Levels and sublevels of algebras obtained by the Cayley-Dickson process

Cristina Flaut

Abstract

We generalize the concepts of level and sublevel of a composition algebra to algebras obtained by the Cayley-Dickson process. In 1967, R. B. Brown constructed, for every $t \in \mathbb{N}$, a nonassociative division algebra A_{t} of dimension 2^{t} over the power-series field $K\left\{X_{1}, X_{2}, \ldots, X_{t}\right\}$. This gives us the possibility to construct a division algebra of dimension 2^{t} and prescribed level and sublevel $2^{k}, k, t \in \mathbb{N}^{*}$ and a division algebra of dimension and prescribed level and sublevel $2^{k}+1, t, k \in \mathbb{N}$.

Key Words: Cayley-Dickson process; Division algebra; Level and sublevel of an algebra.

AMS Classification: 17A35, 17A20, 17A75, 17A45.

0. Introduction

In [Pf; 65], A. Pfister showed that if a field has a finite level this level is a power of 2 and any power of 2 could be realised as the level of a field. In the noncommutative case, the concept of level has many generalisations. The level of division algebras is defined in the same manner as for fields. In [Lew; 87], D. W. Lewis constructed quaternion division algebras of level 2^{k} and $2^{k}+$ 1 for all $k \in \mathbb{N}^{*}$ and he asked if there exist quaternion division algebras whose levels are not of this form. These values were recovered for the quaternions by Laghribi and Mammone in [La,Ma; 01], and for octonion division algebras by Susanne Pumplün in [Pu; 05], using function field techniques. In [Hoff; 08], D. W. Hoffman showed that there are many other values, not of the form 2^{k} or $2^{k}+1$, which could be realised as level of quaternion division algebras. In [Kr, Wa; 91], M. Küskemper and A. Wadsworth constructed the first example of a quaternion algebra of sublevel 3. Starting from this construction, in [O'

Sh; 07(1)], J. O' Shea proved the existence of an octonion algebra of sublevel 3 and constructed an octonion algebra of sublevel 5 and, in [$\left.\mathrm{O}^{\prime} \mathrm{Sh} ; 07(2)\right]$, he gave the first example of octonion division algebras of level 6 and 7. These were the first examples of composition algebras whose level is not of the form 2^{k} or $2^{k}+1$ for some $k \in \mathbb{N}^{*}$ and remained the only known values for the level and sublevel of quaternion and octonion algebras. The existence of a quaternion algebra of sublevel 5 was still an open question. Starting from mentioned works and using Brown's construction for division algebras, we give an example of quaternion algebra of level and sublevel 5 in Section 4.

1. Preliminaries

In this paper, we assume that K is a field and char $K \neq 2$.
For the basic terminology of quadratic and symmetric bilinear spaces, the reader is referred to [Sch; 85] or [La, Ma; 01]. In this paper, we assume that all the quadratic forms are nondegenerate .

A bilinear space (V, b) represents $\alpha \in K$ if there is an element $x \in V, x \neq$ 0 , with $b(x, x)=\alpha$. The space is called universal if (V, b) represents all $\alpha \in K$. Every isotropic bilinear space $V, V \neq\{0\}$, is universal. (See [Sch; 85, Lemma 4.11., p. 14])

A subset P of K is called an ordering of K if

$$
P+P \subset P, P \cdot P \subset P,-1 \notin P
$$

$\{x \in K / x$ is a sum of squares in $K\} \subset P, P \cup-P=K, P \cap-P=0$.
A quadratic semi-ordering (or q-ordering) of a field K is a subset P with the following properties:

$$
P+P \subset P, K^{2} \cdot P \subset P, 1 \in P, P \cup-P=K, P \cap-P=0 .
$$

Obviously, every ordering is a q-ordering [Sch; 85].
Remark 1.1. ([Sch; 85], p.133) Let P_{0} be a q-preordering, i.e.

$$
P_{0}+P_{0} \subset P_{0}, K^{2} \cdot P_{0} \subset P_{0}, P_{0} \cap-P_{0}=0
$$

Then there is a q-ordering P such that $P_{0} \subset P$ or $-P_{0} \subset P$.

Let V be a vector space over an ordered field K. The quadratic form $q: V \rightarrow K$ is called positive definite if $q(x)>0$ for all $x \neq 0$. If $q(x)<0$ for all $x \neq 0$, it is called negative definite. If $\varphi \simeq<\alpha_{1}, \ldots, \alpha_{n}>$, it is called indefinite if the elements α_{i} are not all of the same sign and totally indefinite if for each ordering P of K there are α_{i} and α_{j} depending on P such that $\alpha_{i}<_{P} 0<_{P} \alpha_{j}$.

A quadratic form φ is called strongly anisotropic if $m \times \varphi$ is anisotropic for all $m \in \mathbb{N}^{*}$. If the form φ is not strongly anisotropic it is called weakly isotropic.

The field K is a formally real field if -1 is not a sum of squares in K. Each formally real field has characteristic zero.

Remark 1.2. ([Sch; 85], p.134) Let K be a formally real field. A quadratic form φ over K is weakly isotropic if and only if φ is indefinite with respect to all q-orderings of K. If φ is strongly anisotropic then the set

$$
P_{0}=\left\{\alpha / \alpha=0 \text { or } \alpha \text { is represented by } n \times \varphi, n \in \mathbb{N}^{*}\right\}
$$

is a q-preordering. It follows that there is a q-ordering P such that $P_{0} \subset P$ or $-P_{0} \subset P$.

A quadratic form ψ is a subform of the form φ if $\varphi \simeq \psi \perp \phi$, for some quadratic form ϕ. We denote $\psi<\varphi$.

Let φ be a n-dimensional quadratic form over $K, n \in N, n>1$, which is not isometric to the hyperbolic plane. We may consider φ as a homogeneous polynomial of degree $2, \varphi(X)=\varphi\left(X_{1}, \ldots X_{n}\right)=\sum a_{i j} X_{i} X_{j}, a_{i j} \in K^{*}$. The functions field of φ, denoted $K(\varphi)$, is the quotient field of the integral domain

$$
K\left[X_{1}, \ldots, X_{n}\right] /\left(\varphi\left(X_{1}, \ldots, X_{n}\right)\right) .
$$

Since $\left(X_{1}, \ldots, X_{n}\right)$ is a non-trivial zero, φ is isotropic over $K(\varphi)$. We remark that $\varphi(X)$ is irreducible. (See [Sch;85])

Proposition 1.3. [Ro; 05] Let φ and ψ be two quadratic forms over a field K. The form ψ is isotropic over $K(\varphi)$ if and only if $D_{K^{\prime}}(\varphi) D_{K^{\prime}}(\varphi) \subseteq$ $D_{K^{\prime}}(\psi) D_{K^{\prime}}(\psi)$, for every extension K^{\prime} of K, where $D_{K}(\varphi)$ is the set of elements in K^{*} which are represented by φ.

Proposition 1.4. (Cassels-Pfister Theorem) Let $\varphi, \psi=1 \perp \psi^{\prime}$ be two quadratic forms over a field K, char $K \neq 2$. If φ is anisotropic over K
and $\varphi_{K(\varphi)}$ is hyperbolic, then $\alpha \psi<\varphi$ for each scalar represented by φ. In particular, $\operatorname{dim} \varphi \geq \operatorname{dim} \psi$.[La, Ma;01, p.1823, Theorem 1.3.]

For $n \in \mathbb{N}^{*}$ a n-fold Pfister form over K is a quadratic form of the type

$$
<1, a_{1}>\otimes \ldots \otimes<1, a_{n}>, a_{1}, \ldots, a_{n} \in K^{*}
$$

A Pfister form is denoted by $\ll a_{1}, a_{2}, \ldots, a_{n} \gg$.
Remark 1.5. A Pfister form φ can be written as

$$
<1, a_{1}>\otimes \ldots \otimes<1, a_{n}>=<1, a_{1}, a_{2}, \ldots, a_{n}, a_{1} a_{2}, \ldots, a_{1} a_{2} a_{3}, \ldots, a_{1} a_{2} \ldots a_{n}>
$$

If $\varphi=<1>\perp \varphi^{\prime}$, then φ^{\prime} is called the pure subform of φ. A Pfister form is hyperbolic if and only if is isotropic. This means that a Pfister form is isotropic if and only if its pure subform is isotropic. (See [Sch; 85])

Proposition 1.6. [Sch, Lemma 1.3.(ii), p. 143] With the above notations, we have the relations:
i) $\ll-1, \alpha_{2}, \ldots, \alpha_{n} \gg \simeq<1,-1,1,-1, \ldots>\sim 0$;
ii) $\ll 1, \alpha_{2}, \ldots, \alpha_{n} \gg 2 \times \ll \alpha_{2}, \ldots, \alpha_{n} \gg$.

We recall some definitions and properties for nonassociative algebras.
Let A be an algebra of dimension n over K and let f_{1}, \ldots, f_{n} be a basis for A over K. The multiplication in the algebra A is given by the relations $f_{i} f_{j}=\sum_{k=1}^{n} \alpha_{i j k} f_{k}$, where $\alpha_{i j k} \in K$ and $i, j=1, \ldots n$. If $K \subset F$ is a field extension, the algebra $A_{F}=F \otimes_{K} A$ is called the scalar extension of A to an algebra over F. The elements of A_{F} are the forms $\sum_{i=1}^{n} \alpha_{i} \otimes f_{i}$ and we denote them $\sum_{i=1}^{n} \alpha_{i} f_{i}, \alpha_{i} \in F$.

An algebra A over K is called quadratic if A is a unitary algebra and, for all $x \in A$, there are $a, b \in K$ such that $x^{2}=a x+b 1, a, b \in K$. The subset $A_{0}=\left\{x \in A-K \mid x^{2} \in K 1\right\}$ is a linear subspace of A and $A=K \cdot 1 \oplus A_{0}$. This decomposition allows us to define a linear form $t: A \rightarrow K$, a linear map $i: A \rightarrow A_{0}$ such that $x=t(x) \cdot 1+i(x)$, for all $x \in A$, a symmetric bilinear form, (,) : $A \times A \rightarrow K,(x, y)=-\frac{1}{2} t(x y+y x)$ and a quadratic form $n: A \rightarrow K, n(x)=(t(x))^{2}+(i(x), i(x))$. The element $\bar{x}=t(x) \cdot 1-i(x)$ is called the conjugate of x. The quadratic form n is called
anisotropic if $n(x)=0$ implies $x=0$. In this case, the algebra A is called also anisotropic, otherwise A is isotropic.

We can decompose the algebra A as the form $A=\operatorname{Sym}(A) \oplus \operatorname{Skew}(A)$, where $\operatorname{Sym}(A)=\{x \in A \mid x=\bar{x}\}$, $\operatorname{Skew}(A)=\{x \in A \mid x=-\bar{x}\}$.

A composition algebra is an algebra A with a non-degenerate quadratic form $q: A \rightarrow K$, such that q is multiplicative, i.e. $q(x y)=q(x) q(y), \forall x, y \in$ A. A unitary composition algebra is called a Hurwitz algebra. Hurwitz algebras have dimensions $1,2,4,8$.

Since over fields, the classical Cayley-Dickson process generates all possible Hurwitz algebras, in the following, we recall shortly the Cayley-Dickson process.

Let A be a finite dimensional unitary algebra over a field K with a scalar involution - : $A \rightarrow A, a \rightarrow \bar{a}$, where $a+\bar{a}$ and $a \bar{a} \in K \cdot 1$ for all $a \in A$. Since A is unitary, we identify K with $K \cdot 1$ and we consider $K \subseteq A$.

Let $\alpha \in K$ be a fixed non-zero element. We define the following algebra multiplication on the vector space $A \oplus A$.

$$
\begin{equation*}
\left(a_{1}, a_{2}\right)\left(b_{1}, b_{2}\right)=\left(a_{1} b_{1}+\alpha \overline{b_{2}} a_{2}, a_{2} \overline{b_{1}}+b_{2} a_{1}\right) . \tag{1.1.}
\end{equation*}
$$

We obtain an algebra structure over $A \oplus A$. This algebra, denoted by (A, α), is called the algebra obtained from A by the Cayley-Dickson process. A is canonically isomorphic with a subalgebra of the algebra (A, α) (denote $(1,0)$ by 1 , this is the identity in $(A, \alpha))$ and $\operatorname{dim}(A, \alpha)=2 \operatorname{dim} A$. Taking $u=(0,1) \in A \oplus A, u^{2}=\alpha \cdot 1$ and $(A, \alpha)=A \oplus A u$.

We remark that $x+\bar{x}=a_{1}+\overline{a_{1}} \in K \cdot 1$ and $x \bar{x}=a_{1} \overline{a_{1}}+\alpha a_{2} \overline{a_{2}} \in K \cdot 1$. The map

$$
-:(A, \alpha) \rightarrow(A, \alpha), \quad x \rightarrow \bar{x}
$$

is an involution of the algebra (A, α), extending the involution - . If $x, y \in$ (A, α), it follows that $\overline{x y}=\bar{y} \bar{x}$.

For $x \in A$, we denote $t(x) \cdot 1=x+\bar{x} \in K, n(x) \cdot 1=x \bar{x} \in K$, and these are called the trace, respectively, the norm of the element $x \in A$. If $z \in$ $(A, \alpha), z=x+y u$, then $z+\bar{z}=t(z) \cdot 1$ and $z \bar{z}=\bar{z} z=n(z) \cdot 1$, where $t(z)=$ $t(x)$ and $n(z)=n(x)-\alpha n(y)$. It follows that $(z+\bar{z}) z=z^{2}+\bar{z} z=z^{2}+$ $n(z) \cdot 1$ and

$$
z^{2}-t(z) z+n(z)=0 \forall z \in(A, \alpha),
$$

therefore each algebra obtained by the Cayley-Dickson process is quadratic. All algebras A obtained by the Cayley-Dickson process are flexible (i.e. $x(y x)=(x y) x, \forall x, y \in A)$ and power-associative (i.e. for each $a \in A$, the subalgebra of A generated by a is associative). Moreover, the following conditions are fulfilled:

$$
\begin{equation*}
t(x y)=t(y x), t((x y) z)=t(x(y z)), \forall x, y, z \in(A, \alpha) . \tag{1.2.}
\end{equation*}
$$

Remark 1.7. If we take $A=K$ and apply this process t times, $t \geq 1$, we obtain an algebra over $K, A_{t}=K\left\{\alpha_{1}, \ldots, \alpha_{t}\right\}$. By induction, in this algebra we find a basis $\left\{1, f_{2}, \ldots, f_{q}\right\}, q=2^{t}$, satisfying the properties:

$$
\begin{gathered}
f_{i}^{2}=\alpha_{i} 1, \alpha_{i} \in K, \alpha_{i} \neq 0, i=2, \ldots, q \\
f_{i} f_{j}=-f_{j} f_{i}=\beta_{k} f_{k}, \beta_{k} \in K, \beta_{k} \neq 0, i \neq j, i, j=2, \ldots q
\end{gathered}
$$

β_{k} and f_{k} being uniquely determined by f_{i} and f_{j}.
As an example, we consider the generalized octonion algebra $O(\alpha, \beta, \gamma)$, with basis $\left\{1, f_{2}, \ldots, f_{8}\right\}$, having the multiplication table:

\cdot	1	f_{2}	f_{3}	f_{4}	f_{5}	f_{6}	f_{7}	f_{8}
1	1	f_{2}	f_{3}	f_{4}	f_{5}	f_{6}	f_{7}	f_{8}
f_{2}	f_{2}	α	f_{4}	$-\alpha f_{3}$	f_{6}	$-\alpha f_{5}$	$-f_{8}$	αf_{7}
f_{3}	f_{3}	$-f_{4}$	β	βf_{2}	f_{7}	f_{8}	$-\beta f_{5}$	$-\beta f_{6}$
f_{4}	f_{4}	αf_{3}	$-\beta f_{2}$	$-\alpha \beta$	f_{8}	$-\alpha f_{7}$	βf_{6}	$-\alpha \beta f_{5}$
f_{5}	f_{5}	$-f_{6}$	$-f_{7}$	$-f_{8}$	γ	γf_{2}	γf_{3}	γf_{4}
f_{6}	f_{6}	αf_{5}	$-f_{8}$	αf_{7}	$-\gamma f_{2}$	$-\alpha \gamma$	$-\gamma f_{4}$	$\alpha \gamma f_{3}$
f_{7}	f_{7}	f_{8}	βf_{5}	$-\beta f_{6}$	$-\gamma f_{3}$	γf_{4}	$-\beta \gamma$	$-\beta \gamma f_{2}$
f_{8}	f_{8}	$-\alpha f_{7}$	βf_{6}	$\alpha \beta f_{5}$	$-\gamma f_{4}$	$-\alpha \gamma f_{3}$	$\beta \gamma f_{2}$	$\alpha \beta \gamma$

If $x \in A_{t}, x=x_{1} 1+\sum_{i=2}^{q} x_{i} f_{i}$, then $\bar{x}=x_{1} 1-\sum_{i=2}^{q} x_{i} f_{i}$ and $t(x)=2 x_{1}, n(x)=$ $x_{1}^{2}-\sum_{i=2}^{q} \alpha_{i} x_{i}^{2}$. In the above decomposition of x, we call x_{1} the scalar part of x and $x^{\prime \prime}=\sum_{i=2}^{q} x_{i} f_{i}$ the pure part of x. If we compute $x^{2}=x_{1}^{2}+x^{\prime \prime 2}+2 x_{1} x^{\prime \prime}=$ $x_{1}^{2}+\alpha_{1} x_{2}^{2}+\alpha_{2} x_{3}^{2}-\alpha_{1} \alpha_{2} x_{4}^{2}+\alpha_{3} x_{5}^{2}-\ldots-(-1)^{t}\left(\prod_{i=1}^{t} \alpha_{i}\right) x_{q}^{2}+2 x_{1} x^{\prime \prime}$, the scalar
part of x^{2} is represented by the quadratic form

$$
\begin{equation*}
T_{C}=<1, \alpha_{1}, \alpha_{2},-\alpha_{1} \alpha_{2}, \alpha_{3}, \ldots,(-1)^{t}\left(\prod_{i=1}^{t} \alpha_{i}\right)>=<1, \beta_{2}, \ldots, \beta_{q}> \tag{1.3.}
\end{equation*}
$$

and, since $x^{\prime \prime 2}=\alpha_{1} x_{2}^{2}+\alpha_{2} x_{3}^{2}-\alpha_{1} \alpha_{2} x_{4}^{2}+\alpha_{3} x_{5}^{2}-\ldots-(-1)^{t}\left(\prod_{i=1}^{t} \alpha_{i}\right) x_{q}^{2} \in K$, it is represented by the quadratic form

$$
\begin{equation*}
T_{P}=<\alpha_{1}, \alpha_{2},-\alpha_{1} \alpha_{2}, \alpha_{3}, \ldots,(-1)^{t}\left(\prod_{i=1}^{t} \alpha_{i}\right)>=<\beta_{2}, \ldots, \beta_{q}> \tag{1.4.}
\end{equation*}
$$

The quadratic form T_{C} is called the trace form, and T_{P} the pure trace form of the algebra A_{t}. We remark that $T_{C}=<1>\perp T_{P}$, and the norm $n=n_{C}=<1>\perp-T_{P}$, resulting that
$n_{C}=<1,-\alpha_{1},-\alpha_{2}, \alpha_{1} \alpha_{2}, \alpha_{3}, \ldots,(-1)^{t+1}\left(\prod_{i=1}^{t} \alpha_{i}\right)>=<1,-\beta_{2}, \ldots,-\beta_{q}>$.
The trace form n_{C} has the form $n_{C}=<1,-\alpha_{1}>\otimes \ldots \otimes<1,-\alpha_{t}>$ and it is a Pfister form.

Using the above notation, we have that $x^{2}=t(x) x-n(x) 1=-n(x) 1+$ $2 x_{1}\left(x_{1}+x^{\prime \prime}\right)=2 x_{1}^{2}-n(x)+2 x_{1} x^{\prime \prime}$. It results that $T_{C}(x)=2 x_{1}^{2}-n(x)$, then $T_{C}(x)=\frac{(t(x))^{2}}{2}-n_{C}(x)$. But $(t(x))^{2}=t\left(x^{2}\right)+2 n_{C}(x)$, then $T_{C}(x)=\frac{t\left(x^{2}\right)}{2}$.

2. Brown's construction of division algebras

In 1967, R. B. Brown constructed, for every t, a division algebra A_{t} of dimension 2^{t} over the power-series field $K\left\{X_{1}, X_{2}, \ldots, X_{t}\right\}$. We briefly demonstrate this construction, using polynomial rings over K and their fields of fractions (the rational functions field) instead of power-series fields over K (as it done by R.B. Brown),

First of all, we remark that if an algebra A is finite-dimensional, then it is a division algebra if and only if A does not contain zero divisors (See [Sc;66]). For every t we construct a division algebra A_{t} over a field F_{t}. Let $X_{1}, X_{2}, \ldots, X_{t}$
be t algebraically independent indeterminates over the field K and $F_{t}=$ $K\left(X_{1}, X_{2}, \ldots, X_{t}\right)$ be the rational functions field. For $i=1, \ldots, t$, we construct the algebra A_{i} over the rational functions field $K\left(X_{1}, X_{2}, \ldots, X_{i}\right)$ by setting $\alpha_{j}=X_{j}$ for $j=1,2, \ldots, i$. Let $A_{0}=K$. By induction over i, assuming that A_{i-1} is a division algebra over the field $F_{i-1}=K\left(X_{1}, X_{2}, \ldots, X_{i-1}\right)$, we may prove that the algebra A_{i} is a division algebra over the field $F_{i}=$ $K\left(X_{1}, X_{2}, \ldots, X_{i}\right)$.

Let $A_{F_{i}}^{i-1}=F_{i} \otimes_{F_{i-1}} A_{i-1}$. For $\alpha_{i}=X_{i}$ we apply the Cayley-Dickson process to algebra $A_{F_{i}}^{i-1}$. The obtained algebra, denoted A_{i}, is an algebra over the field F_{i} and has dimension 2^{i}.

Let

$$
x=a+b v_{i}, y=c+d v_{i},
$$

be nonzero elements in A_{i} such that $x y=0$, where $v_{i}^{2}=\alpha_{i}$. Since

$$
x y=a c+X_{i} \bar{d} b+(b \bar{c}+d a) v_{i}=0
$$

we obtain

$$
\begin{equation*}
a c+X_{i} \bar{d} b=0 \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
b \bar{c}+d a=0 . \tag{2.2.}
\end{equation*}
$$

But, the elements $a, b, c, d \in A_{F_{i}}^{i-1}$ are different from zero. Indeed, we have:
i) If $a=0$ and $b \neq 0$, then $c=d=0 \Rightarrow y=0$, false;
ii) If $b=0$ and $a \neq 0$, then $d=c=0 \Rightarrow y=0$, false;
iii) If $c=0$ and $d \neq 0$, then $a=b=0 \Rightarrow x=0$, false;
iv) If $d=0$ and $c \neq 0$, then $a=b=0 \Rightarrow x=0$, false.

This implies that $b \neq 0, a \neq 0, d \neq 0, c \neq 0$. If $\left\{1, f_{2}, \ldots, f_{2^{i-1}}\right\}$ is a basis in A_{i-1}, then $a=\sum_{j=1}^{2^{i-1}} g_{j}\left(1 \otimes f_{j}\right)=\sum_{j=1}^{2^{i-1}} g_{j} f_{j}, g_{j} \in F_{i}, g_{j}=\frac{g_{j}^{\prime}}{g_{j}^{\prime \prime}}, g_{j}^{\prime}, g_{j}^{\prime \prime} \in$ $K\left[X_{1}, \ldots, X_{i}\right], g_{j}^{\prime \prime} \neq 0, j=1,2, \ldots 2^{i-1}$, where $K\left[X_{1}, \ldots, X_{t}\right]$ is the polynomial ring. Let a_{2} be the less common multiple of $g_{1}^{\prime \prime}, \ldots . g_{2_{i-1}^{\prime \prime}}^{\prime \prime}$, then we can write $a=\frac{a_{1}}{a_{2}}$, where $a_{1} \in A_{F_{i}}^{i-1}, a_{1} \neq 0$. Analogously, $b=\frac{b_{1}}{b_{2}}, c=\frac{c_{1}}{c_{2}}, d=$ $\frac{d_{1}}{d_{2}}, b_{1}, c_{1}, d_{1} \in A_{F_{i}}^{i-1}-\{0\}$ and $a_{2}, b_{2}, c_{2}, d_{2} \in K\left[X_{1}, \ldots, X_{t}\right]-\{0\}$.

If we replace in the relations (2.1.) and (2.2.), we obtain

$$
\begin{equation*}
a_{1} c_{1} d_{2} b_{2}+X_{i} \bar{d}_{1} b_{1} a_{2} c_{2}=0 \tag{2.3.}
\end{equation*}
$$

and

$$
\begin{equation*}
b_{1} \bar{c}_{1} d_{2} a_{2}+d_{1} a_{1} b_{2} c_{2}=0 \tag{2.4.}
\end{equation*}
$$

If we denote $a_{3}=a_{1} b_{2}, b_{3}=b_{1} a_{2}, c_{3}=c_{1} d_{2}, d_{3}=d_{1} c_{2}, a_{3}, b_{3}, c_{3}, d_{3} \in$ $A_{F_{i}}^{i-1}-\{0\}$, the relations (2.3.) and (2.4.) become

$$
\begin{equation*}
a_{3} c_{3}+X_{i} \bar{d}_{3} b_{3}=0 \tag{2.5.}
\end{equation*}
$$

and

$$
\begin{equation*}
b_{3} \bar{c}_{3}+d_{3} a_{3}=0 \tag{2.6.}
\end{equation*}
$$

Since the algebra $A_{F_{i}}^{i-1}=F_{i} \otimes_{F_{i-1}} A_{i-1}$ is an algebra over F_{i-1} with basis $X^{i} \otimes f_{j}, i \in \mathbb{N}$ and $j=1,2, \ldots 2^{i-1}$, we can write $a_{3}, b_{3}, c_{3}, d_{3}$ under the form $a_{3}=\sum_{j \geq m} x_{j} X_{i}^{j}, b_{3}=\sum_{j \geq n} y_{j} X_{i}^{j}, c_{3}=\sum_{j \geq p} z_{j} X_{i}^{j}, d_{3}=\sum_{j \geq r} w_{j} X_{i}^{j}$, where $x_{j}, y_{j}, z_{j}, w_{j} \in A_{i-1}, x_{m}, y_{n}, z_{p}, w_{r} \neq 0$. Since A_{i-1} is a division algebra, we have $x_{m} z_{p} \neq 0, w_{r} y_{n} \neq 0, y_{n} z_{p} \neq 0, w_{r} x_{m} \neq 0$. Using relations (2.5.) and (2.6.), we have that $2 m+p+r=2 n+p+r+1$, which is false. Therefore, the algebra A_{i} is a division algebra over the field $F_{i}=K\left(X_{1}, X_{2}, \ldots, X_{i}\right)$ of dimension 2^{i}.
3. A division algebra of dimension 2^{t} and prescribed level and sublevel $2^{k}, t, k \in \mathbb{N}^{*}$

In his paper [O' Sh; 07(1)], J. O'Shea gives a classification of the levels of quaternion and octonion algebras. Now we extend some of these results to the algebras obtained by the Cayley-Dickson process.

The level of the algebra, A denoted by $s(A)$, is the least integer n such that -1 is a sum of n squares in A. The sublevel of the algebra A, denoted by $\underline{s}(A)$, is the least integer n such that 0 is a sum of $n+1$ nonzero squares of elements in A. If these numbers do not exist, then the level and sublevel are infinite.

Obviously, $\underline{s}(A) \leq s(A)$. We remark that, if in the Cayley-Dickson process, the quaternion algebra A_{2} and the octonion algebra are split, then $s\left(A_{2}\right)=s\left(A_{3}\right)=1$. (See [Pu, 05, Lemma 2.3.])

Let A be an algebra over a field K obtained by the Cayley-Dickson process, of dimension $q=2^{t}, T_{C}$ and T_{P} be its trace and pure trace forms.

Proposition 3.1. If $s(A) \leq n$ then -1 is represented by the quadratic form $n \times T_{C}$.

Proof. Let $y \in A, y=x_{1}+x_{2} f_{2}+\ldots+x_{q} f_{q}, x_{i} \in K$, for all $i \in\{1,2, \ldots, q\}$. Using the notations given in the Introduction, we get $y^{2}=x_{1}^{2}+\beta_{2} x_{2}^{2}+\ldots+$ $\beta_{q} x_{q}^{2}+2 x_{1} y^{\prime \prime}$, where $y^{\prime \prime}=x_{2} f_{2}+\ldots+x_{q} f_{q}$. If -1 is a sum of n squares in A, then $-1=y_{1}^{2}+\ldots+y_{n}^{2}=\left(x_{11}^{2}+\beta_{2} x_{12}^{2}+\ldots+\beta_{q} x_{1 q}^{2}+2 x_{11} y_{1}^{\prime \prime}\right)+\ldots+$ $\left(x_{n 1}^{2}+\beta_{2} x_{n 2}^{2}+\ldots+\beta_{q} x_{n q}^{2}+2 x_{n 1} y_{n}^{\prime \prime}\right)$. Then we have $-1=\sum_{i=1}^{n} x_{i 1}^{2}+\beta_{2} \sum_{i=1}^{n} x_{i 2}^{2}+\ldots+\beta_{q} \sum_{i=1}^{n} x_{i q}^{2}$ and $\sum_{i=1}^{n} x_{i 1} x_{i 2}=\sum_{i=1}^{n} x_{i 1} x_{i 3} \ldots==\sum_{i=1}^{n} x_{i 1} x_{i n}=0$, then $n \times T_{C}$ represents -1

In Proposition 3.1, we remark that the quadratic form $<1>\perp n \times T_{C}$ is isotropic.

Proposition 3.2. For $n \in \mathbb{N}^{*}$, if the quadratic form $<1>\perp n \times T_{P}$ is isotropic over K, then $s(A) \leq n$.

Proof. Case 1. If $-1 \in K^{* 2}$, then $s(A)=1$.
Case 2. $-1 \notin K^{* 2}$. Since the quadratic form $<1>\perp n \times T_{P}$ is isotropic then it is universal. It results that $<1>\perp n \times T_{P}$ represent -1 . Then, we have the elements $\alpha \in K$ and $p_{i} \in \operatorname{Skew}(A), i=1, \ldots, n$, such that $-1=\alpha^{2}+\beta_{2} \sum_{i=1}^{n} p_{i 2}^{2}+\ldots+\beta_{q} \sum_{i=1}^{n} p_{i q}^{2}$, and not all of them are zero.
i) If $\alpha=0$, then $-1=\beta_{2} \sum_{i=1}^{n} p_{i 2}^{2}+\ldots+\beta_{q} \sum_{i=1}^{n} p_{i q}^{2}$. It results $-1=\left(\beta_{2} p_{12}^{2}+\ldots+\beta_{q} p_{1 q}^{2}\right)+\ldots+\left(\beta_{2} p_{n 2}^{2}+\ldots+\beta_{q} p_{n q}^{2}\right)$. Denoting $u_{i}=p_{i 2} f_{2}+$ $\ldots+p_{i q} f_{q}$, we have that $t\left(u_{i}\right)=0$ and $u_{i}^{2}=-n\left(u_{i}^{2}\right)=\beta_{2} p_{i 2}^{2}+\ldots+\beta_{q} p_{i q}^{2}$, for all $i \in\{1,2, \ldots, n\}$. We obtain $-1=u_{1}^{2}+\ldots+u_{n}^{2}$.
ii) If $\alpha \neq 0$, then $1+\alpha^{2} \neq 0$ and $0=1+\alpha^{2}+\beta_{2} \sum_{i=1}^{n} p_{i 2}^{2}+\ldots+\beta_{q} \sum_{i=1}^{n} p_{i q}^{2}$. Multiplying this relation with $1+\alpha^{2}$, it follows that $0=\left(1+\alpha^{2}\right)^{2}+\beta_{2} \sum_{i=1}^{n} r_{i 2}^{2}+$
$\ldots+\beta_{q} \sum_{i=1}^{n} r_{i q}^{2}$. Therefore $-1=\beta_{2} \sum_{i=1}^{n} r_{i 2}^{\prime 2}+\ldots+\beta_{q} \sum_{i=1}^{n} r_{i q}^{\prime 2}$, where $r_{i j}^{\prime}=r_{i j}(1+$ $\alpha)^{-1}, j \in\{2,3, \ldots, q\}$ and we apply case i). Therefore $s(A) \leq n$.

Lemma 3.3.[Sch; 85, p. 151] Let $n=2^{k}$, and $a_{1}, \ldots a_{n}, b_{1}, \ldots, b_{n} \in K$. Then there are elements $c_{2}, \ldots, c_{n} \in K$ such that

$$
\left(a_{1}^{2}+\ldots+a_{n}^{2}\right)\left(b_{1}^{2}+\ldots+b_{n}^{2}\right)=\left(a_{1} b_{1}+\ldots a_{n} b_{n}\right)^{2}+c_{2}^{2}+\ldots+c_{n}^{2}
$$

Now we can state and prove some generalizations of J. O'Shea's results (Lemma 3.9, Proposition 3.2. and Proposition 3.3., Lemma 3.4., Theorem 3.5., Corollary 3.10. and Theorem 3.11. from [O'Sh; 07(1)]):

Proposition 3.4. If $n \in \mathbb{N}^{*}, n=2^{k}-1$ such that $s(K) \geq 2^{k}$, then $s(A) \leq n$ if and only if $<1>\perp n \times T_{P}$ is isotropic.

Proof. From Proposition 3.1, supposing that $s(A) \leq n$, we have $-1=$ $\sum_{i=1}^{n} p_{i 1}^{2}+\beta_{2} \sum_{i=1}^{n} p_{i 2}^{2}+\ldots+\beta_{q} \sum_{i=1}^{n} p_{i q}^{2}$ such that

$$
\sum_{i=1}^{n} p_{i 1} p_{i 2}=\sum_{i=1}^{n} p_{i 1} p_{i 3}=\ldots=\sum_{i=1}^{n} p_{i 1} p_{i q}=0 .
$$

Since $s(K) \geq 2^{k}$, it results that $-1+\sum_{i=1}^{n} p_{i 1}^{2} \neq 0$. Putting $p_{2^{k} 1}=1$ and $p_{2^{k} 2}=$ $p_{2^{k} 3}=\ldots p_{2^{k} q}=0$, we have

$$
\begin{equation*}
0=\sum_{i=1}^{n+1} p_{i 1}^{2}+\beta_{2} \sum_{i=1}^{n+1} p_{i 2}^{2}+\ldots+\beta_{q} \sum_{i=1}^{n+1} p_{i q}^{2} \tag{3.1}
\end{equation*}
$$

and $\sum_{i=1}^{n+1} p_{i 1} p_{i 2}=\sum_{i=1}^{n+1} p_{i 1} p_{i 3}=\ldots=\sum_{i=1}^{n+1} p_{i 1} p_{i q}=0$. Multiplying (3.1.) by $\sum_{i=1}^{n+1} p_{i 1}^{2}$, since $\left(\sum_{i=1}^{n+1} p_{i 1}^{2}\right)^{2}$ is a square and using Lemma 3.3. for the products $\sum_{i=1}^{n+1} p_{i 2}^{2} \sum_{i=1}^{n+1} p_{i 1}^{2}, \ldots, \sum_{i=1}^{n+1} p_{i q}^{2} \sum_{i=1}^{n+1} p_{i 1}^{2}$, we obtain

$$
\begin{equation*}
0=\left(\sum_{i=1}^{n+1} p_{i 1}^{2}\right)^{2}+\beta_{2} \sum_{i=1}^{n+1} r_{i 2}^{2}+\ldots+\beta_{q} \sum_{i=1}^{n+1} r_{i q}^{2}, \tag{3.2}
\end{equation*}
$$

where $r_{i 2}, \ldots r_{i q} \in K, n+1=2^{k}, r_{12}=\sum_{i=1}^{n+1} p_{i 1} p_{i 2}=0, r_{13}=\sum_{i=1}^{n+1} p_{i 1} p_{i 3}=$ $0, \ldots, r_{1 q}=\sum_{i=1}^{n+1} p_{i 1} p_{i q}=0$. Therefore, in the sums $\sum_{i=1}^{n+1} r_{i 2}^{2}, \ldots, \sum_{i=1}^{n+1} r_{i q}^{2}$ we have n factors. From (3.2), we get that $<1>\perp n \times T_{P}$ is isotropic. \square

Proposition 3.6. If $s(K) \geq 2^{k}$, then the quadratic form $2^{k} \times T_{C}$ is isotropic if and only if $<1>\perp 2^{k} \times T_{P}$ is isotropic.

Proof. Since the form $<1>\perp 2^{k} \times T_{P}$ is a subform of the form $2^{k} \times T_{C}$, if the form $<1>\perp 2^{k} \times T_{P}$ is isotropic, we have that $2^{k} \times T_{C}$ is isotropic.

For the converse, supposing that $2^{k} \times T_{C}$ is isotropic, then we get

$$
\begin{equation*}
\sum_{i=1}^{2^{k}} p_{i}^{2}+\beta_{2} \sum_{i=1}^{2^{k}} p_{i 2}^{2}+\ldots+\beta_{q} \sum_{i=1}^{2^{k}} p_{i q}^{2}=0 \tag{3.3}
\end{equation*}
$$

where $p_{i}, p_{i j} \in K, i=1, \ldots, 2^{k}, j \in 2, \ldots, q$ and some of the elements p_{i} and $p_{i j}$ are nonzero.

If $p_{i}=0, \forall i=1, \ldots, 2^{k}$, then $2^{k} \times T_{P}$ is isotropic, therefore $<1>\perp 2^{k} \times T_{P}$ is isotropic.

If $\sum_{i=1}^{2^{k}} p_{i}^{2} \neq 0$, then, multiplying relation (3.3) with $\sum_{i=1}^{2^{k}} p_{i}^{2}$ and using Lemma 3.3. for the products $\sum_{i=1}^{2^{k}} p_{i 2}^{2} \sum_{i=1}^{2^{k}} p_{i}^{2}, \ldots, \sum_{i=1}^{2^{k}} p_{i q}^{2} \sum_{i=1}^{2^{k}} p_{i}^{2}$, we obtain

$$
\left(\sum_{i=1}^{2^{k}} p_{i}^{2}\right)^{2}+\beta_{2} \sum_{i=1}^{2^{k}} r_{i 2}^{2}+\ldots+\beta_{q} \sum_{i=1}^{2^{k}} r_{i q}^{2}=0
$$

then $<1>\perp 2^{k} \times T_{P}$ is isotropic.
Since $s(K) \geq 2^{k}$, the relation $\sum_{i=1}^{2^{k}} p_{i}^{2}=0$, for some $p_{i} \neq 0$, does not work. Indeed, supposing that $p_{1} \neq 0$, we obtain $-1=\sum_{i=2}^{2^{k}}\left(p_{i} p_{1}^{-1}\right)^{2}$, false.

Proposition 3.6. Let $n=2^{k}-1$ and $s(K) \geq 2^{k}$. Then $\underline{s}(A) \leq n$ if and only if $<1>\perp\left(n \times T_{P}\right)$ is isotropic or $(n+1) \times T_{P}$ is isotropic.

Proof. Since $\underline{s}(A) \leq s(A)$, if $<1>\perp\left(n \times T_{P}\right)$ is isotropic, then, from Proposition 3.4, we have $\underline{s}(A) \leq n$. If $(n+1) \times T_{P}$ is isotropic, then there are
the elements $p_{i j} \in K, i=1, \ldots, 2^{k}, j \in 2, \ldots, q$, some of them are nonzero, such that $\beta_{2} \sum_{i=1}^{2^{k}} p_{i 2}^{2}+\ldots+\beta_{q} \sum_{i=1}^{2^{k}} p_{i q}^{2}=0$. We obtain $0=\left(\beta_{2} p_{12}^{2}+\ldots+\beta_{q} p_{1 q}^{2}\right)+\ldots+$ $\left(\beta_{2} p_{n 2}^{2}+\ldots+\beta_{q} p_{n q}^{2}\right)$. Denoting $u_{i}=p_{i 2} f_{2}+\ldots+p_{i q} f_{q}$, we have $t\left(u_{i}\right)=0$ and $u_{i}^{2}=-n\left(u_{i}^{2}\right)=\beta_{2} p_{i 2}^{2}+\ldots+\beta_{q} p_{i q}^{2}$, for all $i \in\{1,2, \ldots, n\}$. Therefore $0=u_{1}^{2}+\ldots+u_{n}^{2}$. It results that $\underline{s}(A) \leq n$.

Conversely, if $\underline{s}(A) \leq n$, then there are the elements $y_{1}, \ldots, y_{n+1} \in A$, some of them must be nonzero, such that $0=y_{1}^{2}+\ldots+y_{n+1}^{2}$. As in the proof of Proposition 3.1., we obtain $0=\sum_{i=1}^{n+1} x_{i 1}^{2}+\beta_{2} \sum_{i=1}^{n+1} x_{i 2}^{2}+\ldots+\beta_{q} \sum_{i=1}^{n+1} x_{i q}^{2}$ and $\sum_{i=1}^{n+1} x_{i 1} x_{i 2}=\sum_{i=1}^{n+1} x_{i 1} x_{i 3} \ldots=\sum_{i=1}^{n+1} x_{i 1} x_{i n}=0$. If all $x_{i 1}=0$, then $(n+1) \times$ T_{P} is isotropic. If $\sum_{i=1}^{n+1} x_{i 1}^{2} \neq 0$, then $(n+1) \times T_{C}$ is isotropic, or multiplying the last relation with $\sum_{i=1}^{2^{k}} x_{i 1}^{2}$ and using Lemma 3.3. for the products $\sum_{i=1}^{2^{k}} x_{i 2}^{2} \sum_{i=1}^{2^{k}} x_{i 1}^{2}, \ldots, \sum_{i=1}^{2^{k}} x_{i q}^{2} \sum_{i=1}^{2^{k}} x_{i 1}^{2}$, we obtain that $<1>\perp\left(n \times T_{P}\right)$ is isotropic. Since $s(K) \geq 2^{k}$, the relation $\sum_{i=1}^{n+1} x_{i 1}^{2}=0$ for some $x_{i 1} \neq 0$ is false.

Proposition 3.7. If $-1 \notin K^{* 2}$, then $\underline{s}(A)=1$ if and only if either T_{C} or $2 \times T_{P}$ is isotropic.

Proof. We apply Proposition 3.6 for $k=1$.
Proposition 3.8. Let A be an algebra obtained by the Cayley-Dickson process. The following statements are true:
a) If -1 is a square in K, then $\underline{s}(A)=s(A)=1$.
b) If $-1 \notin K^{* 2}$, then $s(A)=1$ if and only if T_{C} is isotropic.

Proof. a) If $-1=a^{2} \in K \subset A$, then $\underline{s}(A)=s(A)=1$.
b) If $-1 \notin K^{* 2}$ and $s(A)=1$, then, there is an element $y \in A$ such that $-1=y^{2}$, with $y=y_{1}+y_{2} f_{2}+\ldots+y_{q} f_{q}$. Since $y^{2}+1=0$, then $y_{1}=t(y)=0$ and so $n(y)=1$. Since $2 T_{C}(y)=t\left(y^{2}\right)=-2 n(y)=-2$, we obtain $T_{C}(y)=-1$, then

$$
y^{2}=-1=\beta_{2} y_{2}^{2}+\ldots+\beta_{q} y_{q}^{2},
$$

therefore $0=1+\beta_{2} y_{2}^{2}+\ldots+\beta_{q} y_{q}^{2}$. It results that T_{C} is isotropic.

Conversely, if T_{C} is isotropic, then there is $y \in A, y \neq 0$, such that $T_{C}(y)=0=y_{1}^{2}+\beta_{2} y_{2}^{2}+\ldots+\beta_{q} y_{q}^{2}$. If $y_{1}=0$, then $T_{C}(y)=T_{P}(y)=0$, so $y=0$, which is false. If $y_{1} \neq 0$, then $-1=\left(\left(\frac{y_{2}}{y_{1}}\right) f_{2}+\ldots+\left(\frac{y_{q}}{y_{1}}\right) f_{q}\right)^{2}$, obtaining $s(A)=1$.

Remark 3.9. Using the above notations, if the algebra A is an algebra obtained by the Cayley-Dickson process, of dimension greater than 2 and if n_{C} is isotropic, then $s(A)=\underline{s}(A)=1$. Indeed, if -1 is a square in K, the statement results from Proposition 3.8.a). If $-1 \notin K^{* 2}$, since $n_{C}=<1>\perp$ $-T_{P}$ and n_{C} is a Pfister form, we obtain that $-T_{P}$ is isotropic, therefore T_{C} is isotropic. Using Proposition 3.8., we have that $s(A)=\underline{s}(A)=1$.

Proposition 3.10. Let A be an algebra over a field K obtained by the Cayley-Dickson process, of dimension $q=2^{t}, T_{C}$ and T_{P} be its trace and pure trace forms. If $t \geq 2$ and $2^{k} \times T_{P}$ is isotropic over $K, k \geqslant 0$, then $\left(1+\left[\frac{2}{3} 2^{k}\right]\right) \times T_{P}$ is isotropic over K.

Proof. If $2^{k} \times T_{P}$ is isotropic then $2^{k} \times-T_{P}$ is isotropic. Since $2^{k} \times$ $n_{C}=2^{k} \times\left(<1>\perp-T_{P}\right)$ and n_{C} is a Pfister form, from Proposition 1.6.(ii), we have $2^{k} \times n_{C}$ is a Pfister form. Since $2^{k} \times-T_{P}$ is a subform of $2^{k} \times n_{C}$, it results that $2^{k} \times n_{C}$ is isotropic, then it is hyperbolic. Therefore $2^{k} \times n_{C} \simeq<1,1, \ldots, 1,-1, \ldots,-1>\left(\right.$ there are 2^{k+t-1} of -1 and 2^{k+t-1} of 1). Multiplying by -1 , we have that $2^{k} \times\left(<-1>\perp T_{P}\right)$ is hyperbolic, then has a totally isotropic subspace of dimension 2^{k+t-1}. It results that each subform of the form $2^{k} \times\left(<-1>\perp T_{P}\right)$ of dimension greater or equal to 2^{k+t-1} is isotropic. Since $\left(2^{t}-1\right)\left(1+\left[\frac{2}{3} 2^{k}\right]\right)>\left(2^{t}-1\right)\left(\frac{2}{3} 2^{k}\right)>2^{t-1} 2^{k}=2^{k+t-1}$, then $\left(1+\left[\frac{2}{3} 2^{k}\right]\right) \times T_{P}$ is isotropic over K.

Proposition 3.11. Let A be an algebra over a field K obtained by the Cayley-Dickson process, of dimension $q=2^{t}, T_{C}$ and T_{P} be its trace and pure trace forms. Let $n=2^{k}-1, s(K) \geq 2^{k}$. If $t \geq 2$ and $k>1$ then $\underline{s}(A) \leq 2^{k}-1$ if and only if $<1>\perp\left(2^{k}-1\right) \times T_{P}$ is isotropic.

Proof. We use Proposition 3.6. and we have that $\underline{s}(A) \leq 2^{k}-1$ if and only if $<1>\perp\left(n \times T_{P}\right)$ is isotropic or $(n+1) \times T_{P}$ is isotropic. In this case, we prove that $2^{k} \times T_{P}$ is isotropic implies $<1>\perp\left(2^{k}-1\right) \times T_{P}$ is isotropic. If $2^{k} \times T_{P}$ isotropic over K then $\left(1+\left[\frac{2}{3} 2^{k}\right]\right) \times T_{P}$ is isotropic over K, from Proposition 3.10. If $k \geq 2$, then $\left(1+\left[\frac{2}{3} 2^{k}\right]\right) \leq 2^{k}-1$ and we have that $\left(1+\left[\frac{2}{3} 2^{k}\right]\right) \times T_{P}$ is an isotropic subform of the form $<1>\perp\left(2^{k}-1\right) \times T_{P}$. \square

Proposition 3.12. Let K be a field such that $s(K) \geq 2^{k}$.
i) If $k \geq 2$, then $\underline{s}(A) \leq 2^{k}-1$ if and only if $s(A) \leq 2^{k}-1$.
ii) If $\underline{s}(A)=n$ and $k \geq 2$ such that $2^{k-1} \leq n<2^{k}$, then $s(A) \leq 2^{k}-1$.
iii) If $\underline{s}(A)=1$ then $s(A) \leq 2$.

Proof. i) For $k \geq 2$, then $\underline{s}(A) \leq 2^{k}-1$ if and only if $<1>\perp$ $\left(\left(2^{k}-1\right) \times T_{P}\right)$ is isotropic. This is equivalent with $s(A) \leq 2^{k}-1$.
ii) If $n<2^{k}, k \geq 2$, it results $n \leq 2^{k}-1$, and we apply i).
iii) We have that $\underline{s}(A)=1$ if and only if $<1>\perp T_{P}=T_{C}$ is isotropic or $2 \times T_{P}$ is isotropic. If $2 \times T_{P}$ is isotropic, then it is universal and represents -1 . Therefore $s(A) \leq 2$. If T_{C} is isotropic, then T_{P} is isotropic, then is universal and represents -1 . We obtain $s(A)=1$.

Proposition 3.13. With the above notations, we have:
i) For $k \geq 2$, if $\underline{s}(A)=2^{k}-1$ then $s(A)=2^{k}-1$.
ii) For $k \geq 2$, if $s(A)=2^{k}$ then $\underline{s}(A)=2^{k}$.
iii) For $k \geq 1$, if $s(A)=2^{k}+1$ then $\underline{s}(A)=2^{k}+1$ or $\underline{s}(A)=2^{k}$.

Proof. i) From Proposition 3.12., if $\underline{s}(A)=2^{k}-1$ then $s(A) \leq 2^{k}-1$. Since $\underline{s}(A) \leq s(A)$, therefore $s(A)=2^{k}-1$.
ii) If $\underline{s}(A) \leq 2^{k}-1$ we have $s(A) \leq 2^{k}-1$, false.
iii) For $k \geq 1$, if $s(A)=2^{k}+1$, since $\underline{s}(A) \leq s(A)$, we obtain that $\underline{s}(A) \leq 2^{k}+1$. If $\underline{s}(A) \leq 2^{k}-1$, then $s(A) \leq 2^{k}-1$, false.

In the following, we give an example of division algebra of dimension 2^{t} and prescribed level 2^{k}.

Theorem 3.14 . Let K be a field such that $s(K)=2^{k}, X$ be an algebraically independent indeterminate over K, D be a finite-dimensional division K-algebra with scalar involution ${ }^{-}$such that $s(D)=s(K), D_{1}=$ $K(X) \otimes_{K} D$ and $B=\left(D_{1}, X\right)$. Then B is a division algebra over $K(X)$ such that $s(B)=s(K)$.

Proof. By straightforward calculations, using the same arguments like in Brown's construction, see Section 2, we obtain that B is a division algebra.

For the second part, since $s(B) \leq s(K)=n=2^{k}$, we suppose that $s(B) \leq n-1$. It results that $-1=y_{1}^{2}+\ldots+y_{n-1}^{2}$, where $y_{i} \in B, y_{i}=$ $a_{i 1}+a_{i 2} u, u^{2}=X, a_{i 1}, a_{i 2} \in D_{1}$, some of y_{i} are nonzero. We have $y_{i}^{2}=$ $a_{i 1}^{2}+X \bar{a}_{i 2} a_{i 2}+\left(a_{i 2} \bar{a}_{i 1}+a_{i 2} a_{i 1}\right) u, i \in\{1,2, \ldots n-1\}$. It follows that $-1=\sum_{i=1}^{n-1} a_{i 1}^{2}+X \sum_{i=1}^{n-1} \bar{a}_{i 2} a_{i 2}$, where $\psi=1 \otimes \varphi$ is involution in $D_{1}, \psi(x)=\bar{x}$. We
remark that $\bar{a}_{i 2} a_{i 2} \in K(X), i \in\{1, \ldots, n-1\}$. If $a_{i 1}=\sum_{j=1}^{m} \frac{p_{j i 1}(X)}{q_{j i 1}(X)} \otimes b_{j}$, with $b_{j} \in D, \frac{p_{j i 1}(X)}{q_{j i 1}(X)} \in K(X), i \in\{1,2, \ldots, n-1\}, j \in\{1,2, \ldots, m\}$. $a_{i 2}=\sum_{j=1}^{m} \frac{r_{j i 2}(X)}{w_{j i 2}(X)} \otimes d_{j}$, with $d_{j} \in D, \frac{r_{j i 2}(X)}{w_{j i 2}(X)} \in K(X)$, $i \in\{1,2, \ldots, n-1\}, j \in\{1,2, \ldots, m\}$, it results

$$
-1=\sum_{i=1}^{n-1}\left(\sum_{j=1}^{m} \frac{p_{j i 1}(X)}{q_{j i 1}(X)} \otimes b_{j}\right)^{2}+X \sum_{i=1}^{n-1}\left(\sum_{j=1}^{m} \frac{r_{j i 2}(X)}{w_{j i 2}(X)} \otimes d_{j}\right)\left(\sum_{j=1}^{m} \frac{r_{j i 2}(X)}{w_{j i 2}(X)} \otimes \bar{d}_{j}\right) .
$$

After clearing denominators, we obtain

$$
\begin{equation*}
-v^{2}(X)=\sum_{i=1}^{n-1}\left(\sum_{j=1}^{m} p_{j i 1}^{\prime}(X) \otimes b_{j}\right)^{2}+X \sum_{i=1}^{n-1}\left(\sum_{j=1}^{m} r_{j i 2}^{\prime}(X) \otimes d_{j}\right)\left(\sum_{j=1}^{m} r_{j i 2}^{\prime} \otimes \bar{d}_{j}\right), \tag{3.4.}
\end{equation*}
$$

where $v(X)=\operatorname{lcm}\left\{q_{j i 1}(X), w_{j i 2}(X)\right\}, i \in\{1,2, \ldots, n-1\}, j \in\{1,2, \ldots, m\}$ and $p_{j i 1}^{\prime}(X)=v(X) p_{j i 1}(X), r_{j i 2}^{\prime}(X)=v(X) r_{j i 2}(X)$, $i \in\{1, \ldots, n-1\}, j \in\{1,2, \ldots, m\}$. We can write

$$
\begin{equation*}
v(X)=v_{q} X^{q}+v_{q+1} X^{q+1}+\ldots \ldots, v_{q} \in K, v_{q} \neq 0 \tag{3.5.}
\end{equation*}
$$

$$
\sum_{j=1}^{m} p_{j i 1}^{\prime}(X) \otimes b_{j}=\alpha_{r_{i}} X^{r_{i}}+\alpha_{r_{i}+1} X^{r_{i}+1}+\ldots ., \alpha_{r_{i}}, \alpha_{r_{i}+1}, \ldots . \in D, \alpha_{r_{i}} \neq 0
$$

$$
\begin{equation*}
\sum_{j=1}^{m} r_{j i 2}^{\prime}(X) \otimes d_{j}=\beta_{s_{i}} X^{s_{i}}+\beta_{s_{i}+1} X^{s_{i}+1}+\ldots . ., \beta_{s_{i}}, \beta_{s_{i}+1}, \ldots \in D, \beta_{s_{i}} \neq 0 \tag{3.6.}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{j=1}^{m} r_{j i 2}^{\prime} \otimes \bar{d}_{j}=\bar{\beta}_{s_{i}} X^{s_{i}}+\bar{\beta}_{s_{i}+1} X^{s_{i}+1}+\ldots ., \bar{\beta}_{s_{i}}, \bar{\beta}_{s_{i}+1}, \ldots \in D, \bar{\beta}_{s_{i}} \neq 0 \tag{3.8.}
\end{equation*}
$$

By (3.4.), if $s=\min _{i=\overline{1, n-1}} s_{i}, r=\min _{i=\overline{1, n-1}} r_{i}$, in the left side the minimum degree is $2 q$ (q possible zero) in the right side, the first sum has the minimum degree
$2 r$ (r possible zero) and the second term has the minimum degree $2 s+1$. It results $q=r$ and $2 r<2 s+1$. Replacing the relations (3.5.), (3.6.) , (3.7.) , (3.8.) in the relation (3.4.), if $r>0$, we divide relation (3.4.) by $X^{2 r}$, such that, in the new obtained relation the minimum degree in the both sides is zero. Putting $X=0$ in this new relation, we have

$$
-v_{q}^{2}=\sum_{i=1}^{n-1} \alpha_{r_{i}}^{2}, \quad \alpha_{r_{i}} \in D
$$

We obtain

$$
-1=\sum_{i=1}^{n-1}\left(\frac{\alpha_{r_{i}}}{v_{q}}\right)^{2} .
$$

It follows that $s(D) \leq n-1$, false.
Corollary 3.15. Let K be a field such that $s(K) \geq 2^{k}, X$ be an algebraically independent indeterminate over K, D be a finite-dimensional division K-algebra with scalar involution - such that $s(D)<\infty, D_{1}=$ $K(X) \otimes_{K} D$ and $B=\left(D_{1}, X\right)$. Then:
i) B is a division algebra.
ii) $s(B)=s(D)$.
iii) $\underline{s}(B)=\underline{s}(D)$.

Proof. i) and ii) result from Theorem 3.14.
iii) We prove that $\underline{s}(B)=\underline{s}(D)$. Since $\underline{s}(B) \leq s(B)=s(D)$, then $\underline{s}(B) \leq \underline{s}(D)=m \leq 2^{k}$, we suppose that $\underline{s}(B) \leq m-1$.

It results $0=y_{1}^{2}+\ldots+y_{m}^{2}$, where $y_{i} \in B$. Using the same notations like in Theorem 3.14, after straightforward calculations, we obtain $0=\sum_{i=1}^{m}\left(\sum_{j=1}^{l} p_{j i 1}^{\prime}(X) \otimes\right.$ $\left.b_{j}\right)^{2}+X \sum_{i=1}^{m}\left(\sum_{j=1}^{l} r_{j i 2}^{\prime}(X) \otimes d_{j}\right)\left(\sum_{j=1}^{l} r_{j i 2}^{\prime} \otimes \bar{d}_{j}\right)$. It results $0=\sum_{i=1}^{m} \alpha_{r_{i}}^{2}, \quad \alpha_{r_{i}} \in D$, therefore $\underline{s}(D) \leq m-1$, false. Then $\underline{s}(B)=\underline{s}(D)$.

Remark 3.16. Using Example 4.2. from [O' Sh; 07(1)], we have that, if K_{0} is a formally real field, then the field $F_{0}=K_{0}\left(\left(2^{k}+1\right) \times<1>\right)$ has the level 2^{k}. If $D=A_{0}=F_{0}, K=F_{0}, D_{1}=K\left(X_{1}\right) \otimes_{K} A_{0}$, from Brown's construction and Theorem 3.14., the $K\left(X_{1}\right)$-algebra B, obtained by application of the Cayley-Dickson process with $\alpha=X_{1}$ to the $K\left(X_{1}\right)$-algebra D_{1}, is a division algebra of dimension 2 and level 2^{k}.

By induction, supposing that $D=A_{t-1}$ is a division algebra of dimension 2^{t-1} and level 2^{k} over the field $K=F_{0}\left(X_{1}, \ldots, X_{t-1}\right)$, then, if $D=A_{t-1}$, $D_{1}=K\left(X_{t}\right) \otimes_{K} A_{t-1}$ and B is the $K\left(X_{t}\right)$-algebra obtained by application of the Cayley-Dickson process with $\alpha=X_{t}$ to the $K\left(X_{t}\right)$-algebra D_{1}, then B is a division algebra of dimension 2^{t} and level 2^{k}.

Looking to the field F_{0} like as an F_{0}-algebra, then the field F_{0} has the same level and sublevel. Using above proposition, we have that $s(B)=\underline{s}(B)$ $=2^{k}$. This is an example of a division algebra of level and sublevel 2^{k} and dimension $2^{t}, t, k \in \mathbb{N}^{*}$.

4. Algebras of sublevels $2^{k}+1, k \in \mathbb{N}^{*}$ obtained by the CayleyDickson process

Let F_{0} be a formally real field. In their paper [La, Ma; 01], Laghribi and Mammone proved that the quaternion algebras $Q(m)=\left(\frac{X, Y}{F}\right) \otimes_{F} K$ are division algebras of level m, where $m=2^{k}+1, k \geq 0, F=F_{0}(X, Y)$, $K=F\left(<1>\perp m \times T_{P}^{Q}\right), Q=\left(\frac{X, Y}{F}\right)$ is a quaternion algebra over F and T_{P}^{Q} its pure trace form over F and in her paper [$\left.\mathrm{Pu} ; 05\right]$, S. Pumpluen proved that $O(m)=\left(\frac{X, Y, Z}{F}\right) \otimes_{F} K$ are octonion division algebras of level m, where $m=2^{k}+1, k \geq 0, F=F_{0}(X, Y, Z), K=F\left(<1>\perp m \times T_{P}^{O}\right), O=\left(\frac{X, Y, Z}{F}\right)$ is an octonion algebra over F and T_{P}^{O} its pure trace form over F.

In his paper [O'Sh; 07(1)], Proposition 4.7., J. O'Shea proved that the octonion algebra $O(5)$ is a division algebra of sublevel 5 and, in [O'Sh; 07(2)], he conjectured that the relations

$$
\begin{equation*}
s(Q(m))=\underline{s}(Q(m))=m \tag{4.1.}
\end{equation*}
$$

and

$$
\begin{equation*}
s(O(m))=\underline{s}(O(m))=m . \tag{4.2.}
\end{equation*}
$$

are true, but he proved them only for $m=2^{k}, k \in \mathbb{N}$ and $m \leq 7$ for the octonions and $m=2^{k}, k \in \mathbb{N}$ and $m \leq 3$ for the quaternions.

Starting from some ideas given in the mentioned works, especially in the Proposition 4.7. from [O'Sh; 07(1)] and in the proof of Theorem 3.3. from [O'Sh; 07(2)], in the following, we prove that the quaternion algebra $Q(5)$ has sublevel 5 ., and finally, we prove that, for $n=2^{k}+1, k \in \mathbb{N}$, relations (4.1) and (4.2.) hold.

Proposition 4.1. Let x be a transcendental element over K, V a vector space over $K, \operatorname{dim} V \geq 3$. Let $q: V \rightarrow K$ be a regular quadratic irreducible form. We have that $K(q)(x)=K(x)(q)$, where $K(q)$ is the functions field of q over K and $K(x)(q)$ is the functions field of q over $K(x)$.

Proof. Suppose that q has the diagonal representation $<a_{1}, a_{2}, \ldots, a_{n}>$. The function field of q over K is the quotient field of $K\left[x_{2}, \ldots, x_{n}\right] /\left(a_{1}+a_{2} x_{2}^{2}+\ldots+a_{n} x_{n}^{2}\right)$. This field is $K\left(x_{2}, \ldots, x_{n-1}\right)(\sqrt{-\alpha})$, where $\alpha=a_{n}^{-1}\left(a_{1}+a_{2} x_{2}^{2}+\ldots+a_{n-1} x_{n-1}^{2}\right)$. Since q is irreducible over $K(x)$, its functions field over $K(x)$ is the quotient field of

$$
K(x)\left[x_{2}, \ldots, x_{n}\right] /\left(a_{1}+a_{2} x_{2}^{2}+\ldots+a_{n} x_{n}^{2}\right) .
$$

This field is $K(x)\left(x_{2}, \ldots, x_{n-1}\right)(\sqrt{-\alpha})$, where $\alpha=a_{n}^{-1}\left(a_{1}+a_{2} x_{2}^{2}+\ldots+a_{n-1} x_{n-1}^{2}\right)$. Since $K(x)\left(x_{2}, \ldots, x_{n-1}\right)(\sqrt{-\alpha})=K\left(x_{2}, \ldots, x_{n-1}\right)(\sqrt{-\alpha})(x)$, it results that $K(q)(x)=K(x)(q)$.

Theorem 4.2. Let $F=F_{0}(X, Y), K=F\left(<1>\perp 5 \times T_{P}^{Q}\right)$. With the above notations, let Z be an algebraically independent element over F. Let $Q_{5}^{\prime}=Q(5) \otimes_{K} K(Z)$ and $O_{5}^{\prime}=\left(Q_{5}^{\prime}, Z\right)$. Then the following statements are true:
i) The algebra O_{5}^{\prime} is a division algebra of level and sublevel 5 .
ii) The algebra $Q(5)$ is a division algebra of level and sublevel 5 .

Proof. i) Denoting $\varphi=<1>\perp 5 \times T_{P}^{Q}, \quad$ where $T_{P}^{Q} \simeq<X, Y,-X Y>$, from the above proposition, it results that

$$
K(Z)=F\left(<1>\perp 5 \times T_{P}^{Q}\right)(Z)=F(Z)\left(<1>\perp 5 \times T_{P}^{Q}\right)
$$

Therefore $K(Z)=F(\varphi)(Z)=F(Z)(\varphi)$. Since the algebra $Q(5)$ has the level 5, using Proposition 3.16., we obtain that the algebra O_{5}^{\prime} is a division algebra and has level 5 . We prove that the algebra O_{5}^{\prime} has sublevel 5. Suppose $\underline{s}\left(O_{5}^{\prime}\right) \leq 4$. Then

$$
\begin{equation*}
\sum_{i=1}^{5} c_{i}^{2}+\sum_{i=1}^{5} p_{i}^{2}=0 \tag{4.1.}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{i=1}^{5} c_{i} p_{i}=0 \tag{4.2.}
\end{equation*}
$$

where $c_{i} \in F(Z)(\varphi), p_{i} \in \mathcal{P}, \mathcal{P}$ the $F(Z)(\varphi)$-vector space spanned by the pure octonions.

Case 1. $c_{i}=0$, for all $i \in\{1,2, \ldots, 5\}$. From (4.1.), it results that $5 \times T_{P}^{O}$ is isotropic over $F(Z)(\varphi)$.

Case 2. If there is at least an element i such that $c_{i} \neq 0$, relation (4.2.) implies that we get a 4 -dimensional $F(Z)(\varphi)$ - vector subspace V of \mathcal{P}, containing $p_{1}, p_{2}, p_{3}, p_{4}, p_{5}$. Let $\beta: V \rightarrow F(Z)(\varphi), \beta(p)=p^{2}$. Therefore β is a 4 dimensional subform of $T_{P}^{O} \simeq<X, Y,-X Y, Z,-X Z,-X Y,-Y Z, X Y Z>$ and, from (4.1.), the form $\gamma=5 \times(<1>\perp \beta)$ is isotropic over $F(Z)(\varphi)$. We denote $\delta=<1>\perp \beta$. Repeated applications of Springer's Theorem implies that $5 \times T_{P}^{O}, \gamma$ and $8 \times\left(<-1>\perp T_{P}^{O}\right)$ are anisotropic over $F(Z)$.

To prove that $\underline{s}\left(O_{5}^{\prime}\right) \nsubseteq 4$ it is sufficient to show that $5 \times T_{P}^{O}$ and γ are anisotropic over $F(Z)(\varphi)$.

If $5 \times T_{P}^{O}$ is isotropic over $F(Z)(\varphi)$, since the form $8 \times(<-1>\perp$ $\left.T_{P}^{O}\right)$ is a Pfister form, then becomes hyperbolic over $F(Z)(\varphi)$. For each $a \in D_{F(Z)}\left(8 \times\left(<-1>\perp T_{P}^{O}\right)\right) a \varphi$ is a subform of $8 \times\left(<-1>\perp T_{P}^{O}\right)$, from Cassels-Pfister Theorem. Since $X \in D_{F(Z)}\left(8 \times\left(<-1>\perp T_{P}^{O}\right)\right)$, using Lemma 3.7., p.8, from [Sch; 85], it results that

$$
X \varphi \simeq<X>\perp 5 \times<1, X Y,-Y, X Z,-Z,-X Y Z, Y Z>
$$

is a subform of $8 \times\left(<-1>\perp T_{P}^{O}\right)$, therefore $5 \times<1>$ is a subform of $8 \times\left(<-1>\perp T_{P}^{O}\right)$, false. Hence $5 \times T_{P}^{O}$ is anisotropic over $F(Z)(\varphi)$.

If γ is isotropic over $F(Z)(\varphi)$, from Proposition 1.3., we have

$$
D_{F(Z)}(\varphi) D_{F(Z)}(\varphi) \subseteq D_{F(Z)}(\gamma) D_{F(Z)}(\gamma)
$$

Since $T_{P}^{Q} \simeq<X, Y,-X Y>$, it results that $X, Y,-X Y \in D_{F(Z)}(\varphi)$. Therefore $X, Y,-X Y \in D_{F(Z)}(\varphi) D_{F(Z)}(\varphi)$, hence $X, Y,-X Y \in D_{F(Z)}(\gamma) D_{F(Z)}(\gamma)$. We prove that $\langle X\rangle,\langle Y\rangle,\langle-X Y\rangle$ are subforms of β. If $<X\rangle$ is not a subform of β, then we find a multiple of X in $D_{F(Z)}(\gamma) D_{F(Z)}(\gamma)$ of the form $-X \sum_{i=1}^{m} A_{i}^{2}, A_{i} \in F(Z)$.(For example, if $\beta \simeq<Y,-X Y, Z,-X Z>$, it results $Y,-X Y, Z,-X Z \in D_{F(Z)}(\gamma)$, then $\left.-X Y^{2} \in D_{F(Z)}(\gamma) D_{F(Z)}(\gamma)\right)$. From Springer's Theorem, we have that γ is anisotropic over $F(Z)$. From the same Theorem, it results that $m \times \delta$ is anisotropic over $F(Z)$ for all $m \in \mathbb{N}^{*}$, therefore δ is strongly anisotropic over $F(Z)$. From Remark 1.1., we have that $D_{F(Z)}(\gamma) \subset P_{0}=\left\{\alpha / \alpha=0\right.$ or α is represented by $\left.n \times \delta, n \in \mathbb{N}^{*}\right\}, P_{0}$ is a q-preordering and there is a q-ordering P such that $P_{0} \subset P$ or $-P_{0} \subset P$.

Therefore $D_{F(Z)}(\gamma) D_{F(Z)}(\gamma) \subset P \cdot P \subset P$. If X is positive, then $-X \sum_{i=1}^{5} A_{i}^{2}$ is negative and if X is negative, then $-X \sum_{i=1}^{5} A_{i}^{2}$ is positive, false.

In the same way, we prove that $\langle Y\rangle,\langle-X Y\rangle$ are subforms of β, therefore $X, Y,-X Y \in D_{F(Z)}(\gamma)$. Since $1 \in D_{F(Z)}(\gamma)$, we have that $1 \in$ $P_{0} \subset P$, therefore $X, Y,-X Y$ are positive, false. We obtain γ is anisotropic over $F(Z)(\varphi)$. It results that $\underline{s}\left(O_{5}^{\prime}\right)=5$.
ii) From i), using Corollary 3.15., we have $\underline{s}(Q(5))=\underline{s}\left(O_{5}^{\prime}\right)=5$.

Theorem 4.3. Let $F=F_{0}(X, Y)$ and $Q=\left(\frac{X, Y}{F}\right)$ be a quaternion algebra over F. Let $K=F\left(<1>\perp m \times T_{P}^{Q}\right)$. The quaternion algebra $Q(m)=\left(\frac{X, Y}{F}\right) \otimes_{F} K$ is a quaternion division algebra of level and sublevel m, where $m=2^{k}+1, k \geq 0$, and T_{P}^{Q} its pure trace form over F.

Proof. Since for $k \leq 1$ the result is proved in [$\left.\mathrm{O}^{\prime} \mathrm{Sh} ; 07(2)\right]$ and for $k=2$ we prove the result in the above proposition, in the following, we suppose that $k \geq 3$. We denote $\varphi=<1>\perp\left(2^{k}+1\right) \times T_{P}^{Q}$, where $T_{P}^{Q} \simeq<X, Y,-X Y>$. Let Z_{3}, \ldots, Z_{k+1} be algebraic independent elements over $F=F_{0}(X, Y), K=F\left(<1>\perp\left(2^{k}+1\right) \times T_{P}^{Q}\right)$. From Proposition 4.1., it results that

$$
\begin{aligned}
K\left(Z_{3}, \ldots, Z_{k+1}\right) & =F\left(<1>\perp\left(2^{k}+1\right) \times T_{P}^{Q}\right)\left(Z_{3}, \ldots, Z_{k+1}\right)= \\
& =F\left(Z_{3}, \ldots, Z_{k+1}\right)\left(<1>\perp\left(2^{k}+1\right) \times T_{P}^{Q}\right)= \\
& =F_{0}\left(Z_{1}, \ldots, Z_{k+1}\right)\left(<1>\perp\left(2^{k}+1\right) \times T_{P}^{Q}\right)
\end{aligned}
$$

Let $Q_{m}^{\prime}=Q(m) \otimes_{K} K\left(Z_{3}\right)$ and $O_{m}^{\prime}=\left(Q_{m}^{\prime}, Z_{3}\right)$ be an octonion algebra as in Brown's construction. Then the algebra O_{m}^{\prime} is a division algebra of dimension 2^{3} and of level m. We repeat this construction until we obtain a division algebra A_{t} of dimension $2^{t}, t=k+1$, like in the Brown's construction. Let $T_{P}^{A_{t}}$ its pure trace form. From Corollary 3.15., the algebra A_{t} has level m. We suppose that the sublevel is at most $m-1=2^{k}$.

Then

$$
\begin{equation*}
\sum_{i=1}^{m} c_{i}^{2}+\sum_{i=1}^{m} p_{i}^{2}=0 \tag{4.3.}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{i=1}^{m} c_{i} p_{i}=0 \tag{4.4.}
\end{equation*}
$$

where $c_{i} \in F_{0}\left(Z_{1}, \ldots, Z_{k+1}\right)(\varphi), \varphi=<1>\perp\left(2^{k}+1\right) \times T_{P}^{A_{t}}, p_{i} \in \mathcal{P}, \mathcal{P}$ the $F_{0}\left(Z_{1}, \ldots, Z_{k+1}\right)(\varphi)$-vector space spanned by the pure elements in A_{t}.

Case 1. $c_{i}=0$, for all $i \in\{1,2, \ldots, m-1\}$. From (4.3.), it results that $\left(2^{k}+1\right) \times T_{P}^{A_{t}}$ is isotropic over $F_{0}\left(Z_{1}, \ldots, Z_{k+1}\right)(\varphi)$.

Case 2. If there is at least an element i such that $c_{i} \neq 0$, relation (4.4.) implies that we get a m-1-dimensional $F_{0}\left(Z_{1}, \ldots, Z_{k+1}\right)(\varphi)$ - vector subspace V of \mathcal{P}, containing $p_{1}, p_{2}, \ldots, p_{m}$. Let $\beta: V \rightarrow F_{0}\left(Z_{1}, \ldots, Z_{k+1}\right)(\varphi), \beta(p)=$ p^{2}. Therefore β is a $m-1$ dimensional subform of $T_{P}^{A_{t}}$ and, from (4.4.), the form $\gamma=\left(2^{k}+1\right) \times(<1>\perp \beta)$ is isotropic over $F_{0}\left(Z_{1}, \ldots, Z_{k+1}\right)(\varphi)$. We denote $\delta=<1>\perp \beta$. Repeated applications of Springer's Theorem implies that $\left(2^{k}+1\right) \times T_{P}^{A_{t}}, \gamma$ and $2^{k+1} \times\left(<-1>\perp T_{P}^{A_{t}}\right)$ are anisotropic over $F_{0}\left(Z_{1}, \ldots, Z_{k+1}\right)$.

To prove that $\underline{s}\left(A_{t}\right) \not \leq m-1$ it is sufficient to show that $\left(2^{k}+1\right) \times T_{P}^{A_{t}}$ and γ are anisotropic over $F_{0}\left(Z_{1}, \ldots, Z_{k+1}\right)(\varphi)$.

If $\left(2^{k}+1\right) \times T_{P}^{A_{t}}$ is isotropic over $F_{0}\left(Z_{1}, \ldots, Z_{k+1}\right)(\varphi)$, since the form $2^{k+1} \times\left(<-1>\perp T_{P}^{A_{t}}\right)$ is a Pfister form, then this form becomes hyperbolic over $F_{0}\left(Z_{1}, \ldots, Z_{k+1}\right)(\varphi)$. For any $a \in D_{F_{0}\left(Z_{1}, \ldots, Z_{k+1}\right)}\left(2^{k+1} \times\left(<-1>\perp T_{P}^{A_{t}}\right)\right)$ $a \varphi$ is a subform of $2^{k+1} \times\left(<-1>\perp T_{P}^{A_{t}}\right)$, from Cassels-Pfister Theorem. Since $X=Z_{1} \in D_{F_{0}\left(Z_{1}, \ldots, Z_{k+1}\right)}\left(2^{k+1} \times\left(<-1>\perp T_{P}^{A_{t}}\right)\right)$, it results that

$$
X \varphi \simeq<X>\perp \times\left(2^{k}+1\right)<1, \ldots \ldots \ldots
$$

is a subform of $2^{k+1} \times\left(<-1>\perp T_{P}^{A_{t}}\right)$, therefore $\left(2^{k}+1\right) \times<1>$ is a subform of $2^{k+1} \times\left(<-1>\perp T_{P}^{A_{t}}\right)$, false. Hence $\left(2^{k}+1\right) \times T_{P}^{A_{t}}$ is anisotropic over $F_{0}\left(Z_{1}, \ldots, Z_{k+1}\right)(\varphi)$.

If γ is isotropic over $F_{0}\left(Z_{1}, \ldots, Z_{k+1}\right)(\varphi)$, from Proposition 1.3., we have

$$
D_{F_{0}\left(Z_{1}, \ldots, Z_{k+1}\right)}(\varphi) D_{F_{0}\left(Z_{1}, \ldots, Z_{k+1}\right)}(\varphi) \subseteq D_{F_{0}\left(Z_{1}, \ldots, Z_{k+1}\right)}(\gamma) D_{F_{0}\left(Z_{1}, \ldots, Z_{k+1}\right)}(\gamma)
$$

Since $T_{P}^{Q} \simeq<X, Y,-X Y>$, it results that

$$
X, Y,-X Y \in D_{F_{0}\left(Z_{1}, \ldots, Z_{k+1}\right)}(\varphi) D_{F_{0}\left(Z_{1}, \ldots, Z_{k+1}\right)}(\varphi) .
$$

We prove that $\langle X\rangle,\langle Y\rangle,\langle-X Y\rangle$ are subforms of β. If $\langle X\rangle$ is not a subform of β, then we find a multiple of X in $D_{F_{0}\left(Z_{1}, \ldots, Z_{k+1}\right)}(\gamma) D_{F_{0}\left(Z_{1}, \ldots, Z_{k+1}\right)}(\gamma)$
of the form $-X \sum_{i=1}^{r} A_{i}^{2}, A_{i} \in F_{0}\left(Z_{1}, \ldots, Z_{k+1}\right)$. From Springer's Theorem, we have that γ is anisotropic over $F_{0}\left(Z_{1}, \ldots, Z_{k+1}\right)$. From the same Theorem, it results that $m \times \delta$ is anisotropic over $F_{0}\left(Z_{1}, \ldots, Z_{k+1}\right)$ for all $m \in \mathbb{N}^{*}$, therefore δ is strongly anisotropic over $F_{0}\left(Z_{1}, \ldots, Z_{k+1}\right)$. From Remark 1.1., we have that $D_{F_{0}\left(Z_{1}, \ldots, Z_{k+1}\right)}(\gamma) \subset P_{0}=\left\{\alpha / \alpha=0\right.$ or α is represented by $n \times \delta, n \in \mathbb{N}^{*}$ $\}, P_{0}$ is a q-preordering and there is a q-ordering P such that $P_{0} \subset P$ or $-P_{0} \subset P$. Therefore $D_{F_{0}\left(Z_{1}, \ldots, Z_{k+1}\right)}(\gamma) D_{F_{0}\left(Z_{1}, \ldots, Z_{k+1}\right)}(\gamma) \subset P \cdot P \subset P$. If X is positive, then $-X \sum_{i=1}^{r} A_{i}^{2}$ is negative and if X is negative, then $-X \sum_{i=1}^{r} A_{i}^{2}$ is positive, false.

In the same way, we prove that $\langle Y\rangle,\langle-X Y\rangle$ are subforms of β, therefore $X, Y,-X Y \in D_{F_{0}\left(Z_{1}, \ldots, Z_{k+1}\right)}(\gamma)$. Since $1 \in D_{F_{0}\left(Z_{1}, \ldots, Z_{k+1}\right)}(\gamma)$, we have that $P_{0} \subset P$, therefore $X, Y,-X Y$ are positive, false. We obtain γ is anisotropic over $F_{0}\left(Z_{1}, \ldots, Z_{k+1}\right)(\varphi)$.

It results that $\underline{s}\left(A_{t}\right)=2^{k}+1$, therefore, using Corollary 3.15., we have $\underline{s}(Q(m))=m, m=2^{k}+1$.

Theorem 4.4. Let $F=F_{0}(X, Y, Z)$ and $O=\left(\frac{X, Y, Z}{F}\right)$ an octonion algebra over F.

The octonion algebra $O(m)=\left(\frac{X, Y, Z}{F}\right) \otimes_{F} K$ is an octonion division algebras of level and sublevel m, where $m=2^{k}+1, k \geq 0, K=F\left(<1>\perp m \times T_{P}^{O}\right)$, and T_{P}^{O} is its pure trace form over F

Proof. The case $k \leq 2$ is proved in [$\left.\mathrm{O}^{\prime} \mathrm{Sh} ; 07(2)\right]$, in the following we suppose that $k \geq 3$. We denote $\varphi=<1>\perp\left(2^{k}+1\right) \times T_{P}^{O}, \quad$ where $T_{P}^{O} \simeq<$ $X, Y,-X Y, Z,-X Z,-Y Z, X Y Z>$. Let Z_{4}, \ldots, Z_{k+1} be algebraic independent elements over $F=F_{0}(X, Y, Z), K=F\left(<1>\perp\left(2^{k}+1\right) \times T_{P}^{Q}\right)$. Proposition 4.1. implies that

$$
\begin{aligned}
K\left(Z_{4}, \ldots, Z_{k+1}\right) & =F\left(<1>\perp\left(2^{k}+1\right) \times T_{P}^{Q}\right)\left(Z_{3}, \ldots, Z_{k+1}\right)= \\
& =F\left(Z_{4}, \ldots, Z_{k+1}\right)\left(<1>\perp\left(2^{k}+1\right) \times T_{P}^{Q}\right)= \\
& =F_{0}\left(Z_{1}, \ldots, Z_{k+1}\right)\left(<1>\perp\left(2^{k}+1\right) \times T_{P}^{Q}\right)
\end{aligned}
$$

where $X=Z_{1}, Y=Z_{2}, Z=Z_{3}$. Let $O_{m}^{\prime}=O_{m} \otimes_{K} K\left(Z_{4}\right)$ and $S_{m}^{\prime}=$ $\left(O_{m}^{\prime}, Z_{4}\right)$ be the sedenion algebra as in Brown's construction. Then S_{m}^{\prime} is a division algebra of dimension 2^{4} and of level m. We repeat this construction
until we obtain a division algebra A_{t} of dimension $2^{t}, t=k+1$, like in Brown's construction. Let $T_{P}^{A_{t}}$ be its pure trace form. By Corollary 3.15., this algebra has level m. Using the same arguments like in the above proposition, the sublevel of algebra A_{t} is $2^{k}+1$, therefore $\underline{s}(O(m))=m, m=2^{k}+1$.

Acknowledgements. I would like to thank Susanne Pumplün for her many encouragements and suggestions which helped me to improve this paper. I am deeply grateful for all.

References

[Br; 67] Brown, R. B., On generalized Cayley-Dickson algebras, Pacific J. of Math., 20(3)(1967), 415-422.
[Di; 00] Dieterich, E., Real quadratic division algebras, Comm. Algebra, 28(2)(2000), 941-947.
[Hoff; 08] Hoffman, D. W., Levels of quaternion algebras, Archiv der Mathematik, 90(5)(2008), 401-411.
[Ko; 98] Koprowski P. Sums of squares of pure quaternions, Proc. Roy. Irish Acad., 98(1)(1998),63-65.
[Kr, Wa; 91], M. Küskemper, A. Wadsworth, A quaternion algebra of sublevel 3, Bull. Soc. Math. Belg. Sér. B, 43(2)(1991), 181-185.
[La,Ma; 01] Laghribi A., Mammone P., On the level of a quaternion algebra, Comm. Algebra, 29(4)(2001), 1821-1828.
[Le; 90] Leep D. B., Levels of division algebras, Glasgow Math. J. 32 (1990), 365-370.
[Lew; 87] Lewis D. W., Levels and sublevels of division algebras, Proc. Roy. Irish Acad. Sect. A, 87(1)(1987), 103-106.
[Lew; 89] Lewis D. W., Levels of quaternion algebras, Rocky Mountain J, Math. 19(1989), 787-792.
[Os; 62] Osborn, J. M., Quadratic Division Algebras, Trans. Amer. Math. Soc., 115(1962), 202-221.
[O' Sh; 07(1)] O' Shea, J., Levels and sublevels of composition algebras, Indag. Mathem., 18(1)(2007), 147-159.
[O' Sh; 07(2)] O' Shea, J., New values for the level and sublevel of composition algebras, preprint, 2007, 1-21.
[Pf; 65] Pfister A., Zur Darstellung von-I als Summe von quadraten in einem Körper, J. London Math. Soc. 40(1965), 159-165.
[Pu; 05] S. Pumplün, Sums of squares in octonion algebras, Proc. Amer. Math. Soc., 133(2005), 3143-3152.
[Ro; 05] S. Roussey, Isotropie, corps de fonctions et équivalences birationnelles des formes quadratiques, PhD thesis, Université de Franche-Comté, 2005, 175 p.
[Sc; 66] Schafer, R. D., An Introduction to Nonassociative Algebras, Academic Press, New-York, 1966.
[Sc; 54] Schafer, R. D., On the algebras formed by the Cayley-Dickson process, Amer. J. Math., 76(1954), 435-446.
[Sch; 85] Scharlau, W., Quadratic and Hermitian Forms, Springer Verlag, 1985.
"Ovidius" University of Constanta, Romania e-mail: cflaut@univ-ovidius.ro;cristina_flaut@yahoo.com

