LOCALLY LOOP ALGEBRAS AND LOCALLY AFFINE LIE ALGEBRAS

JUN MORITA AND YOIJI YOSHII

ABSTRACT. We investigate a new class of Lie algebras, which are tame locally extended
affine Lie algebras of nullity 1. It is an infinite-rank analog of affine Lie algebras, and their
centerless cores are a local version of loop algebras. Such algebras are called locally affine
Lie algebras and locally loop algebras. We classify both of them.

Throughout the paper F is a field of characteristic 0. All algebras are assumed to be
unital except Lie algebras, and tensor products are over F'.

1. INTRODUCTION

In [MY], a locally extended affine Lie algebra, a LEALA for short, is introduced as a
generalization of an extended affine Lie algebra, an EALA for short. A LEALA is a Lie
algebra L with a certain Cartan subalgebra J{ and a nondegenerate invariant form B on
L satisfying certain axioms (see Section 4). We classified LEALAs of nullity 0 in [MY].
The purpose of this paper is to classify the second easiest class, namely, the class of tame
LEALAs of nullity 1, called a locally affine Lie algebra, a LALA for short. It turns out
that the centerless core of a LALA is a local version of a loop algebra, which we call a
locally loop algebra. Thus a LALA is really a local analog of an affine Lie algebra. In fact
we show that a locally loop algebra is a direct limit (or a directed union) of loop algebras,
and that the core of a LALA is a universal covering of a locally loop algebra. This was
also shown by Neeb [N2, Cor. 3.13] in a different way. There are seven new locally loop
2) 2)

algebras of type A(jl), B(;), C(jl), D(jl), B(j s C(jz) or BC(j , where J is an infinite index set.

Thus the core of a LALA is a universal covering of one of the seven locally loop algebras.
Here, one should note that, in the above seven cases, X:(jr) always means

: (r)
hian, ,

where this is a direct limit according to inclusions of all finite subsets J of J.

For each loop algebra, there exists a unique, up to isomorphisms, affine Lie algebra
having it as the core. However, for each locally loop algebra, there are infinitely many
isomorphism classes of LALAs having it as the core. We roughly explain here about the

LALAs of the type A(jl) and the twisted type C(jz).
First of all, let sly(F[t*!]) be the Lie algebra consisting of trace 0 matrices of infinite
size J (but only finite entries are nonzero) whose entries are in the algebra F[t*!] of Laurent

polynomials. For example, if J = N (natural numbers), then we see

sin(FIe*]) = | sla(FI%)) =U( Sl"(f)[tﬂ) 8 ) '

n=2 n
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We call sl (F[¢t*']) a locally loop algebra of type Ag), which is simply an infinite rank

analog of a loop algebra sy,  (F[t=!]) of type Aél) . Here, we use the following convention:

sly is of type Ay if J is an infinite index set, and sly = sly; is of type Ay if J is a finite
index set with £+ 1 elements (also see Remark 7.1). As in the case of sly, | (F[t*!]), there
exists a universal covering, sly (F[t*!]) @ Fc, of sly (F[t*!]), where Fc is the 1-dimensional
center. Then one can construct the Lie algebra

L =sly(Fr')) @ Fea Fd, (1)
where d(© = t% is the degree derivation. This L endowed with a Cartan subalgebra

haoFcaFd?,

where § is the Cartan subalgebra of sl3(F) consisting of diagonal matrices, is a simplest
example of a LALA, and is called a minimal standard LALA of type A(jl) (see Definition
5.1). There are more examples even for the type A(jl), adding diagonal derivations of
sly(F[t*!]). Let us explain these examples briefly without mentioning the defining bilinear
form B.

Let M5 (F) be the vector space of matrices of size J and T+ the subspace of M5(F)
consisting of diagonal matrices. That is, we have

M5 (F) = {(aij)ijes | aij € F} , Ty = T5(F) = {(aij) € M5(F) | ajj = 0 fori # j} .
In fact, we use here two kinds of sets of matrices, namely sly consists of matrices whose

entries are 0 almost everywhere, but M5 can contain a matrix whose entries are all nonzero.
‘We note that

sly (F) + T5
is a Lie algebra with the centre F'1, where 1 = 15 € T5 is the diagonal matrix whose diagonal
entries are all 1. Let

Ay := (sl3(F)+T5) /Ft 2)
be the quotient Lie algebra. We always identify the sublalgebra

sly(F) = (sl3(F)+ F1) /Fu

of A~ with sl5(F), and omit the bar for any element or a subalgebra of A5. That is,
sly(F) can be considered as a subalgebra of Aj. Also, if we choose a complement T of
F1 in T3, we sometimes identify 75 /F1 with T}. Consider the loop algebra A5y @ F[t*1],
and we construct the Lie algebra

Ay :=A;@Fi* | @ FcaFd© 3)
as in (1), which contains L. In fact, to show that Ay ® F [til] @ Fcis a Lie algebra, we
need to discuss a bilinear form on A5 (see the details in Example 5.2). We will show that

this A5 is a maximal LALA of type A;l), and that any LALA of type Agl) is a graded
subalgebra of A containing

L(p):=sly(FrF )@ FcaF(p+d?) )

for some

pE Tj/(b@Fl)v
where T5/(h @ F1) is identified with a complement T3 of h @ F1 in T5. We use the no-
tation L(p) instead of L(p) by this identification. This L(p) is called a minimal LALA
determined by p € T} ~ T5/(h @ F1). We note here that L(p) is sometimes isomorphic
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to the minimal standard LALA L™ = £(0), but L(p) is not always isomorphic to L™ in
general (see Example 7.17).

0
automorphism ¢ of period 2 on sly5(F) + T>5 by

o(x) =sx's

for x € sly5(F) + To3, where ' is the transpose of x. Let sp,5(F) be the fixed subalgebra
of sly5(F) by o, which has type C5, and s the (—1)-eigenspace of ¢ so that

shy(F) = spy;(F) @s.

Next, let s = be the matrix of size 27, where 1 = 15 is as above. Define an

Moreover, we have
slay (F) +Tay = (spys (F) +T7) @& (s +T7),
where T is the 1-eigenspace and T~ is the (—1)-eigenspace for ¢ acting on T>5. Note
that T3 =TT & T~ and F1,5 C T~. We fix a complement 7, of F1in 7, and we identify
T~ /Fiwith 7).
Now, let
Agy i= (shy(F) +Ty) /Fiay
in the same idea as (2). Since o(F1) = F1, we have the induced automorphism on A,
which we also write o for simplicity. Thus, omitting bars as above, we also have
ATy = (sp(F)+T1) @ (s + 717 ).
Let
Ary = Ay QF[* @ Fed Fd©,
as (3). We extend o to flzj as
s(x@r") = (~1fo() @,
and identically on Fc @ Fd®). Then the fixed algebra f[g’j by 6 is the following.
ASy = (a3 (F)+ T @ F[r2)) @ (s + Ty ) @1F[r7]) @ Fe o Fd©).

Note again that we omit bars, especially for 7~ and 7] . Note also that f{g’j contains the
subalgebra

L™ = (3pyy (F) @ Ft*?)) @ (s @t F %)) @ Fe@ FdY,
which is called a minimal standard twisted LALA of type C(32>. We will show that flg’j

is a maximal txisted LALA of type C(jz), and that any LALA of type C(jz) is a graded
subalgebra of AS, containing

L(p) == (sp(F) @ F[1*?)) @ (s @tF[F)) @ Few F(p+d )
for some p € T*/(spy3(F)NT™), where we again identify T /(sp,5(F)NT™") with a
complement 7} of sp,5(F)NT" in T". This L(p) is called a minimal twisted LALA
determined by p. As in the type A%l), L(p) is not necessarily isomorphic to L™ = £(0).

We emphasize that the usual twisted process works for not only the Lie algebra sl,5(F)
but also bigger Lie algebras contained in sly5(F) + T3 to construct twisted LALASs.

The classification of LALAs proceeds as follows. First we classify the cores of LALAs.
We show that the core of a LALA is alocally Lie 1-torus, which is isomorphic to a universal
covering of a locally loop algebra. We also show that there is a one to one correspondence
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between reduced locally affine root systems and the cores of LALAs. (This part was al-
ready done in [N2] by a different way.) The second step of the classification is to determine
a complement of the core of a LALA L. Let

L=L.oD,

where L. is the core and D is a homogeneous complement of the core. Since L, is an ideal
and L is tame, D embeds into Derr L, the space of derivations of L.. Moreover, one can
show that Derp L. embeds into Dery L, where

Li=Lo/Z(Le)

and L is a locally loop algebra. Now we need some information about Dery L. Derivations
of this kind of algegbra were studied in [BM], [B] or [NY]. However, the derivations of a
locally loop algebra are not classified yet in general. One can use some results in [A1] for
untwisted case since L is a tensor algebra in that case (see Remark 6.4). But we need to
figure out the twisted case. So one has to develop a new theory. Of course, we need to use
the classification of Derf g for a locally finite split simple Lie algebra g by Neeb in [N1].
Fortunately, we do not need the whole information about Derf L to classify D. It turns out
that we only need to know the diagonal derivations of degree m

(Derp L)' := {d € Derp L | d(LX) C L™ forall a € Aand k € Z},

where L’fx or L’&*m is a homogeneous space of the double graded algebra (a locally Lie

1-torus)
L= p PL.

acAU{0} k€Z

It is crucial to determine (Derg L)J. Once this is done, (Ders L)}’ can be easily figured out
for the untwisted case. However, for the twisted case, the classification is still difficult.
First we show the same result as in the untwisted case for an even m. For an odd m, we
show that a diagonal derivation commutes with a shift map, which is a centroidal element
on a Z-graded algebra (see Lemma 7.8). Using this fact, one can extend the derivation
on the twisted locally loop algebra to the corresponding untwisted locally loop algebra
(see Lemma 7.9). Then using the classification of the untwisted ones, we can classify the
diagonal derivations of odd degree (see Theorem 7.10).

Thus our interest D = @, D™ can be identified with a graded subspace of the known
space @,,cz (Derp L){ for both untwisted and twisted cases. Finally, we classify the Lie
brackets on D for both cases. First one can show that [D, D] C Fc. Then since L is a graded
Lie algebra, we get

[Dvan] - F(5m+n,06)v

where 0 is the Kronecker delta. Then, by the fundamental property (21) of a LEALA in
Lemma 4.4, the brackets on D™ and D~ are determined by the defining bilinear form B
of L. The concrete brackets are described in Example 5.2.

To conclude this introduction, we briefly describe the contents of the paper. In Section
2, we define a locally Lie G-torus and a locally Lie 1-torus as a special case. We introduce
a locally loop algebra which turns out to be a centerless locally Lie 1-torus in Section 3.
Here we classify locally Lie 1-tori in general. We prove that a centerless locally Lie 1-torus
is uniquely determined by a root system extended by Z, and it is a locally loop algebra or
a universal covering of a locally loop algebra. In Section 4 we recall a LEALA and define
a LALA. We prove some general properties of a LEALA or a LALA. We will see that the
core of a LALA is a universal covering of a locally loop algebra. In Section 5 we construct
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many examples of LALAs, which will be all. In Section 6 and 7 we classify untwisted
LALAs and twisted LALAs. We show that the examples in Section 5 exhaust all LALAs.

The authors thank Karl-Hermann Neeb and Erhard Neher for helpful discussions and
suggestions regarding this work.

2. LOCALLY LIE G-TORI

Let A be a locally finite irreducible root system, and we denote the Cartan integer

2n,v)
(v,v)
by (u, V) for u,v € A, and also let (0, v) := 0 for all v € A. Let
ARl . A if A is reduced
{aeA| %oc ¢ A} otherwise.

For the convenience of description later, we partition the locally finite irreducible root
system A according to length. Roots of A of minimal length are called short. Roots of A
which are two times a short root of A are called extra long. Finally, roots of A which are
neither short nor extra long are are called long. We denote the subsets of short, long and
extra long roots of A by Agp, Az and Aex respectively. Thus
A= Ag |_|A1g Ll Aex.
Of course the last two terms in this union may be empty. Indeed,
Ag=0 <= Ahassimply laced type or type BCy,
and
Ax =0 <= A=A"™
Let G = (G,+,0) be an arbitrary abelian group. In general, for a subset S of G, the
subgroup generated by S is denoted by (S).
Definition 2.1. A Lie algebra L is called a locally Lie G-torus of type A if
(LT1) L has a decomposition into subspaces
L= & L
ueAU{0},geG
such that [Lf,L1] C Lﬁihv for u,v,u+v e€AU{0} and g,h € G;
—h
(LT2) Forevery g€ G, L= YueaneG [LZ,L%M l;
(LT3) For each nonzero x € Lﬁ (LEA gEG), thereexistsay € L:ﬁ so that# := [x,y] €
LY satisfies [t,z] = (v,u)z forallz€ L% (v € AU{0},h € G);
(LT4) dimLf <1 for u € Aand dimLf) = 1if u € A™Y;
(LT5) (suppL) =G, where suppL = {g € G | L # 0 for some p € AU{0}}.
If Ais finite, L is called a Lie G-torus. Also, if G = Z", L is called alocally Lie n-torus
or simply a locally Lie torus. We call the rank of A the rank of L.

Remark 2.2. (i) Condition (LT5) is simply a convenience. If it fails to hold, we may
replace G by the subgroup generated by supp L.
(ii) It follows from (LT1) and (LT3) that £ admits a grading by the root lattice Q(A): if

for A € Q(A), where L5 =0if A ¢ AU{0}, then L = Dy cp(a) L1 and [Lp, L] C Ly
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(iii) L is also graded by the group G. Namely, if
L8 = Dueav{o} qu (6)

then £ = @,ei L8 and [L8,L"] C L8T. Also, suppL = {g € G| L8 #0}.

(iv) From (LT3) we see for y € A™ that there exist elements e, € Lf), fi € L, and
pY = py :=[ey, fu] so that [u”,z] = (v,u)z forall z € L, v € Aand h € G. Thus, the
elements ey, f;;, 11" determine a canonical basis for a copy of the Lie algebra sl (F). (Note
that 1" is a unique element in [22,59 IJ] satisfying the property.) The subalgebra g of L
generated by the subspaces Lﬂ for 1 € A™ is a locally finite split simple Lie algebra with
the split Cartan subalgebra

b= Y [£5.8°,]
peArd
and " are the coroots in . (One can show this in the same way as the proof of [MY,
Prop.8.3], or see [St, Sec.III]). Note that if A is finite, then g is a finite-dimensional split
simple Lie algebra. Also, A™ may be replaced by A in the definition of g and b, since it
can be shown in the same way as in [Y1, Thm.5.1] that Lgv =0 for all v € A, We say
the pair (g,h) = (g,b), the grading pair of L.
(v) A Lie G-torus is perfect, and so it has a universal covering.

We define the root systems of locally Lie G-tori. Let L = @®ycauqoy Dgec L be a
locally Lie G-torus. For each i € A, let

Su:={ge G| L #0},
and we call
A:={Su}puea
the root system of L. Such a system fits into the system introduced in [Y1]. Let us state

the precise definition. A family of subsets S, of G indexed by A, say {Sy },ea. is called a
root system extended by G if

<Uu€A S,u> =G, @)
Sy = (V,u)Su CSy_(yuyp forall u,v €A, and (8)
0€S, forallueA™. )

Moreover, {Sy }uea is called reduced if
SpuN2S, =0 forall 2u,u € A. (10)

By the same way as in [Y1, Thm 5.1], one can show that the root system A is a reduced
root system extended by G, i.e., A satisfies (7), (8), (9) and (10). In particular, the root
system of a locally loop algebra is a reduced root system extended by Z. Also, by the same
way as in [Y1, Thm 5.1], letting

So:={ge G| L§+#0}, an
one gets
for a short root u.
Lemma 2.3. A locally Lie G-torus L of type A is a directed union of Lie G-tori. More

precisely, L = Uy La, where A is a finite irreducible full subsystem of A containing a
short root and L is the subalgebra of L generated by Ly for all oo € A,
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Also, if G is torsion-free, then a locally Lie G-torus L of type A is a directed union of
Lie n-tori. More precisely, L = Uy & LAc,,, where G' is a finitely generated subgroups of
G and Lg/l is the subalgebra of L generated by L%, for all ot € A' and g € G'.

Proof. Since S = S, for a short root u generates G, it is easy to check that L, is a Lie
G-torus. Hence the statement is true since A is a directed union of finite irreducible full
subsystems containing a short root (see [LN2, 3.15 (b) and the proof]). The second state-
ment follows from the fact that G is a directed union of finitely generated subgroups. [

3. LOCALLY LOOP ALGEBRAS
For any index set J, let
M5 (F) = {(ai)i jes|aij € F} = Map(I x J,F)

be the set of all matrices of size J, which is naturally a vector space over F. Let gl;(F)
be the subspace of M5(F) consisting of matrices having only a finite number of nonzero
entries. Then gl (F) is an associative algebra and a Lie algebra with the usual commutator
bracket. Also, one can define the trace of a matrix in gl (F), and the subalgebra of gl (F)
consisting of trace 0 matrices is denoted by sl (F):

sly (F) = {x € gl5(F) | r(x) = 0}
We note that M5 (F) cannot be an algebra, but
ME(F) := {x € M5(F) | each row and column of x have only finite nonzeros}  (13)

is an associative algebra with the identity matrix 1 = 1y, and a Lie algebra with the com-
mutator bracket. In fact, this gives the Lie algebra of derivations of sl;(F) by Neeb [N1].
More precisely, we have

[MEN(F),sl5(F)] Csly(F) and Derg(sly(F)) ~ ad(ME"(F)).

The locally finite split simple Lie algebra of type X5 is defined as a subalgebra of
sly(F), slyy1(F) or slyy(F) as follows:

Type Ag: sl3(F);

Type B3: 02541 (F) = {x € slhg 1 (F) | sx = —x's};

Type Cg: spyy(F) = {x € sly3(F) | sx = x's};

Type Dy: 03(F) = {x € slyz(F) | sx = —x's},
where J is supposed to be infinite, X is the transpose of x, and

0 1 0 0 —1 0 1
s={1t 0 0] forBg, s= for C5, or s= for D5. (14)
0 0 1 t 0 t O

Note that s € MI"(F), and s> = 13 for By, s* = —1p5 for Cy or s> = 15 for D3. Also,
the By, C5 or Dy is the fixed algebra of sly;.1(F) or sly5(F) by an automorphism o,
defined as
o(x) = —sx'x for By or Dy, and o(x) = sx’x for C5. (15)
Neeb and Stumme showed in [NS] that these algebras exhaust locally finite split simple
Lie algebras. Also, they are considered as locally Lie O-tori, which exhaust the infinite-
dimensional locally Lie O-tori since locally finite split simple Lie algebras are centrally
closed (see [NS]). Note that Lie O-tori are exactly the finite-dimensional split simple Lie
algebras. Our interest in this paper is the class of locally Lie 1-tori.



LOCALLY LOOP ALGEBRAS AND LOCALLY AFFINE LIE ALGEBRAS 8

Let F[t*!] be the Laurent polynomial algebra over F. We call one of the following four
Lie algebras an untwisted locally loop algebra:

Type A(jl): sly(F) @ F[t*!];
1
Type BY: 035,1(F) @ F[r*];
1
Type C%)i spay(F) @ Flr*'];
Type D\ 03 (F) @ F[+].
(It is called an untwisted loop algebras if J is finite.) One of the following three Lie
algebras are called a twisted locally loop algebra:
2
(1) Type BY: (02341 (F) @ F[1*2] & (s @ 1F[17),
where s = F(27+1) is the natural 0,5, 1 (F)-module;
2
(2) Type C5: (spys (F) @ F[r*2]) & (s @ 1F [+,
where s = {x € sly3(F) | sx = x"s};
2
(3) Type BCY: (02341 (F) @ 1)) @ (s @ 1F 7)),
where s = {x € slyy41(F) | sx = x's}. (It is called a twisted loop algebra if J is finite.)

Note that slyy(F) = spy5(F) @ s and slyy+1(F) = 02541 (F) @s. The Lie bracket of

each untwisted type is natural, i.e., [x®1",y ®1"] = [x,y] @ """, The Lie bracket of type

C(:?) or BC%2> is also natural since

[SPZB(F)75] Cs, [575} - SPZJ(F)v
[02541(F),s] Cs and [s,5] C 025.1(F).

Note that ng) or BC(;) is the fixed subalgebra of slyy(F) @ F[t*!] or slyy,1(F) @ F[t*!]

by the automorphism & defined as
6(xxt™) :=(—1)"o(x) 1™ (16)
(see (15)). This construction is called a twisting construction by an automorphism .

For B(jz), we have 0y5,1(F)s C s, and so we define the bracket of 0,5, 1(F) and s by
the natural action, i.e., [x,v] = xv = —[v,x] for x € 0551 (F) and v € s. However, there is
no bracket on 5. So we define a bracket on s so that [s,s] C 025,41 (F) as follows. First, let
(+,-) be the bilinear form on s determined by s. Then there is a natural identification

02341(F) = Ds s := spang{D,,,s | v,V € 5},

where D,,,; € End(s) is defined by D, ,(v") = (V',v")v — (v,v")V' for v/ € 5. Thus we
define [v,v'] := D,,,s. Note that [/,v] = —[v,V/]. It is easy to check that the bracket

[X®I2m + V®t2m’+l ’x/ ®t2n 4+ ®t2n'+1}
:[x’x/] ®t2(m+n) +Dv,x7’ ®t2(m/+n/+l) +x/ ®t2(m+n/>+l —Xv® t2(m/+n)+l

defines a Lie bracket for m,m’,n,n’ € Z.

There is a twisting construction for Bgz) (see [N2]), which we will discuss in Section 7,
but we think that the simple description of B?) here is also important to develop the theory
of locally Lie n-tori.

We often omit the term ‘untwisted’ or ‘twisted’ and simply say a locally loop algebra.

One can easily check that all locally loop algebras are centerless locally Lie 1-tori. For

example, let A be the root system of type BC(ZZ), and put g = 0541 (F) and s C slyz41(F),
as defined above. Let b be the Cartan subalgebra of g consisting of diagonal matrices. Then
bh decomposes g into the root spaces, say g = h& P peared 9u»> and s into the weight spaces,
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say s = @ en 5p, Where A' = A, U{0} in case of A = BC?). So the twisted locally loop
algebra (g @ F[t*%]) @ (s ® tF [1*2]) of type BC%Z) is decomposed into

D ((b@Fﬂ"’)@ P @uerfme P (s“®Ft2m+1))_

meZ ucAred UEAU{0}

This gives a natural double grading by the groups (A) and Z, and one can check the axioms
of a locally Lie torus. Also, the center of a locally Lie torus L is contained in L, but
Lo=HhRF [tﬂ] in this example, and hence the locally loop algebra of type BC(jz) is a
centerless locally Lie 1-torus. The grading subalgebra is equal to g = 05,1 (F). We call

the g-module s the grading module.

Now, let L = @ycauoy, mez L} and M = @ueAu{o}, mez M; be centerless Lie 1-tori
whose root systems are the same root system A extended by Z. Then there exists an iso-
morphism ¢ : L — M such that

o(ul)=py and (L)) =M} forallp €Aandm e Z. 17

This can be directly proved using Gabber-Kac Theorem or repeat a similar argument in
[ABGP]. (It was proved for the base field C in [ABGP] though.) Hence, a centerless Lie 1-
torus is isomorphic to a loop algebra, and a Lie 1-torus with nontrivial center is isomorphic
to a derived affine Lie algebra, which has always a 1-dimensional center. Also, for a Lie
1-torus L = D yeaufoy, mez Ll

the center of L is equal to [Lg', L] for any 0 # m € Z. (18)

This is easily seen from the loop realization. Also, we have

1 ifLisl
dim Y [0 L) =4 0 0 0P (19)
meZ. 2 if L is derived affine
since
N R L
meZ. FuY+Fc if L is derived affine

for u € A and a central element c.

Lemma 3.1. The center of a locally Lie 1-torus is at most 1-dimensional. More precisely,
for alocally Lie 1-torus L = @y cavfoy, mez Ly

L has 1-dimensional center <= L is a directed union of derived affine Lie algebras,

and
L is centerless <= L is a directed union of loop algebras

in the following sense:
L=J L,
NCA

where N is a finite irreducible full subsystem of A and Ly is the homogeneous subalgebra
of L generated by L, for u € A, and Ly is a derived affine Lie algebra if the center of
L is I-dimensional and a loop algebra if L is centerless. (Derived affine Lie algebras and
loop algebras are not mixed!) In particular, dim L} # 0 (so dimLj} = 1) for all p € A
and m € 7. Also, the properties (18) of the center and (19) of root vectors above hold in a
locally Lie torus too.
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Proof. Most of the statements follow from Lemma 2.3. In fact, Lie 1-tori are either derived
affine Lie algebras or loop algebras, and so L is a directed union of derived affine Lie
algebras or loop algebras. Considering the loop realization of a derived affine Lie algebra,
we find dim L} = 1 for all 4 € A and m € Z. Moreover, suppose that C is a 2-dimensional
subalgebra contained in the center. Then there exists a derived affine Lie algebra or a loop
algebra containing C. But this is impossible since their centers have to be 1-dimensional
or zero.

Now, we need to show that derived affine Lie algebras and loop algebras cannot appear
simultaneously. If this happens, for example, L' is a derived affine subalgebra and L” is a
loop subalgebra, then there exists a derived affine or a loop algebra containing both £’ and
L" as graded subalgebras. Suppose that L', L” C L for a loop algebra L. But this is
impossible because of the property (18) above. So, suppose that L', L” C L' for a derived
affine Lie algebra L". Then this is also impossible because of the property (19) above.
Thus a locally Lie 1-torus is either a directed union of derived affine Lie algebras, say Lg4,,
or a directed union of loop algebras, say L;,. It is now clear that the center of L, is zero.
To show the 1-dimensionality of the center of Ly, let C’ be the center (1-dimensional) of
a derived affine subalgebra of £,,. For any u € A and m € 7Z, there exists a derived affine
subalgebra M containing L} and C'. Considering the loop realization of M, we find that
C’ is the center of M, and in particular, [C’, LZ’] = 0. Hence C’ is contained in the center of
L4, and so C' is the 1-dimensional center of L4,.

Finally, let £ be a locally Lie 1-torus. Then, (19) is clear. To show (18), let Z :=
[L’{),Lak] for 0 £k € Z. For any z € Z, u € A and m € Z, there exists a derived affine
subalgebra or a loop subalgebra containing z and L/, and z is in the center of the subalgebra
(by (18) for a Lie torus above). Hence [z,L’,f{] =0 for all u € A and m € Z. Therefore, Z
is contained in the center of £. Thus Z =0 or dimZ = 1. If Z = 0, then there exists a loop
subalgebra, and so L = L;,. Hence Z = 0 is the center of L. If dimZ = 1, then Z is the
center of L since the center of £ is at most 1-dimensional. (]

For any two elements x ® " and y ®¢" in each locally loop algebra L, define the new
bracket on a 1-dimensional central extension

L.=LaFc

by
@™ y@r"] i= [x,y] @™ +-m(x,) 806, (20)

where (x,y) is the trace form tr(xy), or for type B(jz), the direct sum of the trace form and

the bilinear form on s determined by the symmetric matrix s above. Indeed, this gives a
central extension since L is a directed union of loop algebras and L is locally a derived
affine Lie algebra, i.e., a 1-dimensional central extension of a loop algebra.

Lemma 3.2. A universal covering of a locally loop algebra is given by (20) above.

Proof. Suppose that £ is a universal covering of a locally loop algebra L. We know that
dimp Z(L) > 1 since £ above is a covering. So if dimZ(L) > 1, then there exists a covering
LOFci®Fcyof L. Letxy,yi,. ., Xm,Ym, U1,V1,- .., Un, vy € Lbesuchthat Y7 [x;,yi] = c)
and Y1 [u;, vi] = c2. Let L' be a loop subalgebra of L containing x;,y;,uj,v; for 1 <i<m
and 1 < j <n. Then L' @® Fcy @ Fc; is perfect, and so this is a covering of L'

Now, a universal covering of a loop algebra has the 1-dimensional center, and so this
is a contradiction. Hence, dimZ (f,) = 1. But then it is clear that £ 22 £ since the unique
morphism from £ onto £ has to be one to one. (]
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Remark 3.3. By Lemma 3.1, a locally Lie 1-torus has at most 1-dimensional center. Thus
if one shows that L is a locally Lie 1-torus, then we also get a proof of Lemma 3.2. In
fact, Neher showed that a universal covering of a locally Lie torus is a locally Lie torus in
general (see [Ne3] and [Ne4]).

We now classify locally Lie 1-tori. The method we use here comes from [NS]. Namely,
we will show that there is only one locally Lie 1-torus for each reduced root system ex-
tended by Z. Root systems extended by Z are known in [Y 1, Cor.10, 12]. (There are more
general results in [LN2] .) Here is the list of all reduced root systems extended by Z of
infinite rank, writing A x Sy, for {Sy }sea.

AjXZ, BjXZ, CjXZ, DJXZ,
((B3)sh X Z) U ((By)ig X 2Z), ((C3)sh X Z) LU ((C3)ig X 27Z),

(((Bcg%sh L (BCY),) x Z> U ((BCY)ex x 2Z+1)).

Note that these 7 systems are exactly the root systems of locally loop algebras introduced
above, and so we label each system by

O g o ph @ @)
AV, By, ¢, by, BY, , BCY.

We also use the label for the root system as the type of a locally Lie 1-torus.

Now, first we show the following lemma when A is finite. Suppose that IT C A is an
integral base, i.e., A C (IT) and IT is linearly independent in the vector space which defines
A.

c®

J

Lemma 3.4. Let L = @ cavfo)mez L and M = @®yeavfoymez M be centerless Lie 1-
tori of the same type A. Let T1 be an integral base of A containing a fixed short root v € A.
Let 0 # xy € Lﬁ and 0 #y, € Mﬁ for each p € T1. (Note TI C A™.) Also, let 0 #x € L)
and 0 #y € Ml. (Sy = Z since v is short.) Then there exists a unique isomorphism ¥ from
L onto M such that y(x) =y, w(u) = iy and y(xy) = yy for all p € IL.

Proof. By (17) above, there exists an isomorphism ¢ : L — M such that (1)) = “Xm
and @(L}}) =M forall u € Aand m € Z. Hence we have y = a@(x) and y, = au ¢ (xy) =
for some a and ay € F*. Let f: (II)z x Z — F* be the group homomorphism of the
abelian groups defined by f(u,0) = ay and f(0,1) = a. Let Dy be the (diagonal) lin-
ear automorphism on M defined by Dy(y) = f(u,m)y for y € Mj/. Then Dy is an auto-
morhism of the Lie algebra. Indeed, D¢([y,y']) = f(u+p',m+m')[y,y'] = f((u,m) +
(', m )yl = f(,m) f (' m) Y] = [f (s m)y, f(1,m)y'] = [Dy(v), Dy ()] for y €
Mj; and y € Ml"f,. Hence y := Dy o ¢ is the required isomorphism.

For the uniqueness, note first that such an isomorphism is unique on L::, and L% u for
all i € I since [L),L7)] = Fv" (since £ is centerless) and [L9,L° ] = Fu". Thus it is
enough to show that £ is generated by L], L:%, and LY y for all u € I1. But by a standard
argument (or see [St, Prop.9.9]), LO (= the finite-dimensional split simple Lie algebra g)
is generated by L(j_L“ for all u € I1. Then one can choose a root base of A so that v is the

negative highest short root. Using the affine realization of L, it is clear that L is generated
by L0 =g, L) and L~} O

Now we can prove that there is a one to one correspondence between the class of center-
less locally Lie 1-tori and the class of reduced root systems extended by Z, and that locally
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loop algebras exhaust all centerless locally Lie 1-tori. Note that this method works for any
cardinarity of A.

Theorem 3.5. Let L = @ycaufoy Bmez L be a locally Lie I-torus of type A If L is
centerless, then L is graded isomorphic to the locally loop algebra of type A, and if L has
the nontrivial center, then L is graded isomorphic to a universal covering of the locally
loop algebra of type A given by (20).

Proof. Note first that we already know this theorem for Lie 1-tori, i.e., the case where A
is finite. Also, it is enough to show the case where L is centerless (see Lemma 3.2), and
so assume that £ is centerless. Let M = @ cauqo; Smez. M| be a locally loop algebra of
type A. Also, let A= {S, }yen.

Fix a short root v, and let 0 # x € L], and 0 # e, ®t € M),. (Sy = Z since V is short.)
Let IT be an integral base of A containing v. Let 0 # x,, € Lg and 0 #e, ®1 € Mz for
each u € IT. (Note IT € A™d.) Then we claim that the map v : py — pye and xy — ey @ 1
for all u € I, and x — e, ®t extend an isomorphism from L onto M. Indeed, let " C IT
be a finite irreducible subset containing v, then I' is an integral base of the irreducible root
system Ar := AN ().

Let Ar = {8y }uear be the root system extended by Z. Let L be the subalgebra deter-
mined by Ar, i.e., the subalgebra of L generated by L] for all it € Ar and m € Z, which is
a centerless Lie 1-torus of type Ar (see Lemma 3.1). Similarly, let Mr be the subalgebra
of M determined by Ar. Then by Lemma 3.4, there exists a unique graded isomorphism
yr from Lr onto M such that yr(xy) = ey ® 1 forall u € I'and x — ey ®1.

Suppose that I'1,I"; C IT are finite irreducible subsets containing v so that Lr, C Lr,.
Then the uniqueness of the isomorphisms yr, and yr, implies that they agree on Lr,.
Since L is the directed union of the subalgebras L (I' C IT is a finite irreducible subset),
one can define an isomorphism y : L — M be y(x) = yr(x) for x € L, which has the
required properties. O

Note that we defined in (20) the Lie bracket of a universal covering of a locally loop
algebra, using a symmetric bilinear form (,-) on a locally loop algebra. More precisely,
one can write (-,-) =tr(-,-) ® (-, -), where €(t™,t") = §4n0. In fact, it is easily checked
that this form is invariant, graded (as a form of a Lie torus), and nondegenerate. We simply
say a form for a symmetric invariant graded bilinear form on a Lie G-torus. We will use
the following lemma later:

Lemma 3.6. There exists a nonzero form on a locally Lie 1-torus. Also, such a form is
unique up to a nonzero scalar. In particular, a form of a locally loop algebra is equal to
c(-,-) for some ¢ € F, where (-,-) is used in (20).

Proof. Only the uniqueness part is not clear. But such a form is unique up to a scalar for a
Lie 1-torus (see for example, [Y2]). Thus it follows from a local argument since a locally
Lie 1-torus is a directed union of Lie 1-tori. [l

4. LOCALLY AFFINE LIE ALGEBRAS

Let us recall locally extended affine Lie algebras (cf. [MY]). A subalgebra I of a Lie
algebra L is called ad-diagonalizable if

L= L,

EeH*
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where JH* is the dual space of H{ and
Le={xe L |[hx]=&(h)xforall h € IH}.

This decomposition is sometimes called the root space decomposition (of £ with respect
to an ad-diagonalizable subalgebra J{). Note that an ad-diagonalizable subalgebra J{ is
automatically abelian. To confirm it, we need the well-known fact that every submodule
of a weight module is also a weight module. One can use a common trick for the proof as
for example, in [MP, Prop.2.1], but they assume J to be abelian. To make sure that this
assumption is unnecessary, we prove this here. Namely, in this case, we obtain

H= 69563'(* j’fg,

where Hg = L NIH. Let us suppose H # @©ecq¢-He . Then, there exists x € I such that
x can be written as x = xj + - +x, with n > 1 satisfying x; € L¢, \ J for all i. Take x € H
among all such elements satisfying that n is minimal, and choose h € H such that & (h) #
& (h). Then, ¥ i=ad h(x) — & (1) = (&a(h) — & (W))x2 + -+ (Ea() — &1 ())x € .
This contradicts the minimality of n. Hence, actually we have H = @¢ e+ He.

Now, suppose i € H¢ and &' € Her. Then, [h, 1] = E'(h)h' = —&(K')h. Hence, if h
and /' are linearly independent, then [, /'] = 0. Also we see [k, /'] = 0 if they are linearly
dependent. This means that H is always abelian. In particular, H = Hy C Lo = Cr (H).

An element of the set
R={§ €90 | L £0}

is called a root.

Let £ be a Lie algebra, H a subalgebra of £, and B a symmetric invariant bilinear form
of L. A triple (£,7, B) (or simply L) is called a locally extended affine Lie algebra or a
LEALA for short if it satisfies the following 4 axioms: (We will explain what is R* later.)
(A1) H is ad-diagonalizable and self-centralizing, i.e., L = @eege Lg and H = Lo =
Cr (H);
(A2) B is nondegenerate;
(A3) adx € Endr L is locally nilpotent for all £ € R* and all x € £ £
(A4) R* isirreducible.
Moreover,
(1) If XK is finite-dimensional, then L is called an extended affine Lie algebra or an
EALA for short.

(ii) If R* =0, then (L,H,B) is called a null LEALA (or a null EALA if  is finite-
dimensional) or simply a null system. Note that if R* = ), then the axioms (A3)
and (A4) are empty statements.

Now, using (A1) and (A2), we find that B, £xL g is nondegenerate for all £ € R. In
particular,
Bgcxg¢ is nondegenerate.

Claim 4.1. For each & € R, there exists a unique tg € H such that B(h,tg) = & (h) for all
he .

Proof. By the nondegeneracy of B, exL g there exist x € Lg and y € L_¢ such that
B(x,y) = 1. Let tg := [x,y] € 3. Then

B(h,tg) = B(h, [x,y]) = B([h,x],y) = E(B)B(x,y) = S (h)
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for all 2 € H. The uniqueness of 7z follows from the nondegeneracy of By . O
Thus there exists the induced form on the vector space spanned by R over F, simply
denoted (-,-). Namely,
(&,m) := Btz tn)
for&,n €R.
Now we call an element of

R*:={8eR|(E.E)#0}
an anisotropic root. Thus the meaning of the axiom (A4) is that R* = Ry UR, and
(R1,R;) =0imply Ry =0 or R, = 0.

Remark 4.2. We occasionally assume R* # @ for a LEALA or an EALA (i.e., excluding
null systems) without mentioning if it is clear from the context, for example, an occasion
when we say an anisotropic root of a LEALA or an EALA. In fact we assume R* # 0
through out the paper.

Remark 4.3. We note that there was one more axiom for a LEALA in [MY], but it turns
out that the axiom is unnecessary by Claim 4.1 above.

We say that a triple (£,7,B) is called admissible if it satisfies (Al) and (A2). A
fundamental property of admissible triples is the following:

Lemma 4.4. For£ € Rand all x € Lg andy € L_é, we have
[x,y] = B(x,y)te. 1)

Proof. Leth:=[x,y]—B(x,y)te € H. Then forall &’ € I(, we have B(h,h') = B(x, [y, /']) —
B(x,y)Blte, h)=B(x,y)& (W) —B(x,y)& (k') = 0. Hence, by the nondegeneracy of By, g¢,
we get h =0. (]

We can and do scale the above form (-, -) by a nonzero scalar so that (§,7) € Q for all
&, € R*. Let V be the Q-span of R, say

V :=spangR.
We showed the Kac conjecture in [MY, Thm 3.10] that
the scaled form (-,-) on V is positive semidefinite. (22)

As a corollary, (W,R*) becomes a reduced locally extended affine root system, where
W = spang R* (see [MY, §4] and [Y3]). We simply call R the set of roots, but call R* a
locally extended affine root system, say a LEARS, because R* is a natural generalization
of classical (locally finite) irreducible root systems, affine root systems in the sense of
Macdonald [Ma] or extended affine root systems in the sense of Saito [S]. We do not recall
the definition of LEARS here because we do not need it in this paper. The reader can find
the precise definition in [Y3].

The dimension of the radical of V is called the null dimension for a LEALA. If the
additive subgroup of V generated by

R :={ eR|(£,5) =0},
the set of isotropic roots or null roots, is free, we call the rank the nullity of a LEALA.
Thus we only use the term nullity when (R) is a free abelian group. So if we say that a
LEALA L has nullity, it means that (R°) is a free abelian group. (In [MY], we used the
term null rank for nullity, and nullity for null dimension. But we change the names to be
consistent with the notion of nullity in [Ne2].)
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The core of a LEALA L, denoted by L., is the subalgebra of £ generated by the root
spaces L for all a € R*. (L. becomes an ideal of £.) If the centralizer of L. in L is
contained in L, then L is called tame. Note that there is no core for a null system, and so
there is not a concept of tameness for a null system.

Now, since (W,R*) is a reduced LEARS, there exist a locally finite irreducible root
system A and a family of subsets {Sﬂ} pea of radW (the radical of W) indexed by A so that

R*={J (u+Sy)
UEA
and {Sy } yea is a reduced root system extended by G = (Uyea Sy) (see [[MY]). Note that
radW = (radV)NWw.
Foreach u € Aandg € G,if g € S, let
(Le)8 = LeNLptg,
and if g ¢ Sy, let (L.)§ := 0. Then one can easily show that

Le= @ @ (Lc)ﬁa

neAu{0} geG

where (L¢)§ := Ypea Lomnrr (Lo, (Le)k ], and that
L. is a locally Lie G-torus of type A, 23)

or more precisely, type {Sy }uea.
Also, letting

Lf:z @ (’E’C)fta

neAu{0}

Le=EP L8

geG

we get a G-graded Lie algebra

Here we give a couple of definitions about graded algebras in general.

Definition 4.5. Let V be a vector space over Q, and G an additive subgroup of V. Let

A=Ep Af

geG
be a G-graded algebra. Define a linear transformation d; on A by
di(ag) = giag

for a, € A#, where g; is the i-coordinate of g obtained by a fixed basis of V. Note that d;
depends on a basis of V. Then d; is a derivation of A, for we have

di(agay) = (gi+ hi)aga, = giagay + hiagay, = d(ag)gy +agd(ay)

for a, € A" and h € G. We call each d; an i-th coordinate-degree derivation.
If dimp V = 1, then d; is simply called a degree derivation.

Now for a LEALA, we define a special type.

Definition 4.6. If a LEALA L contains all coordinate-degree derivations acting on the
G-graded core, then L is called standard.
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We classified LEALAS of nullity O in [MY, Thm 8.7]. We describe the tame LEALAs
of nullity 0 in a slightly different way from the description in [MY]:

Let M := M5(F), My341(F) or My3(F) be the space of matrices of an infinite size J,
2341 or 27, respectively, and Ty, Tr5.4 or Toy the subspace of M consisting of diagonal
matrices. Let T’ be a complement of Ft in Ty, where 1 = 15 is the identity matrix so that

Ty=T®F1.
Then the following is the list of maximal tame LEALAs of nullity O:
e Type Ajy:
sly(F) + T’ with a Cartan subalgebra T" (24)

(note that 7’ is not unique),
e Type By: 025, 1(F)+ T with a Cartan subalgebra T, where

Tt :={x €Ty |sx=—xs},
e Type Cy: spy5(F)+ T+ with a Cartan subalgebra T, where
Tt :={x € Ty | sx = xs},
e Type D5: 0p5(F) + T with a Cartan subalgebra T, where
Tt :={x€ Dy |sx= —xs},
and each matrix s is the same s defined in (14).
We note that F1 is the center of sl (F) + T, and that

sly(F)+T" = (slz(F)+T) /Ft

for any T".

As in the case of locally finite split simple Lie algebras, each of type By, C5 or Dy is
the fixed algebra of slyy1 (F) + Try.41 or slyy(F) + Th by the automorphism o defined in
(15). This is the reason why we wrote T since this is the eigenspace of eigenvalue +1 of
o. We will write the eigenspace of eigenvalue —1 of c as T~

Any subalgebra of a maximal tame LEALA of nullity O containing each locally finite
split simple Lie algebra is a tame LEALA of nullity 0. Namely, let £ be a tame LEALA of
nullity 0. Then
Type Ay: sly(F) C L Csly(F)+ T’ with a Cartan subalgebra LN T,

Type By: 02541(F) C L C 0y5.1(F)+ T+ with a Cartan subalgebra LNT™,
Type C5: spy5(F) C L C spy5(F)+ T with a Cartan subalgebra LNTT,
Type D3: 03(F) C £ C 0y5(F) + T with a Cartan subalgebra LNT ™.

We observe 75 more carefully. Set
T¢° ={d € T5 | d is almost scalar }

i.e., d has the same diagonal entries except finite numbers of diagonal entries. Clearly 75°
is a subspace of M5(F).

Lemma 4.7. Let ) be the diagonal subalgebra of sl5(F). Then, we have
Tj(”:f)@Fl@Fejj, 25)

where ej; is the matrix in M5 (F) that the (j, j)-entry is 1 and all the other entries are O for
any fixed index j € J. In particular, we have

gly(F) =sly(F) © Fej;
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forany je€ 3.
Also, let I be any finite subset of J, and 1; := Y ;jcyeii. Then we have

T¥=H0Fus® T;?{,, (26)

where Y is the subspace of § such that all (k,k)-components for k € I\ I are 0, and Tj”< |
is the subspace of T$* such that all (i,i)-components fori € I are 0.
Moreover, we have
Iy =b®Fue Ty, (27)

where Ty\; is the subspace of Ty such that all (i,i)-components for i € I are 0.

Proof. 1tis clear that T5* D h & F1 @ Fej;. For the other inclusion, let x € T5°. Then there
exists a € F such that y := x—at € T3 Ngly(F). Hence y = y —tr(y)e;; +tr(y)e;; and note
that h:=y—tr(y)ej; € h. Thus x =h+at +tr(y)ej; € h S F1 P Fej;.

For the second decomposition, we have Tj‘” =Tr® Tjai 2 where T; is a subset of Tjas such
that all (k, k)-components for k € J\ I are 0. But then it is easy to see that 7; = h; & F1;.
The last decomposition is now clear. U

Now, we did not mention about the defining bilinear form B of L in general. As it was
described in [MY], one can state as follows:

Let g be

sly(F), 02341(F), spay(F) or 0x3(F),
which is the locally finite split simple Lie algebra contained in L, as defined above. The
restriction B .4 of our B is a nonzero scalar multiple of the trace form, and the rest of
part can be any symmetric bilinear form.

In fact, we did not clearly say the reason in [MY] why the restriction B .4 of B is a
nonzero scalar multiple of the trace form. But this follows from the perfectness of g and
the invariance of B. We summarize this phenomenon in a slightly general setup. Let us
call a symmetric invariant bilinear form simply a form for convenience.

Lemma 4.8. Let L be a Lie algebra with a certain form B and let g be a perfect ideal of
L. If any form of g is equal to B' := B | g4, up to a scalar, then any invariant bilinear form
onLxgorongxLisequalto B |pxg or B |gx, up to a scalar.

Proof. Let E be an invariant bilinear form on L X g. For x € Land y € g, since y = ¥;[u;, vi]

for some u;,v; € g, we have

E(x,y)=E(x,) [ui,vi]) =c ) B'(Ix,ui],vi) = ¢ ) B(lx,ui],vi) = cB(x, ) [u;,vi]) = cB(x,y)
i i i i

for some ¢ € F. One can similarly prove the desired result for g x L. (]

Recall the Lie algebra
MB"(F) = {x € M5(F) | each row and column of x have only finite nonzeros},

which can be identified with the derivations of gl;(F) (see [N1]). One can extend each
automorphism ¢ on M%“ (F), where & =27 or 27+ 1. Thus each locally finite split simple
Lie algebra g := slg(F)O is a perfect ideal of each M (F)°.

Lemma 4.9. Let L be any subalgebra of Mi"(F). Let M be any subalgebra of gl;(F).
Then one can define the trace form tr on L X M and M X L, and this tr is invariant.

Hence if L contains sly(F), then any invariant bilinear form on L x sl5(F) or on
sly(F) x L is equal to ctr for some ¢ € F.
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Moreover, if L is a subalgebra of M (F)° containing g = slg(F)°, then any invariant
bilinear form on L X g or on g X L is equal to ctr for some c € F.

Proof. Since xy € gly(F) for x € L and y € M, the trace form tr(xy) is well-defined. Thus
we only need to show the invariance, i.e., tr([A, B]y) = tr(A[B,y]) for A,B€ Land y € M.
But it is enough to show this for y = ¢;; (the matrix unit of (i, j)-component). Let A = (@),
B = (byn) and C = (cpn) = [A,B]. Then, c;up = Y (a@mkbin — bmkarn) and tr([A, Bly) =
tr((cm,,)e,-j) =Cji= Y (ajkbk,' — bjkak,-) and tl‘(A [B,yD = tr((am,,) (Zm bmiemj -Y. bjnein)) =
Y.« (ajkbr; — ayib jx). Therefore, the trace form is invariant. One can similarly prove the case
for M x L.

By [NS, Lem. II.11], any form on sl5(F) is equal to ctr for some ¢ € F*. Thus the
second and the last statements follow from Lemma 4.8 since sl3(F) or g is a perfect ideal
of L. O

Suppose that B is a symmetric invariant bilinear form on
Mj = Slj(F) + Tj.

Then, by Lemma 4.8, the restriction of B to My x sl3(F) or sl (F) x M5 is equal to ctr for
some ¢ € F. We claim that such a form B does exist. For this, we choose any complement
T'ofhinT,ie.,
T=T .

Let

v:T'xT —F
be an arbitrary symmetric bilinear form. We now define a symmetric bilinear form B on
M5 as

B(x,y) = w(x,y)
on 77, and ctr on My x sl5(F) and sl5(F) x M. To show that B is invariant, we prove
the following.

Claim 4.10. Let x € T\ F1 and y; € sl5(F) for k = 1,2,...,r. Then there exist a finite
subset I of 3, 0#h € b and g € T such that y € sl;(F) for all k, and h € by,

.X:/’l—|—g7 [xayk} = [h7yk] and B(ank) :B(hayk)
for all k. Moreover; there exist y € sl5(F) and h' € b such that [x,y] # 0 and
Bx, i) £ 0. (28)

Proof. Let I be a finite subset of J so that y; € sl;(F) for all k. Moreover, if the I x I-block
submatrix of x is a scalar matrix, then we enlarge I until the I x I-block submatrix of x
is not a scalar matrix. For such 7, by (27) in Lemma 4.7, there exists 0 # h € bh; so that
x = h+by +x' for some b € F and x' € T5\;. Put g := by; +x. Then clearly [g,y;] = 0.
Also, we have B(g,yr) = ctr(gyr) = cbtr(yx) = 0 since tr(y;) = 0.

To show the second statement, it is enough to choose y € sl;(F) and /' € b; such that
[h,y] # 0 and tr(hh') # 0. O

We now prove that B is invariant. It is enough to consider the case involving some
elements in T’. Since T’ is an abelian subalgebra, the case involving three elements in 7’
is clear.

For the case involving one element in 77, let x € T’ and y, 7z € sl5(F). Then it is enough
to show that

B([x,y],2) = B(x, [y,2])-
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If x € F1, then both sides are clearly 0. Thus, by Claim 4.10, one can change x into & for y
and [y, z] so that B([x,y],z) = B([h,y],z) and B(x, [y,z]) = B(h, [y,z]). Thus it follows from
the invariance on sly (F).

The case involving two elements in 7’ can be shown similarly. Let x,y € T’ and z €
sl3(F). Then it is enough to show that

B(x,[y,z])) =0 and B([x,z,y) = B(x,[z,y]).

Again, if x or y € F1, then both sides of both equations are clearly 0. Thus, by Claim 4.10,
the left-hand side of the first equation is equal to B(h, [, z]) for some h,h’ € by, and this is
equal to 0 by the invariance on sly(F). For the second equation, change x into / for z and
[z,y] so that (LHS) = B([h,z],y) and (RHS) = B(h,[z,y]). But then these are equal by the
case involving one element above. Thus we have proved that the symmetric bilinear form
B is invariant.

Moreover, the radical of B is contained in F1 whenever the restriction to sl (F) is not
zero. In fact, this follows from [MY, Lem. 8.5] since the center of My is equal to F1. Or
one can directly show this. Let us first mention the graded structure of Mj.

Letg:=sly(F)andletg=hD (@ueAgch* gu) be the root-space decomposition of g
relative to ). We extend each root i € h* to an element in 7" as follows.

Let Ay = {£(& —¢€j) | i,j € T}, where ¢ is the linear form of gly(F) determined by
ex — O Oy. Since an element p € T can be written as p = diag(a;;);c7, one can define
€(p) = a;;. In this way one can embed Ay into 7*. Thus M := My has the root-space
decomposition

M= @ My
peT*
relative to 7, where M, = g, for p # 0 and Mo = T, and M, = 0 if pu ¢ Ay. This is
an (Ajy)-graded Lie algebra, and B is graded in the sense that B(Mg, My ) = 0 unless
E+mn=0forall £,m € Ay. In general, a symmetric invariant bilinear form on a Lie
algebra having the root-space decomposition relative to a subalgebra is graded.

In particular, the radical of B is graded. Thus one can check the nondegeneracy for each
homogeneous element. The elements of degree i € Ay cannot be in the radical by Lemma
4.9. For the elements of degree 0, only candidate is an element in F'1 by (28). Therefore,
we have:

Lemma 4.11. The radical of B is equal to F1 if B(1,1) =0, and B is nondegenerate if
B(1,1) #0. O

Thus for any symmetric bilinear form W on T’ with the radical F1, the quotient Lie
algebra My /F1 with the induced form B is a LEALA of type Ay of nullity 0. Note that
My /F1 is isomorphic to M := sl3(F) @ T"”, where T” is a complement of h ® F1 in
T5. Conversely, if Y’ is any symmetric bilinear form on 7", one can define a symmetric
nondegenerate invariant form B’ on M’ as above, and MY is isomorphic to some My /F1
choosing some 7’ and y. By a similar argument, one can say that a LEALA of type Ay of
nullity 0 is isomorphic to a subalgebra of M5/F1 containing sly(F) = (slz(F)+ F1)/F1
with the induced form B.

Example 4.12. The centerless Lie algebra gly(F) = sly(F) @ Fej; is an example of a
LEALA of type Ay of nullity 0, where ¢;; is the matrix unit for j € J. On the other hand,
gl (F) =sl,(F) @ Fej; has the center FI, where I is the identity matrix on gl, (F), and this
is a non-tame EALA of nullity 0.
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Suppose that B is a nondegenerate form on gl (F). Then B is a nonzero scalar multiple
of the trace form except on Fe;; X Fej;, by Lemma 4.9. Conversely, one can take any value
to B(ejj,e;j;), and extend a nondegenerate form B to gl (F).

For the finite case gl,,(F) = sl;(F) @ Fejj, suppose that B is a nondegenerate form on
gl,(F). Since rad*B is in the center of gl,(F) (e.g. [MY, Lem. 8.5]), we have that 9B is
nondegenerate <= B (1,I) # 0. We claim that this is equivalent to

B(ejj,ejj) # cn71~
In fact, consider the expression / = I — nej; + nej;, noting that tr(I —ne;;) = 0. Since
x:=1—nej; €sly(F), we have B(I,I) = B(x+nejj,x+nej;j) = B(x,x) +2nB(x,e;;) +
n*B(ejj,ej;) =ctr(x?)+2nctr(xej;) +n*B(ejj,ej;) = ctr(l—2ne;;j+n’ejj)+2nctr(e;; —
ne;;)+n*B(ejj,ejj) =c(n—2n+n*)+2nc(1—n)+n*B(e;j,e;;). Hence, B(I,1) =0 if
and only if n2%B(e;;,e;;) = c(n® —n), and so our claim is proved.

Remark 4.13. In the classification of tame LEALAs of nullity O of type Ay in [MY], we
chose sl3(F) @ T" for a complement 7" of T4* in T5 as a maximal one. But in fact, a
subalgebra of a bigger Lie algebra sl5(F) @ T" defined above is also a tame LEALA as
gl (F) is so.

Now we observe the forms on the other types By, Dy and C5. Let B be a symmetric

invariant form on

Mg =slg(F)+Tg
so that the restriction to slg(F) is not zero, where & = 2J or 2J 4 1. Let M$ be the
fixed algebra by the automorphism ¢ defined above with the restricted form B°. Then the
restricted form is still invariant, and by Lemma 4.9, the restriction to slg(F)° is equal to
ctr for some ¢ € F*.

Moreover, BC is nondegenerate. This follows from [MY, Lem. 8.5] since M% has the
trivial center. One can also show this using the following lemma similar to Lemma 4.7.
(As we mentioned already, T+ = T° means the eigenspace of eigenvalue +1 of ¢, and T~
means the eigenspace of eigenvalue —1 of ©.)

Lemma 4.14. Let I be any finite subset of J and fix some index ig € I. Then we have
Ty =by @Dy, and Ty =by & F(eiiy+eavi+ip) S Tyzap

where 13, or b5, is a subset of bt or b~ such that all (k,k) and (J+k,J + k) components
forke I\I are 0, and TZJS\ZI or Tyy\ oy is @ subset of T,5 or T,y such that all (i,i) and
(341,34 1i) components for i € I are 0.

Also, we have

+ ot + - e —
Ta =021 ® Togn iy @d Ty = Dy ©Feas 12501 DT g4y, 2141

where h;r]H or by, is a subset of b+ or b~ such that (k,k) and (34 k,J +k) components
forallk € 3\Iare0, and T(erjJrl)\(Zl+l) or T(;:i+l)\(2[+l) is a subset 0fT2+3+1 or Tyy, | such
that the (23 41,23+ 1) component and (i,i) and (J+i,T +i) components for all i € I are
0.

Moreover, we have

Ty =y OF 1O Ty and Ty = by OF i1 ©T55, )\ (241) 29
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Proof. 1t is enough show (29). For this, we show the two equalities
Ty; = by © F(eiyig +e31ip,3+iy) and  Toy y =by ©Feayi12541,

where 75, is a subset of 7, such that (i,i) and (J+-i,J+ i) components for all i € J\ / are
0,and 75, is a subset of 7, | such that (i,i) and (3 +i,J+i) components for all i € J\ 7
are 0. But as in the proof of Lemma 4.7, fory € T,; or T,; |, they follow from the equation

1 1
y:y—Eﬁbﬂﬁm+€M%JHJ+§UOﬂ%m+€M%JHJ

or
y=y—tr(y)easi12341 +tr(y)easi12341-
Hence (29) holds. O

Corollary 4.15. Let x € T+ or x € T~ \ F1. Then there exists some 0 # h € b+ such that
B(x,h) #£0.

Proof. By (29) in Lemma 4.14, there exist a finite subset / C Jand 0 £ K € Ijzil or [ﬁlﬂ SO
that x = i’ + biy; +x' or x = I 4 bigr1 +x' for some b € F and x € Trz\57 0r Togy1\2741
(since x ¢ F1). Since the trace form is nondegenerate on b3 or b3, 41> one can choose
h € b3; or b, so that tr(i'h) # 0. Then we have B(x,h) = tr(h'h) + btr(h) + tr(x'h) =
tr(h'h) # 0 (since x'h = 0). O

By Corollary 4.15 about T, we also see that B® is nondegenerate. (We will use the re-
sult about 7'~ later.) Moreover, the restriction of B° to any subalgebra L of M containing
slg(F)° is still a nondegenerate form.

Conversely, let U be a complement of h° in L NTC, and ¢ an arbitrary symmetric
bilinear form on U. Then one can extend ¢ to a nondegenerate form on £, using Lemma
4.14 (or embeds L into Mg) and Corollary 4.15 again. Consequently, one can say that
a LEALA of type X5 # Ay of nullity 0 is isomorphic to a subalgebra of M containing
sl " (F )G.

The next interesting objects are LEALAS of null dimension 1. In fact our purpose of
the paper is to classify tame LEALAs of nullity 1.

Definition 4.16. We call a tame LEALA of nullity 1 a locally affine Lie algebra or a
LALA for short.

Before giving examples of LALAs and classifying LALAs, we prove a general property
about R for LEALAs. For this purpose, we review some properties (which we need) about
{Su}uea. First one can show that S, = Sy if u and v have the same length for u,v € A.
Let § =S, for a short root . Then § contains all Sy, and S satisfies 0 € S and 25 —§ C §.
Also, S spans radW (see [Thm 8, Y2]).

Lemma 4.17. Let L be a LEALA. Then S+S C R°, and S+ S = R if L is tame. If L has
nullity, then (nullity of L) = (null dimension of L).

Proof. The first statement follows from (12) in §1, but we show this for the convenience
of the next statement. Let s,s’ € S. Then L_; ;¢ # 0 and L,y # 0 for yu € Ay, and
(£ pts:Luty] # 0, by shr-theory. (Consider the slp-subalgebra generated by L, and
L s and actiton L,4¢.) So0# [y, L4 ¢] C Ly and hence s+ 5" € RY. Thus
S+SCRO.
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Suppose that L is tame. Let ¢ € R?. If a + o ¢ R for all & € R*, then L4 centralizes the
core, and so L is in the core. Thus L5 = Y yen siy—cLpts: Lpiy], and so 6 = s+
for some s,5’' € S, =S_, CS. (We get 6 = s+’ here which is our need. But this case does
not occur as in the following argument.) But then 0 # Ly =L, _¢,5,and 0# Lo
since —s’ € Sy. Therefore, pu — s'+ 0 € R with u — s’ € R*, contradiction. Thus there
exists & € R* such that o + ¢ € R. (This property is often said that ¢ is nonisolated. So
we have shown that any isotropic root is nonisolated if L is tame.) Note that o = u + s for
some t € Aand s € S. Hence s+o0 € S,andsoc € S—S=S5+S. Thus S+ S = R°.

For the last statement, it is enough to show that radV c V9 := spang RC. (The other
inclusion is clear.) Since V =W 4V (where W = spang R*), it is enough to show that
(radV)NW =radW C V. But this is clear since radW = spang S. O

Note that if we put

RO :={8 R’ | LgNL.#0},
then (12) in §2 means that we always have
RO=5+5. (30)

Remark 4.18. There are notions of null dimension and nullity for LEARS (W,R*). Namely,
(null dimension of R*) := dimrad W and (nullity of R*) := rank(S) if (S) is free (see [Y3]).
In general, (null dimension of £) > (null dimension of R*). If £ has nullity, so does R*,
and (nullity of £) > (nullity of R*) since any subgroup of a free abelian group is free (see
e.g. [G]). If L is tame, then (null dimension of £) = (null dimension of R*), and if £ has
nullity, then

(nullity of £) = (null dimension of £) = (nullity of R*) = (null dimension of R™)
since S+ 85 = RV.

Lemma 4.19. Let (L,3(,B) be a LEALA over F with the center Z(L), and R® the set of
isotropic roots of L. Then:

(1) We have

Y FisczZ(L)CH,
S€R0
where tg is a unique element in H defined at (21) in Lemma 4.4.

(2) Let L. be the core of L and R® = {8 € R* | LsN L. # 0}. Then for § € R, we have

ts € L. and
Y Fts=Z(L)NnHC Z(L).
5€R?

(3) Let R* be the set of anisotropic roots of L, which is a LEARS. Let m be the null
dimension of R*, which is equal to the dimension of the radical of the induced form from
B on spang R*. Then, m > dimp (Z(L.) NH), and if m > 1, then dimp (Z(Le) NH) > 1.
Hence m = 1 implies that dimp (Z(L.) NH) = 1 and dimp Z(L) > 1.

(4) If L is tame, then ¥ scgo Fts = Y5cp0 Fls = Z(L)NH=2Z(L).

Also, let n be the null dimension of L, i.e., n = spang RC. Then m = n > dimg Z(L).
Moreover, if n > 1, then dimp Z(L) > 1. Hence n = 1 implies that dimp Z(L) = 1.

Proof. (1): Since each & is an isotropic root, we have [t5,x] = 0 for any root vector x € Le.
In fact, [t5,x] = & (t5)x = (&, 8)x = 0 since § is in the radical of the form (see (22)). Hence
ts,L] =0, 1.e.,t5 € Z(L). Thus Y.5.p0 Fts C Z(L). For the second inclusion, note that £
is an H-weight module, and Z(L) is a submodule. Hence, Z(L) is a weight module (by a
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general theory of weight modules). Namely, Z(L) is a graded subalgebra in our case. But
then, since J is self-centralizing, we obtain Z(L) C J.

(2): For 5 € R%, let 0 # x € LN L,. Then t5 = [x,y] for some y € L_g, and hence
ts € L since L, is an ideal. Thus Ysero Fs C L.N3JH, and, by (1), we get Ysero Fts C
L.NZ(L) C Z(L.). Therefore, we obtain Yscro F1s CZ(Le) NH.

For the other inclusion, let x € L, NJH. Since

LonH= Y [Le, L gl+ ) [Ls,L s,
EeRrx 5eRY

one can write

X = Z agte + Z asts,
EeRx 5eRY
where ag,as € F. Let AC R™ is a locally finite irreducible root system determined by a

reflectable section of R* and S a reflection space for a short root in A. Then we know that
R* C A+ S and R? =S5+ S (see (30)). Thus we get

x= Z Agt5'ta+s + Z asts
acA,b'eS 5€S+S

= Z ((la+5/ta —|—aa+51t5/) —+ Z asts
acA,8'eS 5eS+S

= Y dgistat Y, daisty+ Y, asts,
acA,b'eS acA,b'eS 5eS+S

and hence,
yi= Z agyisita €Z(L).
aeA,d’eS
But y € h C g, and since g is a locally finite split simple Lie algebra, this y has to be 0.
Therefore,
X = Z agisits + Z asts € Z Fts,
aeA,§'eS SeS+S 5eRY
and we obtain Z(L) = ¥ s5cgo F15. The second inclusion follows from (1).

(3): We know R* C A+ S and m = dimgspanS. But since Rg =S+S, we have m =
dimg span R(C’. Now, there is a one to one correspondence

{8 € RY} < {15} sepo;

and note that for some §,8’ € R?, one may have § 4 &' ¢ R, but since § + 8’ € H*, we still
have a unique element 75 5 € H through B(ts,s,h) = (6+8")(h) forall h € H. Also, one
can easily see that 15, 5 =t5 + 5. Similarly, for any a € F, there exists a unique element
t,5 € H such that B(z,5,h) = (ad)(h) for all h € H, and one can check that t,5 = at;.
Thus for any subfield F’ of F, we have a linear isomorphism between the vector spaces
spangs R? and Yscgo F'ts over F'. In particular, m = dimg ¥ 5 go Qt5 > dimp Y50 Ft5 =
dimp (Z(L,) NH). Finally, if m > 1, then there exists 0 # & € R, and so 75 # 0. Thus
Fts # 0, and hence we get the last statement.

(4): We have R = S+ = R? since L is tame (see Lemma 4.17). Hence, ¥ 5 g0 Fts =
Yscro Fis. Also, by (2), we already have ¥5.z0 Fts = Z(L:) NH C Z(L). Moreover, for
x € Z(L), we have x € Z(L,) since L is tame. Hence, Z(L.) NH = Z(L). The rest of
assertions follow from the fact that R® = Rg using (3). O
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Remark 4.20. There are examples of a tame LEALA or EALA whose nullity is o but the
center is just 1-dimensional. For example, L = sly(C[t:"!];cy) @ Fe @ d is a tame EALA
over C of type Aj, where d = Y ;- | a;d; with degree derivation d; = t,-a%_, and {a;}iey C C
is linearly independent over Q. This £ has null rank oo but the center is equal to Fc¢. Note
that the Cartan subalgebra J{ of L is just 3-dimensional. (The details are in [MY, Remark

522)1)
Corollary 4.21. Let (L,H,B) be a tame LEALA. Then we have a natural embedding
adL < Dery (Lc/(Z(Le) NH)).

In particular, if x € L is in a complement of the core, that is, x € M with L =L, DM,
then adx can be identified with an outer derivation of the loop algebra L./ (Z(L.) NH).

Proof. Since L. is an ideal of L, the restriction adx |, is in Derg L. Since L is tame,
this restriction map is injective. Now by Lemma 4.19, we have Z(L,)NH C Z(L), and
so adx |, can be identified with the induced derivation in Dery (L¢/(Z(£c) NH)). Note
that [x,L.] C Z(L.)NH C Z(L) implies [x, [y,z]] = [[x,¥],z] + [y, [x,2]] =0 for y,z € L. and
[x,L¢] =0.

For the second assertion, suppose that adx is inner in Derg (LC/Z(LC) N f}{) ,1.e., adx =
ady for some y € L.. Then

[x—y L CZ(L)NH.
But, since L. is perfect, again we have [x —y, L.] = [[x—y,L], L]+ [Le, [x—y,Lc]] =0 as

above. Hence x —y € Cr, (L) = Z(L,) by tameness. In particular, x —y € L, but then x €
L., and this forces x to be 0. Therefore, adx is an outer derivation of L./(Z(L.)NFH). O

We know that the core of a LALA is a locally Lie 1-torus (see (23)). Moreover:

Corollary 4.22. Let L be a LALA. Then:

(1) The core L. is a universal covering of a locally loop algebra.

(2) There exists a natural embedding ad L — Derp (Lc/Z(L¢)).

In particular, if x € L is in a complement of the core, then adx can be identified with an
outer derivation of the locally loop algebra L./Z(L.).

Proof. By Lemma 4.19, L. has a nontrivial center. Hence, by Theorem 3.5, we see that
(1) is true. For (2), we have

Z(Lc) NH= Z(Lc) = Z('E’)
for a LALA L, and so the assertions follow from Cororally 4.21. O

5. EXAMPLES OF LALAS

To finish the classification of LALAs, we need to classify a complement of the core.
Before doing this, we give examples of LALAs. Let us first define the minimality of a
LEALA in general (see [N2] and also Remark 7.16).

Definition 5.1. A LEALA L is called minimal if £ is the only LEALA containing £, and
contained in £ (, equivalently saying, if there is no LEALA L’ satisfying L, C L' C L).
Note that if the nullity is positive, then L. is never a LEALA. So if L. is a hyperplane in
L (, that is, dim £ /L, = 1) with positive nullity, then £ is minimal.
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Example 5.2. Let J be an arbitrary index set. One can construct 14 minimal standard
LALAs from 14 locally loop algebras L(Xg)) in Section 3. Namely,

o =Xy = LxYy e Feo Fa
is a LALA of type Xg), where ¢ is central and d© is the degree derivation, i.e.,
dOm) = me™
with a Cartan subalgebra

H=haFcaFd",

where b is the subalgebra of g(Xy5) consisting of diagonal matrices if J is infinite or any
Cartan subalgebra if J is finite. Also, a nondegenerate invariant symmetric bilinear form
B on L is an extension of the form defined in Section 3 for loop algebras, using the trace
form or the Killing form if J is finite, and a nondegenerate symmetric associative bilinear
form on F[t*'], and defining B(c,d?)) = 1. In particular, we define B(d®,d©) =0 as
usual although ‘B(d<0),d (0)) can be any number in F'. These LALAs are minimal LALAs.
Note that any standard LALA contains a minimal standard LALA. Note also that if J is
finite, then LALAs are automatically minimal standard LALAs, which are the affine (Kac-
Moody) Lie algebras.

Now, we give examples of bigger (and biggest) LALAs when J is infinite. Note that

slz(F)+T =gly(F)+T,

where T = T5 is the subspace of all diagonal matrices in the matrix space M7 (F) of size
J, is a Lie algebra with the split center F'1, where 1 is the diagonal matrix whose diagonal
entries are all 1. Thus its loop algebra

U=Uy := (sly(F)+T) @ F[t™"] (31)

is a Lie algebra with the split center 1 ® F[t*!].
Assume that B be a symmetric invariant bilinear form on U, which is not a zero on
sl5(F). Then, by Lemma 3.6 and Lemma 4.8, B is unique up to a scalar to tr ®€ on

(sly(F)@F[r*']) x U and U x (sly(F) @ F[r*!)), (32)
i.e., for x,y € U and if x or y € sl5(F), then
Bx1t™,y@1t") = atr(xy) 6p,—m (33)

for some a € F*. We claim that such a form B does exist. As in the case of nullity 0, we
choose a complement 77 of h in T, i.e., T = T' ® b. For each m € Z, let

Y : T'xT' — F
be an arbitrary bilinear form. We define a symmetric bilinear form B on U as
Bx@1",y@1") = Yin(x,¥)6p,—m

on T’ ® F[t*'], and (33) on (32). One can similarly prove that B is invariant to the case of
nullity 0 using the following claim (which can also be proved similarly to Claim 4.10).

Claim 5.3. Letx € T\ Ftand y; € sl5(F) fork=1,2,...,r. Then there exist a finite subset
Tof3, 0£hebandg €T such that y; € sly(F) for all k, and h € 4y,

x=h+g, k" " =ht",y®t"] and Bxt",y@t")=B(ht",yt")
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forall m,n € Z and all k. Moreover, there exist y € sl5(F) and i’ € b such that
xt" yt"|#0 and Bxt™ K @t™™) #0. 34)
O

Now we can use a general construction, that is, a one-dimensional central extension by
the 2-cocycle

o(u,v) = B(d(o)(u), v)

for u,v € U, where d¥ is the degree derivation on U. This is well-known (see e.g.
[AABGP]), but for the convenience of the reader, we show that ¢ is a 2-cocycle in a
slightly more general setup. Note that d(*) is a skew derivation relative to B, i.e.,

B(dO(u),v) = —B(u,dO(v)).

More generally, for a Z-graded algebra A = @,,c7 A, with a symmetric graded bilinear
form v, the degree derivation d(©) is skew relative to . In fact, for x = ¥, x,, and y =
Y., Ym €A, we have W(d(o) (x)ay) = meW(xm»y) = mell’(xm7y—m) = mell/(xay—m> =
—Lmy(x,ym) = —y (x,d®(y)). Hence d' is skew.

In general, on a Lie algebra L with a symmetric invariant bilinear form B, one can define
@(u,v) := B(d(u),v) for any skew derivation d and u,v € L. Then @(u,v) is a 2-cocycle
(which is also well-known). In fact, clearly the first condition of cocycle, i.e., @(u,u) =0
for all u € L, holds. For the second condition, we have

@ ([u,v], W)+<P([V w],u) + @([w,u],v)

= B(d([u,v] ( w],d(u)) — B([w,u],d(v))

=B([d<<u B[, d (), w) — B([ W], d(w)) — B(bwal, d)
:B(d((u), —B(d(v), [u,w]) = B([v,w],d(u)) — B([w,u],d(v)) = 0.

Thus we get a 1-dimensional central extension
U:=UaFc
using the 2-cocyle @(u,v) =B (d(o) (u),v) above. Then

A

U="1Uy:=UepFa?
is naturally a Lie algebra defining
[c,d ] =0,
anti-symmetrically. Thus the center of U is equal to Fc ® F1. We also extend the form B
by
B(c,d?)=1 and BU,d?)=0,

symmetrically (and the value of B(d (0),d(0)) can be any). Then one can check that this
extended form is also invariant.

Letg:=sly(F)andletg=bHo (EBHEAJC;]* gu) be the root-space decomposition of g
relative to h. Let

H:=ToFcaFd?.
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We extend each root i1 € h* to an element in J*. First, one can extend i to 7/ & F1 as we
did in the case of nullity 0. Then we define u(Fc® Fd(®)) = 0. Also, define § € 3(* as
8(T ®Fc)=0and §(d®) = 1. Then U has the root-space decomposition

relative to 3, where ﬂqumg =gu®@t"for0#p € A(jl) = AyUZ3J, ﬂmg =T ®1" for
m#0and Uy = K, and ﬂg =0ifé ¢ Agl). This is an (A%1)>—graded Lie algebra, and B is
graded in the sense that B(ﬁg , ﬁn) =Ounless E4+n=0forall§,n € A(jl). In particular,
the radical of B is graded.

Claim 5.4. The radical of B is contained in 1 @ F[t*!].

Proof. Since the radical of B is graded, one can check the nondegeneracy for each homo-
geneous element. It is clear that the elements of degree u + mé for 4 € Ay cannot be in
the radical. For the elements of degree m#, it follows from (34). ([l

It is now easy to check that U = (U, 3, B) is a LEALA of nullity 1, defining y(1,1) # 0.
Since the center of U is equal to Fc & F'1, this is not tame. However, the subalgebra

L= (sly(F)o T @ Fi*' ] @ Fea Fd©)

of W is tame, and so L™ is a LALA. Moreover, it is easy to check that a 1-dimensional
extension of the core L% = sly(F) @ F[t*!] @ Fc of L™*, say

L(p) =L@ F(d + p)

for some p € T', is a minimal LALA of type A(jl) (which is a subalgebra of L™). Also,
one can show that any homogeneous subalgebra of L™ containing some £ (p) is a LALA.

We will show in Section 6 that any LALA of type A(jl) is a homogeneous subalgebra of
some L™ containing some L(p).
Also, let B be any form on U with the radical t ® F[t*!]. Then

U/ (oF[*) = (U/ (1o F[*"),T,B),

where T = (T® 1+ 1@ F[r*']) /(1@ F[r*!]) and B is the induced form of B, is a LALA
isomorphic to L™,

We describe the other untwisted LALASs using ﬂgg and ﬂ23+1 and the automorphism ¢
again defined in (15). First, one can assume that the defining complement 77 of U = U,5
or Upz41 (with W) is o-invariant. Such a complement exists. For example, let

T=T"aT"

be the decomposition of T = T»5 or Tr5. 1, where T is the space of eigenvalue 1 and T~
is the space of eigenvalue —1. Also, since f is G-invariant, we have

hb=bht®h, b CT™ and Hh CT .
Note that F1 C T~. Choose complements (77)" and (7~)’ so that
T"=p"a(T") and T =h @F1e(T).
Let
T:=(T") & (). (35)



LOCALLY LOOP ALGEBRAS AND LOCALLY AFFINE LIE ALGEBRAS 28

Then we have T = h® T’ @ Ft and T’ is o-invariant, and
(1) =(T")"=(T") and (T')"=(T")"
Let us extend the automorphism on U= ﬂgj or ﬂ23+1 as
6(xot) :=c(x)@t*, 6(c):=c and 6(d):=a.
Then the fixed algebra US with the restriction of the form 9B is a LALA of type Bgl), C(jl)
or D(jl), depending on the type of ¢. More precisely,
W = (g (1")°) @ Flr*' | @ Few Fd,

where g = sly5.1(F)® or sly5(F)° is a locally finite split simple Lie algebra of each type.
Note that 7° =T+t =hT @ (T")° and T~ = b~ ® F1 & (T ™)' have the following forms:

T* = {(aw) € Tz | @i = —az iz (Vi €3), axy12541 =0}

T~ ={(aw) € Try41 | aii = az4iz4i (Vi€ T)}  for B(jl),

TH ={(aw) € oy | aii = —az1iz+i (Vi€ J)}

T~ ={(ai) € Ty | ais = ay1iz+i (Vi€ J)} for C<31> or D(jl)' (36)

The nondegeneracy of the restricted form B follows from the following lemma whose
proof is similar to the case in nullity 0.

Lemma 5.5. Let 0 #x € T orx € T~ \ F1. Then there exists some 0 # h € b such that
Bxet"™ het™™)#£0
forallm € Z. (]

As in the case of type Ag), a l-dimensional extension of the core ﬂf’, say L(p) =

ﬁg’ © F(d®) + p) for some p € T'°, is a minimal LALA of each type. Also, one can check
that any homogeneous subalgebra of us containing some L(p) is a LALA of each type.
We will show in Section 6 that any LALA of each type is a homogeneous subalgebra of
1% containing some L(p).

We can now give examples of twisted LALAs similarly. Namely, we use the automor-
phism o again defined in (15) to get the type C5 or By, and extend the automorphism on
U = Uyy or Upy41 as

6(x@*) = (=1)fo(x)@t*, 6(c)=c and &(d"):=d), (37)

choosing a good complement 7' for each ¢ as in (35). Then the fixed algebra US with the
restriction of the form B is a LALA of type C(:?) or BC%Z), depending on the type of o.

More precisely,
W =(gaT ) oF?esaT ) otF e FcoFd,

where g = sp,5(F) or 02541 (F) and s = sly5(F)~ or slyz+;(F)™ . The nondegeneracy of
the restricted form B follows from Lemma 5.5. As in the untwisted case, a 1-dimensional
extension of the core US, say L(p) = US @ F(d¥) + p) for some p € T'", is a minimal
LALA of each type. Also, one can show that any homogeneous subalgebra of US contain-
ing some L(p) is a LALA of each type. We will show in Section 7 that any LALA of each
type is a homogeneous subalgebra of some us containing some L(p).
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For the type B%z), as Neeb described in [N2, App.1], we define a different kind of auto-

morphism 7 on the untwisted LALA M := ﬂg’j 4o of type D(jlll defined by s = (ljoﬂ le+ 1) .

For convenience, let 3+ 1 ={j | j € 3} U{jo} and
23+2=0+ 1)+ @+ 1) ={jljeTu{jo)U({—jljeTFU{-jo})-
Let
8 =¢€jo,—jo T €—jo.jo
be the matrix of exchanging rows or columns, and let T be an involutive automorphism of
02542(F) defined by
T(x) = gxg.
Then one can see that the fixed algebra 0,52 (F)" = 02741 (F) (which has type B5) and the
minus space s := 0y5.2(F)~ by 7 is isomorphic to F27*! as a natural 0,5 | (F)-module
with
s50=02342(F) " Nh" =F(ejj, —e—jy,—jy)-
We can extend 7 on 0y3.2(F)+ T, =h" @ T35, (see (36)). Then T'35.,, is clearly
T-invariant, and we have
T~ it ~ !t
T" = (T'55.0) 2 T35 =T'5;

and the minus space (7'95,,)" by T is equal to 0.
We further extend T on M as the same way as in (37), i.e.,

@) = (=Dt @, 2(c)=c and £(d?):=d®,
and get a LALA M° of type Bgz). More precisely, we have
M = (0051 (F)@T") @ Fr? | @s@tF | @ Fea Fd©.

(For the odd degree part, no extra matrices, i.e., no elements from 7’, are involved as in
an affine Lie algebra of type Béz) = Déi)l.) The nondegeneracy of the restricted form B
follows from Corollary 5.5. As in the above, a 1-dimensional extension of the core Mf,
say L(p) = MZ @ F(d®) + p) for some p € T”, is a minimal LALA of type B(jz). Also,
one can show that any homogeneous subalgebra of M* containing some L(p) is a LALA
of type B(jz). We will show in Section 7 that any LALA of type B(jz)

subalgebra of some M? containing some L (p).

is a homogeneous

6. CLASSIFICATION OF THE UNTWISTED CASE

Let £ be an untwisted LALA of infinite rank, i.e., the core L is a universal covering of
an untwisted locally loop algebra. Choosing a homogeneous complement of the Z-graded
core, one can write

L=L.aEpD"
meZ
Note that the complement is assumed to be included in the null space:

@Dm C @ Ls= @ngl and D" C L’”Sl’

mez ScR0 mez
where &) is a generator of (R%)7. Let
L=L./Z(L,)
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be the centerless core. Also, let (g,5) be the grading pair of the Lie 1-torus L. so that  is
the set of diagonal matrices of a locally finite split simple Lie algebra g:

g=hoPoa=LLYN L. =P L,
acA mez

where

L= @ Lo

acAU{0}
We identify the grading pair (g, ) of the Lie 1-torus L. and £L.. Moreover, we identify
Ll =L:=gopFr*"].

Now, we classify the diagonal derivations of an untwisted locally loop algebra L in
general. Let

(Derr L)) = {d € Derp L | d(gq ®1™) C gq @t™ forall o € A and m € Z}.

We call such an element a diagonal derivation of degree 0 in Introduction. Note that since
80 = b =Yacal8a; 9o, we have

dho™) =Y d([ga,9-a]l@1™) =) d(ga®@1",g-a®1])

aeA aeA

=Y ([d(ga®1™),80-a® 1]+ [ga ®1",d(g—a @1)])
aEeA

C Z [ga @1, g-a®@1]=h@"
aeA

for all d € (DerpL)Y.
Note also that d |4 is a diagonal derivation of g. Hence, by Neeb [N1], we obtain
d |g= ad p for a certain diagonal matrix p of an infinite size. More precisely, p € P, where

P =T5 for A5, and T or T;j 1 for the other types (38)
defined in Example 5.2. Let
d' :=d—adp e (Derr L)).

Then we have

d(gl1)=0.
In particular, we have d’(h ® 1) = 0. So, for 0 # xRt € gy 1, if
d(x®t) =ax®t (39)
for a € F, then
d'(yor ') =—ayor! (40)

forall y € g_g. In fact, since 0 # [x,y] = h € hand &’ (y®t ') =by®t~! forsome b € F,
we have

0=dhol)=d(xet,yot ) =[dxot),y0r N+xol,d(yor™")]
=(a+b)x@t,yot = (a+b)xy@1.
Hence, b = —

Lemma 6.1. Let g = b @ Pyepba be a locally finite split simple Lie algebra. Then
U(g).gp = g for any B € A, where 3A(g) is the universal enveloping algebra of g.
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Proof. Since U(g). gp 1s anonzero ideal of g, it must be equal to g by simplicity. O

By Lemma 6.1, three subspaces
g®1, ge®r and g o1 !

generate A as a Lie algebra.
Let

d":=d —a-d,
d
where d(0) = o Then we have d”(g® 1) = d’'(g® 1) = 0 and using (39),

d"(x@t)=d (x®1) —ax®t =0.
Similarly, using (40),
d'yor =dyer ") +ayer ! =0.
Thus we get d”(L) = 0 and d” = 0. Hence we obtain
d=adp+a-d?, (41)
We define the shift map s, for m € Z on L = g ®@F F[t*!] by
sm(x@1F) == x @k

for all k € Z. (Shift maps were discussed in the classification of affine Lie algebras by
Moody in [Mo].) The shift maps clearly have the property

Sm([x,Y]) = [Srn(x)vy] = [x,sm(y)]

for x,y € L. (In other words, the shift maps are in the centroid of L.) Thus s, od is a
derivation for any derivation d of L. In fact, for x,y € L,

smod([x,y]) = sm([d(x),y] + [x,d(y)]) = [sm0d(x),y] + [x,5m 0 d(y)].
Now, let
d € (Derp L) = {d € Derp L | d(gq @1°) C gq @1 for all o € A and k € Z}.
Then we have
s_mod € (Derp L)}.

Hence, by (41), there exist p = py € P and some a = a; € F such that

S_mod= adp—l—a-d(o),
and so

d=syo(adp+a-d?).
Thus we have classified diagonal derivations of the untwisted locally loop algebra. Namely:
Theorem 6.2. For all m € Z, we have

(Derp L) = sy o (Derp L)) = s, 0 (ad P& Fd ),

where P is defined in (38). (I

The following property of diagonal derivations is useful.
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Lemma 6.3. Forallm e Z, let
er :={d € (Derp spod =dos, for some ne
Dery L)) d € (Derg L)y d=d 0 Z
and
er = c (Derg spod =dos, forallne .
Der}. L)§ d € (Derp L)y d=d Il Z

Then we have

(Dery L)§ = s oad P = (DeryL){.
Proof. First, it is clear that

(Dery L)§ O (Derf L)§ O spoadP
for all m € Z. Thus it is enough to show

(Derf L)§ C syoadP. (42)
So, let 5,0 (adp+a-d) € (Der}, L) C (Derp L)' Then for
hottehort Cc DerrL,
we have
snosm([p+a-d h@i]) = s, (akh @ ™) = akh @ <+
and
smo (p+a-d),h@ "™ = a(k+n)h@
for some n #£ 0. Hence, an = 0, and we get a = 0. Therefore, we obtain
Sm © (adp+a~d<0)) =spoadp € s,0adP,

that is, (42) has been shown. U

Remark 6.4. One can use some results by Azam about the derivations of tensor algebras
(see [A2, Thm 2.8]). But the direct application to our tensor algebra g @f F [til] gives an
isomorphism that

Derp(g®p F[til]) = Derg g%FF[tﬂ] @ C(g)@)p DelrpF[til]7

where C(g) is the centroid of g and ® F and ® F are special types of tensor products (since
g is infinite-dimensional). Thus we need a little more work to get our desired form above.
Since we only need a special type of subspaces, namely, (Derg L)', we directly approached
them, not using the Azam’s result. Besides that, we have to investigate derivations of
twisted locally loop algebras later which are not tensor algebras.

Now we go back to classify D™. Let d € D™. Then add € (Derrg L){, by Corollary 4.22.
Hence, by Theorem 6.2, there exist p = p; € P (see (38)) and some a = a4 € F such that

add = s o (adp+a-d\").

We claim that a = 0 for all m # 0. First, note that there exist h, &’ € b such that tr(hh’) 0.
Also, we have

Bhat,h @t 1) =Bht™ K @t™) = ctr(hh') # 0

for all m € Z and some 0 # ¢ € F since B = ctr®¢ (see Lemma 3.6). Now, using such a
pair i and /', we have

B(ld,ht],h @™ ) =aB(ho" ™ K or ™)
=aB(hot,h &t ")
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While,
B([d,het],h @t " ") = —B(h®t,[d,h @t "))
=a(m+1)B(het,h @17").

Hence, a = a(m+ 1), i.e., am = 0. Thus m # 0 implies a = 0.

Moreover, suppose that a = az = 0 for all d € D°. Then ad D° C ad P (see (38)) and for
the Cartan subalgebra JH{ of the original LALA of L, we have H = h @ Fc @ D°. But this
contradicts the axiom Lo = H since [h @ F[r*!],H] = 0. Hence there exists p € P such

that adp+d ©) € ad DO, Consequently, we get
adD™ C s;y0adP

for m # 0, and
adp+d® €adD’ c adP+ Fd

for some p € P. Note that it happens that d ©) ¢ adD°. In other words, a LALA is not
always standard. Note also that there exists a nonstandard LALA even if dimp DO > 2.
Finally, we investigate the bracket on D := @,,cz, D". Let D' := @, o D"™. First, note
that [D’, D'] acts trivially on L since [ad(p @ t™),ad(p’ ® )] = ad[p @™, p' @1"] = 0 in
Derg L. Hence,
[D',D'] C Fc=Ft5, C K,

by tameness. Thus, for d,,, € D™ (m # 0) and d,, € D" (n # 0), we have, by the fundamental
property (21) of a LEALA (see Lemma 4.4),

[d",d"] = OmnB(dm,dn)tms, = MO nB(dm,dn)ts, -

Note that B(d,,,d,) can be zero since there exists 4 € b such that tr(d,,,h) # 0 (and so
B(dyn,h) #0).

Next, since DY C H, we have [DY, D°] = 0. Also, for d € D° so that ad, d = ad; p € DY,
we have [d, D™] = 0. For the last case, i.e., for d € D° so that ad; d = ade—l—a~d(0) cadDO
and d,, € D", we have

[d,dy] =[a-d©.d,| = amd,,.

Now, if p € h @ F1 for the type Ay or if p € hT for the other types, then there exists
some / € b such that adh = ad p. Hence, h— p € Z(L). But h — p ¢ L., which contradicts
the tameness of L. Thus D™ for m € Z is contained in a complement of h & F'1 in T for the
type A5 or a complement of h™ in T for the other types. Thus:

Theorem 6.5. Let L be an untwisted LALA. Then L is isomorphic to one in Example
5.2. O

7. CLASSIFICATION OF THE TWISTED CASE

As we already mentioned, each twisted loop algebra L is a subalgebra of an untwisted
loop algebra L. More precisely, we have

L has type Bg) = L has type Dglll
L has type C(jz) = L has type Aglj)

L has type Bcgz) = L has type Aglj)ﬂ .
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Remark 7.1. For the case that J is finite, the type Ay usually means the Lie algebra
slyy1(F). So it may be better to write

L has type ng) = L has type Aglj)fl

L has type BC%Z) = L has type Aglj)

in order to follow the common notations. But in this paper, we already use the type of the
Lie algebra sly(F) as Ay instead of Ay as long as J is an infinite set.

Let us first show basic lemmas for locally twisted loop algebras. Let
=g @Fog @F [

be a twisted affine Lie algebra, where g™ is the 1-eigenspace and g~ is the (—1)-eigenspace
by o, as we already used this notations. Also, the Cartan subalgebra h of g consisting of
diagonal matrices has the decomposition h =h™ @b, where )t =hnNgTandh~ =hnNg™.

Note that the adjoint of the plus-space fixes g* and g, and the adjoint of the minus-
space interchanges g™ and g ™.

Lemma 7.2. g~ is an irreducible g -module.

Proof. It is enough to show that for any root vectors v,w € g, there exists x € g™ such
that [x,v] = w. But this is a local property. Namely, there exists a finite dimensional split
simple subalgebra g’ of g of the same type so that v,w € (g')” C g~ and (g/)" C g". Itis
well-known that the property holds in the finite-dimensional case. Thus we are done. [

Lemma 7.3. The centralizer Cg7(g") of 9" in g+ T is zero in each type.
Proof. We can write each Lie algebra as
g+T=g " +g +T"+T",
for example, T+ = T;g and T~ = h_ for the type Dy ;. Let
x=xy+x_+h +h cgt4+g +T 4T
be in Cg;7(g"). Then, for any y € g*, we have

0= [x,y] = [x4,y] + [x—, ¥] + [y, ] + [, y].

Hence, [x; +hy,y] =0 and [x_ +h_,y] = 0. But Centyr_ 7+ (g7) = 0 since g" + T+
is tame (cf. Section 4). Hence, x4 +hy = 0. Also, since [h_,y] € g~ Ng" =0, we get
[x_,¥] =0. But [x_,g"] = 0 implies x_ = 0 since dimp g~ > 1 and g~ is an irreducible g -
module (by Lemma 7.2). Therefore, x = h_ € T~. But then, if 4_ # 0, then there exists
0 # w € g~ such that [g,w] = 0, which contradicts that g~ is an irreducible g™-module
again. O

Lemma 74. Let h€ Ty5,, C g+ 15 5, h € Ty C g+ Ty, or he Ty C g+ D

Suppose that [h,g"] C g~ Then h € T~, h € Ty5 |, or h € T,, respectively.

Proof. Letx € g" and y = [h,x] € g~. Then —y = [6(h),x]. Hence, [h+ o (h),x] = 0 for
allxe g*. Soh+o(h) € Cgir(g™) =0, by Lemma 7.3. Thus o(h) = —h, and we get
heT™, T,y or T,y respectively. O
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Let £ be a twisted LALA of infinite rank, i.e., the core L, is a universal covering
of a twisted locally loop algebra. As in the untwisted case, choosing a homogeneous
complement of the Z-graded core, one can write

LZLC@@D’”, @D”’C @LSZ@LmSI and DmCngl,

mez meZ SeR0 mez

where 8 is a generator of (R%)z. Let L' := L./Z(L.) be the centerless core and let (g, h)
be the grading pair of the Lie 1-torus L. so that  is the set of diagonal matrices of a locally
finite split simple Lie algebra g as before.

Now, let
s= D s
BeA'u{0}
be the irreducible g-module defined by type of L., where A’ is a subset of A consisting of
short roots or of extra long roots, and we identify
L. =L:= (g@r F[t*)) @ (s ®p tF[r*?]).

As in the untwisted case, we classify diagonal derivations of a twisted locally loop algebra
L in general.
Letd € (Derp L)) := {d € Derp L | d(gq ®1*™) C go @ 12"

and d(sp @™ Csg @1*™ ! forall a € A, B € A and m € Z}.

Then, as before, d |g is a diagonal derivation of g, and so, by Neeb [N1], d | g= ad p for
some p € P depending on the type of g (see (38)). Let
d :=d—adp e (Derr L)).
Then we have d’(g® 1) = 0. In particular, we have d’(h ® 1) = 0. Thus, by the same way
as in the untwisted case, one can show that for 0 #x®t € sp®1, if
d(x®t) =ax®t (43)

fora € F, then

d'(yor ') =—ayor! (44)
forally €s_g.

Lemma 7.5. For the above s, we have i(g).sg = s for any B € A, where i(g) is the
universal enveloping algebra of g.

Proof. Since U(g).sg is a nonzero submodule of s, it must be s by the irreducibility of
5. O

By Lemma 7.5, three subspaces
g®1, sp®t and s g1
generate A as a Lie algebra. As before, let d” := d’ —a-d'%). Then we have d’(g® 1) =
d'(g®1) =0 and using (43), d"(x®1) =d'(x®1) —ax®t = 0. Similarly, using (44), we
have d"(y®t ') =d'(y@t ') +ay®t~! =0. Thus we get d’(L) = 0 and d” = 0. Hence
we obtain
d=adp+a-d?, (45)
We again define the shift map s5,, for m € Z on L = (g®F F[t*%]) @ (s @ tF[1*2]) by

Szm(x® t2k) =x® t2k+2m and SZm(V ® t2k+1) =® t2k+2m+1
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forx € gand v € 5. Let dayy € (Derp L)3" := {d € Derp L | dom(ga @) C g @124F2m
and doy (s @) C s @12 forall ¢ € A, B € A and m € Z}.

Then we have s_y, 0 day, € (Derp L)g. Hence, by (45), there exist some p = py, € P and
a=ag,, €F suchthats 5,0dy, =adp+a- d(0>, and so

2m+1 i

dym = samoadp+at e

Thus as Theorem 6.2, we have:
Lemma 7.6. For all m € Z, we have
(Derp L)3" = sy 0 (Derg L)) = sy 0 (ad P Fd ),
where P is defined in (38). [l
Also, as Lemma 6.3, we have:

Lemma 7.7. Forallm c Z, let
(Der L)3" := {d € (Derg L)3" | s34 0d = d 0 53, for some 0 #n € 7}
and
(Derf L)3" := {d € (Derg L)3™ | s2p0d = d o 53, for all n € 7.}.
Then we have
(Derfs L)3" = syn0ad P = (Dery L)3™.
O

Now, we go back to the classification of D™. Let d,, € D?"_ Then adda,,;, = $o, 0 ad p+
at*d® for some p € P and a € F by Lemma 7.6. Then, as in the untwisted case, one can
show that a = 0 for all m # 0, using

B(ld,h 1], ) @1t V) = —B(h@1>, [do,h @17 2"72])
for some h, i’ € b so that tr(h,h’) # 0. Also, as in the untwisted case, there exists some
p € P such that adp +d®) € adD°. Thus the spaces D" for even m’s coincide with the
ones in Example 5.2.

Next we determine (Derp L)2" .

Lemma 7.8. Let g € (Derp L)%’"H. Then q commutes with a shift map s; for all i € 7.

Proof. First note that A’ does not contain a long root of A, where A’ is the set of grading
roots for 5. Also, if A has type BCy5, then A’ does not contain a short root neither. Thus,
for a long root vector x in g or a short root vector x in g for the case BC5, we have

gx@1*) =0 (46)

for all kK € Z. Next we claim that for a short root y € s in reduced cases, there exist a
long root & and a short root ¥ such that y = [x,z] for some x € g and z € s,. In fact, it
is enough to consider a finite-dimensional split simple Lie algebra of type By = C;. Since
there always exist such roots & and v satisfying § = a + ¥, the claim is clear now.

Also, for any extra long root 23 and y € s,5, we have y = [x,z] for some x € gg and
z € sg. Finally, we have, for any long root vector x or a short root vector x for the case
BCjy, and any k € Z,

qOS2i()C®l‘2k) _ q(x®t2k+2i)

=0=sp0q(xx%).
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Moreover, for any short root vector y in reduced cases or any extra long root vector y, and
for any n € Z, choosing x and y above such that y = [x,z], we have

gos(y@1") = qosy(x®@* z@1']) (20+r=n)
= g(x@** % z017)
= [gx@2 ), 201"+ ko gz @)
=[x g(z21")]  (by (46))
:52,»([x®t25,q(z®t’)])
= si(x@ gz +lg(xo*),z01")
(adding 0 = [g(x®1*"),z@1"])
=Szi06]([x®t2éaz®fr])
=s5i0q(y®1").
Hence gosy; = s3;04. g

Lemma 7.9. Let L= g® F[t*?] © s @ tF[t*?] be a twisted loop algebra which is double
graded by AU{0} and Z as above. Let d be in (Derp L)3"™ " such that s, 0d = d os,. Then

there exists a unique derivation d on L so that
dli=d, dxet* ) =s50dx@*) and dver*)=s_jodvar*H)
forallx € g, ves, and k € Z. Moreover,
d € (Derr L)™™" such that syod =dosy forallk € Z.

Proof. The uniqueness is clear since the image of all homogeneous elements are deter-
mined. So it is enough to show that d is a derivation. Thus we need to check the following:
For x,y € gand v,w € s,

(a) J([x® t2k,y ®t2€+l] — [ (x®t2k) y ®t2i+l} [x®t2k,a7(y® 12041 )]

) d(x@t* ve?]) = [dxot*),ver? ]+ ker* dve?)]

(c) d~([x® 12k+1 Y ®t2[ ]) [ (x®t2k+1) y® IZZ-H] + [x® t2k+17d~(y ®t2[+1)}

(d) d~([x®t2k+1 ,v®t2/+ ]) [ (x®t2k+l) v®t2€+l] + [x®12k+l 7d~(v®t2[+1 )}

(e) J([x® 21 v ®l‘2[]) — [d(x®t2k+l) R tZZ} [x®t2k+l ’J(V ® tZZ)]

0 d(ver* !t werk]) = [dver* ) wer ]+ vt dwe )

(@) d([vat*wet?)) =[dvet*),wat? ]+ ek dwe ).
All the equations are followed by easy calculation, but let us check for sure.
For (a), we have

(LHS) = d([x,y] @) = 51 0d([x,y] @177) = 51 0d([x @1, y01*])
=s10([d(x@™),yo ]+ xar dyor))
= [dx@%),y@ 2 + x @1, 51 0d(y@1*)] = (RHS).
For (b), we have
(LHS) = d([x,v] @ 12*T20) = s_1 od([x,v] @ K241
=s_10([dxer) v+ ko dver™)])
=[dx®) v+ kot dver?)] = (RHS).
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For (c), we have
(LHS) — J([X,y} ®t2k+213+2) _ d([ ]®t2k+2Z+2])
=d(x@* ya ) = [dxer),yo P+ ke dyo )
=s10[dx@1%*),y@ 2+ x@1* dos,(yo1*))
I+

= [s10d(x®%),y@ ¥ + 530 x@ 1 d(y@1*)]
(since s> and d commute)

= [dx@ ), y@ 2 4 k@2 s 0d(y® )] = (RHS).
For (d), we have
(LHS) = d([x,v] @ F272) =5y od([x,v] @2 F))
-5 Od([x®t2k,v®t2”3])
=s_10([dx@t*), v P+ k@™, dvar? )
=5 ([d(x@)tzk),v@tz”l]) +s,2([x®t2k+1,d(v®tze+3)])
=[si0d(x®@1*) v+ x5 3od(ve )]
= (RHS) (since s, and d commute).
For (e), we have
(LHS) = d(fx ) @) = d (e @272 ) = d(ror ve 1))
= [dx2 ), v 2 + k@, dv e 2]
= [Slod(x®t ),v®t ']+[x®t ,d(v®t2”1)] = (RHS).
For (f), we have
(LHS) = ([v, ]®12k+2l+1] = sy 0d([v,w] ®t2k+2é])
=sj0d([v@ ! w®t2“1])
=sio (dver* Y wer ™+ por* L dwer )
= [s1 od(ver*1), w®t2€+1]) + ek dwe )
=[s10d(x®%),v@ X+ [x@1*! s_30d(ve 3] = (RHS).
For (g), we have
(LHS) = J([v,w] ®t2k+26]) = d([v,w] ®t2k+2e]) _ d([v®t2k*l,w®t2g+l])
= [dr o), w2 + X! dwe 2]
=[5 0d(v®t2k*1),w®t%] + [v®t2k,S_1 od(w®[2”‘)] = (RHS).

For the second assertion, it is clear that d € (Derp I:)(z)””l. Also, since d commutes with
55, so does d. Hence, by Lemma 6.3, d commutes with s forall k € Z. O

Thus together with Lemma 7.6, we have classified the diagonal derivations of twisted
locally loop algebras.

Theorem 7.10. Let L be a twisted loop algebra. Then we have (Dergp L)8 =adPaFd),
where P is defined in (38), and

(Dergp L)(z)’" = sy 0 (Derp L)8 and (Derp L)gerl =somyr1o0adT ™
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or all m € 4, where 1~ = 5o for , T~ =T,~ for or T- =T~ or \
for all m € 7, where T for BY), 7= =Ty for ¢ or T-=Ty,,, for BCY
defined in Example 5.2.

Proof. By Lemma 7.8, 7.9, and the classification of untwisted case, if d € (Derp L)%'”H,

then d € sy 10 (Derp L)8. Also, by Lemma 7.8 and Lemma 7.7, we get d € 52,41 o ad P.
Thus adp := s_5,,—1 od € ad P, and we have [p,g"] C g~, and hence, by Lemma 7.4, we
get p € T~. Therefore, d € sy, +10adT ™. O

Remark 7.11. If L is any twisted loop algebra of type B(;) , then (Derp L)(z)erl = Som110
adsp = ad(so @ t*"*1). So there are no outer derivations of odd degree.

We go back to the classification of twisted LALAs. By Theorem 7.10, if d € D*"*1,
then adpd € sy,+1 0ad, T~. The bracket on D := &,,c; D™ can be investigated by the
same way as in the untwisted case. Thus D™ for m € Z is exactly one of the examples for
each type described in Example 5.2. Thus we have finished the classification:

Theorem 7.12. Let L be a twisted LALA. Then L is isomorphic to one in Example 5.2. [

Remark 7.13. One can show that any twisted LALA is the fixed algebra of some untwisted
LALA. Moreover, for any untwisted LALA L of type A(jl) or Dgl), there exists a twisted
LALA L' which is a subalgebra of £ so that L' is the intersection of £ and the fixed algebra
of a maximal untwisted LALA L™* containing £. Note that a maximal twisted LALA is
also unique, up to isomorphism, as in case of a maximal untwisted LALA.

Remark 7.14. By Theorem 6.5 and Theorem 7.12, the LALAs in Example 5.2 exhaust
all. From this fact, the following is clear, and it will be a useful criterion later.
If a diagonal matrix p € T whose trace is a nonzero value (e.g. e;; Or €;; + e5.4; 5.+, €tc.)

is used in a LALA, then such a LALA has to be of type A(jl), C(jz) or BC(jz). Moreover, if
the type is C? or BC%2>, then such a p has to be used in odd degree.

Corollary 7.15. Let L be a LALA (untwisted or twisted) with the center Fc and L. its
core, which is a locally Lie 1-torus with grading pair (g,). If there exists 0 # d € L such
that [d,g] = 0 and B(d,c) # 0, then d is a nonzero multiple of a degree derivation modulo
the center, and hence L is standard.

Proof. Letd =Yg xg for xg € L. If £ € R*, then [h,xé] C Le¢, and so xg = 0 since
[d,g] = 0. If & € R\ {0}, then xz € h @ 1*" or xz € 5@ 1*"*! or xz €0, for some
0 # m € Z, by Theorem 6.5 and 7.12. But for each case, if Xg = 0, then there exists a root
vector y € go (@ € A) so that [y,xi] # 0. This is a contradiction. Hence xg¢ = 0. Thus

d =xp € Lo = J(. Then, by Theorem 6.5 and 7.12,
d=h+p+a-d+b-c
forsome heh, pe T =T®1t°,a,b € F,and a # 0 since B(d,c) # 0. So we have

0=[d,g] =[h+p,g] = [h.g]+[p,gl.
Suppose that p has infinitely many nonzero entries. Then there exists x € g such that
[p,x] # 0 but [h,x] = 0. This is a contradiction. Hence p has only finitely many nonzero
entries, and so the type of L is Ag) (see Remark 7.14). Let I be a finite subset of J so that
he b Cs(F) Csly(F)=gand p € gl;(F) C gly(F), where by is the Cartan subalgebra
consisting of diagonal matrices in sl;(F). (We use the property that sl5(F) is a directed
union of sl;(F) running over finite sets I.) Then p = k' + s1; for some /' € h; and s € F.
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Since sl;(F) C g and [1,sl;(F)] = 0, we have 0 = [h,sl;(F)] + [p,sl;(F)] = [h+ 1/, sl; (F)].
Since h+h' € sl;(F), we get h+h = 0. Hence d = sty +a-d%) 4+ be. Take ¢;; € g for j ¢ 1.
Then [d, e;j] = [si;,e;;] = se;j = 0, and hence s = 0. Thus we obtain d = a-d® +bc. O

Remark 7.16. Neeb in [N2, Def.3.6] defined a minimal LALA £ as it is minimal in the
sense above and satisfies one more condition:

Jd € H such that spang{a € R* | a(d) =0} is a reflectable section.

Thus [g,d] = 0, and 5(d) # 0, where § is a generator of R® = Z. But then, d is a nonzero
multiple of a degree derivation modulo the center, by Corollary 7.15. Hence, a minimal
LALA in [N2] is a minimal standard LALA in our sense.

11
1303 Z’) and putd = p+d?. Then the minimal LALA

L = sly(Ft,t~']) @ Fc @ Fd is not isomorphic to a minimal standard LALA. For, if £ is
isomorphic to a minimal standard LALA L™, there exists an isomorphism

v L™ — L

1
Example 7.17. Let p = diag(1

so that y(d©) =x+a-d =x+a-(d® + p) for some x € L, = sly(Ft,t']) @ Fc and
some nonzero a € F. Then, we have

yoadd oy =ad(y(d)) =ad(x+a-d® +a-p)

in Derp(£). Now we can compare the eigenvalues of the same operators Y o add® o y!
and ad(x+a- d9 4+q. p). Note that the eigenvalues of yoadd @0 v~ ! are all integers.
We can choose h = ey —eqi1 041 € sly(F[t,t~']) such that

[x,h] =0,
taking ¢ >> 0, where e;; is a matrix unit. Then,
x+a-d%+a -phoi]=ahor),

which implies that a is a nonzero integer since a is an eigenvalue of ad(x+a-d O 4q- p).
On the other hand, we can also choose sufficiently large integers m,n >> 0 with m # n
satisfying

[x,emn] =0
and
aln—m)
AT o, (47)
mn

For such m and n, we see

1 1 aln—m
[x+a-d(0) +a'pvemn] =a (_ ) €mn = gemn-
m n mn

Since
a(n—m)
mn

is an eigenvalue of ad(x+a- d9 +q. p), it must be an integer, which is a contradiction to
(47). Hence, L™ is never isomorphic to L.
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