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Introduction

In 1940, A. G. Kurosh [8] (and independently J. Levitzki [1]) formulated the
question of whether a finitely generated algebraic associative algebra over a field is
necessarily finite-dimensional. The answer is negative in general, but turns affirma-
tive when we restrict to associative algebras which are algebraic of bounded degree
(see [20], where the above problems and their solutions are extensively discussed, and
precise references are included).

In 1971, Shirshov posed the Jordan version of the Kurosh problem for nil algebras
[5, 1.156], which was solved affirmatively in the case of linear Jordan algebras in [18].
The proof was based on the local nilpotency of the McCrimmon radical of a linear
Jordan algebra.

Recently, a proof of the local nilpotency of the McCrimmon radical of a Jordan
system over an arbitrary ring of scalars has been given [4]. This paper is aimed at
using this result to prove that Jordan systems which are nil of bounded degree, or
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more generally nil and PI (homotope-PI in the cases of pairs and triple systems) are
locally nilpotent.

The paper is divided into three sections, apart from a preliminary one. In the
first section, we use the local nilpotency of the McCrimmon radical to prove that
a quadratic Jordan nil algebra of bounded degree is locally nilpotent. It should
be remarked the fundamental role played by the so-called linear absorbers in the
quadratic setting (see [13, 19]). In the next section, these results are extended to nil
algebras satisfying a polynomial identity, so obtaining that the nil radical and the
McCrimmon radical coincide for PI Jordan algebras. Finally, in the third section, the
use of local algebras allows us to obtain analogues of the results of the two previous
sections for Jordan pairs and triple systems.

0. Preliminaries

0.1 We will deal with Jordan systems (algebras, pairs and triple systems), and
associative and Lie algebras over an arbitrary ring of scalars Φ. In particular, we will
NOT assume 1/2 ∈ Φ.

The reader is referred to [7, 10, 14, 15] for basic results, notation, and terminol-
ogy, though we will stress some notions.

— When dealing with an associative algebra, the (associative) products will be
denoted by juxtaposition.

— Given a Jordan algebra J , its products will be denoted by x2, Uxy, for x, y ∈ J .
They are quadratic in x and linear in y and have linearizations denoted x ◦ y = Vxy,
Ux,zy = {x, y, z} = Vx,yz, respectively.

— For a Jordan pair V = (V +, V −), we have products Qxy ∈ V σ, for any
x ∈ V σ, y ∈ V −σ, σ = ±, with linearizations Qx,zy = {x, y, z} = Dx,yz.

— A Jordan triple system J is given by its products Pxy, for any x, y ∈ J , with
linearizations denoted by Px,zy = {x, y, z} = Lx,yz.

0.2 We recall the following identities valid for arbitrary Jordan algebras which
will be needed in the sequel:

(i) Uxn = Un
x , for any positive integer n,

(ii) UUxy = UxUyUx,

(iii) Ux,y = VyVx − Vy,x,

(iv) UxUyz = Ux◦yz − {{x, y, z}, x, y}+ z ◦ Uyx2 − UyUxz,

(v) Ux{y, z, x} = {x, y, z} ◦ x2 − {z, y, x3},
(vi) Uxy2 = (x ◦ y)2 − x ◦ Uyx− Uyx2,

(vii) x ◦ Uyz = {x ◦ y, z, y} − Uy(x ◦ z).
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Indeed, (ii, iii, vii) are [7, QJ2, QJ14, QJ20’], respectively, and (i, iv, v, vi) follow
from Macdonald’s Theorem [9].

0.3 Given a Jordan algebra J , the multiplication algebra M(J) of J is the
subalgebra of EndΦ(J) generated by the multiplication operators Ux, Vx, for x ∈ J .
By linearization, M(J) contains all the operators Ux,y, for x, y ∈ J , hence also the
operators Vx,y by (0.2)(iii).

0.4 (i) A Jordan algebra gives rise to a Jordan triple system by simply forgetting
the squaring and letting P = U . By doubling any Jordan triple system T one obtains
the double Jordan pair V (T ) = (T, T ) with products Qxy = Pxy, for any x, y ∈ T .
From a Jordan pair V = (V +, V −) one can get a (polarized) Jordan triple system
T (V ) = V + ⊕ V − by defining Px+⊕x−(y+ ⊕ y−) = Qx+y− ⊕Qx−y+ [10, 1.13, 1.14].

(ii) An associative system R gives rise to a Jordan system R(+) by symmetriza-
tion: over the same Φ-module (the same pair of Φ-modules, in the pair case), we
define x2 = xx, Uxy = xyx, for any x, y ∈ R in the case of algebras, Pxy = xyx in
the case of triple systems, and Qxσy−σ = xσy−σxσ, σ = ± in the pair case, where
juxtaposition denotes the associative product in R.

0.5 A Jordan system J is called special if it is a subsystem of R(+), for some
associative system R. Otherwise J is said to be exceptional.

0.6 Local algebras of Jordan systems are introduced in [16] generalizing the
corresponding notion for associative systems:

— Given an associative triple system R, the homotope R(a) of R at a ∈ R is the
associative algebra over the same Φ-module as R with product x ·a y = xay, for any
x, y ∈ R. The subset Kera = KerRa = {x ∈ R | axa = 0} is an ideal of R(a) and the
quotient Ra = R(a)/Kera is called the local algebra of R at a.

— Given an associative pair R = (R+, R−), the homotope Rσ(a) of R at a ∈ R−σ

(σ = ±) is the associative algebra over the same Φ-module as Rσ with product
x ·a y = xay, for any x, y ∈ Rσ. The subset Kera = KerRa = {x ∈ Rσ | axa = 0} is
an ideal of Rσ(a) and the quotient Rσ

a = Rσ(a)/Kera is called the local algebra of R
at a.

— Given a Jordan triple system J , the homotope J (a) of J at a ∈ J is the
Jordan algebra over the same Φ-module as J with products x(2,a) = x2 = Pxa,
U

(a)
x y = Uxy = PxPay, for any x, y ∈ J . The subset Kera = KerJa = {x ∈ J | Pax =

PaPxa = 0} is an ideal of J (a) and the quotient Ja = J (a)/Kera is called the local
algebra of J at a. When J is nondegenerate, Kera = {x ∈ J | Pax = 0}.

— Given a Jordan pair V , the homotope V σ(a) of V at a ∈ V −σ (σ = ±) is the
Jordan algebra over the same Φ-module as V σ with products x(2,a) = x2 = Qxa,
U

(a)
x y = Uxy = QxQay, for any x, y ∈ J . The subset Kera = KerV a = {x ∈

V σ | Qax = QaQxa = 0} is an ideal of V σ(a) and the quotient V σ
a = V σ(a)/Kera

is called the local algebra of V at a. When V is nondegenerate, Kera = {x ∈
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V −σ | Qax = 0}.
For an associative or Jordan algebra, local algebras are given by the above definitions
applied to its underlying triple system.

0.7 An absolute zero divisor of a Jordan algebra (resp., triple system) J is an
element x ∈ J such that UxJ = 0 (resp., PxJ = 0). An absolute zero divisor in
a Jordan pair (V +, V −) is any element x ∈ V σ such that QxV −σ = 0. A Jordan
system is said to be nondegenerate if it does not have nonzero absolute zero divisors.

0.8 We recall that the McCrimmon radical (also called small radical in [10, 4.5])
Mc(J) of a Jordan system J is the smallest ideal of J which produces a nondegenerate
quotient. It can be obtained by a transfinite induction process as follows [10, 4.7]:
Let M1(J) be the span of absolute zero divisors of J , which is an ideal of J by [10,
4.6]. Once we have the ideals Mα(J) for all ordinals α < β, we define Mβ(J) by

(i) Mβ(J)/Mβ−1(J) = M1(J/Mβ−1(J)) when β is not a limit ordinal,

(ii) Mβ(J) = ∪α<βMα(J) when β is a limit ordinal.

Then Mc(J) = limα Mα(J), so that for any Jordan system J , Mc(J) = Mα(J) for
some ordinal α (such that M1(J/Mα(J)) = 0, i.e., J/Mα(J) is nondegenerate).

1. Jordan Nil Algebras of Bounded Degree

We will follow the strategy of Section 2 of [18], introducing the necessary changes
to allow arbitrary rings of scalars, i.e., extending the results to arbitrary quadratic
Jordan algebras.

The following result can be found in [18] and its proof is valid for arbitrary
quadratic Jordan algebras.

1.1 Lemma [18, Lemma 15]. Let J be a Jordan algebra, J1 be subalgebra of J ,
and I be an ideal of J1, and let M be the ideal of J1 such that M/I = Mc(J1/I).
If w, w∗ ∈ M(J) satisfy w∗(J) ⊆ J1, w(I) ⊆ Mc(J), and Uw(a) = wUaw∗, for any
a ∈ J1, then w(M) ⊆ Mc(J).

1.2 Recall the Jacobson Counterexample [6, ex. 3, p. 12] of a Jordan algebra J
over a ring of scalars Φ of characteristic two, such that there exists an element a ∈ J
with a2 = 0, but a3 6= 0. Of course, this cannot happen in the linear case, and we
will see in the next result that it is also impossible in a nondegenerate atmosphere.

1.3 Lemma. Given a Jordan algebra J , and an element x ∈ J , if xn ∈ Mc(J)
then xm ∈ Mc(J) for any m ≥ n. In particular, if J is nondegenerate and xn = 0,
then xm = 0 for any m ≥ n.

Proof: Notice that

UxmJ =(0.2)(i)= Um
x J = Un

x Um−n
x J ⊆ Un

x J =(0.2)(i) UxnJ ⊆ Mc(J)
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implies xm + Mc(J) is an absolute zero divisor of J/ Mc(J), hence xm + Mc(J) = 0,
i.e., xm ∈ Mc(J).

In the next lemma we obtain the main result of this section in the particular
case of degree two. Though this is trivial for linear Jordan algebras, it requires a
nontrivial proof if we are not assuming the existence of 1/2 in the ring of scalars.

1.4 Lemma. If J is a Jordan algebra such that a2 = 0 for any a ∈ J , then
J = Mc(J).

Proof: By factoring out Mc(J), we can assume that Mc(J) = 0, i.e., J is
nondegenerate, and we will show in that case that J = Mc(J) = 0.

By linearization,
a ◦ b = 0, (1)

for any a, b ∈ J . Using (1.3),
a3 = 0, (2)

for any a ∈ J . Now, given any a, b, c ∈ J , putting x = b, y = a, z = c in (0.2)(iv)
yields

UbUac = Ub◦ac− {{b, a, c}, b, a}+ c ◦ Uab2 − UaUbc

= −{{b, a, c}, b, a} − UaUbc,
(3)

using (1). Let us write t := {b, a, c}. We have,

UUabc =(0.2)(ii) UaUbUac =(3) −Ua{t, b, a} − UaUaUbc

=(0.2)(i) −Ua{t, b, a} − Ua2Ubc = −Ua{t, b, a}
=(0.2)(v) −{a, t, b} ◦ a2 + {b, t, a3} = 0

by (2), hence Uab = 0 by nondegeneracy of J . We have shown that J is a trivial
algebra, hence J = Mc(J) = 0.

1.5 Let J be a special Jordan algebra, and let A be an associative algebra such
that J is a subalgebra of A(+). We will say that (J,A) satisfies the weak polynomial
identity f ∈ FAss[X] if all evaluations of f in elements of J vanish: for any map
X −→ J ⊆ A, the induced associative algebra homomorphism ϕ : FAss[X] −→ A
satisfies ϕ(f) = 0.

1.6 By the usual linearization process [17, 6.1.13], if (J,A) satisfies a monic
weak polynomial identity f of degree n, then it also satisfies a monic multilinear
polynomial identity

f̃ = x1x2 · · ·xn +
∑

σ∈Σn\{Id}
ασxσ(1)xσ(2) · · ·xσ(n),

where Σn denotes the permutation group of {1, 2, . . . , n}, and ασ ∈ Φ, for any σ ∈
Σn \ {Id}.
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1.7 Given an inner ideal K of a Jordan algebra J , the (linear) absorber abs(K)
of K is given by

abs(K) = absJ (K) = {k ∈ K | k ◦ J ⊆ K},

which is an inner ideal of J and an ideal of K such that K/ abs(K) is special [13, 2.1
and its proof; 19, Lemma 1(c)].

1.8 Lemma. If J is a Jordan algebra, K is an inner ideal of J , and K1 :=
absJ(K), then

(i) UJUK1K ⊆ K,

(ii) UJK2
1 ⊆ K,

(iii) UJUK1K1 ⊆ K1.

Proof: (i) For any x ∈ J , a ∈ K1, and b ∈ K,

UxUab =(0.2)(iv) Ux◦ab− {{x, a, b}, x, a}+ b ◦ Uax2 − UaUxb ∈ K

because, using the definition of K1, and the fact that K is an inner ideal,

Ux◦ab ∈ UJ◦K1K ⊆ UKK ⊆ K,

b ◦ Uax2 ∈ K ◦ UKJ ⊆ K ◦K ⊆ K,

UaUxb ∈ UKJ ⊆ K,

and

{x, a, b} =(0.2)(iii) b ◦ (x ◦ a)− {b, x, a} ∈ K ◦ (J ◦K1) + UKJ ⊆ K ◦K + UKJ ⊆ K,

hence
{{x, a, b}, x, a} ∈ UKJ ⊆ K.

.

(ii) For any x ∈ J , a ∈ K1,

Uxa2 =(0.2)(vi) (x ◦ a)2 − x ◦ Uax− Uax2 ∈ K

because, using the definition of K1, and the fact that K is an inner ideal,

(x ◦ a)2 ∈ (J ◦K1)2 ⊆ K2 ⊆ K,

Uax2 ∈ UKJ ⊆ K,

x ◦ Uax =(0.2)(vii) {x ◦ a, x, a} − Ua(x ◦ x) ∈ {J ◦K1, J,K}+ UKJ ⊆ UKJ ⊆ K.
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(iii) Let x ∈ J , a, b ∈ K1. By (i), UxUab ∈ K, so we only have to check that
UxUab ◦ y ∈ K, for any y ∈ J . Indeed,

UxUab ◦ y =(0.2)(vii) {y ◦ x,Uab, x} − Ux(y ◦ Uab) ∈ K

because, using the definition of K1, and the facts that K is an inner ideal of J and
K1 is an ideal of K,

{y ◦ x,Uab, x} ∈ UJUK1K1 ⊆ UJUK1K ⊆(i) K,

Ux(y ◦ Uab) =(0.2)(vii) Ux{a, b, y ◦ a} − UxUa(y ◦ b)

=(0.2)(iii) Ux

(
a ◦ (

b ◦ (y ◦ a)
))− Ux{b, y ◦ a, a} − UxUa(y ◦ b)

∈ UJ

(
K1 ◦

(
K1 ◦ (J ◦K1)

))
+ UJUK1(J ◦K1)

⊆ UJ

(
K1 ◦ (K1 ◦K)

)
+ UJUK1K ⊆ UJK2

1 + UJUK1K ⊆(i,ii) K.

1.9 Theorem. A Jordan nil algebra of bounded degree is McCrimmon radical,
hence locally nilpotent.

Proof: Let J be a Jordan algebra such that xp = 0, for any x ∈ J , for some
positive integer p. We will show that J = Mc(J) by induction on p, so that J will
be locally nilpotent by [4, 2.11]. As it is customary, Ĵ will denote the unital hull of
J (see [11]).

In the case p = 1, J = 0 = Mc(J). In the case p = 2, J = Mc(J) by (1.4).
Assume that the result is true for all Jordan algebras satisfying the identity xm = 0,
for all m < p, and p ≥ 3.

We will study first the case when J is special. Take any associative algebra such
that J is a subalgebra of A(+). Notice that the unital hull Ĵ is also special, indeed
it is a subalgebra of Â(+). Since (J,A) satisfies the monic weak polynomial identity
xp = 0, by (1.6) it also satisfies an identity given by a monic multilinear polynomial
of degree p which always can be expressed as

f(x1, . . . , xp) = x1x2 · · ·xp +
∑

i≥2

xifi(x1, . . . xi−1, xi+1, . . . , xp)

=
p∑

i=1

xifi(x1, . . . xi−1, xi+1, . . . , xp),
(1)

where the fi’s are multilinear polynomials of degree p − 1, in which the variable xi

is missing, and
f1(x2, . . . , xp) = x2 · · ·xp. (2)
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Take arbitrary elements b ∈ J , a, c ∈ Ĵ , and let K = Φb + UbĴ = Φb + bĴb, which is
an inner ideal of J . For any k2, . . . , kp ∈ K, since bac + cab = {b, a, c} ∈ J , we have
by (1) and (2) that

0 = bp−1f(bac + cab, k2, . . . , kp)

= bp−1(bac + cab)k2 · · · kp + bp−1
∑

i≥2

kifi(. . .)

= bp−1(bac + cab)k2 · · · kp = bp−1cabk2 · · · kp

(3)

since bp−1ki ∈ bp−1K ⊆ bp−1bÂ = bpÂ = 0. Let B be the subalgebra of A generated
by K. We have shown in (3) that

k2 · · · kp = f1(k2, . . . , kp) ∈ P := {x ∈ B | bp−1Ĵ Ĵbx = 0}. (4)

We claim that

(5) P is an ideal of B.

Indeed, we just need to show that KP +PK ⊆ P , but PK ⊆ P is obvious, so we just
have to prove that, bp−1Ĵ ĴbKy = 0 for any y ∈ P , which, in view of the definition
of K, reduces to bp−1Ĵ Ĵbby = 0 and bp−1Ĵ ĴbbĴby = 0:

bp−1Ĵ Ĵbby ⊆ bp−1{Ĵ Ĵb}by + bp−1bĴ Ĵby

⊆ bp−1Jby + bpĴ Ĵby ⊆[bp=0] bp−1Ĵ Ĵby = 0,

bp−1Ĵ ĴbbĴby ⊆ bp−1{Ĵ Ĵb2}Ĵby + bp−1b2Ĵ Ĵ Ĵby

⊆ bp−1JĴby + bpbĴ Ĵ Ĵby ⊆[bp=0] bp−1Ĵ Ĵby = 0.

Now, the Jordan algebra (K + P )/P is a subalgebra of (B/P )(+), the pair
((K + P )/P, B/P ) satisfies the weak polynomial identity f1 = 0, and, in particular,
(K +P )/P satisfies xp−1 = 0. By the induction assumption, (K +P )/P = Mc((K +
P )/P ). Notice that (K + P )/P ∼= K/(K ∩ P ), hence

K/(K ∩ P ) = Mc(K/(K ∩ P )). (6)

Let x an arbitrary element in J .

Notice that J1 = K is a subalgebra of J , I := K ∩ P is an ideal of K such that
M = K satisfies M/I = Mc(J1/I). Moreover, w = Ubp−1UxUb, w∗ = UbUxUbp−1

satisfy
w∗(J) = UbUxUbp−1J ⊆ UbJ ⊆ K = J1,

w(I) = bp−1xbIbxbp−1 ⊆ bp−1xbPbxbp−1 = 0 ⊆ Mc(J)
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since bp−1xbP ⊆ bp−1JbP ⊆ bp−1Ĵ ĴbP = 0 by the definition of P , and

Uw(k) = wUkw∗,

for any k ∈ K by (0.2)(ii). Thus (1.1) applies to obtain w(K) ⊆ Mc(J), so that
w(UbJ) ⊆ w(K) ⊆ Mc(J), which means

Ubp−1UxU2
b J ⊆ Mc(J). (7)

Since p ≥ 3, p− 1 ≥ 2, and

UUbp−1xJ =(0.2)(ii) Ubp−1UxUbp−1J =(0.2)(i) Ubp−1UxUp−1
b J

⊆ Ubp−1UxU2
b J ⊆(7) Mc(J).

This means that Ubp−1x+Mc(J) is an absolute zero divisor of J/ Mc(J), i.e, Ubp−1x+
Mc(J) = 0, for any x ∈ J , i.e, Ubp−1J ⊆ Mc(J), hence bp−1 ∈ Mc(J). We have
shown that J/ Mc(J) satisfies xp−1 = 0. By the induction assumption J/ Mc(J) =
Mc(J/ Mc(J)) = 0, i.e., J = Mc(J).

Let us take care now of the general case, when we do not assume that J is
special. By factoring out Mc(J), we may assume that Mc(J) = 0. We will suppose
that J satisfies the identity xp = 0, and will show that J = 0.

Let b, x be arbitrary elements of J , and take K := Φb + UbĴ which is an inner
ideal of J , in particular, a subalgebra of J . Let K1 = absJ(K), and I = UK1K1.
Notice that I is an ideal of K by [12, Prop. 2]. Let w = Ubp−1UxUb, w∗ = UbUxUbp−1 ,
so that Uw(a) = wUaw∗, for any a ∈ K (in fact, for any a ∈ J) by (0.2)(ii). Also

w∗(J) ⊆ UbJ ⊆ K,

and, using b ∈ K and the fact that I is an ideal of K,

w(I) = Ubp−1UxUbI ⊆ Ubp−1UxI ⊆ Ubp−1UJUK1K1 ⊆(1.8)(iii) Ubp−1K1 ⊆ Ubp−1K = 0

by (0.2)(i) and the form of K since bp = 0 (Ubp−1b = 0 by (1.3), and Ubp−1UbĴ ⊆(0.2)(i)

Ubp Ĵ = 0). Moreover, K/K1 is special (1.7), satisfying xp = 0, hence K/K1 =
Mc(K/K1). We have (K/I)/(K1/I) ∼= K/K1 is McCrimmon radical, and K1/I is
also McCrimmon radical since it has zero cube. By the extension property, K/I
is also McCrimmon radical, i.e,, K/I = Mc(K/I). Thus, we can apply (1.1) with
J1 = M = K, to obtain w(K) ⊆ Mc(J) = 0. As a consequence, using p ≥ 3,

UUbp−1xJ =(0.2)(ii)Ubp−1UxUbp−1J ⊆(0.2)(i)

Ubp−1UxUbUbJ ⊆ Ubp−1UxUbK = w(K) = 0,
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hence Ubp−1x = 0 by nondegeneracy of J . We have shown Ubp−1J = 0, hence bp−1 =
0, again by nondegeneracy. Since this happens for any b ∈ J , J = Mc(J) = 0 by the
induction assumption.

1.10 Corollary. A finitely generated Jordan nil algebra of bounded degree is
nilpotent.

2. Jordan Nil Algebras Satisfying a Polynomial Identity

2.1 Let X be an arbitrary set. A Jordan polynomial f ∈ FJ[X] is said to
be essential if it has a monic image σ(f) ∈ FAss[X] by the Jordan homomorphism
σ : FJ[X] −→ FAss[X](+) fixing the elements of X.

Following [15, 7.2], given an essential Jordan polynomial f , a Jordan algebra
is said to satisfy the polynomial identity f ≡ 0, if the evaluations of f vanish in all
scalar extensions of J , equivalently, the evaluations of all linearizations of f vanish
in J . In this situation J is also said to be PI.

This is stronger than just saying f(J) = 0, i.e., all evaluations of f vanish in J .
We will study the behaviour of nilpotent elements in such an algebra J .

2.2 Given a Jordan algebra J , the sum Nil(J) of all nil ideals (ideals which are
nil as Jordan algebras) of J is the biggest nil ideal of J called the nil radical of J .
By [4, 2.11], Mc(J) is a nil ideal of J , hence Mc(J) ⊆ Nil(J).

The next result is the quadratic version of [18, Lemma 16].

2.3 Lemma. Let J be a special Jordan algebra that is a subalgebra of A(+)

for an associative algebra A, and let us assume that (J,A) satisfies a weak monic
polynomial identity of degree p. If an element b ∈ J satisfies bm = 0 with m > 4p,
then bm−4 ∈ Mc(J).

Proof: If p = 1, then J = 0 = Mc(J) and everything is obvious, so we will
assume that p ≥ 2.

As in the proof of (1.9), let Ĵ denote the unital hull of J (see [11]).

By (1.6), (J,A) also satisfies an identity given by a monic multilinear polynomial
of degree p which always can be expressed as

f(x1, . . . , xp) = x1x2 · · ·xp +
∑

i≥2

xifi(x1, . . . xi−1, xi+1, . . . , xp)

=
p∑

i=1

xifi(x1, . . . xi−1, xi+1, . . . , xp),
(1)

where the fi’s are multilinear polynomials of degree p− 1 in which the variable xi is
missing, and

f1(x2, . . . , xp) = x2 · · ·xp. (2)
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Take arbitrary elements b ∈ J , a, c ∈ Ĵ , and let K = Φb4+Ub4 Ĵ = Φb4+b4Ĵb4, which
is an inner ideal of J . For any k2, . . . , kp ∈ K, since b4ac + cab4 = {b4, a, c} ∈ J , we
have by (1) and (2) that

0 = bm−4f(b4ac + cab4, k2, . . . , kn)

= bm−4(b4ac + cab4)k2 · · · kn + bm−4
∑

i≥2

kifi(. . .)

= bm−4(b4ac + cab4)k2 · · · kp = bm−4cab4k2 · · · kp

(3)

since bm−4ki ∈ bm−4K ⊆ bm−4b4Â = bmÂ = 0. Let B be the subalgebra of A
generated by K. We have shown in (3) that

k2 · · · kp = f1(k2, . . . , kp) ∈ P := {x ∈ B | bm−4Ĵ Ĵb4x = 0}. (4)

We claim that

(5) P is an ideal of B.

Indeed, we just need to show that KP +PK ⊆ P , but PK ⊆ P is obvious, so we just
have to prove that bm−4Ĵ Ĵb4Ky = 0 for any y ∈ P , which, in view of the definition
of K, reduces to bm−4Ĵ Ĵb4b4y = 0 and bm−4Ĵ Ĵb4b4Ĵb4y = 0:

bm−4Ĵ Ĵb4b4y ⊆ bm−4{Ĵ Ĵb4}b4y + bm−4b4Ĵ Ĵb4y

⊆ bm−4Jb4y + bmĴ Ĵb4y ⊆[bm=0] bm−4Ĵ Ĵb4y = 0,

bm−4Ĵ Ĵb4b4Ĵb4y ⊆ bm−4{Ĵ Ĵb8}Ĵb4y + bm−4b8Ĵ Ĵ Ĵb4y

⊆ bm−4JĴb4y + bmb4Ĵ Ĵ Ĵb4y ⊆[bm=0] bm−4Ĵ Ĵb4y = 0.

Now, the Jordan algebra (K + P )/P is a subalgebra of (B/P )(+), the pair
((K + P )/P, B/P ) satisfies the weak polynomial identity f1 = 0, and, in particular,
(K + P )/P satisfies xp−1 = 0. By (1.9), (K + P )/P = Mc((K + P )/P ). Notice that
(K + P )/P ∼= K/(K ∩ P ), hence

K/(K ∩ P ) = Mc(K/(K ∩ P )). (6)

Let x be an arbitrary element in J .

Notice that J1 = K is a subalgebra of J , I := K∩P is an ideal of of K such that
M = K satisfies M/I = Mc(J1/I). Moreover, w = Ubm−4UxUb4 , w∗ = Ub4UxUbm−4

satisfy
w∗(J) = Ub4UxUbm−4J ⊆ Ub4J ⊆ K = J1,

w(I) = bm−4xb4Ib4xbm−4 ⊆ bm−4xb4Pb4xbm−4 = 0 ⊆ Mc(J)
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since bm−4xb4P ⊆ bm−4Ĵb4P ⊆ bm−4Ĵ Ĵb4P = 0 by the definition of P , and

Uw(k) = wUkw∗,

for any k ∈ K by (0.2)(ii). Thus (1.1) applies to obtain w(K) ⊆ Mc(J), so that
w(Ub4 Ĵ) ⊆ w(K) ⊆ Mc(J), which means

Ubm−4UxU2
b4 Ĵ ⊆ Mc(J). (7)

Since p ≥ 2, m− 4 > 4p − 4 ≥ 12, and

UUbm−4xJ =(0.2)(ii) Ubm−4UxUbm−4J =(0.2)(i) Ubm−4UxUm−4
b J

⊆ Ubm−4UxU8
b J =(0.2)(i) Ubm−4UxUb8J =(0.2)(i) Ubm−4UxU2

b4J

⊆(7) Mc(J).

This means that Ubm−4x+Mc(J) is an absolute zero divisor of J/ Mc(J), i.e, Ubm−4x+
Mc(J) = 0, for any x ∈ J , i.e, Ubm−4J ⊆ Mc(J), hence bm−4 ∈ Mc(J).

2.4 Lemma. Let J be a Jordan algebra. If a ∈ J satisfies UaUxa = 0, for any
x ∈ J , then a ∈ Mc(J).

Proof: By factoring out Mc(J), we can assume that Mc(J) = 0, and we will
show in that case that if a ∈ J satisfies UaUxa = 0, then a = 0. Otherwise the local
algebra Ja is nonzero, and nondegenerate by [3, 0.2], hence Ja 6= Mc(Ja) = 0: But
this contradicts (1.4) since, for any x + Ker a ∈ Ja, (x + Ker a)2 = x(2,a) + Ker a =
Uxa + Ker a = 0.

2.5 Theorem. If J is a Jordan algebra such that f(J) = 0 for some essential
Jordan polynomial f , then Nil(J) = Mc(J), hence it is locally nilpotent. In particular,
this holds if J is PI.

Proof: First, notice that local nilpotency of Nil(J) will be a consequence of
the desired equality by [4, 2.11].

Let p be the degree of the associative image σ(f) of f as in (2.1). By factoring
out Mc(J) we can assume that Mc(J) = 0, and we then have to prove that Nil(J) = 0
(clearly Nil(J/ Mc(J)) = Nil(J)/ Mc(J)), so that we just take J/ Mc(J) in the place
of J).

If, for any element b ∈ Nil(J), b4p

= 0, then Nil(J) = Mc(Nil(J)) by (1.9).
But the McCrimmon radical is hereditary for ideals [10, 4.13], hence Mc(Nil(J)) =
Mc(J) ∩ Nil(J) = 0, hence Nil(J) = 0 as desired. Otherwise, there exists b ∈ Nil(J)
such that b4p 6= 0. Since b is nilpotent anyway, there exists a positive integer m such
that m > 4p, bm = 0, and bm−1 6= 0.

Take K := Φb + UbĴ which is an inner ideal of J , in particular, a subalgebra of
J . Let K1 = absJ (K), and I = UK1K1. Notice that I is an ideal of K by [12, Prop.
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2]. Take an arbitrary element x ∈ J , and let w = Ubm−1UxUb, w∗ = UbUxUbm−1 , so
that Uw(a) = wUaw∗, for any a ∈ K (in fact, for any a ∈ J) by (0.2)(ii). Also

w∗(J) ⊆ UbJ ⊆ K,

and, using b ∈ K and the fact that I is an ideal of K,

w(I) = Ubm−1UxUbI ⊆ Ubm−1UxI ⊆ Ubm−1UJUK1K1

⊆(1.8)(iii) Ubm−1K1 ⊆ Ubm−1K = 0

by (0.2)(i) and the form of K, since bm = 0 (Ubm−1b = 0 by (1.3), and also
Ubm−1UbĴ ⊆(0.2)(i) Ubm Ĵ = 0). Moreover, K/K1 is special (1.7), so that, if A is
an associative algebra such that K/K1 is a subalgebra of A(+), then (K/K1, A)
satisfies the weak identity given by σ(f). The element b + K1 ∈ K/K1 satisfies
(b + K1)m = 0, hence (2.3) applies to show bm−4 + K1 = (b + K1)m−4 ∈ Mc(K/K1).
As a consequence,

bm−3 + K1 = (b + K1)m−3 ∈ Mc(K/K1) (1)

by (1.3). We claim
bm−3 + I ∈ Mc(K/I). (2)

Indeed, if Mc(K/K1) = R/K1, where R is an ideal of K such that K1 ⊆ R, and
Mc(K/I) = M/I, where M is an ideal of K such that I ⊆ M , we have that bm−3 ∈ R,
hence we just need to prove R ⊆ M . Now

(
(K1/I) + (M/I)

)
/(M/I) =

(
(K1 + M)/I

)
/(M/I)

is an ideal of (K/I)/(M/I) which is nondegenerate, hence
(
(K1 +M)/I

)
/(M/I) is at

the same time nodegenerate (using [10, 4.13]) and has zero cube because I = UK1K1

and (
(K1/I) + (M/I)

)
/(M/I) ∼= (K1/I)/

(
(K1/I) ∩ (M/I)

)
.

Therefore
(
(K1 + M)/I

)
/(M/I) = 0, i.e., K1 + M = M , i.e., K1 ⊆ M . Thus

(K/K1)/(M/K1) ∼= K/M ∼= (K/I)/(M/I) is nondegenerate, and, as a consequence,
R/K1 = Mc(K/K1) ⊆ M/K1, i.e, R ⊆ M .

By (1.1) with J1 = K, we obtain w(M) ⊆ Mc(J) = 0. In particular

Ubm−1Uxbm−1 = Ubm−1UxUbb
m−3 = w(bm−3) = 0.

Therefore, bm−1 ∈ Mc(J) = 0 by (2.4), which is a contradiction.

3. The Kurosh Problem for Jordan Nil Systems

3.1 Following [10, Sections 3 and 4], the nilpotency of elements in Jordan pairs
and triple system is given in terms of their homotope algebras :
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Let V be a Jordan pair. Given x+ ∈ V +, x− ∈ V −, we will say that the pair
(x+, x−) is nilpotent if x+ is nilpotent in the homotope algebra V +(x−) of V at x−,
which is equivalent to x− being nilpotent in the homotope algebra V −(x+) by [10, 3.8].
We will say that the Jordan pair V is nil if (x+, x−) is nilpotent for any x+ ∈ V +,
x− ∈ V −.

Let J be a Jordan triple system. Given x, y ∈ J , we will say that the pair (x, y)
is nilpotent if it is nilpotent in the Jordan pair V (J). We will say that the Jordan
triple system J is nil if V (J) is nil as a Jordan pair.

An ideal I of V (resp. of J) is said to be a nil ideal if it is nil as a Jordan pair
(resp. as a Jordan triple system).

3.2 The nil radical Nil(J) of a Jordan pair or triple system J is the sum of all
nil ideals of J . It turns out to be the biggest nil ideal of J by [10, 4.14]. Since Mc(J)
is locally nilpotent by [4, 2.11], it is a nil ideal and, hence, Mc(J) ⊆ Nil(J).

3.3 A Jordan pair V will be said to be nil of bounded degree, if there exists
a positive integer n such that, x+(n,x−) = 0, for any x+ ∈ V +, x− ∈ V −, where
x+(n,x−) denotes de n-th power of x+ in the homotope V +(x−). Notice that, by [10,
3.8], x−(n+1,x+) = 0 too. A Jordan triple system J will be said to be nil of bounded
degree if V (J) is nil of bounded degree.

3.4 Given an essential Jordan polynomial f ∈ FJ[X], a Jordan system J is said
to satisfy the homotope polynomial identity f ≡ 0, if all its homotope algebras satisfy
the polynomial identity f ≡ 0, i.e, the linearizations of f vanish when evaluated in
all the homotopes of J . In this situation J is said to be homotope-PI.

As for algebras, we will study the behaviour of nilpotent elements in a class of
Jordan systems which includes those which are homotope-PI.

3.5 Theorem. Let V be a Jordan pair such that, for every local algebra V σ
y ,

y ∈ V −σ, σ = ±, there exists an essential polynomial fy ∈ FJ[X] such that fy(V σ
y ) =

0. Then Nil(V ) = Mc(V ), hence it is locally nilpotent. In particular, this holds if V
is homotope-PI.

Proof: As in the proof of (2.5), it is enough to prove the equality. Moreover,
we can assume that V is nondegenerate, so that we have to prove that Nil(V ) = 0.

Put Nil(V ) = (N+, N−). Since Nil(V ) is an ideal of V , Nil(V ) is nondegenerate
by [10, 4.13]. Hence, for any y ∈ N−σ, σ = ±,

(1) Nσ
y is nondegenerate

by [2, 3.1(i)]. It can be readily seen that the local algebras of Nil(V ) are isomorphic
to ideals of the local algebras of V , hence, for any y ∈ Nσ, σ = ±,

(2) fy(Nσ
y ) = 0.

Since Nσ
y is nil, we can apply (2.5) to obtain Nσ

y = Mc(Nσ
y ) = 0 by (1). We have
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shown that all local algebras of Nil(V ) are zero, i.e., Nil(V ) is a trivial ideal of V .
But Nil(V ) was also nondegenerate, hence Nil(V ) = 0.

By using the functor V ( ), we have an analogue of the previous theorem for
Jordan triple systems.

3.6 Corollary. Let J be a Jordan triple system such that, for every local
algebra Jy, y ∈ J , there exists an essential polynomial fy ∈ FJ[X] such that fy(Jy) =
0. Then Nil(J) = Mc(J), hence it is locally nilpotent. In particular, this holds if J
is homotope-PI.

Notice that a Jordan pair or triple system which is nil of bounded degree is, in
particular, homotope-PI. Hence, we can apply [4, 2.11], (3.5) and (3.6) to obtain:

3.7 Corollary. If a Jordan pair or triple system is nil of bounded degree, then
it is McCrimmon radical, hence locally nilpotent.

3.8 Corollary. If a finitely generated Jordan pair or triple system is nil of
bounded degree, then it is nilpotent.
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