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ABSTRACT. We prove that every (not necessarily linear nor continuous)
2-local triple derivation on a von Neumann algebra M is a triple deriva-
tion, equivalently, the set Der;(M), of all triple derivations on M, is
algebraically 2-reflexive in the set M (M) = M™ of all mappings from
M into M.

1. INTRODUCTION

Let X and Y be Banach spaces. According to the terminology employed
in the literature (see, for example, [1]), a subset D of the Banach space
B(X,Y), of all bounded linear operators from X into Y, is called alge-
braically reflexive in B(X,Y') when it satisfies the property:

(1.1) T € B(X,Y) with T'(z) € D(z), Vx € X = T € D.

Algebraic reflexivity of D in the space L(X,Y), of all linear mappings from
X into Y, a stronger version of the above property not requiring continuity
of T, is defined by:

(1.2) TeL(X,Y) with T(x) € D(z), Ve € X =T € D.

In 1990, Kadison proved that (1.1) holds if D is the set Der(M, X) of
all (associative) derivations on a von Neumann algebra M into a dual M-
bimodule X [18]. Johnson extended Kadison’s result by establishing that
the set D = Der(A, X), of all (associative) derivations from a C*-algebra A
into a Banach A-bimodule X satisfies (1.2) [17].

Algebraic reflexivity of the set of local triple derivations on a C*-algebra
and on a JB*-triple have been studied in [24, 9, 12] and [14]. More precisely,
Mackey proves in [24] that the set D = Der;(M), of all triple derivations
on a JBW*-triple M satisfies (1.1). The result has been supplemented in
[12], where Burgos, Fern'l';)%ndez—Polo and the third author of this note prove
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that for each JB*-triple E, the set D = Dery(FE) of all triple derivations on
E satisfies (1.2).

Hereafter, algebraic reflexivity will refer to the stronger version (1.2) which
does not assume the continuity of 7'

In [6], Bresar and Semrl proved that the set of all (algebra) automor-
phisms of B(H) is algebraically reflexive whenever H is a separable, infinite-
dimensional Hilbert space. Given a Banach space X. A linear mapping
T : X — X satisfying the hypothesis at (1.2) for D = Aut(X), the set of
automorphisms on X, is called a local automorphism. Larson and Sourour
showed in [22] that for every infinite dimensional Banach space X, every sur-
jective local automorphism 7" on the Banach algebra B(X), of all bounded
linear operators on X, is an automorphism.

Motivated by the results of Semrl in [31], references witness a grow-
ing interest in a subtle version of algebraic reflexivity called algebraic 2-
reflexivity (cf. [1, 2, 10, 11, 21, 23,25, 26] and [29]). A subset D of the set
M(X,Y) =YX, of all mappings from X into Y, is called algebraically 2-
reflexive when the following property holds: for each mapping 7' in M(X,Y)
such that for each a,b € X, there exists S = S, € D (depending on a and
b), with T'(a) = Sgp(a) and T'(b) = Sqp(b), then T lies in D. A mapping
T : X — Y satisfying that for each a,b € X, there exists S = S, € D (de-
pending on a and b), with T'(a) = S, p(a) and T'(b) = S, (b) will be called a
2-local D-mapping. If we assume that every mapping S € D is r- homoge-
neous (that is, S(ta) = t"S(a) for every t € R or C) with 0 < r, then every
2-local D-mapping T : X — Y is r-homogeneous. Indeed, for each a € X,
t € C take S ¢4 € D satisfying T'(ta) = Sgta(ta) =t"Sqa(a) = t"T(a).

Semrl establishes in [31] that for every infinite-dimensional separable
Hilbert space H, the sets Aut(B(H)) and Der(B(H)), of all (algebra) au-
tomorphisms and associative derivations on B(H), respectively, are alge-
braically 2-reflexive in M(B(H)) = M(B(H), B(H)). Ayupov and the first
author of this note proved in [!] that the same statement remains true for
general Hilbert spaces (see [20] for the finite dimensional case). Actually,
the set Hom(A), of all homomorphisms on a general C*-algebra A, is al-
gebraically 2-reflexive in the Banach algebra B(A), of all bounded linear
operators on A, and the set *~-Hom(A), of all *~homomorphisms on A, is
algebraically 2-reflexive in the space L(A), of all linear operators on A (cf.

[27])-

In recent contributions, Burgos, Fern'ig)%ndez—Polo and the third author
of this note prove that the set *-Hom(M) (respectively, Hom;(M)), of all
*-homomorphisms (respectively, triple homomorphisms) on a von Neumann
algebra (respectively, on a JBW*-triple) M, is an algebraically 2-reflexive
subset of M(M) (cf. [L0], [L1], respectively), while Ayupov and the first
author of this note establish that set Der(M) of all derivations on M is
algebraically 2-reflexive in M(M) (see [2]).
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In this paper, we consider the set Dery(A) of all triple derivations on a
C*-algebra A. We recall that every C*-algebra A can be equipped with a
ternary product of the form

1
{a,b,c} = i(ab*c + cb*a).

When A is equipped with this product it becomes a JB*-triple in the sense
of [19]. A linear mapping § : A — A is said to be a triple derivation when
it satisfies the (triple) Leibnitz rule:

0{a,b,c} = {6(a),b,c} + {a,d(b),c} + {a,b,0(c)}.

It is known that every triple derivation is automatically continuous (cf. [3]).
We refer to [3, 15] and [28] for the basic references on triple derivations.
According to the standard notation, 2-local Der;(A)-mappings from A into
A are called 2-local triple derivations.

The goal of this note is to explore the algebraic 2-reflexivity of Dery(A)
in M(A). Our main result proves that every (not necessarily linear nor
continuous) 2-local triple derivation on an arbitrary von Neumann algebra
M is a triple derivation (hence linear and continuous) (see Theorem 2.14),
equivalently, Der; (M) is algebraically 2-reflexive in M (M).

2. 2-LOCAL TRIPLE DERIVATIONS ON VON NEUMANN ALGEBRAS

We start by recalling some generalities on triple derivations. Let A be a
C*-algebra. For each b € A, we shall denote by M} the Jordan multiplication
mapping by the element b, that is My(x) = box = %(bx + zb). Following
standard notation, given elements a, b in A, we denote by L(a, b) the operator
on A defined by L(a,b)(z) = {a,b,z} = J(ab*z + zb*a). It is known that
the mapping 6(a,b) : A — A, given by

d(a,b)(x) = L(a, b)(z) — L(b, a)(x),

is a triple derivation on A (cf. [3, 15]). A triple derivation which is a finite
linear combination of derivations of the form d(a, b) is called an inner triple
derivation.

Let 6 : A — A be a triple derivation on a unital C*-algebra. By [15,
Lemmas 1 and 2}, 6(1)" = —4§(1), and Mgy = §(36(1),1) is an inner
triple derivation on A and the difference D = § — §(36(1),1) is a Jordan
*_derivation on A, more concretely,

D(xoy) = D(x) oy + 0 D(y), and D(x") = D(x)",

for every xz,y € A. By [3, Corollary 2.2], § (and hence D) is a continuous
operator. A widely known result, due to B.E. Johnson, states that every
bounded Jordan derivation from a C*-algebra A to a Banach A-bimodule
is an associative derivation (cf. [I16]). Therefore, D is an associative *-
derivation in the usual sense. When A = M is a von Neumann algebra,
we can guarantee that D is an inner derivation, that is there exists a € A

satisfying D(x) = [a,z] = az — za, for every z € A (cf. [30, Theorem
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4.1.6]). Further, from the condition D(z*) = D(x)*, for every x € A, we
e~ e~ 1.
deduce that (a* + a)x = x(a* + a). Thus, taking a = i(a —a"), it follows
that [a,z] = [a, z], for every x € M. We have therefore shown that for every
triple derivation § on a von Neumann algebra M, there exist skew-hermitian
elements a,b € M satisfying
§(z) =[a,z] + box,
for every x € M.

Our first lemma is a direct consequence of the above arguments (see [15,
Lemmas 1 and 2]).

Lemma 2.1. Let T : A — A be a (not necessarily linear nor continuous)
2-local triple derivation on a unital C*-algebra. Then

(a) T(1)* = —T(1);

(b) Mpy =0 (5T(1),1) is an inner triple derivation on A;

() T=T- 6 (3T(1),1) is a 2-local triple derivation on A with T(1) = 0.
]

1
5T
1

5T

In what follows, we denote by As, the hermitian elements of the C*-
algebra A.

Lemma 2.2. Let T : A — A be a (not necessarily linear nor continuous)
2-local triple derivation on a unital C*-algebra satisfying T(1) = 0. Then
T(x) =T(x)* for all x € Asq.

Proof. Let x € Ag,. By assumptions,
T(x)*={1,T(x),1} ={1,051(z),1} =6, 1{1,2,1} — 2{0,1(1), 2,1}
=0z1(2") —2{T(1), 2,1} = 6, 1(x) = T(x).
The proof is complete. ([

Lemma 2.3. Let T : M — M be a (not necessarily linear nor continuous)
2-local triple derivation on a von Neumann algebra satisfying T(1) = 0.
Then for every x,y € My, there exists a skew-hermitian element ay, € M
such that

T(z) = [am,yvx]’ and, T(y) = [ax,yay]'

Proof. For every x,y € M, we can find skew-hermitian elements a; y, b, €
M such that

T(z) = [ag,y, x] + byy oz, and, T(y) = [azy, Y] + boy 0 Y.
Taking into account that T'(z) = T'(x)* (see Lemma 2.2) we obtain
a2,y @] + bpy 0oz =T (z) =T(2)" = [azy, 2]" + (bgy 0 z)"
=[z,ap, | +xoby, =[v,—azy] —x0bry = [azy, 2] — bry o,

ie. byyox = 0, and similarly b,, oy = 0. Therefore T'(z) = [azy, ],
T(y) = [az,y,y], and the proof is complete.
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We state now an observation, which plays an useful role in our study.

Lemma 2.4. Let a and b be skew-hermitian elements in a C*-algebra A.
Suppose x € A is self-adjoint with [a,z] + 2bo x = 0.Then [a,z] = 0 and
box = 0.

Proof. Since 0 = ax — za + bx + zb. Passing to the adjoint, we obtain
axr — xa — (bx + xb) = 0. Conclude the proof by adding and subtracting
these two equalities. The proof is complete. ([l

Let M be a von Neumann algebra. If z € Mj,, we denote by s(x) the
support projection of x — that is, the projection onto (ker(z))* = ran ().
We say that = has full support if s(x) =1 (equivalently, ker(z) = {0}).

Lemma 2.5. Let M be a von Neumann algebra. Suppose u € M, has
full support, ¢ € M is self-adjoint, and o(c*u) N (0,00) = (. Then ¢ = 0.
Consequently, if u and c are as above, and uc+cu = 0 (or c?u = —cuc < 0),
then ¢ = Q.

Proof. For the fist statement of the lemma, suppose o(c?u) N (0,00) = 0.

Note that

(—00,0] 2 o(c*u) U{0} = o(c- cu) D o(cuc).
However, cuc is positive, hence o(cuc) C [0, [lcucl|], with maxyecqs(cue) =
|cue||. Thus, cu'/?u'/?¢ = cue = 0, which means that cu'/? = u'/2¢ = 0 and
hence s(c) < 1 — s(u'/?) =1 — s(u) = 0, which leads to ¢ = 0.

2

To prove the second part, we have c*u = —cuc < 0, hence in particular,
2

o(c*u) C (—00,0]. The proof is complete. O

In [2, Lemma 2.2], Ayupov and the first author of this note prove that
for every (not necessarily linear nor continuous) 2-local derivation on a von
Neumann algebra A : M — M, and every self-adjoint element z € M, there
exists a € M satisfying

A(.’L‘) = [CL, 37]7

for every x € W*(z), where W*(z) = {z}” denotes the abelian von Neumann
subalgebra of M generated by the element z, and the unit element and {z}”
denotes the bicommutant of the set {z}. We prove next a ternary version
of this result.

Lemma 2.6. Let T : M — M be a (not necessarily linear nor continuous) 2-
local triple derivation on a von Neumann algebra. Let z € M be a self-adjoint
element and let W*(z) = {z}" be the abelian von Neumann subalgebra of M
generated by the element z and the unit element. Then there exist skew-
hermitian elements a,,b, € M, depending on z, such that

1
T(x) = las,z] + b, 0ox = a,x — za, + i(bzx + zb,)

for all x € W*(z). In particular, T is linear on W*(z).
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Proof. We can assume that z # 0. Note that the abelian von Neumann

subalgebras generated by 1 and z and by 1 and 1 + ﬁ coincide. So,
replacing z with 1 + ﬁ we can assume that z is an invertible positive

element.
By definition, there exist skew-hermitian elements a,,b, € M (depending
on z) such that
T(z) = [az, 2] + b, o 2.
Define a mapping Ty : M — M given by Ty(z) = T'(x) — ([as, 2] + b, 0 2),
x € M. Clearly, Ty is a 2-local triple derivation on M. We shall show that

To = 0 on W*(2). Let x € W*(z) be an arbitrary element. By assumptions,
there exist skew-hermitian elements c; ;,d. , € M such that

To(2) = [c2p, 2] + dop 0 2, and, To(x) = [co 0, 2] + dz g 0 2.

Since 0 = Tp(2) = [c2.0, 2] + dzp 0 2, We get [c; 0, 2] +do g0z =0.
Taking into account that z is a hermitian element and Lemma 2.4 we get
Cop? = 2C,p and d, z2 = —2d, ;.
Since z has a full support, and dixz = —d, ;2d, ;, Lemma 2.5 implies
that d. , = 0. Further
Cz7x G {Z}/ — {Z}/” — W*(Z)/7

i.e. ¢, commutes with any element in W*(z). Therefore Tp(z) = [c; 2, 2] +
d,ox =0, for all x € W*(z). The proof is complete. O

2.1. Complete additivity of 2-local derivations and 2-local triple
derivations on von Neumann algebras.

Let P(M) denote the lattice of projections in a von Neumann algebra M.
Let X be a Banach space. A mapping p: P(M) — X is said to be finitely

additive when
7 (Zpi) => up),
i=1 i=1

for every family pq,...,p, of mutually orthogonal projections in M. A map-
ping p: P(M) — X is said to be bounded when the set

{Iln@)ll : p € P(M)}

is bounded.

The celebrated Bunce-Wright-Mackey-Gleason theorem ([7, 8]) states that
if M has no summand of type I, then every bounded finitely additive map-
ping i : P(M) — X extends to a bounded linear operator from M to X.

According to the terminology employed in [32] and [13], a completely
additive mapping i : P(M) — Cis called a charge. The Dorofeev—Sherstnev
theorem ([32, Theorem 29.5] or [13, Theorem 2]) states that any charge on

a von Neumann algebra with no summands of type I, is bounded.
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We shall use the Dorofeev-Shertsnev theorem in Corollary 2.8 in order
to be able to apply the Bunce-Wright-Mackey-Gleason theorem in Proposi-
tion 2.9. To this end, we need Proposition 2.7, which is implicitly applied
in [2, proof of Lemma 2.3] for 2-local associative derivations. A proof is
included here for completeness reasons.

First, we recall some facts about the strong* topology. For each normal
positive functional ¢ in the predual of a von Neumann algebra M, the

mapping
1
* * 2
o lolly = (o5 55)" @enn)

defines a prehilbertian seminorm on M. The strong® topology of M is the
locally convex topology on M defined by all the seminorms ||.||,, where ¢
runs in the set of all positive functionals in M, (cf. [30, Definition 1.8.7]).
It is known that the strong* topology of M is compatible with the duality
(M, M,), that is a functional ¢ : M — C is strong* continuous if and only
if it is weak® continuous (see [30, Corollary 1.8.10]). We also recall that
the product of every von Neumann algebra is jointly strong* continuous on
bounded sets (see [30, Proposition 1.8.12]).

Suppose X = W is another von Neumann algebra, and let 7 denote the
norm, the weak™ or the strong® topology of W. The mapping g is said to
be T-completely additive (respectively, countably or sequentially T-additive)
when

(2.1) m (Zm) =7 )
iel iel

for every family (respectively, sequence) {p; }ier of mutually orthogonal pro-
jections in M.

It is known that every family (p;);e; of mutually orthogonal projections in
a von Neumann algebra M is summable with respect to the weak* topology
of M and p = weak™- Zpi is a projection in M (cf. [30, Definition 1.13.4]).

i€l

Further, for each normal positive functional ¢ in M, and every finite set

F c I, we have
2
~o(v-3n).

é ieF

which implies that the family (p;);ecs is summable with respect to the strong*

p*Zpi

i€l

topology of M with the same limit, that is, p = strong*- Zpi .
el

Proposition 2.7. Let T : M — M be a (not necessarily linear nor continu-
ous) 2-local triple derivation on a von Neumann algebra. Then the following
statements hold:
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(a) The restriction T'|pnpy is sequentially strong® additive, and consequently
sequentially weak* additive;
(b) T|pary is weak™ completely additive, i.e.,

(2.2) T <weak*—2pi> = weak*—ZT(pi)

icl il
for every family (p;)icr of mutually orthogonal projections in M.

Proof. (a) Let (pn)nen be a sequence of mutually orthogonal projections in

M. Let us consider the element z = ) %pn. By Lemma 2.6 there exist
neN
skew-hermitian elements a,,b, € M such that T'(x) = [a,,z] + b, o  for all

x € W¥(z). Since > pn,pm € W*(2), for all m € N, and the product of M
n=1

is jointly strong* cozltinuous, we obtain that

T (ZI%) = |Qz, an +b,0 <an>
n=1 n=1 n=1
= Z[avan] + sz ©Pn = ZT(pn)’
n=1 n=1 n=1

i.e. T|p(ny is a countably or sequentially strong™ additive mapping.

(b) Let ¢ be a positive normal functional in M,, and let .||, denote the
prehilbertian seminorm given by HZH?O = 1p(22*+2*2) (2 € M). Let {p;}ier
be an arbitrary family of mutually orthogonal projections in M. For every

n € N define
In={iel:|Tp)l,=1/n}

We claim, that I,, is a finite set for every natural n. Otherwise, passing
to a subset if necessary, we can assume that there exists a natural k& such

that Ij is infinite and countable. In this case the series Y. T'(p;) does not
i€},

converge with respect to the semi-norm ||.||,. On the other hand, since Iy

is a countable set, by (a), we have

T Z pi | = strong*- Z T(pi),

1€l i€y,
which is impossible. This proves the claim.
We have shown that the set
Iy = {z €I:|T(p)ll, # 0} -Jmn
neN

is a countable set, and [|T'(p;)||, = 0, for every i € I\Iy.
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Set p= > p; € M. We shall show that o(T'(p)) = 0. Let ¢ denote the
i€I\Ip
support projection of ¢ in M. Having in mind that HT(pZ)Hi = 0, for every
i € I\Iy, we deduce that T'(p;) L q for every i € I\Iy.

Replacing T with 7 = T — §(37(1),1) we can assume that T(1) = 0
(cf. Lemma 2.1) and T'(z) = T(z)*, for every x € My, (cf. Lemma 2.2).
By Lemma 2.3, for every i € I\ Iy there exists a skew-hermitian element
a; = app, € M such that

T(p) = aip — pa;, and, T(p;) = a;p; — pia;.
Since T'(p;) L q we get (a;p; — pia;)q = q(a;p; — pia;) =0, for all ¢ € I\ Iy.
Thus, since pa;p;q = p;a;q,

(T(p)pi)g = (aip — pai)piq = a;piq — paipiq

= a;piq — pia;q = (a;pi — pia;)q =0,
and similarly
q(piT(p)) =0,

for every i € I\ Iy. Consequently,

(23) TEP)a=TE) | Y. pi|a=0=q| Y. pi|T{®) =a®T(p)).

1€l\Ip i€l\Io
Therefore,
T(p) = 0p,1(p) = dp1{p, p, 0} = 2{0p1(p), P, P} + {P, Sp1(p), P}

=2{T(p),p,p} +{p,T(p),p} = pT(p) + T(p)p + pT(p)*p
=pT'(p) +T(p)p + T (p)p,
which implies that

o(T(p)) = »(pT(p) + T(p)p + pT(p)p)
= p(qpT(p)q) + ¢(¢T'(p)rq) + ¢(gpT(p)pq) = (by (2.3)) = 0.

Finally, by (a) we have

TS0 ) = - T 0.

i€lp i€lo

Two more applications of (a) give:

¢<T<Zpi>>=so T{p+> pi|| =0 |TO)+T (D pi

icl i€l i€lp

=@+ |(T|D pi| | =D e@Tm).

i€lp i€y
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By the Cauchy-Schwarz inequality, 0 < [oT(p;)|* < HT(pZ)Hi = 0, for
every i € I\Ip, and hence Z o (T (pi)) = ng (T (pi)) . The arbitrariness

i€lp el
of ¢ shows that T’ (weak*— > pi> = weak™- > T'(p;). O
i€l iel

Let ¢ be a normal functional in the predual of a von Neumann algebra
M. Our previous Proposition 2.7 assures that for every (not necessarily
linear nor continuous) 2-local triple derivation 7' : M — M the mapping
¢ o T|par : P(M) — C is a completely additive mapping or a charge on
M. Under the additional hypothesis of M being a continuous von Neumann
algebra or, more generally, a von Neumann algebra with no Type I,,-factors
(1 < n < oo) direct summands (i.e. without direct summand isomorphic
to a matrix algebra M, (C), 1 < n < c0), the Dorofeev—Sherstnev theorem
([32, Theorem 29.5] or [13, Theorem 2]) imply that ¢ o T'|p(,s) is a bounded
charge, that is, the set {|¢poT(p)|: p € P(M)} is bounded. The uniform
boundedness principle gives:

Corollary 2.8. Let M be a von Neumann algebra with no Type I,-factor
direct summands (1 < n < o0) and let T : M — M be a (not necessarily
linear nor continuous) 2-local triple derivation. Then the restriction T'|p )
is a bounded weak® completely additive mapping.

2.2. Additivity of 2-local triple derivations on hermitian parts of
von Neumann algebras.

Suppose now that M is a von Neumann algebra with no Type I,-factor
direct summands (1 <n < oo0), and T': M — M is a (not necessarily linear
nor continuous) 2-local triple derivation. By Corollary 2.8 combined with the
Bunce-Wright-Mackey-Gleason theorem [7, 8], there exits a bounded linear
operator G : M — M satisfying that G(p) = T(p), for every projection
peM.

Let z be a self-adjoint element in M. By Lemma 2.6, there exist skew-
hermitian elements a,, b, € M such that T'(z) = [a,, x] +b, oz, for every z €
W*(z). Since Glyy«(z), Tlw=(z) : W*(2) — M are bounded linear operators,
which coincide on the set of projections of W*(z), and every self-adjoint
element in W*(z) can be approximated in norm by finite linear combinations
of mutually orthogonal projections in W*(z), it follows that T(x) = G(x)
for every x € W*(z), and hence

T(a) = G(a), for every a € My,

in particular, T is additive on My,.

The above arguments materialize in the following result.

Proposition 2.9. Let T : M — M be a (not necessarily linear nor con-
tinuous) 2-local triple derivation on a von Neumann algebra with no Type
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L,-factor direct summands (1 < n < o0). Then the restriction T|ns,, s
additive. O

Corollary 2.10. Let T : M — M be a (not necessarily linear nor contin-
uous) 2-local triple derivation on a properly infinite von Neumann algebra.
Then the restriction T'|yy,, is additive.

Next we shall show that the conclusion of the above corollary is also true
for a finite von Neumann algebra.

First we show that every 2-local triple derivation on a von Neumann
algebra “intertwines” central projections.

Lemma 2.11. IfT is a (not necessarily linear nor continuous) 2-local triple
derivation on a von Neumann algebra M, and p is a central projection in
M, then T(Mp) C Mp. In particular, T (pz) = pT'(z) for every x € M.

Proof. Consider x € Mp, then x = pxp = {z,p,p}. T coincides with a triple
derivation ¢, , on the set {z, p}, hence

T(l') = 5x,p(x) = 6x,p{xap7p} = {5:c,p(x)apap}+{x7 5$,p(p)7p}+{x7p’ 590,1?(]7)}
lies in Mp.
For the final statement, fix x € M, and consider skew-hermitian elements
Qg.zp> bz zp € M satisfying
T(x) = [agzp, ] + bz op 0 x, and T(zp) = [azep, 2P| + by zp 0 (D).
The assumption p being central implies that pT'(x) = T'(px). O
Proposition 2.12. Let T : M — M be a (not necessarily linear nor contin-

uous) 2-local triple derivation on a finite von Neumann algebra. Then the
restriction T'|pr,, s additive.

Proof. Since M is finite there exists a faithful normal semi-finite trace 7 on
M. We shall consider the following two cases.

Case 1. Suppose T is a finite trace. Replacing T’ with T = T-6(37(1),1)
we can assume that 7'(1) = 0 (cf. Lemma 2.1) and T'(z) = T'(x)*, for every
x € Myq (cf. Lemma 2.2). By Lemma 2.3, for every z,y € M, there
exists a skew-hermitian element a,, € M such that T'(z) = [ay,,x] and
T(y) = [aay, y]. Then

T(x)y + 2T(y) = [azy, 2]y + zazy, y] = |azy, 2y],
that is,
a2y, zy] = T(x)y + 2T(y).
Further
0 =7([azy, 2y]) =7 (T(x)y + 2T (y)),
ie. 7(T(x)y) = —7(xT(y)), for every z,y € My,. For arbitrary w,v,w €
Mg, set x = u + v, and y = w. The above identity implies

T(T(u+v)w) =—7(u+v)T(w)) =
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= =7 (uT'(w)) =7 (VT (w)) = 7 (T(w)w) + 7 (T (v)w) = 7 ((T(u) + T(v))w),
and so

T((T(u+v) = T(u) = T(v))w) =
for all u,v,w € Mg,. Take w = T'(u+ v) — T'(u) — T'(v). Then 7(ww*) = 0.
Since the trace 7 is faithful it follows that ww* = 0, and hence w = 0.
Therefore T'(u +v) = T'(u) + T'(v).

Case 2. As in Case 1, we may assume T(1) = 0. Suppose now that 7
is a semi-finite trace. Since M is finite there exists a family of mutually
orthogonal central projections {z;} in M such that z; has finite trace for all
iand \/z; =1 (cf. [30, §2.2 or Corollary 2.4.7]). By Lemma 2.11, for each
i, T maps z;M into itself. From Case 1, T|,,n : 2:M — 2 M is additive.
Furthermore,

zl(x+y) = Tlom(ziz + ziy) = Toym(ziw) + Tzm(ziy) = 2T (x) + 2T (y),

for every x,y € M and every i. Therefore

T(z+y) = <Z Zz) T(z+y) = Z 2T(x+y) =Y (zT(x) + zT(y))

%

= (Z zi> T(x) + (Z Zi> T(y) = T(x) + T(y),

i i
for every x,y € M. The proof is complete. O
Let T : M — M be a (not necessarily linear nor continuous) 2-local triple

derivation on an arbitrary von Neumann algebra. In this case there exist
orthogonal central projections z1, zo0 € M with z1 + 2o = 1 such that:

(=) z1M is a finite von Neumann algebra;
(=) 22M is a properly infinite von Neumann algebra,

(cf. [30, §2.2]).

By Lemma 2.11, for each k = 1,2, 2T maps z;M into itself. By Corol-
lary 2.10 and Proposition 2.12 both 21T and 2T are additive on My,. So
T = 21T + 29T also is additive on My,.

We have thus proved the following result:

Proposition 2.13. Let T : M — M be a (not necessarily linear nor contin-
uous) 2-local triple derivation on an arbitrary von Neumann algebra. Then
the restriction T'|pr,, is additive. O

2.3. Main result.

We can state now the main result of this section.

Theorem 2.14. Let M be an arbitrary von Neumann algebra and let T :
M — M be a (not necessarily linear nor continuous) 2-local triple derivation.
Then T is a triple derivation (hence linear and continuous). Equivalently,
the set Dery(M), of all triple derivations on M, is algebraically 2-reflexive
in the set M(M) = M™ of all mappings from M into M.
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We need the following two Lemmata.

Lemma 2.15. Let T : M — M be a (not necessarily linear nor continuous)
2-local triple derivation on a von Neumann algebra with T'(1) = 0. Then
there exists a skew-hermitian element a € M such that T'(x) = [a, x|, for all
T € My,.

Proof. Let © € M,,. By Lemma 2.3 there exist a skew-hermitian element
a, 42 € M such that T(z) = [a, 42, 2], T(2?) = [a, 2, 27].
Thus,
T(2%) = [ag 42, 2% = [y, 22, T]T + x[ay z2, 7] = T(x)x + 2T (x),
ie.
(2.4) T(z%) = T(x)x + 2T (z),
for every x € My,.

By Proposition 2.13 and Lemma 2.2, T'|5y,, : Msq — Mj, is a real linear

mapping. Now, we consider the linear extension 7' of T|nr,, to M defined
by
T(l‘l + i:Bz) = T(l’l) + iT($2), T1,x0 € M.
Taking into account the homogeneity of T, Proposition 2.13 and the iden-
tity (2.4) we obtain that 7' is a Jordan derivation on M. By [5, Theorem

1] any Jordan derivation on a semi-prime algebra is a derivation. Since M

is von Neumann algebra, T' is a derivation on M (see also [33] and [16]).
Therefore there exists an element a € M such that T(z) = [a,z] for all
x € M. In particular, T'(x) = [a,z] for all x € Mg,. Since T'(Ms,) C Mgq,
we can assume that ¢* = —a, which completes the proof. [l

Lemma 2.16. Let T : M — M be a (not necessarily linear nor continuous)
2-local triple derivation on a von Neumann algebra. If T|pr,, = 0, then
T=0.

Proof. Let x € M be an arbitrary element and let * = x1 + ixy, where
21,2 € Msg,. Since T is homogeneous, by passing to the element (1 +
|z2]|) "tz if necessary, we can suppose that [Jz2|| < 1. In this case the ele-
ment y = 1 4 x9 is positive and invertible. Take skew-hermitian elements
gy, bz y € M such that

T(x) = ag,y,x] + by yox, and T(y) = [azy,y] + by yoy.

Since T'(y) = 0, we get [azy,y] + bz y oy = 0. By Lemma 2.4 we obtain that
[az,y,y] =0 and ib,, oy = 0. Taking into account that ib, , is hermitian, y
is positive and invertible, Lemma 2.5 implies that b, , = 0.

We further note that 0 = [az 4, Y] = [y, 1+22] = [ag,y, T2], €. [ag,y, x2] =
0. Now, T(z) = [agy, x| + by y 0 & = [ag,y, T1 + i%2] = [agy, 1], L.e. T(z) =
[az,y,x1). Therefore,

T(2)" = lay, v1]" = [x1, 03] = [71, —a2,y] = [az,y, 1] = T().
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So T'(z)* = T(z). Now, replacing = by iz we obtain, from the homogeneity
of T, that T'(x)* = —T'(x). Combining the last two identities we obtain that
T'(x) = 0, which finishes the proof. O

Proof of Theorem 2.1/. Let us define T = T — § (37(1),1). Then Tis a
2-local triple derivation on M with 7(1) = 0 (cf. Lemma 2.1) and T(z) =
T(x)*, for every x € My, (cf. Lemma 2.2). By Lemma 2.15 there exists an

~

element a € M such that T'(z) = [a, 2] for all x € My,. Consider the 2-local
triple derivation 7' — [a,-]. Since (T — [a,])|as,, = 0, Lemma 2.16 implies
that 7 = [a,-], and hence T = [a,-] + & (37(1),1), witnessing the desired
statement. O
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