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Abstract. In this paper we study if the Kostrikin radical of a Lie algebra is

the intersection of all its strongly prime ideals, and prove that this result is true
for Lie algebras over fields of characteristic zero, for Lie algebras arising from

associative algebras over rings of scalars with no 2-torsion, for Artinian Lie

algebras over arbitrary rings of scalars, and for some others. In all these cases,
this implies that nondegenerate Lie algebras are subdirect products of strongly

prime Lie algebras, providing a structure theory for Lie algebras without any

restriction on their dimension.

The theory of radicals constitutes an important tool in the study of rings. This
notion appears firstly in the context of non-associative rings: in a work of E. Cartan
about finite dimensional Lie algebras A over C, he defined the maximal solvable
ideal of A as the sum of all solvable ideals of A and proved that A is semisimple
(direct sum of simple ideals) if and only if its radical is zero.

For an associative ring R, the Baer radical r(R) is defined as the intersection of
all prime ideals of R, so R/r(R) is a subdirect product of prime rings, and r(R)
coincides with the smallest ideal of R such that R/r(R) is semiprime, see [18].
Similarly, for Jordan systems J one finds the notion of McCrimmon radical Mc(J),
which is the least ideal of J such that J/Mc(J) is nondegenerate. It coincides with
the intersection of all strongly prime ideals of J , J/Mc(J) is a subdirect product
of strongly prime Jordan systems, and Mc(J) can be characterized as the set of
elements such that any m-sequence starting with any of them has finite length, see
[23] and [20].

For a Lie algebra L, the smallest ideal inducing a nondegenerate quotient is
the Kostrikin radical K(L). This radical was first studied by Filippov in [11].
We highlight the works of E. Zelmanov [25], [24] where the properties of K(L)
were established and used intensively. Among other properties, it is shown that
the Kostrikin radical is inherited by subalgebras (K(A) = A for any subalgebra
A ⊂ K(L)) and by ideals (K(I) = I ∩K(L) for any ideal I of L).

The goal of this paper is to try to answer the question: Is the Kostrikin radical of
a Lie algebra L the intersection of all strongly prime ideals of L? A positive answer
to this question would imply that any nondegenerate Lie algebra is a subdirect
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product of strongly prime Lie algebras, providing a structure theory for Lie algebras
without any restriction on their dimension.

In this paper we show that this question has a positive answer for the following
types of Lie algebras:

(1) Nondegenerate Lie algebras satisfying a technical condition called Ĥ (see 2.3)
and such that every nonzero ideal of L contains nonzero Jordan elements, Theorem
2.12. In particular, nondegenerate Lie algebras of the form L = Ln⊕· · ·⊕L0⊕· · ·⊕
L−n, L0 =

∑n
i=1[Li, L−i], over a ring of scalars Φ with 1

k ∈ Φ for every 0 ≤ k ≤ 4n,
Corollary 2.13. Furthermore, we relate the Kostrikin radical and the McCrimmon
radical when the Lie and the Jordan structures are connected, Corollaries 2.7 and
2.8, and Proposition 2.9.

(2) Lie algebras over fields of characteristic zero, Theorem 3.10.
(3) Lie algebras arising from associative algebras over rings of scalars with no

2-torsion, Theorems 4.3, 4.7 and Remark 4.9. Moreover, in these cases we relate
the Kostrikin radical of the Lie algebras with the Baer radical of the associative
algebras.

(4) Nondegenerate Lie algebras with chain condition on annihilator ideals over
arbitrary rings of scalars, Proposition 5.3; in particular, Artinian Lie algebras,
Corollary 5.4.

The key point to prove that the Kostrikin radical is the intersection of all strongly
prime ideals is to define m-sequences for Lie algebras (a notion similar to that of
Jordan systems), and to characterize the elements of the Kostrikin radical as those
for which every m-sequence starting with them has finite length. This characteriza-
tion is true for Lie algebras of type (1) and (3). For Lie algebras as in (2) the notion
of m-sequence needs to be generalized. We define generalized m-sequences for Lie
algebras, see 3.5, and prove that for Lie algebras over fields of characteristic zero
the Kostrikin radical coincides with the set of elements such that every generalized
m-sequence starting with them has finite length, Corollary 3.9.

The paper is organized as follows. Section 1 consists on a preliminary section
where we recall several notions and results that will be used in the paper. In order to
relate the Kostrikin radical of a Lie algebra L and the McCrimmon radical of some
Jordan structures associated to L, in Section 2 we define a technical property called
Ĥ, which is satisfied by large families of Lie algebras such as Lie algebras over fields
of characteristic zero, Lie algebras generated as algebras by ad-nilpotent elements
of index at most n over a ring of scalars Φ with 1

k ∈ Φ for k = 1, 2, . . . , 2n − 2,
and Lie algebras with a short Z-grading L = L−n ⊕ · · · ⊕ L0 ⊕ · · · ⊕ Ln with
L0 =

∑n
i=1[Li, L−i] over a ring of scalars Φ with 1

k ∈ Φ for k = 1, 2, . . . , 4n.
There are different constructions to relate Lie and Jordan structures: associated
to any ad-nilpotent element x of index ≤ 3 of a Lie algebra L one can build a
Jordan algebra Lx, and the Kostrikin radical of L and the McCrimmon radical of
Lx can be compared when L satisfies Ĥ: Mc(Lx) = {a ∈ Lx | [x, [x, a]] ∈ K(L)}.
Similarly, one has the notion of subquotient of a Lie algebra, which is a Jordan
pair: if V = (M,L/KerM) is the subquotient, then Mc(V )+ = M ∩ K(L), and
Mc(V )− = {a + KerM | [M, [M,a]] ⊂ K(L)} when L satisfies Ĥ. This result
generalizes the one given by E. Zelmanov in [24, Lemma 3] where he proved that
the McCrimmon radical of the Jordan pair (V +, V −) consisting of two abelian inner
ideals V + and V − of a Lie algebra L satisfies [[Mc(V )σ, V −σ], V σ] ⊂ K(L) and
where he related the Kostrikin radical of a Lie algebra L with a short Z-grading
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L = L−n ⊕ · · · ⊕ L0 ⊕ · · · ⊕ Ln and the McCrimmon radical of the Jordan pair
V = (L−n, Ln).

Under the technical property Ĥ the ad-nilpotent elements of index 3 contained in
the Kostrikin radical of L satisfy that any m-sequence starting with them has finite
length. This makes possible to prove that Lie algebras with enough ad-nilpotent
elements are nondegenerate if and only if they are subdirect product of strongly
prime ones. In particular, this result applies to any Lie algebra with a finite Z-
grading, L = ⊕ni=−nLi, L0 =

∑n
i=1[Li, L−i], over a ring of scalars of characteristic

bigger than 4n.
Section 3 of the paper follows a private communication with E. Zelmanov where

he dropped the hypothesis of having enough idempotents when dealing with Lie
algebras over a field of characteristic zero. Basically Section 3 is [21] with some
minors changes made by us. We are grateful to E. Zelmanov for allowing us to in-
clude them in the final version of this paper. We highlight the notion of generalized
m-sequence, which is the key point for the results contained in this section.

In Section 4 we relate the Baer radical of an associative algebra R and the
Kostrikin radical of Lie algebras of the form R− or Skew(R, ∗) when R is an as-
sociative algebra with involution over a ring of scalars with no 2-torsion. Roughly
speaking, the Kostrikin radical of these algebras coincides with the center of R− or
Skew(R, ∗) modulo the Baer radical r(R) of R.

Finally, in Section 5 we study Lie algebras satisfying chain conditions on anni-
hilator ideals and defined over arbitrary rings of scalars; in particular, Artinian Lie
algebras and Lie algebras with essential socle.

We remark that each Section 2, 3, 4 and 5 can be read independently.

1. Nondegenerate Radicals

1.1. We will be dealing with Lie algebras L, (linear) Jordan algebras J and (linear)
Jordan pairs. As usual, given a Lie algebra L, [x, y] will denote the Lie bracket, with
adx (sometimes denoted by X) the adjoint map determined by x , Jordan algebras
J have bilinear product a • b, with quadratic operator Uab = 2(a • b) • a − a2 • b,
and Jordan pairs V = (V +, V −) have triple products {x, y, z} ∈ V σ, for x, z ∈ V σ,
y ∈ V −σ, σ = ±.

1.2. We recall that a (non-necessarily associative) algebra A is a subdirect product
of algebras {Aα}α∈Λ if there exists a monomorphism f : A →

∏
α∈ΛAα such that

for every β ∈ Λ, πβ ◦ f : A → Aβ is onto, where πβ :
∏
α∈ΛAα → Aβ denotes

the canonical projection. Notice that this is equivalent to the existence of a family
of ideals {Iα}α∈Λ of A such that

⋂
α∈Λ Iα = 0 and Aα ∼= A/Iα for all α ∈ Λ. A

subdirect product of {Aα}α∈Λ will be called an essential subdirect product if A
contains an essential ideal of the direct product

∏
α∈ΛAα. Recall that an ideal I

of an algebra A is essential if it intersects nontrivially any nonzero ideal K of A,
i.e, I ∩K 6= 0 for every nonzero ideal K of A.

1.3. A (non-necessarily associative) algebraA is semiprime if for every nonzero ideal
I of A, I2 := {xy | x, y ∈ I} 6= 0, and it is prime if IJ := {yx | y ∈ I, x ∈ J} 6= 0 for
every nonzero ideals I, J of A. Moreover, an ideal I of A is semiprime (prime) if the
quotient algebra A/I is semiprime (prime). It is well known that every semiprime
ideal I of an algebra A is the intersection of all prime ideals of A which contain
I, see [4, 18]. This result implies that the Baer or semiprime radical r(A) of an
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algebra A is the intersection of all prime ideals of A and therefore that semiprime
algebras are exactly subdirect products of prime ones.

1.4. An important characterization of primeness and semiprimeness in the associa-
tive setting appears in [18]: A ring R is prime if and only if aRb 6= 0 for arbitrary
nonzero elements a, b ∈ R and it is semiprime if and only if aRa 6= 0 for every
nonzero element a ∈ R. Unfortunately (or fortunately) in a general non-associative
setting, due to the difficulty of building ideals, these characterizations do not hold.
Nevertheless, the above characterizations give rise to new concepts in the Lie and
Jordan settings, nondegeneracy and strong primeness (these notions have not been
defined in a general nonassociative context): An absolute zero divisor in a Jordan
algebra J is an element x ∈ J such that the quadratic operator Ux = 0. A Jordan
algebra J is called nondegenerate if it has no nonzero absolute zero divisors and it
is strongly prime if J is nondegenerate and prime. An element x in a Lie algebra
L is ad-nilpotent of index k ∈ N if adkx L = 0 but adk−1

x L 6= 0. An absolute zero
divisor of L is an ad-nilpotent element of index ≤ 2. A Lie algebra L is nonde-
generate if it has no nonzero absolute zero divisors and it is strongly prime if L is
nondegenerate and prime. Note that if a Lie or Jordan algebra is nondegenerate,
then it is semiprime.

1.5. Let L be a Lie algebra. By a nondegenerate (strongly prime) ideal of L we
mean an ideal I of L such that the quotient algebra L/I is nondegenerate (strongly
prime). The Kostrikin radical K(L) of L is the smallest ideal of L whose associated
quotient algebra L/K(L) is nondegenerate. It is radical in the sense of Amitsur-
Kurosh, see [11], and can be constructed in the following way: K0(L) = 0 and
let K1(L) be the ideal of L generated by all absolute zero divisors of L; using
transfinite induction we define a chain of ideals Kα(L) by Kα(L) =

⋃
β<αKβ(L)

for a limit ordinal α, and Kα(L)/Kα−1(L) = K1(L/Kα−1(L)) otherwise. The
Kostrikin radical of L is defined as K(L) =

⋃
αKα(L). By construction, K(L) is

the smallest nondegenerate ideal of L, see [24].

1.6. Let J be a Jordan algebra. We will say that an ideal I of J is a nonde-
generate (strongly prime) ideal of J if the quotient algebra J/I is nondegenerate
(strongly prime). The McCrimmon radical or small radical Mc(J) of a Jordan
algebra J is the smallest ideal of J whose associated quotient algebra J/Mc(J)
is nondegenerate. It is radical in the sense of Amitsur-Kurosh, see [20, The-
orem 4], and can be constructed in the following way: Mc0(J) = 0 and let
Mc1(J) be the subalgebra of J generated by all absolute zero divisors of J (Mc1(J)
is an ideal of J , see [19, Theorem 9]); using transfinite induction we define a
chain of ideals Mcα(J) by Mcα(J) =

⋃
β<αMcβ(J) for a limit ordinal α, and

Mcα(J)/Mcα−1(J) = Mc1(J/Mcα−1(J)) otherwise. Then the McCrimmon radi-
cal of J is defined as Mc(J) =

⋃
αMcα(J). Note that Mc(J), by construction, is

a nondegenerate ideal and is contained in any nondegenerate ideal of J , see [19],
[16].

1.7. For any Jordan system J one has the notion of m-sequence: It is a sequence
{an}n∈N such that an+1 = Uan

b for some b ∈ J . We will say that an m-sequence of
J has length k if ak 6= 0 and ak+1 = 0. There is a beautiful characterization of the
elements of the McCrimmon radical in terms of m-sequences: An element x ∈ J is
contained in Mc(J) if and only if any m-sequence {an}n∈N with a1 = x has finite
length, i.e., there exists k ∈ N such that ak = 0. From this property it is shown
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that the McCrimmon radical of a Jordan algebra J coincides with the intersection
of all strongly prime ideals of J or, equivalently, that every nondegenerate ideal I
of a Jordan algebra J is the intersection of all strongly prime ideals of J containing
I, see [23] for the linear case and [20] for its quadratic extension.

1.8. Following the notion of m-sequence introduced in the previous paragraph for
Jordan algebras, we define an analogous concept in the context of Lie algebras: Let
L be a Lie algebra. An m-sequence is a set {an}n∈N such that an+1 = [an, [an, bn]]
for some bn ∈ L. We will say that a m-sequence of L has length k if ak 6= 0 and
ak+1 = 0. Note that, if x ∈ L satisfies that [x, [x, L]] ⊂ K(L), then x ∈ K(L)
(because x = x+K(L) is an absolute zero divisor in the nondegenerate Lie algebra
L/K(L)). So if any m-sequence of L starting with x has finite length, then x ∈
K(L).

2. Lie algebras with enough ad-nilpotent elements

2.1. Let L be a Lie algebra over a ring of scalars Φ such that 1
2 ,

1
3 ∈ Φ. We say

that an element x in L is a Jordan element if x is ad-nilpotent of index ≤ 3, i.e.,
if ad3

x = 0. Every Jordan element gives rise to a Jordan algebra, called the Jordan
algebra of L at x, see [8]: Let L be a Lie algebra and let x ∈ L be a Jordan element.
Then L with the new product given by a • b := 1

2 [[a, x], b] is an algebra such that

ker(x) := {z ∈ L | [x, [x, z]] = 0}
is an ideal of (L, •). Moreover, Lx := (L/ ker(x), •) is a Jordan algebra. In this
Jordan algebra the U-operator has this very nice expression:

Uab =
1
8

ad2
a ad2

x b, for all a, b ∈ L, and

{a, b, c} = −1
4

[a, [ad2
x b, c]] for all a, b, c ∈ L

A Lie algebra is nondegenerate if and only if Lx is nonzero for every Jordan element
x ∈ L. Moreover, Lx inherits nondegeneracy from L [8, 2.15(i)].

An inner ideal of L is a subspace M of L such that [M, [M,L]] ⊂ M . It is
an abelian inner ideal if it is also an abelian subalgebra, i.e., [M,M ] = 0. The
kernel of M is the set KerLM = {x ∈ L : [M, [M,x]] = 0}. If M is abelian, then
KerLM = {x ∈ L : [m, [m,x]] = 0 for every m ∈ M}. For any abelian inner ideal
M of L, the pair V = (M,L/KerLM) with the triple products given by

{m, a, n} : = [[m, a], n] for every m,n ∈M and a ∈ L

{a,m, b} : = [[a,m], b] for every m ∈M and a, b ∈ L,

where x denotes the coset of x relative to the submodule KerLM , is a Jordan pair
called the subquotient of L with respect to M . When L is nondegenerate, the
notion of subquotient generalizes that of Jordan algebra of a Lie algebra: if x is a
Jordan element, M is the abelian inner ideal generated by x, and we consider the
subquotient V = (M,L/KerM) defined by M , then the Jordan homotope algebra
V (x) coincides with the Jordan algebra Lx of L at x, cf. [9, §3].

Proposition 2.2. Let L be a Lie algebra over a ring of scalars Φ such that 1
2 ,

1
3 ∈ Φ

and let x ∈ L be a Jordan element. Then for every a ∈ L every m-sequence of L
of length k starting with [x, [x, a]] gives rise to an m-sequence of Lx starting with a
with the same length, and vice versa.
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Proof. Let {cn} be an m-sequence in Lx. Let us prove that {an}, with an :=
[x, [x, cn]] is an m-sequence of L with the same number of nonzero terms: we know
that for every n ∈ N there exists bn ∈ Lx such that cn+1 = Ucnbn = ad2

cn
ad2
x bn.

So
adan

bn = ad2
x ad2

cn
ad2
x bn = ad2

x cn+1 = an+1.

Moreover, by construction, an 6= 0 if and only if [x, [x, an]] 6= 0.
Conversely, let {an}n∈N be an m-sequence of L with a1 = [x, [x, a]] and let us

consider bn ∈ L such that an+1 = [an, [an, bn]] for every n ∈ N. Let us prove that
for every n there exists cn ∈ L such that an = [x, [x, cn]]: The case n = 1 holds by
hypothesis. So let us suppose that there exists cn ∈ L such that an = [x, [x, cn]].
Then

an+1 = [an, [an, bn]] = ad2
ad2

x cn
bn = ad2

x ad2
cn

ad2
x bn (1)

Now, formula (1) implies that {cn}n≥2 is an m-sequence of Lx because

Ucn
bn = ad2

cn
ad2
x bn = cn+1

with cn 6= 0 if an 6= 0. �

2.3. Let α be an ordinal. We say that a Lie algebra L satisfies the property Hα
if for every ordinal β with β ≤ α which is not a limit ordinal we have that every
submodule of Lβ := Kβ(L)/Kβ−1(L) which is invariant under inner automorphisms
of Lβ is indeed an ideal of Lβ . Notice that the property Hα just means that the
Lie algebra Lβ satisfies the property H1.

We say that L satisfies the property H if L satisfies the property Hα for every
ordinal α.

2.4. Examples: Although the property H might seems somehow “technical”, it
is satisfied by many Lie algebras. For example:
(i) Every Lie algebra L over a ring of scalars Φ with no torsion which is generated as
an algebra by ad-nilpotent elements satisfies the property H. Also if L is generated
by ad-nilpotent elements of index at most m and 1

k ∈ Φ for 1 ≤ k ≤ 2m − 2, L
satisfies the property H. Indeed, using a Vandermonde argument, it is easy to see
that every submodule of such L which is invariant under inner automorphisms is
an ideal of L.
(ii) Every Z-graded Lie algebra L =

⊕n
i=−n Li with L0 =

∑n
i=1[Li, L−i], defined

over a ring of scalars Φ with 1
k ∈ Φ for 1 ≤ k ≤ 4n, satisfies the property H (just

notice that L is generated by ad-nilpotent elements of index at most 2n+ 1).
(iii) For every Lie algebra L over a field of zero characteristic one has that for every
ordinal α and for every β ≤ α which is not a limit ordinal Lβ = Kβ(L)/Kβ−1(L) =
K1(L/Kβ−1(L)) consists on ad-nilpotent elements [24, Lemma 8], so every sub-
module of Lβ which is invariant under inner automorphisms is an ideal by the
argument given in (i). Therefore, Lie algebras over fields of characteristic zero
satisfy the property H.

Proposition 2.5. Let L be a Lie algebra over over a ring of scalars Φ and let
x1, x2, . . . , xn be absolute zero divisors of L such that x = x1 + · · · + xn ∈ C1 is a
Jordan element. If L satisfies the property H1 then Mc(Lx) = Lx.

Proof. First notice that C1 is an ideal of K1(L) and C1 ⊂ Mc(Lx) since every
absolute zero divisor z of L gives rise to an absolute zero divisor z of Lx: Uza =
ad2
z ad2

x a = 0.
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Then, for any a, b ∈ L,

Uab = ad2
a ad2

x b ⊂ ad2
a C1 (1)

since ad2
x b ∈ [x,K1(L)] ⊂ C1, and for every absolute zero divisor z ∈ L,

U
ad2

a z
b = [ad2

a z, [ad2
a z, ad2

x b]] ⊂ [ad2
a z, [ad2

a z, C1]] ⊂ C1 ⊂Mc(Lx)

for every b ∈ Lx and therefore ad2
a z ∈ Mc(Lx), which implies that ad2

a C1 ⊂
Mc(Lx) and therefore, by (1), Uab ⊂ Mc(Lx) for every b ∈ Lx, so a ∈ Mc(Lx),
i.e., Mc(Lx) = Lx. �

Theorem 2.6. Let L be a Lie algebra that satisfies H1 (resp. H) and let x ∈ K1(L)
(resp. x ∈ K(L)) be a Jordan element. Then every m-sequence of L which starts
with x has finite length and Mc(Lx) = Lx.

Proof. Using transfinite induction, we define the following ascending chain of ideals
of K1(L): let C1(L) be the submodule of K1(L) generated by all absolute zero
divisors of L, which is an ideal of K1(L) since it is invariant under (inner) au-
tomorphisms (of K1(L)), and define Cα(L) =

⋃
β<α Cβ(L) for a limit ordinal α,

and
Cα(L)/Cα−1(L) = C1(K1(L)/Cα−1(L))

otherwise.
By construction every Cα(L) ⊂ K1(L) and K1(L)/

⋃
Cα(L) is a nondegenerate

Lie algebra, so K1(L) =
⋃
Cα(L). Now, if x ∈ K1(L) is a Jordan element there

exists an ordinal α such that x ∈ Cα(L) and x /∈ Cβ(L) for β < α. Hence if
{xi}i∈N is an m-sequence which starts with x, by Proposition 2.5 there exists n ∈ N
such that xn ∈ Cα−1(L), which implies by transfinite induction that {xi} has finite
length and, therefore, Mc(Lx) = Lx by Proposition 2.2.

If x ∈ K(L) is a Jordan element, there exists an ordinal α which is not a
limit ordinal such that x ∈ Kα(L), so x̄ = x + Kα−1(L) ∈ Kα(L)/Kα−1(L) =
K1(L/Kα−1(L)). By the above, every m-sequence starting with x̄ ends in Kα−1(L)
in a finite number of steps and, by transfinite induction, every m-sequence starting
with x has finite length. Moreover, Mc(Lx) = Lx by Proposition 2.2. �

Corollary 2.7. Let L be a Lie algebra that satisfies H and let x ∈ L be a Jordan
element. Then Mc(Lx) = {a ∈ Lx | [x, [x, a]] ∈ K(L)}.

Proof. If a ∈Mc(Lx), then every m-sequence of Lx starting with a has finite length.
Therefore, by Proposition 2.2, every m-sequence of L starting with [x, [x, a]] has
finite length and therefore, by 1.8, [x, [x, a]] ∈ K(L). Conversely, since x is a Jordan
element, for every a ∈ L, ad2

x a is a Jordan element. So, if [x, [x, a]] ∈ K(L), by
Proposition 2.6 every m-sequence starting with [x, [x, a]] has finite length in L, so
the m-sequences of Lx starting with a have finite length by Proposition 2.2, which
implies that a ∈Mc(Lx). �

Corollary 2.8. Let L be a Lie algebra that satisfies H, M an abelian inner ideal
of L and consider the subquotient V = (M,L/KerM). Then

Mc(V )+ = M ∩K(L), and

Mc(V )− = {a+ KerM | [M, [M,a]] ⊂ K(L)}.
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Proof. Notice that Mc(V )+ consists on the elements of M for which every m-
sequence has finite length, so Mc(V )+ ⊂ K(L). Conversely, since every element of
M is a Jordan element, if x ∈ K(L)∩M then it satisfies the m-sequence condition
by Theorem 2.6, so it belongs to Mc(V ).

For the second equality, if a + KerM belongs to Mc(V )−, then [m1, [m2, a]] =
−{m1, a,m2} ∈ Mc(V )+ ⊂ K(L) for every m1,m2 ∈ M . Conversely, if a ∈ L has
[M, [M,a]] ∈ K(L) then {M, (a + KerL),M} ⊂ K(L) ∩M = Mc(V )+, but this
implies a+ KerM ∈Mc(V )− by [1, 3.4]. �

The next result can be found in [25]. We give here an alternative proof.

Proposition 2.9. Let V be a Jordan pair over over a ring of scalars Φ with
1
2 ,

1
3 ∈ Φ and consider the Lie algebra L = TKK(V ). Then, the Kostrikin radi-

cal K(L) of L is a 3-graded ideal with πσ1(K(L)) = Mc(V )σ, σ = ±, where πσ1

denotes the canonical projection of L onto Lσ1, and is isomorphic to the center of
L/ idL(Mc(V )+ ⊕Mc(V )−).

Proof. Notice that under these conditions, L satisfies H by 2.4. We will show that

K(L) = Mc(V )+ ⊕ (K(L) ∩ [V +, V −])⊕Mc(V )−. (1)

Clearly, Mc(V )+ ⊕ Mc(V )+ ⊂ K(L) since all m-sequences starting with these
elements have finite length. Conversely, let y = y1 + y0 + y−1 ∈ K(L). If
[V +, [y, V +]] = [V +, [y−1, V

+]] 6⊂ Mc(V )+, then we would have Jordan elements
in K(L) ∩ V + which do not belong to the McCrimmon radical of V , a contradic-
tion with Theorem 2.6. Therefore, [V +, [y, V +]] = {V +, y−1, V

+} ⊂ Mc(V )+, so
y−1 ∈Mc(V )− by [2, 3.4]. Similarly, y1 ∈Mc(V )+.

Suppose that now that y0 6= 0. Then at least [y0, V
+] 6= 0 or [y0, V

−] 6= 0.
Suppose [y0, V

+] 6= 0. Since [V −, [V −, [y, V +]]] = [V −, [V −, [y0, V
+]]] ⊂ I ∩ V − ⊂

Mc(V )−, then the Jordan triple product

{V −, [y0, V
+], V −} ⊂Mc(V )−,

so [y0, V
+] ⊂Mc(V )+ by [2, 3.4]. Therefore, [y0, [y0, V

+]] ⊂Mc(V )+ ⊂ K(L), and
similarly [y0, [y0, V

−]] ⊂ K(L). Therefore [y0, [y0, L]] ⊂ K(L), so also y0 ∈ K(L).
From (1), every x ∈ K(L) satisfies [x, L] ∈ idL(Mc(V )+ ⊕Mc(V )−), so x +

idL(Mc(V )) ∈ Z(L/ idL(Mc(V ))). Conversely, if x ∈ L satisfies

[x, L] ∈ idL(Mc(V )+ ⊕Mc(V )−),

then [x, [x, L]] ∈ idL(Mc(V )) ⊂ K(L), so x ∈ K(L) by 1.8. �

2.10. We will say that a Lie algebra satisfies the property Ĥ if any epimorphic
image of L satisfies H. Note that all the examples given 2.4 satisfy this property.

Proposition 2.11. Let L be a Lie algebra that satisfies Ĥ and let M be an m-system
of L of nonzero Jordan elements. Then every maximal ideal P of L with respect to
the property P ∩M = ∅ is nondegenerate. Moreover, if M is an m-sequence of L,
then P is strongly prime.

Proof. Let P be a maximal ideal with respect to the property P ∩M = ∅.
Let us prove that P is nondegenerate: consider the canonical projection π :

L → L/P . Notice that L/P satisfies the property H. Let us suppose that L/P is
degenerate and let K := π−1(K(L/P )) where K(L/P ) is the Kostrikin radical of
L/P . By construction, since P is maximal, there exists x ∈ M ∩K and therefore
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an m-sequence {xi} which starts with x contained in M . But {xi} is an infinite
m-sequence in L/P . So, by Theorem 2.6, x /∈ K(L/P ) ⊇ L/P , a contradiction.

Now, let us suppose that M = {an}n∈N is an m-sequence and let I, J be two
ideals of L with P  I and P  J . Then, since P is maximal with respect to
P ∩ M = ∅, there exists i, j ∈ N such that ai ∈ I and aj ∈ J . Moreover, if
k ≥ max{i, j}, ak ∈ I ∩J and 0 6= ak+1 = [ak, [ak, bk]] ∈ [I, J ] with ak+1 /∈ P which
proves that P is a strongly prime ideal of L. �

In the following results we will require that every nonzero ideal of L contains
nonzero Jordan elements. If the ring of scalars Φ has 1

k ∈ Φ for every 0 ≤ k ≤ r,
this hypothesis can be achieved as soon as every ideal of L contains nonzero ad-
nilpotent elements of index at most n for n + [n2 ] − 1 ≤ r, see [17, Lemma 1.1, p.
31].

Theorem 2.12. Let L be a nondegenerate Lie algebra that satisfies the property Ĥ
and such that every nonzero ideal of L contains nonzero Jordan elements. Then,
the intersection of all strongly prime ideals of L is zero. Consequently, L is nonde-
generate if and only if it is a subdirect product of strongly prime Lie algebras.

Proof. We will show that for any nonzero element x of L we can always find a
strongly prime ideal of L that does not contain x. Let I := idL(x) be the ideal
of L generated by x. By hypothesis there is a nonzero Jordan element y of L
contained in I. Now, we can construct the following m-sequence of L of infinite
length N = {ai}i∈N: a1 = y, and given any ai 6= 0 define ai+1 = [ai, [ai, xi]] for any
xi ∈ L such that 0 6= [ai, [ai, xi]] (there exists such xi because L is nondegenerate).
By Zorn Lemma there exists a maximal ideal in {J / L | J ∩ N = ∅}, which is
strongly prime ideal of L by Proposition 2.11 and, by construction, it does not
contain y and therefore it does not contain x. �

As mentioned in 2.10, all Lie algebras listed in 2.4 satisfy the property Ĥ and,
therefore, as soon as all they are nondegenerate and all their nonzero ideals contain
nonzero Jordan elements, the intersection of all their strongly prime ideals is zero
and they are a subdirect product of strongly prime Lie algebras. Furthermore,
all nonzero ideals of a nondegenerate Lie algebra with a finite Z-grading of the
form L = Ln ⊕ · · · ⊕ L0 ⊕ · · · ⊕ L−n, L0 =

∑n
i=1[Li, L−i], and 1

k ∈ Φ for every
0 ≤ k ≤ 4n, always contain nonzero Jordan elements, and therefore, for such Lie
algebras Theorem 2.12 reads as follows:

Corollary 2.13. Let L = Ln ⊕ · · · ⊕ L0 ⊕ · · · ⊕ L−n, L0 =
∑n
i=1[Li, L−i], be

a nondegenerate Lie algebra with a finite Z-grading over a ring of scalars Φ with
1
k ∈ Φ for every 0 ≤ k ≤ 4n. Then, the intersection of all strongly prime ideals of
L is zero. Consequently, L is nondegenerate if and only if it is a subdirect product
of strongly prime Lie algebras.

Proof. It is enough to prove that nonzero ideals of L have nonzero Jordan elements:
let I be a nonzero ideal of L and consider the biggest natural k ∈ N such that
πs(I) = 0 for all |s| > k. Then, by nondegeneracy of the ideal π(I) = πk(I) ⊕
· · ·⊕π0(I)⊕· · ·⊕π−k(I) of L, 0 6= [πk(I), [πk(I), π(I)]] = [πk(I), [πk(I), π−k(I)]] =
[πk(I), [πk(I), I]] ⊂ I∩πk(I) consists of Jordan elements, and thus the claim follows
by Theorem 2.12. �
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3. Lie algebras over fields of characteristic zero

Section 2 deals with Lie algebras with enough ad-nilpotent elements. In particu-
lar, Theorem 2.12 applies for nondegenerate Lie algebras over fields of characteristic
zero such that every nonzero ideal contains at least a nonzero ad-nilpotent element.
The hypothesis of having enough ad-nilpotent elements will be removed in this
section, where we will prove that a similar theorem holds in general. The results
contained in this section were outlined by E. Zelmanov in a private communication
[21] to the authors. We are grateful to him for allowing us to include them in the
final version of this paper.

Lemma 3.1. Given a Lie algebra L over a field of characteristic zero and 0 6= a ∈ L
an ad-nilpotent element of index s > 3, there exists a1 ∈ L such that [a, a1] 6= 0 is
ad-nilpotent of index at most 3.

Proof. In characteristic zero every element of the form ads−1
a x ∈ [a, L] is ad-

nilpotent of index at most 3 for any x ∈ L [13]. �

Lemma 9 of [24] gives conditions that guarantee that an element of L belong to
the Kostrikin radical of L. In the next proposition we weaken these conditions.

Proposition 3.2. Given a Lie algebra L over a field of characteristic zero, if a ∈ L
is such that there exists q ∈ N with

adqa x0 = adq[a,x1] x0 = adq[[a,x1],x2] x0 = 0, for all x0, x1, x2 ∈ L

then a ∈ K(L).

Proof. We can work in L/K(L), assume that L is nondegenerate, and show that
a = 0. Suppose that a 6= 0 and let s be the index of ad-nilpotency of a. If s > 3,
take a1 ∈ L given by Lemma 3.1, and let b = [a, a1] 6= 0, which is ad-nilpotent of
index 3; if s ≤ 3, let b = a. Since by hypothesis [x, b] is ad-nilpotent of index at
most q for all x ∈ L, every element x̄ of the Jordan algebra Lb, see 2.1, is nilpotent
of index at most q + 1. Indeed, since x̄(n,b) = x̄ • x̄(n−1,b), one readily has that

x̄(2,b) =
1
2

[[x, b], x], x̄(3,b) =
1
4

[[x, b], [[x, b], x]], . . . x̄(n,b) =
1

2n−1
adn−1

[x,b] x.

Therefore Lb is radical in the sense of McCrimmon, see [22, Lemma 17, pag 849].
But the Jordan algebras of nondegenerate Lie algebras are nondegenerate, see 2.1,
so Lb = Mc(Lb) = 0, which implies that Ker b = L, so [b, [b, L]] = 0, i.e., b is an
absolute zero divisor, hence b = 0, a contradiction. �

3.3. Given n ∈ N and a Lie algebra L, let

Bn(L) = {
n∑
i=1

[[[ai, bi1 ], . . . , biki
]] | 0 ≤ ki ≤ n, bij ∈ L, ad2

ai
= 0}

be the sums of n monomials in L whose distance to an absolute zero divisor of L is
less than or equal to n. Notice that B1 ⊂ B2 ⊂ · · · ⊂ Bn and K1(L) =

⋃
nBn.

Lemma 3.4. For each n, r ∈ N there exists f(n, r) ∈ N with f(n, r) ≥ 3 such that
for every Lie algebra L over a field of characteristic zero and for every a ∈ Bn(L)

adf(n,r)
[[a,b1],...,bk] = 0 for every b1, . . . , bk ∈ L, 0 ≤ k ≤ r.
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Proof. This proof is inspired by [24, Lemma 8]. Let

X := {x0} ∪ {xi | i ∈ N} ∪ {xij | i, j ∈ N} ∪ {yi | i ∈ N}

and consider the free Lie algebra L[X]. Let L̄[X] = L[X]/ IdL[X](ad2
xi
L[X] | i ∈ N),

in which every x̄i is an absolute zero divisor. For every n, r ∈ N, define

An,r := {
n∑
i=1

[[[[x̄i, x̄i1], . . . , x̄iki
], ȳ1], . . . , ȳk] | 0 ≤ ki ≤ n, 0 ≤ k ≤ r}.

Notice that An,r ⊂ K1(L̄[X]), and it is a finite set, hence also the set An,r ∪
[An,r, x0] ⊂ K1(L̄[X]) has of a finite number of elements. For fixed n, r ∈ N, the
set Dn,r = SubalgL̄[X](An,r ∪ [An,r, x0]) is nilpotent by a result of Grishkov [14], so

there exists f(n, r) ≥ 3 such that Df(n,r)
n,r = 0.

Let now L be a Lie algebra, let a ∈ Bn(L), fix r ∈ N and let b1, . . . , bk be arbitrary
elements of L, 1 ≤ k ≤ r, and c ∈ L. We want to show that adf(n,r)

[[a,b1],...,bk] c = 0.
Since a ∈ Bn(L), a =

∑n
i=1 [[[ai, bi1 ], . . . , biki

]] for certain absolute zero divisors
ai ∈ L, and certain bij ∈ L, i = 1, . . . , n, j = 1, . . . , ki, 0 ≤ ki ≤ n. There
exists a unique homomorphism of Lie algebras ϕ : L[X]→ L such that ϕ(x0) = c;
ϕ(xi) = ai if 1 ≤ i ≤ n and ϕ(xi) = 0 otherwise; ϕ(xij) = bij if 1 ≤ i ≤ n,
1 ≤ j ≤ ki, and ϕ(xij) = 0 otherwise; ϕ(yi) = bi if 1 ≤ i ≤ k and ϕ(yi) = 0
otherwise. Moreover, since

ϕ(IdL[X](ad2
xi
L[X] | i = 1, . . . , n)) ⊂ IdL(ad2

ai
L | i = 1, . . . , n) = 0,

ϕ gives rise to a unique homomorphism of Lie algebras ϕ̄ : L̄[X] → L such that
ϕ̄(x̄0) = c, ϕ̄(x̄i) = ai, 1 ≤ i ≤ n, ϕ̄(x̄ij) = bij , 1 ≤ i ≤ n, 1 ≤ j ≤ ki, and
ϕ̄(ȳi) = bi, 1 ≤ i ≤ k. Finally,

adf(n,r)
[[a,b1],...,bk] c = ϕ̄(adf(n,r)

[[
∑n

i=1[[x̄i,x̄i1],...,x̄iki
],ȳ1],...,ȳk] x̄0)

= ϕ̄(adf(n,r)∑n
i=1[[[[x̄i,x̄i1],...,x̄iki

],ȳ1],...,ȳk] x̄0) ∈ ϕ̄(adf(n,r)−1
An,r

[An,r, x0])

⊂ ϕ̄(Df(n,r)
n,r ) = 0.

�

3.5. Given a Lie algebra L over a field of characteristic zero, we say that the
sequence {ci}i∈N is a generalized m-sequence of L if c1 ∈ L and each ci+1, i ≥ 1, is
an element of the form

adqi
ci
x0, adqi

[ci,x1] x0, or adqi

[[ci,x1],x2] x0

for some x0, x1, x2 ∈ L and qi = f(i, 3i+ 2).
Notice that for every i, since qi ≥ 3,

adqi
ci
x0 ∈ [ci, [ci, [ci, L]] ⊂ [[[ci, L], L], L]

adqi

[ci,x1] x0 ∈ [[ci, x1], [[ci, x1], L]] ⊂ [[[ci, L], L], L]

adqi

[[ci,x1],x2] x0 ∈ [[[ci, x1], x2], L] ⊂ [[[ci, L], L], L]

so in each step ci+1 ∈ [[[ci, L], L], L].

Proposition 3.6. If a generalized m-sequence {ci}i∈N in a Lie algebra L over a
field of characteristic zero contains an element ci in K(L), the sequence has finite
length.
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Proof. Suppose first that ci ∈ K1(L) =
⋃
mBm, so ci belongs to certain Bn (it can

be assumed that n ≥ i). Let us show that cn+1 = 0: Since ci+1 is an element of
the form adqi

ci
x0, adqi

[ci,x1] x0, or adqi

[[ci,x1],x2] x0 for some x0, x1, x2 ∈ L, it can be
expressed as an element ci+1 ∈ [[[ci, L], L], L︸ ︷︷ ︸

3

] by 3.5. Similarly,

ci+2 ∈ [[[ci+1, L], L], L︸ ︷︷ ︸
3

] ⊂ [[[ci, L], . . . , L]︸ ︷︷ ︸
3·2

].

Finally, cn ∈ [[[ci, L], . . . , L]︸ ︷︷ ︸
3(n−i)

]. Since qn = f(n, 3n+ 2)

adqn
cn
x0 = 0, adqn

[cn,x1] x0 = 0, and adqn

[[cn,x1],x2] x0 = 0

for all x0, x1, x2 ∈ L, so cn+1 = 0.
We will show by transfinite induction that if ci ∈ Kα(L), then the generalized

m-sequence {ci}i∈N has finite length. We have already shown the case α = 1. Now
assume that our assertion is true for every β < α.

If α is a limit ordinal, ci ∈
⋃
β<αKβ(L) so there exists some β < α such that ci ∈

Kβ(L) and the sequence has finite length by the induction hypothesis. Otherwise,
α = β+1 for some β and we can consider the corresponding generalized m-sequence
in L/Kβ(L), {cj +Kβ(L)}j∈N for which ci +Kβ(L) ∈ K1(L/Kβ(L)). By the case
α = 1 this sequence has finite length and there exists ck+Kβ(L) = 0̄, so ck ∈ Kβ(L)
and the result follows by induction. �

Proposition 3.7. Let L be a Lie algebra over a field of characteristic zero, let
{ci}i∈N be a generalized m-sequence of L, and let P be an ideal of L which is
maximal among those ideals of L not containing any element of {ci}i∈N. Then P
is a strongly prime ideal of L, i.e., L/P is a strongly prime Lie algebra.

Proof. To see that L/P is prime, if A/P and B/P are two nonzero ideals of L/P ,
there exist some cj ∈ A, some ck ∈ B, so cl ∈ A ∩ B for every l ≥ j, k. Then,
cmax(j,k)+1 ∈ [A,B] so [A/P,B/P ] 6= 0̄.

To see that L/P is nondegenerate, suppose on the contrary that K(L/P ) 6= 0.
Consider K̂ = π−1(K(L/P )), where π : L→ L/P denotes the canonical projection,
which is an ideal of L properly containing P , so there exists some cj ∈ K̂, hence
cj + P ∈ K(L/P ). By Proposition 3.6 the sequence {ci + P}i∈N has finite length,
so there exists some ck + P = 0̄, i.e., ck ∈ P , a contradiction. �

Proposition 3.8. Given a Lie algebra L over a field of characteristic zero, if a ∈ L
does not belong to K(L) then there exists an infinite generalized m-sequence starting
with a.

Proof. Consider 0̄ 6= ā = a + K(L) ∈ L/K(L) and let c̄0 = ā. If c̄i 6= 0̄ then
there exists c̄i+1 6= 0̄ since otherwise it would mean that adqi

c̄i
x̄0 = adqi

[c̄i,x1] x̄0 =
adqi

[[c̄i,x̄1],x̄2] x̄0 = 0, for all x̄0, x̄1, x̄2 ∈ L/K(L), qi = f(i, 3i+2), but by Proposition
3.2 this implies that c̄i ∈ K(L/K(L)) = 0̄, a contradiction. The infinite generalized
m-sequence {c̄i} in L/K(L) induces an infinite generalized m-sequence in L. �

By Lemma 3.4 and Proposition 3.8 one readily has
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Corollary 3.9. Let L be a Lie algebra over a field of characteristic zero, and let
K(L) denote its Kostrikin radical. Then

K(L) = {x ∈ L | every generalized m-sequence starting with x has finite length}.

Theorem 3.10. The Kostrikin radical K(L) of a Lie algebra L over a field of
characteristic zero is the intersection of all strongly prime ideals of L. Therefore,
L/K(L) is isomorphic to a subdirect product of strongly prime Lie algebras.

Proof. If {Pi} denotes the set of all strongly prime ideals of L, it is clear that
K(L) ⊂ Pi for each i since L/Pi is nondegenerate, so K(L) ⊂

⋂
Pi. Conversely, let

a ∈ L be an element that does not belong to K(L). By Proposition 3.8 there exists
an infinite generalized m-sequence starting with a. Let P be an ideal of L maximal
among those not containing any element of the m-sequence. By Proposition 3.7 P
is an strongly prime ideal of L, and a 6∈ P , so a 6∈

⋂
Pi. �

4. Lie algebras arising from associative algebras

There are two important ways of producing Lie algebras out of an associative
algebra R:

- If R is an associative algebra, R− with product [x, y] := xy − yx is a Lie
algebra.

- If R is an associative algebra with involution ∗, the set of skew elements of
R, Skew(R, ∗) = {x ∈ R | x∗ = −x}, becomes a Lie subalgebra of R−.

We begin by studying some relations between the Baer radical r(R) of an asso-
ciative algebra R and the Kostrikin radical of R−.

Lemma 4.1. Let R be an associative algebra and let x ∈ r(R). Then any m-
sequence {an}n∈N of R− with a1 = x has finite length, i.e., there exists k ∈ N such
that ak = 0

Proof. It is well known that the Baer radical of R can be constructed as in 1.5 or
1.6. Moreover, since the (associative) ideal generated by all absolute zero divisors
of R coincides with the submodule generated by all absolute zero divisors, we only
need to show that the proposition holds when x is a sum of absolute zero divisors of
R. Let x = a1 + · · · ak where each ai is an absolute zero divisor of R, i = 1, 2, . . . , k.
Then any product of elements of R in which x appear at least k + 1 times is zero.
Therefore, any m-sequence of R− which starts with x has at most length n, for
2n ≤ k. �

Lemma 4.2. Let R be an associative algebra defined over a ring of scalars Φ
with no 2-torsion. If R is semiprime, the Lie algebra R−/Z(R) is nondegenerate.
Furthermore, if R is prime, R−/Z(R) is strongly prime.

Proof. We can suppose that R is not commutative, otherwise R = Z(R) and the
result is trivial.

Let us first see that R−/Z(R) is nondegenerate when R is semiprime: Suppose
that x ∈ R satisfies [x, [x,R]] ∈ Z(R). Given any a ∈ R,

0 =[a, [x, [x, xa]]] = [a, [x, x[x, a]]] = [a, x[x, [x, a]]] = [a, x][x, [x, a]]

since [x, [x, a]] ∈ Z(R), which implies 0 = adx([a, x][x, [x, a]]) = −([x, [x, a]])2 and,
therefore, [x, [x, a]] = 0 because R is semiprime and [x, [x, a]] is a nilpotent element
of Z(R); now, by [15, Sublemma, p. 5], [x, [x,R]] = 0 implies x ∈ Z(R).
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Now suppose that R is prime. By [3, Theorem 3.4] if I/Z(R) is a nonzero ideal
of R/Z(R) there exists a nonzero ideal I ′ of R such that [I ′, R] ⊂ I. Let us prove
that for every nonzero ideal I ′ of R, [I ′, R] is not contained in Z(R). Otherwise,
[I ′, [I ′, R]] = 0 which implies 0 6= I ′ ⊂ Z(R) (because R−/Z(R) is nondegenerate)
and this is not possible because in a prime noncommutative associative algebra there
are no nonzero ideals contained in the center. Finally, if I1/Z(R) and I2/Z(R)
are two nonzero ideals of R−/Z(R), there exist two nonzero ideals I ′1, I

′
2 of R

with [I ′i, R] ⊂ Ii for i = 1, 2. Now, 0 6= [(I ′1 ∩ I ′2) + Z(R)/Z(R), R/Z(R)] ⊂
I1/Z(R) ∩ I2/Z(R), which implies that R−/Z(R) is prime. �

Theorem 4.3. Let R be an associative algebra defined over a ring of scalars Φ
with no 2-torsion, and denote by K(R−) the Kostrikin radical of R−. Then:

(1) K(R−) coincides with the intersection of all strongly prime ideals of R−.
(2) K(R−) = π−1(Z(R/r(R))) where r(R) is the Baer radical of R and π :

R→ R/r(R) denotes the (associative) canonical projection.
(3) K(R−) = {x ∈ R | every m-sequence starting with x has finite length}.

Proof. The intersection of all prime ideals {Ii}i of R coincides with the Baer radical
r(R). For every prime ideal Ii of R, R/Ii is a prime algebra, and the maps

Ψi : R− → (R/Ii)/Z(R/Ii)

are epimorphisms of Lie algebras, which implies by Lemma 4.2 that Ker(Ψi) is a
strongly prime ideal of R−, and since the Kostrikin radical is contained in every
strongly prime ideal of R−, K(R−) ⊂ Ker(Ψi). Now, if x ∈

⋂
Ker(Ψi), x + Ii ∈

Z(R/Ii) for every prime ideal Ii of R and therefore [x,R] ⊂
⋂
Ii = r(R). Hence

x ∈ π−1(Z(R/r(R))), and if {Ii} denotes the family of all strongly prime ideals of
R−,

K(R−) ⊂
⋂
Ii ⊂

⋂
Ker(Ψi) ⊂ π−1(Z(R/r(R))).

Finally, if x ∈ π−1(Z(R/r(R))), [x, [x, a]] ∈ r(R) for every a ∈ R and therefore,
every m-sequence of R− starting with [x, [x, a]] has finite length by Lemma 4.1,
which implies that x ∈ K(R−) by 1.8. �

Corollary 4.4. Let R be a semiprime algebra over a ring of scalars Φ with no
2-torsion, and let us consider the Lie algebra L = R−/Z(R). Then the intersection
of all strongly prime ideals of L is zero.

Now we turn associative algebras with involution and study the relation between
the Kostrikin radical of Skew(R, ∗) and the Baer radical of R.

Lemma 4.5. If Q is a simple Lie algebra with involution ∗ over a ring of scalars
Φ with no 2-torsion, ∗ is of the first kind and dimZ(Q)Q ≤ 4, then the Lie algebra
L = Skew(Q, ∗) is either strongly prime or central and, in the second case, L has
dimension one over Z(Q).

Proof. Let 0 6= t ∈ L = Skew(Q, ∗) be an element such that [t, [t, Skew(Q, ∗)]] = 0.
In [3, Theorem 2.10] it is shown that [t, Skew(Q, ∗)] = 0, and from this we get
that t commutes with the subalgebra Skew(Q, ∗) generated by Skew(Q, ∗). But
Herstein in [15, Lemma 2.2] showed that either Skew(Q, ∗) = Q, leading to t ∈
Z(Q) ∩ Skew(Q, ∗) = 0, or L is one-dimensional over its center. Furthermore, if
L is nondegenerate, it is prime since dimZ(Q)Q ≤ 4 and there cannot exist two
nonzero ideals with zero intersection. �
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Proposition 4.6. Let R be a ∗-prime associative algebra with involution ∗ over a
ring of scalars Φ with no 2-torsion and let L = Skew(R, ∗).

• If the involution is of the second kind or the involution is of the first kind
and R is not an order in a simple algebra Q of dimension at most 16 over
its center, then L/Z(L) is strongly prime. In these cases, Z(R)∩L = Z(L).
• If the involution is of the first kind and R is an order in a simple algebra
Q with dimZ(Q)Q = 9 or 16, then Z(R) ∩ L = Z(L) = K(L) = 0 and the
intersection of all strongly prime ideals of L/Z(L) is zero.
• If the involution is of the first kind and R is an order in a simple algebra
Q with dimZ(Q)Q ≤ 4, then either L is abelian or strongly prime.

Proof. If R is a commutative algebra, all the results are trivial, so we can suppose
that R is noncommutative.

First, let us suppose that the involution is of the second kind: Let us consider
the Lie algebra L′ := L/(Z(R) ∩ L) and let t̄ an absolute zero divisor of L′. If
[t, [t, L]] = 0, then by [3, Theorem 2.13] (which also holds for ∗-prime algebras),
t ∈ Z(R), so t̄ = 0̄ in L′. If 0 6= [t, [t, L]] ⊂ Z(R), there exists x ∈ L such that
0 6= [t, [t, x]] = α. Since α ∈ Z(R), α[t, [t,H(R, ∗)]] = [t, [t, αH(R, ∗)]] ⊂ [t, [t, L]] ⊂
Z(R), but then also [t, [t,H(R, ∗)]] ⊂ Z(R) since R is ∗-prime (notice that in any
∗-prime R, 0 6= α ∈ Z(R) and r ∈ R with αr ∈ Z(R) implies r ∈ Z(R)). Therefore,
[t, [t, R]] ⊂ Z(R) and we get that t ∈ Z(R) by Lemma 4.2 , i.e, L′ is nondegenerate.
Therefore K(L′) = 0, so K(L) = Z(R) ∩ L, which implies, in particular, that
Z(L) = Z(R) ∩ L.

Now, let us suppose that the involution is of the first kind and R is not an order
in a simple algebra of dimension less than 9 over its center. Then, by [3, Theorem
2.10] (notice that the proof of this result also works in the ∗-prime setting) the Lie
algebra L is nondegenerate. So K(L) = 0 which implies that Z(R)∩L = Z(L) = 0.

Suppose that either the involution is of the second kind, or it is of the first kind
but R is not an order in a simple algebra Q of dimension at most 16 over its center.
To show that L/(Z(R)∩L) is strongly prime, assume firstly that R is prime. Then,
by [6, Theorem 1 (a), p. 525] if ∗ is of the second kind, or by [6, Corollary, p. 533]
if ∗ is of the first kind and R is not an order in a simple algebra Q which is at most
16-dimensional over its center, given a nonzero ideal I ′/(Z(R)∩L) of L/(Z(R)∩L),
there exists a nonzero ∗-ideal I of R such that [I ∩ Skew(R, ∗),Skew(R, ∗)] ⊂ I ′.
Let us show that [I ∩ Skew(R, ∗),Skew(R, ∗)] 6= 0. Otherwise, I ∩ Skew(R, ∗) can
be regarded as a nilpotent ideal of the nondegenerate Lie algebra L, so it is zero
modulo Z(R), in which case:

(I) If I ∩ Skew(R, ∗) = 0, then for every y ∈ I, y − y∗ ∈ Skew(R, ∗) ∩ I = 0, so
y = y∗ for every y ∈ I, and given r, s ∈ R,

yrs = (yrs)∗ = s∗r∗y; yrs = (yr)∗s = r∗ys = r∗(ys)∗ = r∗s∗y,

hence (s∗r∗ − r∗s∗)y = 0, and since R is prime, (rs)∗ = (sr)∗ for every r, s ∈ R,
which implies R is commutative, a contradiction.

(II) If 0 6= I ∩ Skew(R, ∗) ⊂ Z(R), then there exists α ∈ I ∩ Skew(R, ∗) ∩
Z(R). Since I = I ∩ Skew(R, ∗) ⊕ I ∩ H(R, ∗), we have that I ⊂ Z(R) because
also I ∩ H(R, ∗) ⊂ Z(R) since α(I ∩ H(R, ∗)) ⊂ I ∩ Skew(R, ∗) ⊂ Z(R). But
a noncommutative prime R cannot have nonzero ∗-ideals I contained in Z(R), a
contradiction.
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Thus if I/(Z(R)∩Skew(R, ∗)) and J/(Z(R)∩Skew(R, ∗)) are ideals of L/(Z(R)∩
L), there exist ideals I ′, J ′ of R such that

0 6= [I ′ ∩ J ′ ∩ Skew(R, ∗),Skew(R, ∗)] ⊂ I ∩ J,

so L/(Z(R) ∩ L) is a prime nondegenerate algebra, i.e, it is strongly prime.
IfR is ∗-prime but not prime, there exists a prime ideal I ofR such that I∩I∗ = 0.

The map f : R → R/I × R/I∗ is a ∗-monomorphism of algebras with exchange
involution

∗ : R/I ×R/I∗ → R/I ×R/I∗

given by (x, y)∗ = (y∗, x∗). Now, f(I ⊕ I∗) is an essential ideal of R/I ×R/I∗ and

I ∼= Skew(f(I ⊕ I∗)) / Skew(R/I ×R/I∗) ∼= R/I∗,

which implies that I/(Z(R) ∩ I) ∼= Skew(f(I ⊕ I∗))/(Skew(f(I ⊕ I∗)) ∩ Z(f(R)))
is a strongly prime algebra and, since it is essential in L, L/(Z(R) ∩ L) is strongly
prime.

Suppose that R is ∗-prime with involution of the first kind and R is an order in
a simple algebra Q of dimension at most 16 over its center. Since Q is simple and
finite dimensional, Q is a PI algebra, so R is a PI algebra and it is a central order in
Q: for every q ∈ Q there exists α ∈ Z(R) and x ∈ R such that q = α−1x. Now, we
can extend the involution to Q and since the center of Q is the extended centroid
of R, we have that the involution on Q is of the first kind. If dimZ(Q)Q = 16
or 9, by [3, Theorem 2.10], Skew(Q, ∗) is nondegenerate, and if dimZ(Q)Q = 4
or 1, by Lemma 4.5, Skew(Q, ∗) is either central or strongly prime. In any case,
L is abelian if Skew(Q, ∗) is abelian and L is strongly prime (nondegenerate) if
Skew(Q, ∗) is so: Let us show that L is strongly prime when Skew(Q, ∗) is strongly
prime (the inheritance of nondegeneracy follows analogously). Given x, y ∈ L such
that [x, [y, L]] = 0 we have that for every q ∈ Skew(Q, ∗) there exists α ∈ Z(R) and
z ∈ R such that q = α−1z and therefore [x, [y, q]] = [x, [y, αz]] = α[x, [y, z]] = 0
which implies that x = 0 or y = 0 and L is strongly prime, see [12, Theorem 1.6].
Finally, if dimZ(Q)Q = 16 or 9, Z(R) ∩ L ⊂ Z(L) ⊂ K(L) = 0 and by Corollary
5.4 the intersection of all strongly prime ideals of L is zero. �

Theorem 4.7. Let R be an associative algebra with involution ∗ over a ring of
scalars Φ with no 2-torsion, let L = Skew(R, ∗), and denote by K(L) its Kostrikin
radical. Then:

(1) K(L) coincides with the intersection of all strongly prime ideals of L.
(2) K(L) = π−1(Z(L/(r(R) ∩ L))) where r(R) is the Baer radical of R and

π : L→ L/(r(R) ∩ L) denotes the canonical projection.
(3) K(L) = {x ∈ L | every m-sequence starting with x has finite length}.

Proof. The intersection of all ∗-prime ideals of R, {Ii}i∈∆, is equal to the Baer
radical r(R). Now, for every ∗-prime ideal Ii of R, let us consider the epimorphism
of Lie algebras

Ψi : Skew(R, ∗)→ Skew(R/Ii, ∗)/Z(Skew(R/Ii, ∗)).

By Proposition 4.6, Ker Ψi is either a strongly prime ideal of L, or it is the inter-
section of strongly prime Lie algebras, or it is the whole algebra L. Therefore, if
x ∈

⋂
Ker Ψi (which is an intersection of strongly prime ideals of L) and a ∈ L,

we have that [x, a] ∈ Ii for all i ∈ ∆ and therefore, [x, a] ∈ r(R), which implies
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that x ∈ π−1(Z(L/(r(R)∩L))). So if {Ii} denotes the family of all strongly prime
ideals of L,

K(L) ⊂
⋂
Ii ⊂ π−1(Z(L/(r(R) ∩ L))).

Finally, if x ∈ π−1(Z(L/(r(R)∩L))), [x, [x, a]] ∈ r(R) for every element a ∈ L and
therefore, every m-sequence of L starting with [x, [x, a]] has finite length, Lemma
4.1, which implies that x ∈ K(L) by 1.8. �

Corollary 4.8. Let R be a semiprime associative algebra with involution ∗ over a
ring of scalars Φ with no 2-torsion and let L = Skew(R, ∗). Then K(L) = Z(L)
and it coincides with the intersection of all strongly prime ideals of L.

4.9. Remark. Since the Kostrikin radical of any ideal I of a Lie algebra L coin-
cides with K(L) ∩ I, see [24, Corollary 1, pg 543], Theorems 4.3, 4.7 and Corol-
laries 4.4, 4.8 also hold for ideals of the Lie algebras mentioned there. In par-
ticular, they hold for the Lie algebras [R,R] and [R,R]/(Z(R) ∩ [R,R]), and for
[Skew(R, ∗),Skew(R, ∗)], [Skew(R, ∗),Skew(R, ∗)]/(Z(R)∩[Skew(R, ∗),Skew(R, ∗)]).

5. Lie algebras with descending chain conditions

5.1. Recall that the annihilator of an ideal I in a Lie algebra L is defined as
AnnL(I) = {x ∈ L | [x, I] = 0}. If I is an ideal of L which is nondegenerate as a Lie
algebra (in particular if L is nondegenerate), then AnnL(I) = {x ∈ L | [x, [x, I]] =
0} and I ∩AnnL(I) = 0. Moreover, if I is nondegenerate and AnnL(I) = 0, L is a
nondegenerate Lie algebra, see [7, 2.5].

If L is nondegenerate, AnnL(I) is a nondegenerate ideal of L for every ideal I of L:
let x ∈ L/AnnL(I) such that [x, [x, L/AnnL(I)]] = 0. Then [x, [x, L]] ⊂ AnnL(I),
so [x, [x, I]] ⊂ I ∩AnnL(I) = 0, hence x ∈ AnnL(I).

5.2. We say that a Lie algebra L satisfies the descending chain condition for annihi-
lator ideals if every descending chain of annihilator ideals {AnnL(Ii)}i, AnnL(Ii) ⊃
AnnL(Ii+1), reaches zero in a finite number of steps. Since AnnL(AnnL(AnnL(I))) =
AnnL(I) for every ideal I of L, we have that L satisfies the descending chain con-
dition for annihilator ideals if and only it is satisfies the ascending one.

A nonzero ideal I of L is said to be uniform if for every two nonzero ideals J, J ′

of L such that J, J ′ ⊂ I we have that J ∩ J ′ 6= 0. If L is semiprime, by [10,
Proposition 3.1 (i)] I is a uniform ideal of L if and only if AnnL(I) is maximal
among all annihilator ideals of nonzero ideals of L. The next proposition can be
deduced from [10, Theorem 4.1].

Proposition 5.3. If L is nondegenerate and every annihilator ideal of L is con-
tained in a maximal annihilator ideal, then the intersection of all strongly prime
ideals of L is zero. Moreover, if L satisfies the chain condition for annihilator
ideals, then L is an essential subdirect product of finitely many strongly prime Lie
algebras.

Proof. Let 0 6= x ∈ L, consider the ideal J of L generated by x and its annihilator
AnnL(J). By hypothesis, there exists a nonzero ideal I of L such that AnnL(I)
is a maximal annihilator ideal with AnnL(J) ⊂ AnnL(I). Now, if x ∈ AnnL(I),
J ⊕AnnL(J) ⊂ AnnL(I), a contradiction because J ⊕AnnL(J) is an essential ideal
of L. Therefore, the intersection of all maximal annihilator ideals of L, which are
strongly prime ideals of L by 5.1 and [10, Proposition 3.1 (ii)], is zero.
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Now suppose that L satisfies the chain condition for annihilator ideals and con-
sider the set of all uniform ideals {Ii}i of L. By 5.1 and [10, Proposition 3.1
(ii)], L/AnnL(Ii) is strongly prime. Moreover, since

⋂
i AnnL(Ii) = AnnL(

∑
i Ii)

and every descending chain of annihilator ideals reaches zero, there exists a finite
number of uniforms ideals {Ii}ni=1 such that

⋂n
i=1 AnnL(Ii) = 0. Finally, every

Ii ∼= (Ii + AnnL(Ii))/AnnL(Ii) is an essential ideal of the strongly prime Lie alge-
bra L/AnnL(Ii), hence L is an essential subdirect product of the strongly prime
Lie algebras {Li = L/AnnL(Ii)}ni=1. �

The following corollary shows that the characterization of the Kostrikin radical
of a Lie algebra L as the intersection of all strongly prime ideals of L holds for
Artinian Lie algebras, hence in particular for finite dimensional Lie algebras.

Corollary 5.4. If L is an Artinian Lie algebra, the Kostrikin radical of L coincides
with the intersection of all strongly prime ideals of L, and L/K(L) is an essential
subdirect product of finitely many strongly prime Lie algebras.

Proof. The nondegenerate Lie algebra L/K(L) remains Artinian and satisfies the
chain condition for annihilator ideals, so the intersection of all strongly prime ideals
of L is K(L) and L/K(L) is an essential subdirect product of finitely many strongly
prime Lie algebras. �

5.5. An inner ideal of a Lie algebra L is a Φ-submoduleB of L such that [B, [B,L]] ⊂
B. An abelian inner ideal is an inner ideal B which is also an abelian subalgebra,
i.e., [B,B] = 0. If L is defined over a field of scalars with 1/2, 1/3 and 1/5, the
socle of a nondegenerate Lie algebra L is an ideal Soc(L) defined as the sum of all
minimal inner ideals of L, and it is a direct sum of simple ideals [5, 2.4, 2.5].

Proposition 5.6. If L is defined over a field of scalars with 1/2, 1/3 and 1/5, and L
is nondegenerate and has essential socle, then the intersection of all strongly prime
ideals of L is zero and, therefore, L is an essential subdirect product of strongly
prime Lie algebras.

Proof. Let Soc(L) =
⊕

i Li be the decomposition of the socle of L into simple ideals,
see [5, 2.5(i)]. It is easy to see that

⋂
i(AnnL(Li)) = Ann(

⊕
i Li) = Ann(Soc(L)) =

0 because Soc(L) is essential, so the intersection of all strongly prime ideals of L
is zero and L is an essential subdirect product of the strongly prime Lie algebras
{L/AnnL(Li)}i. �
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López for their careful reading of this manuscript and their valuable suggestions
and comments.

References
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socle of a nondegenerate Lie algebra. J. Algebra, 319(6):2372–2394, 2008.
[6] Theodore S. Erickson. The Lie structure in prime rings with involution. J. Algebra, 21:523–

534, 1972.
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