 1, which could be realised as level of quaternion division algebras. In
[Kr, Wa; 91], M. Küskemper and A. Wadsworth constructed the first example
of a quaternion algebra of sublevel 3. Starting from this construction, in [O’
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Sh; 07(1)], J. O’ Shea proved the existence of an octonion algebra of sublevel
3 and constructed an octonion algebra of sublevel 5 and, in [O’ Sh; 07(2)], he
gave the first example of octonion division algebras of level 6 and 7. These
were the first examples of composition algebras whose level is not of the form
2k or 2k + 1 for some k ∈ N∗ and remained the only known values for the
level and sublevel of quaternion and octonion algebras. The existence of a
quaternion algebra of sublevel 5 was still an open question. Starting from
mentioned works and using Brown’s construction for division algebras, we
give an example of quaternion algebra of level and sublevel 5 in Section 4.

1. Preliminaries

In this paper, we assume that K is a field and charK 6= 2.
For the basic terminology of quadratic and symmetric bilinear spaces, the

reader is referred to [Sch; 85] or [La, Ma; 01]. In this paper, we assume that
all the quadratic forms are nondegenerate .

A bilinear space (V, b) represents α ∈ K if there is an element x ∈ V, x 6=
0, with b (x, x) = α. The space is called universal if (V, b) represents all
α ∈ K. Every isotropic bilinear space V , V 6= {0}, is universal. (See [Sch;
85, Lemma 4.11., p. 14])

A subset P of K is called an ordering of K if

P + P ⊂ P, P · P ⊂ P,−1 /∈ P,

{x ∈ K /x is a sum of squares in K} ⊂ P, P ∪ −P = K,P ∩ −P = 0.

A quadratic semi-ordering (or q-ordering) of a field K is a subset P with the
following properties:

P + P ⊂ P,K2 · P ⊂ P, 1 ∈ P, P ∪ −P = K,P ∩ −P = 0.

Obviously, every ordering is a q-ordering [Sch; 85].

Remark 1.1. ([Sch; 85], p.133) Let P0 be a q-preordering, i.e.

P0 + P0 ⊂ P0, K
2 · P0 ⊂ P0, P0 ∩ −P0 = 0.

Then there is a q-ordering P such that P0 ⊂ P or −P0 ⊂ P.
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Let V be a vector space over an ordered field K. The quadratic form
q : V → K is called positive definite if q (x) > 0 for all x 6= 0. If q (x) < 0
for all x 6= 0, it is called negative definite. If ϕ ≃< α1, ..., αn >, it is called
indefinite if the elements αi are not all of the same sign and totally indefinite
if for each ordering P of K there are αi and αj depending on P such that
αi <P 0 <P αj.

A quadratic form ϕ is called strongly anisotropic ifm × ϕ is anisotropic
for all m ∈ N∗. If the form ϕ is not strongly anisotropic it is called weakly
isotropic.

The field K is a formally real field if −1 is not a sum of squares in K.
Each formally real field has characteristic zero.

Remark 1.2. ([Sch; 85], p.134) Let K be a formally real field. A
quadratic form ϕ over K is weakly isotropic if and only if ϕ is indefinite
with respect to all q-orderings of K. If ϕ is strongly anisotropic then the set

P0 = {α /α = 0 or α is represented by n× ϕ, n ∈ N∗ }

is a q−preordering. It follows that there is a q-ordering P such that P0 ⊂ P
or −P0 ⊂ P.

A quadratic form ψ is a subform of the form ϕ if ϕ ≃ ψ ⊥ φ, for some
quadratic form φ. We denote ψ < ϕ.

Let ϕ be a n−dimensional quadratic form over K, n ∈ N,n > 1, which is
not isometric to the hyperbolic plane. We may consider ϕ as a homogeneous
polynomial of degree 2, ϕ (X) = ϕ (X1, ...Xn) =

∑

aijXiXj, aij ∈ K∗. The
functions field of ϕ, denotedK(ϕ), is the quotient field of the integral domain

K[X1, ..., Xn] / (ϕ (X1, ..., Xn)) .

Since (X1, ..., Xn) is a non-trivial zero, ϕ is isotropic over K(ϕ). We re-
mark that ϕ (X) is irreducible. (See [Sch;85])

Proposition 1.3. [Ro; 05] Let ϕ and ψ be two quadratic forms over a
field K. The form ψ is isotropic over K (ϕ) if and only if DK

′ (ϕ)DK
′ (ϕ) ⊆

DK
′ (ψ)DK

′ (ψ) , for every extension K
′

of K, where DK (ϕ) is the set of
elements in K∗ which are represented by ϕ.

Proposition 1.4. (Cassels-Pfister Theorem) Let ϕ, ψ = 1⊥ψ′

be two
quadratic forms over a field K, charK 6= 2. If ϕ is anisotropic over K
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and ϕK(ϕ) is hyperbolic, then αψ < ϕ for each scalar represented by ϕ. In
particular, dimϕ ≥ dimψ.[La, Ma;01, p.1823, Theorem 1.3.]

For n ∈ N∗ a n−fold Pfister form over K is a quadratic form of the type

< 1, a1 > ⊗...⊗ < 1, an >, a1, ..., an ∈ K∗.

A Pfister form is denoted by ≪ a1, a2, ..., an ≫ .

Remark 1.5. A Pfister form ϕ can be written as

< 1, a1 > ⊗...⊗ < 1, an >=< 1, a1, a2, ..., an, a1a2, ..., a1a2a3, ..., a1a2...an > .

If ϕ =< 1 >⊥ ϕ′, then ϕ′ is called the pure subform ofϕ. A Pfister form
is hyperbolic if and only if is isotropic. This means that a Pfister form is
isotropic if and only if its pure subform is isotropic. ( See [Sch; 85])

Proposition 1.6. [Sch, Lemma 1.3.(ii), p. 143] With the above notations,
we have the relations:

i) ≪ −1, α2, ..., αn ≫≃< 1,−1, 1,−1, ... >∼ 0;
ii) ≪ 1, α2, ..., αn ≫≃ 2× ≪ α2, ..., αn ≫ .

We recall some definitions and properties for nonassociative algebras.
Let A be an algebra of dimension n over K and let f1, ..., fn be a basis

for A over K. The multiplication in the algebra A is given by the relations

fifj =
n
∑

k=1

αijkfk, where αijk ∈ K and i, j = 1, ...n. If K ⊂ F is a field

extension, the algebra AF = F ⊗KA is called the scalar extension of A to an

algebra over F. The elements of AF are the forms
n
∑

i=1

αi ⊗ fi and we denote

them
n
∑

i=1

αifi, αi ∈ F.

An algebra A over K is called quadratic if A is a unitary algebra and,
for all x ∈ A, there are a, b ∈ K such that x2 = ax + b1, a, b ∈ K. The
subset A0 = {x ∈ A − K | x2 ∈ K1} is a linear subspace of A and
A = K·1⊕A0. This decomposition allows us to define a linear form t : A→ K,
a linear map i : A → A0 such that x = t(x) · 1 + i(x), for all x ∈ A, a
symmetric bilinear form, ( , ) : A × A → K, (x, y) = −1

2
t(xy + yx) and

a quadratic form n : A → K, n(x) = (t(x))2 + (i (x) , i (x)) . The element
x̄ = t(x) · 1− i(x) is called the conjugate of x.The quadratic form n is called
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anisotropic if n(x) = 0 implies x = 0. In this case, the algebra A is called
also anisotropic, otherwise A is isotropic.

We can decompose the algebra A as the form A = Sym(A) ⊕ Skew(A),
where Sym(A) = {x ∈ A | x = x̄ }, Skew(A) = {x ∈ A | x = −x̄ }.

A composition algebra is an algebra A with a non-degenerate quadratic
form q : A→ K, such that q is multiplicative, i.e. q (xy) = q (x) q (y) ,∀x, y ∈
A. A unitary composition algebra is called a Hurwitz algebra. Hurwitz
algebras have dimensions 1, 2, 4, 8.

Since over fields, the classical Cayley-Dickson process generates all possi-
ble Hurwitz algebras, in the following, we recall shortly the Cayley-Dickson
process.

Let A be a finite dimensional unitary algebra over a field K with a scalar
involution : A → A, a → a,where a + a and aa ∈ K · 1 for all a ∈ A.
Since A is unitary, we identify K with K · 1 and we consider K ⊆ A.

Letα ∈ K be a fixed non-zero element. We define the following algebra
multiplication on the vector space A⊕ A.

(a1, a2) (b1, b2) =
(

a1b1 + αb2a2, a2b1 + b2a1

)

. (1.1.)

We obtain an algebra structure over A⊕A. This algebra, denoted by (A,α) ,
is called the algebra obtained from A by the Cayley-Dickson process. A is
canonically isomorphic with a subalgebra of the algebra (A,α) ( denote
(1, 0) by 1, this is the identity in (A,α)) and dim (A,α) = 2 dimA. Tak-
ing u = (0, 1) ∈ A⊕ A, u2 = α · 1 and (A,α) = A⊕ Au.

We remark that x+ x = a1 + a1 ∈ K · 1 and
xx = a1a1 + αa2a2 ∈ K · 1. The map

: (A,α) → (A,α) , x→ x̄ ,

is an involution of the algebra (A,α), extending the involution . If x, y ∈
(A,α) , it follows that xy = y x.

For x ∈ A, we denote t (x) · 1 = x+x ∈ K, n (x) · 1 = xx ∈ K, and these
are called the trace, respectively, the norm of the element x ∈ A . If z ∈
(A,α) , z = x+yu, then z+z = t (z)·1 and zz = zz = n (z)·1, where t (z) =
t (x) and n (z) = n (x) − αn(y). It follows that (z + z) z = z2 + zz=z2 +
n (z) · 1 and

z2 − t (z) z + n (z) = 0∀z ∈ (A,α) ,
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therefore each algebra obtained by the Cayley-Dickson process is quadratic.
All algebras A obtained by the Cayley-Dickson process are flexible (i.e.
x (yx) = (xy)x,∀x, y ∈ A ) and power-associative (i.e. for each a ∈ A, the
subalgebra of A generated by a is associative). Moreover, the following con-
ditions are fulfilled:

t (xy) = t (yx) , t ((xy) z) = t (x (yz)) ,∀x, y, z ∈ (A,α) . (1.2.)

Remark 1.7. If we take A = K and apply this process t times, t ≥ 1, we
obtain an algebra over K, At = K{α1, ..., αt}. By induction, in this algebra
we find a basis {1, f2, ..., fq}, q = 2t, satisfying the properties:

f 2
i = αi1, αi ∈ K,αi 6= 0, i = 2, ..., q.

fifj = −fjfi = βkfk, βk ∈ K, βk 6= 0, i 6= j, i, j = 2, ...q,

βk and fk being uniquely determined by fi and fj.

As an example, we consider the generalized octonion algebra O(α, β, γ),
with basis {1, f2, ..., f8}, having the multiplication table:

· 1 f2 f3 f4 f5 f6 f7 f8

1 1 f2 f3 f4 f5 f6 f7 f8

f2 f2 α f4 −αf3 f6 −αf5 − f8 αf7

f3 f3 −f4 β βf2 f7 f8 −βf5 −βf6

f4 f4 αf3 −βf2 −αβ f8 −αf7 βf6 −αβf5

f5 f5 −f6 − f7 − f8 γ γf2 γf3 γf4

f6 f6 αf5 − f8 αf7 −γf2 −αγ −γf4 αγf3

f7 f7 f8 βf5 − βf6 −γf3 γf4 −βγ −βγf2

f8 f8 −αf7 βf6 αβf5 −γf4 −αγf3 βγf2 αβγ

If x ∈ At, x = x11+
q
∑

i=2

xifi, then x̄ = x11−
q
∑

i=2

xifi and t(x) = 2x1, n (x) =

x2
1 −

q
∑

i=2

αix
2
i . In the above decomposition of x, we call x1 the scalar part of x

and x′′ =
q
∑

i=2

xifi the pure part of x. If we compute x2 = x2
1 + x′′2 + 2x1x

′′ =

x2
1 + α1x

2
2 + α2x

2
3 − α1α2x

2
4 + α3x

2
5 − ...− (−1)t (

t
∏

i=1

αi)x
2
q + 2x1x

′′, the scalar
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part of x2 is represented by the quadratic form

TC =< 1, α1, α2,−α1α2, α3, ..., (−1)t (
t
∏

i=1

αi) >=< 1, β2, ..., βq > (1.3.)

and, since x′′2 = α1x
2
2 + α2x

2
3 − α1α2x

2
4 + α3x

2
5 − ...− (−1)t (

t
∏

i=1

αi)x
2
q ∈ K, it

is represented by the quadratic form

TP =< α1, α2,−α1α2, α3, ..., (−1)t (
t
∏

i=1

αi) >=< β2, ..., βq > . (1.4.)

The quadratic form TC is called the trace form, and TP the pure trace form
of the algebra At. We remark that TC =< 1 >⊥ TP , and the norm
n = nC =< 1 >⊥ −TP , resulting that

nC =< 1,−α1,−α2, α1α2, α3, ..., (−1)t+1 (
t
∏

i=1

αi) >=< 1,−β2, ...,−βq > .

The trace form nC has the form nC = < 1,−α1 > ⊗...⊗ < 1,−αt > and
it is a Pfister form.

Using the above notation, we have that x2 = t (x) x−n (x) 1 = −n (x) 1+
2x1(x1 +x′′) = 2x2

1 −n (x)+2x1x
′′. It results that TC (x) = 2x2

1 −n (x) , then

TC (x) =
(t (x))2

2
− nC (x) . But (t (x))2 = t (x2) + 2nC (x) , then

TC (x) =
t (x2)

2
.

2. Brown’s construction of division algebras

In 1967, R. B. Brown constructed, for every t, a division algebra At of
dimension 2t over the power-series field K{X1, X2, ..., Xt}. We briefly demon-
strate this construction, using polynomial rings over K and their fields of
fractions (the rational functions field) instead of power-series fields over K
(as it done by R.B. Brown),.

First of all, we remark that if an algebra A is finite-dimensional, then it is
a division algebra if and only if A does not contain zero divisors (See [Sc;66]).
For every t we construct a division algebraAt over a field Ft. LetX1, X2, ..., Xt
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be t algebraically independent indeterminates over the field K and Ft =
K (X1, X2, ..., Xt) be the rational functions field. For i = 1, ..., t, we construct
the algebra Ai over the rational functions field K (X1, X2, ..., Xi) by setting
αj = Xj for j = 1, 2, ..., i. Let A0 = K. By induction over i, assuming
that Ai−1 is a division algebra over the field Fi−1 = K (X1, X2, ..., Xi−1),
we may prove that the algebra Ai is a division algebra over the field Fi =
K (X1, X2, ..., Xi).

Let Ai−1
Fi

= Fi ⊗Fi−1
Ai−1. For αi = Xi we apply the Cayley-Dickson

process to algebra Ai−1
Fi
. The obtained algebra, denoted Ai, is an algebra

over the field Fi and has dimension 2i.
Let

x = a+ bvi, y = c+ dvi,

be nonzero elements in Ai such that xy = 0, where v2
i = αi. Since

xy = ac+Xid̄b+ (bc̄+ da) vi = 0,

we obtain
ac+Xid̄b = 0 (2.1)

and
bc̄+ da = 0. (2.2.)

But, the elements a, b, c, d ∈ Ai−1
Fi

are different from zero. Indeed, we have:
i) If a = 0 and b 6= 0, then c = d = 0 ⇒ y = 0, false;
ii) If b = 0 and a 6= 0, then d = c = 0 ⇒ y = 0, false;
iii) If c = 0 and d 6= 0, then a = b = 0 ⇒ x = 0, false;
iv) If d = 0 and c 6= 0, then a = b = 0 ⇒ x = 0, false.

This implies that b 6= 0, a 6= 0, d 6= 0, c 6= 0. If {1, f2, ..., f2i−1} is a

basis in Ai−1, then a =
2i−1
∑

j=1

gj(1 ⊗ fj) =
2i−1
∑

j=1

gjfj, gj ∈ Fi, gj =
g′j
g′′j

, g′j, g
′′
j ∈

K[X1, ..., Xi], g
′′
j 6= 0, j = 1, 2, ...2i−1, where K[X1, ..., Xt] is the polynomial

ring. Let a2 be the less common multiple of g′′1 , ....g
′′
2i−1 , then we can write

a =
a1

a2
, where a1 ∈ Ai−1

Fi
, a1 6= 0. Analogously, b =

b1
b2

, c =
c1
c2

, d =

d1

d2
, b1, c1, d1 ∈ Ai−1

Fi
− {0} and a2, b2, c2, d2 ∈ K[X1, ..., Xt] − {0}.
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If we replace in the relations (2.1.) and (2.2.) , we obtain

a1c1d2b2 +Xid̄1b1a2c2 = 0 (2.3.)

and
b1c̄1d2a2 + d1a1b2c2 = 0. (2.4.)

If we denote a3 = a1b2, b3 = b1a2, c3 = c1d2, d3 = d1c2, a3, b3, c3, d3 ∈
Ai−1

Fi
− {0}, the relations (2.3.) and (2.4.) become

a3c3 +Xid̄3b3 = 0 (2.5.)

and
b3c̄3 + d3a3 = 0. (2.6.)

Since the algebra Ai−1
Fi

= Fi ⊗Fi−1
Ai−1 is an algebra over Fi−1 with ba-

sis X i ⊗ fj, i ∈ N and j = 1, 2, ...2i−1, we can write a3, b3, c3, d3 under
the form a3 =

∑

j≥m

xjX
j
i , b3 =

∑

j≥n

yjX
j
i , c3 =

∑

j≥p

zjX
j
i , d3 =

∑

j≥r

wjX
j
i , where

xj, yj, zj, wj ∈ Ai−1, xm, yn, zp, wr 6= 0. Since Ai−1 is a division algebra, we
have xmzp 6= 0, wryn 6= 0, ynzp 6= 0, wrxm 6= 0. Using relations (2.5.) and
(2.6.) , we have that 2m+ p+ r = 2n+ p+ r + 1, which is false. Therefore,
the algebra Ai is a division algebra over the field Fi = K (X1, X2, ..., Xi) of
dimension 2i.

3. A division algebra of dimension 2t and prescribed level and
sublevel 2k, t, k ∈ N∗

In his paper [O’ Sh; 07(1)], J. O’Shea gives a classification of the levels
of quaternion and octonion algebras. Now we extend some of these results
to the algebras obtained by the Cayley-Dickson process.

The level of the algebra, A denoted by s (A) , is the
least integer n such that −1 is a sum of n squares in A. The sublevel of the
algebra A, denoted by s(A) , is the least integer n such that 0 is a sum of
n+ 1 nonzero squares of elements in A. If these numbers do not exist, then
the level and sublevel are infinite.
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Obviously, s(A) ≤ s (A). We remark that, if in the Cayley-Dickson pro-
cess, the quaternion algebra A2 and the octonion algebra are split, then
s (A2) = s(A3) = 1. (See [Pu, 05, Lemma 2.3.])

Let A be an algebra over a field K obtained by the Cayley-Dickson pro-
cess, of dimension q = 2t, TC and TP be its trace and pure trace forms.

Proposition 3.1. If s (A) ≤ n then -1 is represented by the quadratic
form n× TC .

Proof. Let y ∈ A, y = x1+x2f2+...+xqfq, xi ∈ K, for all i ∈ {1, 2, ..., q}.
Using the notations given in the Introduction, we get y2 = x2

1 + β2x
2
2 + ...+

βqx
2
q + 2x1y

′′, where y′′ = x2f2 + ... + xqfq. If −1 is a sum of n squares

in A, then −1 = y2
1 + ... + y2

n =
(

x2
11 + β2x

2
12 + ...+ βqx

2
1q + 2x11y

′′
1

)

+ ... +
(

x2
n1 + β2x

2
n2 + ...+ βqx

2
nq + 2xn1y

′′
n

)

. Then we have

−1 =
n
∑

i=1

x2
i1 + β2

n
∑

i=1

x2
i2 + ...+ βq

n
∑

i=1

x2
iq and

n
∑

i=1

xi1xi2 =
n
∑

i=1

xi1xi3... = =
n
∑

i=1

xi1xin = 0, then n× TC represents −1.�

In Proposition 3.1, we remark that the quadratic form < 1 >⊥ n× TC is
isotropic.

Proposition 3.2. For n ∈ N∗, if the quadratic form < 1 >⊥ n× TP is
isotropic over K, then s(A) ≤ n.

Proof. Case 1. If −1 ∈ K∗2, then s (A) = 1.
Case 2. −1 /∈ K∗2. Since the quadratic form < 1 >⊥ n× TP is isotropic

then it is universal. It results that < 1 >⊥ n × TP represent −1. Then,
we have the elements α ∈ K and pi ∈ Skew(A), i = 1, ..., n, such that

−1 = α2 + β2

n
∑

i=1

p2
i2 + ...+ βq

n
∑

i=1

p2
iq , and not all of them are zero.

i) If α = 0, then −1 = β2

n
∑

i=1

p2
i2 + ...+ βq

n
∑

i=1

p2
iq. It results

−1 =
(

β2p
2
12 + ...+ βqp

2
1q

)

+...+
(

β2p
2
n2 + ...+ βqp

2
nq

)

. Denoting ui = pi2f2+
...+ piqfq, we have that t (ui) = 0 and u2

i = −n (u2
i ) = β2p

2
i2 + ...+ βqp

2
iq, for

all i ∈ {1, 2, ..., n}. We obtain −1 = u2
1 + ...+ u2

n.

ii) If α 6= 0, then 1 + α2 6= 0 and 0 = 1 + α2 + β2

n
∑

i=1

p2
i2 + ... + βq

n
∑

i=1

p2
iq.

Multiplying this relation with 1+α2 , it follows that 0 = (1+α2)2+β2

n
∑

i=1

r2
i2+
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... + βq

n
∑

i=1

r2
iq. Therefore −1 = β2

n
∑

i=1

r′2i2 + ... + βq

n
∑

i=1

r′2iq, where r′ij = rij(1 +

α)−1, j ∈ {2, 3, ..., q} and we apply case i). Therefore s(A) ≤ n.�

Lemma 3.3.[Sch; 85, p. 151] Let n = 2k, and a1, ...an, b1, ..., bn ∈ K.
Then there are elements c2, ..., cn ∈ K such that

(a2
1 + ...+ a2

n)(b21 + ...+ b2n) = (a1b1 + ...anbn)2 + c22 + ...+ c2n.

Now we can state and prove some generalizations of J. O’Shea’s results
(Lemma 3.9, Proposition 3.2. and Proposition 3.3., Lemma 3.4., Theorem
3.5., Corollary 3.10. and Theorem 3.11. from [O’Sh; 07(1)]):

Proposition 3.4. If n ∈ N∗, n = 2k − 1 such that s(K) ≥ 2k, then
s(A) ≤ n if and only if < 1 >⊥ n× TP is isotropic.

Proof. From Proposition 3.1, supposing that s(A) ≤ n, we have −1 =
n
∑

i=1

p2
i1 + β2

n
∑

i=1

p2
i2 + ...+ βq

n
∑

i=1

p2
iq such that

n
∑

i=1

pi1pi2 =
n
∑

i=1

pi1pi3 = ... =
n
∑

i=1

pi1piq = 0.

Since s(K) ≥ 2k, it results that −1+
n
∑

i=1

p2
i1 6= 0. Putting p2k1 = 1 and p2k2 =

p2k3 = ... p2kq = 0, we have

0 =
n+1
∑

i=1

p2
i1 + β2

n+1
∑

i=1

p2
i2 + ...+ βq

n+1
∑

i=1

p2
iq (3.1)

and
n+1
∑

i=1

pi1pi2 =
n+1
∑

i=1

pi1pi3 = ... =
n+1
∑

i=1

pi1piq = 0. Multiplying (3.1.) by
n+1
∑

i=1

p2
i1,

since

(

n+1
∑

i=1

p2
i1

)2

is a square and using Lemma 3.3. for the products

n+1
∑

i=1

p2
i2

n+1
∑

i=1

p2
i1, ...,

n+1
∑

i=1

p2
iq

n+1
∑

i=1

p2
i1, we obtain

0 =

(

n+1
∑

i=1

p2
i1

)2

+ β2

n+1
∑

i=1

r2
i2 + ...+ βq

n+1
∑

i=1

r2
iq, (3.2)
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where ri2, ...riq ∈ K , n + 1 = 2k , r12 =
n+1
∑

i=1

pi1pi2 = 0, r13 =
n+1
∑

i=1

pi1pi3 =

0, ..., r1q =
n+1
∑

i=1

pi1piq = 0. Therefore, in the sums
n+1
∑

i=1

r2
i2, ...,

n+1
∑

i=1

r2
iq we have n

factors. From (3.2) , we get that < 1 >⊥ n× TP is isotropic.�

Proposition 3.6. If s(K) ≥ 2k, then the quadratic form 2k × TC is
isotropic if and only if < 1 >⊥ 2k × TP is isotropic.

Proof. Since the form < 1 >⊥ 2k ×TP is a subform of the form 2k ×TC ,
if the form < 1 >⊥ 2k × TP is isotropic, we have that 2k × TC is isotropic.

For the converse, supposing that 2k × TC is isotropic, then we get

2k
∑

i=1

p2
i + β2

2k
∑

i=1

p2
i2 + ...+ βq

2k
∑

i=1

p2
iq = 0, (3.3)

where pi, pij ∈ K, i = 1, ..., 2k, j ∈ 2, ..., q and some of the elements pi and pij

are nonzero.
If pi = 0, ∀i = 1, ..., 2k, then 2k×TP is isotropic, therefore< 1 >⊥ 2k×TP

is isotropic.

If
2k
∑

i=1

p2
i 6= 0, then, multiplying relation (3.3) with

2k
∑

i=1

p2
i and using Lemma

3.3. for the products
2k
∑

i=1

p2
i2

2k
∑

i=1

p2
i ,...,

2k
∑

i=1

p2
iq

2k
∑

i=1

p2
i , we obtain

(
2k
∑

i=1

p2
i )

2 + β2

2k
∑

i=1

r2
i2 + ...+ βq

2k
∑

i=1

r2
iq = 0,

then < 1 >⊥ 2k × TP is isotropic.

Since s(K) ≥ 2k, the relation
2k
∑

i=1

p2
i = 0, for some pi 6= 0, does not work.

Indeed, supposing that p1 6= 0, we obtain −1 =
2k
∑

i=2

(pip
−1
1 )2, false.�

Proposition 3.6. Let n = 2k − 1 and s(K) ≥ 2k. Then s(A) ≤ n if and
only if< 1 >⊥ (n× TP ) is isotropic or (n+ 1) × TP is isotropic.

Proof. Since s(A) ≤ s (A) , if < 1 >⊥ (n× TP ) is isotropic, then, from
Proposition 3.4, we have s(A) ≤ n. If (n+ 1)×TP is isotropic, then there are

12



the elements pij ∈ K, i = 1, ..., 2k, j ∈ 2, ..., q, some of them are nonzero, such

that β2

2k
∑

i=1

p2
i2 + ...+ βq

2k
∑

i=1

p2
iq = 0. We obtain 0 =

(

β2p
2
12 + ...+ βqp

2
1q

)

+ ...+
(

β2p
2
n2 + ...+ βqp

2
nq

)

. Denoting ui = pi2f2 + ... + piqfq, we have t (ui) = 0
and u2

i = −n (u2
i ) = β2p

2
i2 + ... + βqp

2
iq, for all i ∈ {1, 2, ..., n}. Therefore

0 = u2
1 + ...+ u2

n. It results that s(A) ≤ n.
Conversely, if s(A) ≤ n, then there are the elements y1, ..., yn+1 ∈ A,

some of them must be nonzero, such that 0 = y2
1 + ... + y2

n+1. As in the

proof of Proposition 3.1., we obtain 0 =
n+1
∑

i=1

x 2
i1 + β2

n+1
∑

i=1

x 2
i2 + ...+ βq

n+1
∑

i=1

x2
iq

and
n+1
∑

i=1

xi1xi2 =
n+1
∑

i=1

xi1xi3... =
n+1
∑

i=1

xi1xin = 0. If all xi1 = 0, then (n+ 1) ×

TP is isotropic. If
n+1
∑

i=1

x 2
i1 6= 0, then (n+ 1) × TC is isotropic, or multiply-

ing the last relation with
2k
∑

i=1

x2
i1 and using Lemma 3.3. for the products

2k
∑

i=1

x2
i2

2k
∑

i=1

x2
i1, ...,

2k
∑

i=1

x2
iq

2k
∑

i=1

x2
i1, we obtain that < 1 >⊥ (n× TP ) is isotropic.

Since s(K) ≥ 2k, the relation
n+1
∑

i=1

x 2
i1 = 0 for some xi1 6= 0 is false. �

Proposition 3.7. If −1 /∈ K∗2, then s(A) = 1 if and only if either TC

or 2 × TP is isotropic.

Proof. We apply Proposition 3.6 for k = 1.�

Proposition 3.8. Let A be an algebra obtained by the Cayley-Dickson
process. The following statements are true:

a) If −1 is a square in K, then s(A) = s (A) = 1.
b) If−1 /∈ K∗2, then s (A) = 1 if and only if TC is isotropic.

Proof. a) If −1 = a2 ∈ K ⊂ A, then s(A) = s (A) = 1.
b) If −1 /∈ K∗2 and s (A) = 1, then, there is an element y ∈ A such

that −1 = y2, with y = y1 + y2f2 + ... + yqfq. Since y2 + 1 = 0, then
y1 = t (y) = 0 and so n (y) = 1. Since 2TC (y) = t (y2) = −2n (y) = −2, we
obtain TC (y) = −1, then

y2 = −1 = β2y
2
2 + ...+ βqy

2
q ,

therefore 0 = 1 + β2y
2
2 + ...+ βqy

2
q . It results that TC is isotropic.
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Conversely, if TC is isotropic, then there is y ∈ A, y 6= 0, such that
TC (y) = 0 = y2

1 + β2y
2
2 + ... + βqy

2
q . If y1 = 0, then TC (y) = TP (y) = 0,

so y = 0, which is false. If y1 6= 0, then −1 =
((

y2

y1

)

f2 + ...+
(

yq

y1

)

fq

)2

,

obtaining s (A) = 1.�

Remark 3.9. Using the above notations, if the algebra A is an algebra
obtained by the Cayley-Dickson process, of dimension greater than 2 and if
nC is isotropic, then s (A) = s (A) = 1. Indeed, if −1 is a square in K, the
statement results from Proposition 3.8.a). If −1 /∈ K∗2, since nC =< 1 >⊥
−TP and nC is a Pfister form, we obtain that −TP is isotropic, therefore TC

is isotropic. Using Proposition 3.8., we have that s (A) = s (A) = 1.

Proposition 3.10. Let A be an algebra over a field K obtained by the
Cayley-Dickson process, of dimension q = 2t, TC and TP be its trace and
pure trace forms. If t ≥ 2 and 2k × TP is isotropic over K, k > 0, then
(

1 + [2
3
2k]
)

× TP is isotropic over K.

Proof. If 2k × TP is isotropic then 2k × −TP is isotropic. Since 2k ×
nC = 2k × (< 1 > ⊥ − TP ) and nC is a Pfister form, from Proposition
1.6.(ii), we have 2k × nC is a Pfister form. Since 2k × −TP is a subform of
2k × nC , it results that 2k × nC is isotropic, then it is hyperbolic. Therefore
2k × nC ≃< 1, 1, ..., 1,−1, ...,−1 >(there are 2k+t−1 of −1 and 2k+t−1 of 1).
Multiplying by −1, we have that 2k×(< −1 > ⊥TP ) is hyperbolic, then has
a totally isotropic subspace of dimension 2k+t−1. It results that each subform
of the form 2k × (< −1 > ⊥TP ) of dimension greater or equal to 2k+t−1 is
isotropic. Since (2t − 1)(1 + [2

3
2k]) > (2t − 1)(2

3
2k) > 2t−12k = 2k+t−1, then

(

1 + [2
3
2k]
)

× TP is isotropic over K.�

Proposition 3.11. Let A be an algebra over a field K obtained by the
Cayley-Dickson process, of dimension q = 2t, TC and TP be its trace and
pure trace forms. Let n = 2k − 1, s(K) ≥ 2k. If t ≥ 2 and k > 1 then
s(A) ≤ 2k − 1 if and only if < 1 > ⊥(2k − 1) × TP is isotropic.

Proof. We use Proposition 3.6. and we have that s(A) ≤ 2k − 1 if and
only if < 1 >⊥ (n× TP ) is isotropic or (n+ 1)×TP is isotropic. In this case,
we prove that 2k × TP is isotropic implies < 1 > ⊥(2k − 1)× TP is isotropic.
If 2k ×TP isotropic over K then

(

1 + [2
3
2k]
)

×TP is isotropic over K, from
Proposition 3.10. If k ≥ 2, then

(

1 + [2
3
2k]
)

≤ 2k − 1 and we have that
(

1 + [2
3
2k]
)

×TP is an isotropic subform of the form < 1 > ⊥(2k − 1)×TP .�

Proposition 3.12. Let K be a field such that s(K) ≥ 2k.
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i) If k ≥ 2, then s(A) ≤ 2k − 1 if and only if s (A) ≤ 2k − 1.
ii) If s(A) = n and k ≥ 2 such that 2k−1 ≤ n < 2k, then s (A) ≤ 2k−1.
iii) If s(A) = 1 then s (A) ≤ 2.

Proof. i) For k ≥ 2, then s(A) ≤ 2k − 1 if and only if < 1 >⊥
((

2k − 1
)

× TP

)

is isotropic. This is equivalent with s (A) ≤ 2k − 1.
ii) If n < 2k, k ≥ 2, it results n ≤ 2k − 1, and we apply i).
iii) We have that s(A) = 1 if and only if < 1 >⊥ TP = TC is isotropic or

2× TP is isotropic. If 2× TP is isotropic, then it is universal and represents
−1. Therefore s (A) ≤ 2. If TC is isotropic, then TP is isotropic, then is
universal and represents −1. We obtain s (A) = 1.�

Proposition 3.13. With the above notations, we have:
i) For k ≥ 2, if s(A) = 2k − 1 then s (A) = 2k − 1.
ii) For k ≥ 2, if s (A) = 2k then s(A) = 2k.
iii) For k ≥ 1, if s (A) = 2k + 1 then s(A) = 2k + 1 or s(A) = 2k.

Proof. i) From Proposition 3.12., if s(A) = 2k − 1 then s (A) ≤ 2k − 1.
Since s(A) ≤ s (A) , therefore s (A) = 2k − 1.

ii) If s(A) ≤ 2k − 1 we have s (A) ≤ 2k − 1, false.
iii) For k ≥ 1, if s (A) = 2k + 1, since s(A) ≤ s (A) , we obtain that

s(A) ≤ 2k + 1. If s(A) ≤ 2k − 1, then s (A) ≤ 2k − 1, false.�

In the following, we give an example of division algebra of dimension 2t

and prescribed level 2k.

Theorem 3.14 . Let K be a field such that s (K) = 2k, X be an
algebraically independent indeterminate over K, D be a finite-dimensional
division K−algebra with scalar involution such that s (D) = s (K), D1 =
K (X) ⊗K D and B = (D1, X). Then B is a division algebra over K(X)
such that s (B) = s (K) .

Proof. By straightforward calculations, using the same arguments like in
Brown’s construction, see Section 2, we obtain that B is a division algebra.

For the second part, since s (B) ≤ s (K) = n = 2k, we suppose that
s (B) ≤ n − 1. It results that −1 = y2

1 + ... + y2
n−1, where yi ∈ B, yi =

ai1 + ai2u, u
2 = X, ai1, ai2 ∈ D1, some of yi are nonzero. We have y2

i =
a2

i1 +Xai2ai2 + (ai2ai1 + ai2ai1)u, i ∈ {1, 2, ...n− 1}. It follows that

−1 =
n−1
∑

i=1

a2
i1 +X

n−1
∑

i=1

ai2ai2, where ψ = 1⊗ϕ is involution in D1, ψ (x) = x̄. We
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remark that ai2ai2 ∈ K (X) , i ∈ {1, ..., n − 1}. If ai1 =
m
∑

j=1

pji1 (X)

qji1 (X)
⊗ bj,

with bj ∈ D,
pji1 (X)

qji1 (X)
∈ K(X), i ∈ {1, 2, ..., n− 1}, j ∈ {1, 2, ...,m}.

ai2 =
m
∑

j=1

rji2 (X)

wji2 (X)
⊗ dj, with dj ∈ D,

rji2 (X)

wji2 (X)
∈ K(X),

i ∈ {1, 2, ..., n− 1}, j ∈ {1, 2, ...,m}, it results

−1 =
n−1
∑

i=1

(
m
∑

j=1

pji1 (X)

qji1 (X)
⊗ bj)

2 +X

n−1
∑

i=1

(
m
∑

j=1

rji2 (X)

wji2 (X)
⊗ dj)(

m
∑

j=1

rji2 (X)

wji2 (X)
⊗ d̄j).

After clearing denominators, we obtain

−v2 (X) =
n−1
∑

i=1

(
m
∑

j=1

p′ji1 (X)⊗bj)2+X
n−1
∑

i=1

(
m
∑

j=1

r′ji2 (X)⊗dj)(
m
∑

j=1

r′ji2⊗dj), (3.4.)

where v (X) = lcm{qji1 (X) , wji2 (X)}, i ∈ {1, 2, ..., n − 1}, j ∈ {1, 2, ...,m}
and p′ji1 (X) = v (X) pji1 (X) , r′ji2 (X) = v (X) rji2 (X) ,
i ∈ {1, ..., n− 1}, j ∈ {1, 2, ...,m}. We can write

v (X) = vqX
q + vq+1X

q+1 + ......, vq ∈ K, vq 6= 0, (3.5.)

m
∑

j=1

p′ji1 (X) ⊗ bj = αri
Xri + αri+1X

ri+1 + ....., αri
, αri+1, .... ∈ D,αri

6= 0,

(3.6.)
m
∑

j=1

r′ji2 (X)⊗dj = βsi
Xsi +βsi+1X

si+1+....., βsi
, βsi+1, ... ∈ D, βsi

6= 0, (3.7.)

m
∑

j=1

r′ji2 ⊗ dj = βsi
Xsi + βsi+1X

si+1 + ....., βsi
, βsi+1, ... ∈ D, βsi

6= 0. (3.8.)

By (3.4.) , if s = min
i=1, n−1

si, r = min
i=1, n−1

ri, in the left side the minimum degree

is 2q (q possible zero) in the right side, the first sum has the minimum degree
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2r (r possible zero) and the second term has the minimum degree 2s+1. It re-
sults q = r and 2r < 2s+1. Replacing the relations (3.5.) , (3.6.) , (3.7.) , (3.8.)
in the relation (3.4.) , if r > 0, we divide relation (3.4.) by X2r, such that,
in the new obtained relation the minimum degree in the both sides is zero.
Putting X = 0 in this new relation, we have

−v2
q =

n−1
∑

i=1

α2
ri
, αri

∈ D.

We obtain

−1 =
n−1
∑

i=1

(
αri

vq

)2.

It follows that s (D) ≤ n− 1, false.

Corollary 3.15. Let K be a field such that s (K) ≥ 2k, X be an
algebraically independent indeterminate over K, D be a finite-dimensional
division K−algebra with scalar involution such that s (D) < ∞, D1 =
K (X) ⊗K D and B = (D1, X). Then:

i) B is a division algebra.
ii) s (B) = s (D) .
iii) s(B) = s (D) .

Proof. i) and ii) result from Theorem 3.14.
iii) We prove that s(B) = s (D) . Since s(B) ≤ s(B) = s (D) , then

s(B) ≤ s (D) = m ≤ 2k,we suppose that s(B) ≤ m− 1.
It results 0 = y2

1 + ...+ y2
m,where yi ∈ B. Using the same notations like

in Theorem 3.14, after straightforward calculations, we obtain 0=
m
∑

i=1

(
l
∑

j=1

p′ji1 (X)⊗

bj)
2+X

m
∑

i=1

(
l
∑

j=1

r′ji2 (X)⊗dj)(
l
∑

j=1

r′ji2⊗dj). It results 0 =
m
∑

i=1

α2
ri
, αri

∈ D, there-

fore s (D) ≤ m− 1, false. Then s(B) = s (D) .�

Remark 3.16. Using Example 4.2. from [O’ Sh; 07(1)], we have that,
if K0 is a formally real field, then the field F0 = K0(

(

2k + 1
)

× < 1 >) has
the level 2k. If D = A0 = F0, K = F0, D1 = K(X1) ⊗K A0, from Brown’s
construction and Theorem 3.14., the K(X1)−algebra B, obtained by appli-
cation of the Cayley-Dickson process with α = X1 to the K (X1)−algebra
D1, is a division algebra of dimension 2 and level 2k.
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By induction, supposing that D = At−1 is a division algebra of dimension
2t−1 and level 2k over the field K = F0(X1, ..., Xt−1), then, if D = At−1,
D1 = K(Xt)⊗K At−1 and B is the K (Xt)−algebra obtained by application
of the Cayley-Dickson process with α = Xt to the K (Xt)−algebra D1, then
B is a division algebra of dimension 2t and level 2k.

Looking to the field F0 like as an F0−algebra, then the field F0 has the
same level and sublevel. Using above proposition, we have that s(B) = s (B)
= 2k. This is an example of a division algebra of level and sublevel 2k and
dimension 2t, t, k ∈ N∗.

4. Algebras of sublevels 2k + 1, k ∈ N∗ obtained by the Cayley-
Dickson process

Let F0 be a formally real field. In their paper [La, Ma; 01], Laghribi
and Mammone proved that the quaternion algebras Q(m) =

(

X,Y

F

)

⊗F K
are division algebras of level m, where m = 2k + 1, k ≥ 0, F = F0 (X,Y ),

K = F
(

< 1 > ⊥m× TQ
P

)

, Q =
(

X,Y

F

)

is a quaternion algebra over F and

TQ
P its pure trace form over F and in her paper [Pu; 05], S. Pumpluen proved

that O(m) =
(

X,Y,Z

F

)

⊗F K are octonion division algebras of level m, where

m = 2k+1, k ≥ 0, F = F0 (X,Y, Z) , K = F
(

< 1 > ⊥m× TO
P

)

, O =
(

X,Y,Z

F

)

is an octonion algebra over F and TO
P its pure trace form over F .

In his paper [O’Sh; 07(1)], Proposition 4.7., J. O’Shea proved that the
octonion algebra O(5) is a division algebra of sublevel 5 and, in [O’Sh; 07(2)],
he conjectured that the relations

s (Q (m)) = s (Q (m)) = m (4.1.)

and
s (O (m)) = s (O (m)) = m. (4.2.)

are true, but he proved them only for m = 2k, k ∈ N and m ≤ 7 for the
octonions and m = 2k, k ∈ N and m ≤ 3 for the quaternions.

Starting from some ideas given in the mentioned works, especially in the
Proposition 4.7. from [O’Sh; 07(1)] and in the proof of Theorem 3.3. from
[O’Sh; 07(2)], in the following, we prove that the quaternion algebra Q(5)
has sublevel 5., and finally, we prove that, for n = 2k + 1, k ∈ N, relations
(4.1) and (4.2.) hold.
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Proposition 4.1. Let x be a transcendental element over K, V a vector
space over K, dimV ≥ 3. Let q : V → K be a regular quadratic irreducible
form. We have that K (q) (x) = K (x) (q) , where K (q) is the functions field
of q over K and K (x) (q) is the functions field of q over K (x) .

Proof. Suppose that q has the diagonal representation < a1, a2, ..., an >.
The function field of q overK is the quotient field ofK[x2, ..., xn]/ (a1 + a2x

2
2 + ...+ anx

2
n) .

This field isK (x2, ..., xn−1) (
√
−α), where α = a−1

n

(

a1 + a2x
2
2 + ...+ an−1x

2
n−1

)

.
Since q is irreducible over K (x) , its functions field over K (x) is the quotient
field of

K (x) [x2, ..., xn]/
(

a1 + a2x
2
2 + ...+ anx

2
n

)

.

This field isK (x) (x2, ..., xn−1) (
√
−α), where α = a−1

n

(

a1 + a2x
2
2 + ...+ an−1x

2
n−1

)

.
Since K (x) (x2, ..., xn−1) (

√
−α) = K (x2, ..., xn−1) (

√
−α) (x) , it results that

K (q) (x) = K (x) (q) .�

Theorem 4.2. Let F = F0 (X,Y ) ,K = F
(

< 1 > ⊥5 × TQ
P

)

. With

the above notations, let Zbe an algebraically independent element over F .
Let Q′

5 = Q(5)⊗K K (Z) and O′
5 = (Q′

5, Z). Then the following statements
are true:

i) The algebra O′
5 is a division algebra of level and sublevel 5.

ii) The algebra Q (5) is a division algebra of level and sublevel 5.

Proof. i) Denoting ϕ =< 1 > ⊥5×TQ
P , where TQ

P ≃< X, Y,−XY >,
from the above proposition, it results that

K (Z) = F
(

< 1 > ⊥5 × TQ
P

)

(Z) = F (Z)
(

< 1 > ⊥5 × TQ
P

)

.

Therefore K (Z) = F (ϕ) (Z) = F (Z) (ϕ) . Since the algebra Q(5) has the
level 5, using Proposition 3.16., we obtain that the algebra O′

5 is a division
algebra and has level 5.We prove that the algebra O′

5 has sublevel 5. Suppose
s( O′

5 ) ≤ 4. Then
5
∑

i=1

c2i +
5
∑

i=1

p2
i = 0 (4.1.)

and
5
∑

i=1

cipi = 0, (4.2.)
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where ci ∈ F (Z) (ϕ) , pi ∈ P,P the F (Z) (ϕ)-vector space spanned by the
pure octonions.

Case 1. ci = 0, for all i ∈ {1, 2, ..., 5}. From (4.1.) , it results that 5×TO
P

is isotropic over F (Z) (ϕ) .
Case 2. If there is at least an element i such that ci 6= 0, relation (4.2.)

implies that we get a 4-dimensional F (Z) (ϕ)- vector subspace V of P , con-
taining p1, p2, p3, p4, p5. Let β : V → F (Z) (ϕ) , β (p) = p2. Therefore β is a
4 dimensional subform of TO

P ≃< X, Y,−XY,Z,−XZ,−XY,−Y Z,XY Z >
and, from (4.1.) , the form γ = 5×(< 1 >⊥ β) is isotropic over F (Z) (ϕ) . We
denote δ =< 1 >⊥ β. Repeated applications of Springer’s Theorem implies
that 5 × TO

P , γ and 8 × (< −1 >⊥ TO
P ) are anisotropic over F (Z) .

To prove that s( O′
5 ) � 4 it is sufficient to show that 5 × TO

P and γ are
anisotropic over F (Z) (ϕ) .

If 5 × TO
P is isotropic over F (Z) (ϕ) , since the form 8 × (< −1 >⊥

TO
P ) is a Pfister form, then becomes hyperbolic over F (Z) (ϕ) . For each
a ∈ DF (Z)

(

8 × (< −1 >⊥ TO
P )
)

aϕ is a subform of 8 × (< −1 >⊥ TO
P ),

from Cassels-Pfister Theorem. Since X ∈ DF (Z)

(

8 × (< −1 >⊥ TO
P )
)

, using
Lemma 3.7., p.8, from [Sch; 85], it results that

Xϕ ≃< X >⊥ 5× < 1, XY,−Y,XZ,−Z,−XY Z, Y Z >

is a subform of 8 × (< −1 >⊥ TO
P ), therefore 5× < 1 > is a subform of

8 × (< −1 >⊥ TO
P ), false. Hence 5 × TO

P is anisotropic over F (Z) (ϕ) .
If γ is isotropic over F (Z) (ϕ) , from Proposition 1.3., we have

DF (Z) (ϕ)DF (Z) (ϕ) ⊆ DF (Z) (γ)DF (Z) (γ) .

Since TQ
P ≃< X, Y,−XY >, it results that X,Y,−XY ∈ DF (Z) (ϕ) . There-

foreX,Y,−XY ∈ DF (Z) (ϕ)DF (Z) (ϕ) , henceX,Y,−XY ∈ DF (Z) (γ)DF (Z) (γ) .
We prove that < X >, < Y >, < −XY > are subforms of β. If < X > is
not a subform of β, then we find a multiple of X in DF (Z) (γ)DF (Z) (γ) of

the form −X
m
∑

i=1

A2
i , Ai ∈ F (Z) .(For example, if β ≃< Y,−XY,Z,−XZ >,

it results Y,−XY,Z,−XZ ∈ DF (Z) (γ) , then −XY 2 ∈ DF (Z) (γ)DF (Z) (γ)).
From Springer’s Theorem, we have that γ is anisotropic over F (Z) .From the
same Theorem, it results that m× δ is anisotropic over F (Z) for all m ∈ N∗,
therefore δ is strongly anisotropic over F (Z) . From Remark 1.1., we have
that DF (Z) (γ) ⊂ P0 = {α /α = 0 or α is represented by n× δ, n ∈ N∗ }, P0

is a q-preordering and there is a q-ordering P such that P0 ⊂ P or −P0 ⊂ P.
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Therefore DF (Z) (γ)DF (Z) (γ) ⊂ P · P ⊂ P. If X is positive, then −X
5
∑

i=1

A2
i

is negative and if X is negative, then −X
5
∑

i=1

A2
i is positive, false.

In the same way, we prove that < Y >, < −XY > are subforms of β,
therefore X,Y,−XY ∈ DF (Z) (γ) . Since 1 ∈ DF (Z) (γ) , we have that 1 ∈
P0 ⊂ P, therefore X,Y,−XY are positive, false. We obtain γ is anisotropic
over F (Z) (ϕ) . It results that s( O′

5 ) = 5.
ii) From i), using Corollary 3.15., we have s( Q(5) ) = s ( O′

5 ) = 5.�

Theorem 4.3. Let F = F0 (X,Y ) and Q =
(

X,Y

F

)

be a quaternion

algebra over F . Let K = F
(

< 1 > ⊥m× TQ
P

)

. The quaternion algebra

Q(m) =
(

X,Y

F

)

⊗F K is a quaternion division algebra of level and sublevel m,

where m = 2k + 1, k ≥ 0, and TQ
P its pure trace form over F .

Proof. Since for k ≤ 1 the result is proved in [O’ Sh; 07(2)] and for
k = 2 we prove the result in the above proposition, in the following, we
suppose that k ≥ 3. We denote ϕ =< 1 > ⊥

(

2k + 1
)

× TQ
P , where

TQ
P ≃< X, Y,−XY > . Let Z3, ..., Zk+1 be algebraic independent elements

over F = F0 (X,Y ) ,K = F
(

< 1 > ⊥
(

2k + 1
)

× TQ
P

)

. From Proposition

4.1., it results that

K (Z3, ..., Zk+1) = F
(

< 1 > ⊥
(

2k + 1
)

× TQ
P

)

(Z3, ..., Zk+1) =

= F (Z3, ..., Zk+1)
(

< 1 > ⊥
(

2k + 1
)

× TQ
P

)

=

= F0 (Z1, ..., Zk+1)
(

< 1 > ⊥
(

2k + 1
)

× TQ
P

)

.

Let Q′
m = Q(m) ⊗K K (Z3) and O′

m = (Q′
m, Z3) be an octonion algebra

as in Brown’s construction. Then the algebra O′
m is a division algebra of

dimension 23 and of level m. We repeat this construction until we obtain a
division algebra At of dimension 2t, t = k+1, like in the Brown’s construction.
Let TAt

P its pure trace form. From Corollary 3.15., the algebra At has level
m. We suppose that the sublevel is at most m− 1 = 2k.

Then
m
∑

i=1

c2i +
m
∑

i=1

p2
i = 0 (4.3.)
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and
m
∑

i=1

cipi = 0, (4.4.)

where ci ∈ F0 (Z1, ..., Zk+1) (ϕ) , ϕ =< 1 > ⊥
(

2k + 1
)

× TAt

P , pi ∈ P,P the
F0 (Z1, ..., Zk+1) (ϕ)-vector space spanned by the pure elements in At.

Case 1. ci = 0, for all i ∈ {1, 2, ...,m − 1}. From (4.3.) , it results that
(

2k + 1
)

× TAt

P is isotropic over F0 (Z1, ..., Zk+1) (ϕ) .
Case 2. If there is at least an element i such that ci 6= 0, relation (4.4.)

implies that we get a m−1-dimensional F0 (Z1, ..., Zk+1) (ϕ)- vector subspace
V ofP , containing p1, p2, ..., pm. Let β : V → F0 (Z1, ..., Zk+1) (ϕ) , β (p) =
p2. Therefore β is a m− 1 dimensional subform of TAt

P and, from (4.4.) , the
form γ =

(

2k + 1
)

× (< 1 >⊥ β) is isotropic over F0 (Z1, ..., Zk+1) (ϕ) . We
denote δ =< 1 >⊥ β. Repeated applications of Springer’s Theorem implies
that

(

2k + 1
)

× TAt

P , γ and 2k+1 × (< −1 >⊥ TAt

P ) are anisotropic over
F0 (Z1, ..., Zk+1) .

To prove that s( At ) � m− 1 it is sufficient to show that
(

2k + 1
)

×TAt

P

and γ are anisotropic over F0 (Z1, ..., Zk+1) (ϕ) .
If

(

2k + 1
)

× TAt

P is isotropic over F0 (Z1, ..., Zk+1) (ϕ) , since the form

2k+1 × (< −1 >⊥ TAt

P ) is a Pfister form, then this form becomes hyperbolic
over F0 (Z1, ..., Zk+1) (ϕ) . For any a ∈ DF0(Z1,...,Zk+1)

(

2k+1 × (< −1 >⊥ TAt

P )
)

aϕ is a subform of 2k+1 × (< −1 >⊥ TAt

P ), from Cassels-Pfister Theorem.
Since X = Z1 ∈ DF0(Z1,...,Zk+1)

(

2k+1 × (< −1 >⊥ TAt

P )
)

, it results that

Xϕ ≃< X >⊥ ×
(

2k + 1
)

< 1, ........ >

is a subform of 2k+1 × (< −1 >⊥ TAt

P ), therefore
(

2k + 1
)

× < 1 > is a

subform of 2k+1×(< −1 >⊥ TAt

P ), false. Hence
(

2k + 1
)

×TAt

P is anisotropic
over F0 (Z1, ..., Zk+1) (ϕ) .

If γ is isotropic over F0 (Z1, ..., Zk+1) (ϕ) , from Proposition 1.3., we have

DF0(Z1,...,Zk+1) (ϕ)DF0(Z1,...,Zk+1) (ϕ) ⊆ DF0(Z1,...,Zk+1) (γ)DF0(Z1,...,Zk+1) (γ) .

Since TQ
P ≃< X, Y,−XY >, it results that

X,Y,−XY ∈ DF0(Z1,...,Zk+1) (ϕ)DF0(Z1,...,Zk+1) (ϕ) .

We prove that < X >, < Y >, < −XY > are subforms of β. If < X > is
not a subform of β, then we find a multiple ofX inDF0(Z1,...,Zk+1) (γ)DF0(Z1,...,Zk+1) (γ)
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of the form −X
r
∑

i=1

A2
i , Ai ∈ F0 (Z1, ..., Zk+1) . From Springer’s Theorem, we

have that γ is anisotropic over F0 (Z1, ..., Zk+1) .From the same Theorem, it
results that m×δ is anisotropic over F0 (Z1, ..., Zk+1) for all m ∈ N∗, therefore
δ is strongly anisotropic over F0 (Z1, ..., Zk+1) . From Remark 1.1., we have
that DF0(Z1,...,Zk+1) (γ) ⊂ P0 = {α /α = 0 or α is represented by n× δ, n ∈ N∗

}, P0 is a q-preordering and there is a q-ordering P such that P0 ⊂ P or
−P0 ⊂ P. Therefore DF0(Z1,...,Zk+1) (γ)DF0(Z1,...,Zk+1) (γ) ⊂ P · P ⊂ P. If X

is positive, then −X
r
∑

i=1

A2
i is negative and if X is negative, then −X

r
∑

i=1

A2
i is

positive, false.
In the same way, we prove that < Y >, < −XY > are subforms of

β, therefore X,Y,−XY ∈ DF0(Z1,...,Zk+1) (γ) . Since 1 ∈ DF0(Z1,...,Zk+1) (γ) , we
have that P0 ⊂ P, therefore X,Y,−XY are positive, false. We obtain γ is
anisotropic over F0 (Z1, ..., Zk+1) (ϕ) .

It results that s( At ) = 2k + 1, therefore, using Corollary 3.15., we have
s( Q(m) ) = m,m = 2k + 1.�

Theorem 4.4. Let F = F0 (X,Y, Z) and O =
(

X,Y,Z

F

)

an octonion
algebra over F .

The octonion algebra O(m) =
(

X,Y,Z

F

)

⊗F K is an octonion division alge-
bras of level and sublevel m, where m = 2k+1, k ≥ 0, , K = F

(

< 1 > ⊥m× TO
P

)

,
and TO

P is its pure trace form over F

Proof. The case k ≤ 2 is proved in [O’ Sh; 07(2)], in the following we
suppose that k ≥ 3. We denote ϕ =< 1 > ⊥

(

2k + 1
)

×TO
P , where TO

P ≃<
X, Y,−XY,Z,−XZ,−Y Z,XY Z > . Let Z4, ..., Zk+1be algebraic indepen-

dent elements over F = F0 (X,Y, Z) , K = F
(

< 1 > ⊥
(

2k + 1
)

× TQ
P

)

.

Proposition 4.1. implies that

K (Z4, ..., Zk+1) = F
(

< 1 > ⊥
(

2k + 1
)

× TQ
P

)

(Z3, ..., Zk+1) =

= F (Z4, ..., Zk+1)
(

< 1 > ⊥
(

2k + 1
)

× TQ
P

)

=

= F0 (Z1, ..., Zk+1)
(

< 1 > ⊥
(

2k + 1
)

× TQ
P

)

,

where X = Z1, Y = Z2, Z = Z3. Let O′
m = Om ⊗K K (Z4) and S ′

m =
(O′

m, Z4) be the sedenion algebra as in Brown’s construction. Then S ′
m is a

division algebra of dimension 24 and of level m. We repeat this construction
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until we obtain a division algebra At of dimension 2t, t = k+1, like in Brown’s
construction. Let TAt

P be its pure trace form. By Corollary 3.15., this algebra
has level m. Using the same arguments like in the above proposition, the
sublevel of algebra At is 2k + 1, therefore s( O(m) ) = m,m = 2k + 1.�
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