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ABSTRACT. Let V be a simple euclidean Jordan algebra of rank ρ and degree δ, TΩ the
tube domain naturally associated with V . Denote by Co(V ) the universal cover of the
identity component of the holomorphic automorphism group for TΩ. It is known that the
scalar-type unitary lowest weight representations πν of Co(V ) are parametrized by the
Wallach parameter ν ∈ W(V ) := {k δ

2
| k = 0, 1, . . . , (ρ− 1)} ∪ ((ρ− 1) δ

2
,∞).

It is demonstrated here that, behind each non-trivial representation πν , there is pre-
cisely one quantum dynamic problem which shares the characteristic features of the quan-
tum Kepler problem. For such a dynamic problem, the bound state spectra is − 1/2

(I+ν ρ
2

)2
,

I = 0, 1, . . . , and the configuration space is the cone consisting of semi-positive elements
in V of rank ρ(ν), here, ρ(ν) = k if ν = k δ

2
and = ρ if ν > (ρ− 1) δ

2
. As a by-product,

we get two explicit realizations for πν , one is L2( 1
tr x

vol), the other is H — a closed
subspace of L2(vol). Here, vol is the volume form on the cone, trx is the trace of x in the
cone, and H is the Hilbert space of bound states for the dynamic problem. A few results
in the literatures about these representations become more explicit and more refined.
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1. INTRODUCTION

The goal of this paper and its sequels is to develop a general mathematical theory for
the Kepler problem of planetary motions. As with many endeavors of developing a general
theory for a nice mathematical object, one usually starts with a reformulation of this object
from a new perspective which captures the essence of such object — a crucial step which
often requires introducing new concepts, and then work out all the necessary technical
details.

For example, take continuous functions in calculus as the nice mathematical object,
introduce the concept of open set and reformulate the notion of continuous functions in
terms of open sets, then one arrive at the much broader notion of continuous maps between
topological spaces. For a sophisticated example, take the Riemann integral for continu-
ous functions over close intervals as the nice mathematical object, reformulate it as the
Lebesgue integral — a step which requires introducing the concepts of measurable space
and measure, then one arrives at the general integration theory. For still another sophisti-
cated example, take the Euler number of closed manifolds as the nice mathematical object,
reformulate it as the obstruction to the existence of nowhere vanishing vector fields — a
step which requires introducing the concepts of vector bundles and obstructions, then one
arrives at the theory of characteristic classes.

In our case, the Kepler problem of planetary motions is the nice mathematical object,
and we reformulate it as a dynamic problem on the open future light cone

{(t, ~x) ∈ R4 | t2 = |~x|2, t > 0}
of the Minkowski space. To quickly convince readers that this is a much better formulation,
one notes that the orbits (including the colliding ones) in this new formulation has a simpler
and uniform description:

orbits are precisely the intersections of 2D planes with the open future light cone.
In this new reformulation, a pivotal role is played by the euclidean Jordan algebra struc-
ture, something that is more fundamental than the Lorentz structure. Once this formulation
is discovered, it is just a matter of time to work out the details for the general theory. As
a comparison with the integration theory, Euclidean Jordan algebras are like measurable
spaces, euclidean Jordan algebra structures are like σ-algebras, canonical cones (cf. Sub-
section 4.1) are like measures, a generalized Kepler problem (cf. Section 5) on a canonical
cone is like an integration theory on a measured space.

1.1. A general remark on euclidean Jordan algebras. Euclidean Jordan algebras were
first introduced by P. Jordan [1] to formalize the algebra of physics observables in quantum
mechanics. With E. Wigner and J. von Neumann, Jordan [2] classified the finite dimen-
sional euclidean Jordan algebras: every finite dimensional euclidean Jordan algebra is a
direct sum of simple ones, and the simple ones consist of four infinite series and one ex-
ceptional.

Although euclidean Jordan algebras are abandoned by physicists quickly, they have
been extensively studied at much more general settings by mathematicians since 1950’s.
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For an authoritative account of the history of Jordan algebras, readers may consult the
recent book by K. McCrimmon [3]. However, for our specific purpose, the book by J.
Faraut and A. Korányi [4] is sufficient — everything we really need either is already there
or can be derived from there.

It is helpful for us to view euclidean Jordan algebras as the super-symmetric analogue
of compact real Lie algebras. Just as compact real Lie algebras are the analogues of the in-
finitesimal gauge group for electromagnetism, euclidean Jordan algebras are the analogues
of the infinitesimal space-time, but with a more refined euclidean Jordan algebra structure
hidden behind. In our view, it is this more refined hidden structure that is responsible for
the existence of the inverse square law. Therefore, we would not be surprised if someday
euclidean Jordan algebras indeed play an indispensable role in the study of the fundamental
physics.

1.2. A quick review of euclidean Jordan algebras. Throughout this paper and its se-
quels we always assume that V is a finite dimensional euclidean Jordan algebra. That
means that V has both the inner product structure and the Jordan algebra (with an identity
element e) structure on the underlying finite dimensional real vector space, such that, the
two structures are compatible in the sense that the Jordan multiplication by u ∈ V , denoted
by Lu, is always self-adjoint with respect to the inner product on V . We write the Jordan
product of u, v ∈ V as uv, so uv = Luv, and the Jordan triple product of u, v, w ∈ V
as {uvw}. By definition, {uvw} = Suvw, where

Suv = [Lu, Lv] + Luv,(1.1)

i.e.,

{uvw} = u(vw)− v(uw) + (uv)w.(1.2)

It is a fact that a simple euclidean Jordan algebra is uniquely determined by its rank ρ and
degree δ.
V is a real Jordan algebra means that V is a real commutative algebra such that

[Lu, Lu2 ] = 0, u ∈ V.

We write the inner product of u, v ∈ V as 〈u | v〉 and assume that the length of e is one:
||e|| = 1. We further assume that V is simple, then the inner product is unique. A simple
computation shows that

[Suv, Szw] = S{uvz}w − Sz{vuw}.(1.3)

Therefore, these Suv span a real Lie algebra — the structure algebra of V , denoted by
str(V ) or simply str. It is a fact that the derivation algebra of V , denoted by der(V )
or simply der, is a Lie subalgebra of str(V ). Since der is a generalization of so(3), it is
compact. Since str is a generalization of so(3, 1)⊕ R, it is reductive.

The generalization of so(4, 2), denoted by co(V ) or simply co, was independently dis-
covered by Tits, Kantor, and Kroecher [5]. Like so(4, 2), co(V ) — the conformal Lie
algebra of V , is a simple real Lie algebra. In this paper and its sequels, the universal
enveloping algebra of co shall be referred to as the TKK algebra and the corresponding
simply connected Lie group shall be referred to as the conformal group and denoted by
Co(V ) or Co.

As a vector space,
co(V ) = V ⊕ str(V )⊕ V ∗.
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If we rewrite u ∈ V as Xu and 〈v | 〉 ∈ V ∗ as Yv , then the TKK algebra is determined by
the TKK commutation relations:

[Xu, Xv] = 0, [Yu, Yv] = 0, [Xu, Yv] = −2Suv,

[Suv, Xz] = X{uvz}, [Suv, Yz] = −Y{vuz},

[Suv, Szw] = S{uvz}w − Sz{vuw}.

(1.4)

Here, u, v, z, w ∈ V .

1.3. Classical realization of TKK algebras. The total cotangent space T ∗V = V × V ∗
is a symplectic space. Let {eα} be an orthonomal basis for V , with respect to which, a
point (x, 〈π | 〉) ∈ T ∗V can be represented by its coordinate (xα, πβ). Then the basic
Poisson bracket relations on T ∗V are

{xα, πβ} = δαβ , {xα, xβ} = 0, {πα, πβ} = 0.

Introduce the moment functions

Suv := 〈Suv(x) | π〉, Xu := 〈x | {πuπ}〉, Yv := 〈x | v〉(1.5)

on T ∗V . We shall show that, for any u, v, z and w in V , we have
{Xu,Xv} = 0, {Yu,Yv} = 0, {Xu,Yv} = −2Suv,

{Suv,Xz} = X{uvz}, {Suv,Yz} = −Y{vuz},

{Suv,Szw} = S{uvz}w − Sz{vuw}.

(1.6)

The realization ofO byO is referred to as the classical realization of the TKK algebra. The
quantization of this classical realization leads to operator realizations of the TKK algebra.

1.4. Operator realizations of TKK algebras. The canonical quantization involves pro-
moting classical physical variables O to differential operators Ó (or the duals Ò) using
recipe: πα → −i ∂

∂xα (or xα → i ∂
∂πα ). Here is a word of warning: in order to get

anti-hermitian differential operators in the end, instead of using the quantized differential
operators, we actually use the quantized differential operators multiplied by −i.

Due to the ambiguity with the operator ordering, the canonical quantization has an
ambiguity, measured by a real parameter µ here. For simplicity, we write

∑
α eα

∂
∂xα as

/∂ and
∑
α eα

∂
∂πα as \∂. The quantization recipe, with the operator orderings taken into

account, yields either differential operators on V :


Śuv(ν) := −〈Suv(x) | /∂〉 − ν

2 tr (uv),

X́u(ν) := i〈x | {/∂u/∂}〉+ iνtr (u/∂),

Ýv(ν) := −i〈x | v〉

(1.7)
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or differential operators on V ∗:
S̀uv(ν) := 〈Svu(π) | \∂〉 − ν∗

2 tr (uv),

X̀u(ν) := 〈{πuπ} | \∂〉 − ν∗tr (uπ),

Ỳv(ν) := 〈v | \∂〉.

(1.8)

Here, ν∗ = ν − 2n
ρ with n = dimV .

Eqns (1.7) and (1.8) provide us two families of operator realizations for the TKK alge-
bra. It is not hard to see that the two families are related by the Fourier transform and for
the realizations to be unitary we must have ν ≥ 0. Note that the case ν∗ = 0 is well-known
to physicists, cf. Ref. [6]; moreover, for ν > 1 + (ρ−1)δ, the explicit formula in Eq. (1.7)
has been obtained in Ref. [7] via an indirect route.

These operator realizations as given in Eq. (1.7) are not unitary with respect to the
obvious L2-inner product

(ψ1, ψ2) =

∫
V

ψ̄1ψ2 dm,

where dm is the Lebesgue measure. Therefore, the right hermitian inner products must
be found in order to have unitary realizations. For us, the clues come out naturally in our
[8, 9] study of the Kepler problem.

1.5. Quantum realizations of TKK algebras. In order to address the unitarity problem
for the quantization given by the explicit formula in Eq. (1.7), we are led to introduce the
notion of canonical cones. Let k > 0 be an integer no more than ρ. The canonical cone of
rank k, denoted by Ck, is an open Riemannian manifold. As a smooth manifold, it consists
of all semi-positive elements in V of rank k. The Riemannian metric on Ck is defined in
terms of Jordan multiplication, so it is invariant under the automorphism group of V .

Denote by P(V ) the algebra of polynomial maps from V to C, by P(Ck) the algebra of
functions on Ck coming from the restriction of elements in P(V ), i.e.,

P(Ck) = {p : Ck → C | p ∈ P(V )}.(1.9)

We use r to denote this function on V :

r(x) = 〈e | x〉.(1.10)

We shall show that e−rP(Ck) is a common domain for the operators in Eq. (1.7) and is
dense in L2(dµν), here dµν is a measure on Cρ (on Ck) if ν > (ρ− 1) δ2 (if ν = k δ2 , k = 1,
2, . . . , ρ − 1), and can be explicitly written down 1 in terms of the volume form vol on
the canonical cone. It shall also be demonstrated that L2(dµν) is a unitary lowest weight
representation πν for Co with the lowest weigh equal to νλ0, here λ0 is the fundamental
weight conjugate to the unique non-compact simple root of co under a suitable choice of
Cartan subalgebra. Note that, we have a unitary lowest weight representation for Co when
either ν = k δ2 with k = 1, . . . , ρ− 1 or ν > (ρ− 1) δ2 , and these πν exhaust all nontrivial
scale-type unitary lowest weight representations for Co, according to Ref. [11].

Even though we get the explicit formula for measure dµν via the Riemannian metric
on canonical cones, as far as representations are concerned, the introduction of this Rie-
mannian metric is probably not needed; however, it is essential if one wishes to go one
step further, i.e., unravel the hidden dynamic models behind these unitary lowest weight
representations.

1The explicit formula for dµν has already been given in Ref. [4] when ν > (ρ− 1) δ
2

.
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1.6. Universal Kepler hamiltonian and universal Lenz vector. The hidden dynamical
models referred to in the proceeding paragraph are of the Kepler type in the sense that hid-
den conserved Lenz vector always exists. To see that, we need to introduce the universal
hamiltonian

H :=
1

2
Y −1
e Xe + iY −1

e(1.11)

and the universal Lenz vector
Au := iY −1

e [Lu, Y
2
e H], u ∈ V.(1.12)

Here, i is the imaginary unit, and Y −1
e is the formal inverse of Ye. Note that both H and

Au are elements of the complexified TKK algebra with Ye inverted.
The manifest conserved quantity is Lu,v := [Lu, Lv] — the analogue of angular mo-

mentum, and the hidden conserved quantity is Au — the analogue of original Lenz vector;
in fact, the following commutation relations have been verified in Ref. [9]:

[Lu,v, H] = 0 ,
[Au, H] = 0 ,
[Lu,v, Lz,w] = L[Lu,Lv]z,w + Lz,[Lu,Lv]w ,
[Lu,v, Az] = A[Lu,Lv ]z ,
[Au, Av] = −2HLu,v .

(1.13)

Now, under a unitary lowest weight representation πν in the proceeding subsection,
both H and Au become differential operators H́(ν) and Áu(ν) on the canonical cone.
However, H́(ν) is not quite right, because the term −Ý −1

e (ν)X́e(ν) in H́(ν) is not the
Laplace operator on the canonical cone, even up to an additive function.

1.7. Generalized Kepler problems. By comparing with the Laplace operator on the canon-
ical cone, one realizes that −Ý −1

e (ν)X́e(ν) is almost right: after conjugation by the mul-
tiplication with a positive function on the canonical cone, modulo an additive function, it
becomes the Laplace operator on the canonical cone. After this conjugation, Ó becomes a
new differential operator (shall be denoted by Õ), and L2(dµν) becomes L2( 1

rvol). Now
H̃(ν) is the hamiltonian for the Kepler-type dynamic problem behind representation πν . It
is in this sense we say that L2( 1

rvol) is more natural than L2(dµν).
The bound state spectrum for H̃(ν) is

− 1/2

(I + ν ρ2 )2
, I = 0, 1, 2, . . .

and the hilbert space of bound states — a closed subspace of L2(vol), denoted by H (ν),
provides a new relization for representation πν .

The two natural realizations for πν , one by L2( 1
rvol), one by H (ν), implies that there

are two kinds of orthogonalities for generalized Laguerre polynomials, generalizing the
well-known fact that there are two kinds of orthogonalities for Laguerre polynomials, cf.
Ref. [10].

1.8. Outline of the paper. In Section 2, we give a quick review of Jordan algebras and
especially euclidean Jordan algebras. In Section 3, we first review TKK algebras, then
we introduce the classical realization for TKK algebras. The operator realizations follows
from formally quantizing the classical realization. Section 4 is the most technical section
of this article, here, the unitarity of those operator realizations is addressed. In Section 5
we present the generalized Kepler problem behind each nontrivial unitary representation
in Section 4, then we solve the bound state problem and prove that the Hilbert space of
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bound states provides another realization for the representation. Here, the proof is complete
only after one proves an analogue of Theorem 2 in Ref. [10] for generalized Laguerre
polynomials, something that can surely be done. Two appendixes are given in the end.
In Appendix A, a technical theorem extending the existing one in Ref. [4] is proved. In
Appendix B, for the convenience of readers, some basic notations for this paper are listed.

Ref. [4] is our most consulted book — really a bible for our purpose. However, we
should warn the readers that there are some convention/notation differences: 1) our invari-
ant inner product on V is the one such that the identity element e has unit length and is
denoted by 〈|〉 rather than (, ), 2) the rank and degree of a Jordan algebra is denoted by ρ
and δ rather than r and d because r is reserved for function x 7→ 〈e | x〉 and d is reserved
for the exterior derivative operator, 3) the Jordan multiplication by u is denoted by Lu
rather than L(u), 4) the Jordan triple product of u, v and w is denoted by {uvw} rather
than {u, v, w}, 5) we use Suv rather than u�v for endomorphism w 7→ {uvw}.

Note: Since the author is not an expert on most of the mathematical areas touched upon
by the subject studied here, he apologizes in advance to those authors whose works are
either not cited properly or not cited at all. It is his strong intention to rectify the problem
as much as possible in the future versions of this paper.

Acknowledgment: This work is done while the author is visiting the Institute for Ad-
vanced Study during the academic year 2010-2011. He would like to thank the Qiu Shi
Science and Technologies Foundation for providing the financial support for his visit to the
IAS. He would also like to thank Professors M. Atiyah, R. Howe and C. Taubes for contin-
uous encouragements and the IAS faculty members P. Goddard, T. Spencer, P. Sarnak and
E. Witten for helpful discussions.

2. JORDAN ALGEBRAS

Jordan algebra has become a big subject now; however, what is relevant for us here
is very minimal. In this section, we shall review the bare essential of Jordan algebras,
oriented towards our purpose. Apart from Lemma 2.1, everything else presented here can
be found from the book by J. Faraut and A. Korányi [4].

2.1. Basic definitions. Recall that an algebra V over a field F is a vector space over F
together with a F-bilinear map V × V → V which maps (u, v) to uv. This F-bilinear map
can be recast as a linear map V → EndF(V ) which maps u to Lu: v 7→ uv.

We say that algebra V is commutative if uv = vu for any u, v ∈ V . As usual, we write
u2 for uu and um+1 for uum inductively.

Definition 2.1. A Jordan algebra over F is just a commutative algebra V over F such
that

[Lu, Lu2 ] = 0(2.1)

for any u ∈ V .

As the first example, we note that F is a Jordan algebra over F. Here is a recipe to
produce Jordan algebras. Suppose that Φ is an associative algebra over field F with char-
acteristic 6= 2, and V ⊂ Φ is a linear subspace of Φ, closed under square operation, i.e,
u ∈ V ⇒ u2 ∈ V . Then V is a Jordan algebra over F under the Jordan product

uv :=
(u+ v)2 − u2 − v2

2
.
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Applying this recipe, we have the following Jordan algebras over R:
(1) The algebra Γ(n). Here Φ = Cl(Rn)—the Clifford algebra of Rn and V =

R⊕ Rn.
(2) The algebra Hn(R). Here Φ = Mn(R)—the algebra of real n × n-matrices and

V ⊂ Φ is the set of symmetric n× n-matrices.
(3) The algebra Hn(C). Here Φ = Mn(C)—the algebra of complex n × n-matrices

(considered as an algebra over R) and V ⊂ Φ is the set of Hermitian n × n-
matrices.

(4) The algebra Hn(H). Here Φ = Mn(H)—the algebra of quaternionic n × n-
matrices (considered as an algebra over R) and V ⊂ Φ is the set of Hermitian
n× n-matrices.

The Jordan algebras over R listed above are special in the sense that they are derived from
associated algebras via the above recipe. Let us useHn(O) to denote the algebra for which
the underlying real vector space is the set of Hermitian n × n-matrices over O and the
product is the symmetrization of the matrix product. One can show thatHn(O) is a Jordan
algebra if and only if n ≤ 3. However, only H3(O) is new because H1(O) = H1(R),
H2(O) ∼= Γ(9). H3(O) is called exceptional because it cannot be obtained via the above
recipe, even if one allows the associative algebra Φ be infinite dimensional.

2.2. Euclidean Jordan algebras. Any Jordan algebra V comes with a canonical symmet-
ric bilinear form

τ(u, v) := the trace of Luv.(2.2)

It is a fact that Lu is self-adjoint with respect to τ .
We say that Jordan algebra V is semi-simple if the symmetric bilinear form τ is non-

degenerate. We say that Jordan algebra V is simple if it is semi-simple and has no ideal
other than {0} and V itself.

By definition, an euclidean Jordan algebra2 is a real Jordan algebra with an identity
element e such that the symmetric bilinear form τ is positive definite. Therefore, an eu-
clidean Jordan algebra is semi-simple and can be uniquely written as the direct sum of
simple ideals — ideals which are simple as Jordan algebras.

Theorem 2.1 (Jordan, von Neumann and Wigner, Ref. [2]). The complete list of simple
euclidean Jordan algebras are

(1) The algebra Γ(n) = R⊕ Rn (n ≥ 2).
(2) The algebraHn(R) (n ≥ 3 or n = 1).
(3) The algebraHn(C) (n ≥ 3).
(4) The algebraHn(H) (n ≥ 3).
(5) The algebraH3(O).

Note that Γ(1) is not simple and H1(F) (= R) is the only associative simple euclidean
Jordan algebra. Note also that there are various isomorphisms: Γ(2) ∼= H2(R), Γ(3) ∼=
H2(C), Γ(5) ∼= H2(H), Γ(9) ∼= H2(O).

Remark 2.1. A simple euclidean Jordan algebra is uniquely specified by its rank ρ and
degree δ:

J Γ(n) Hn(R) Hn(C) Hn(H) H3(O)
ρ 2 n n n 3
δ n− 1 1 2 4 8

2Called formally real Jordan algebra in the old literatures.
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Hence, for the simple euclidean Jordan algebras, there is one with rank-one, infinity many
with rank two, four with rank three, and three with rank four or higher.

The notion of trace is valid for Jordan algebras. For the simple euclidean Jordan alge-
bras, the trace can be easily described: For Γ(n), we have

tr (λ, ~u) = 2λ,

and for all other types, it is the usual trace for matrices.
For the inner product on V , we take

〈u | v〉 := 1
ρ tr (uv)(2.3)

so that the identity element e becomes a unit vector. One can check that Lu is self-adjoint
with respect to this inner product: 〈vu | w〉 = 〈v | uw〉, i.e., L′u = Lu. For u, v in V , we
introduce linear map Suv := [Lu, Lv] +Luv , and write Suv(w) as {uvw}. One can check
that S′uv = Svu and

[Suv, Szw] = S{uvz}w − Sz{vuw}.

In the remainder of this paper, we fix a simple euclidean Jordan algebra V , and use e,
ρ, δ and n to denote its identity element, rank, degree and dimension respectively. We
shall use {eii} to denote a Jordan frame and Vij to denote the resulting (i, j)-Pierce
component. Choosing an orthogonal basis eµij for each Vij (1 ≤ i < j ≤ ρ) with each
basis vector has length 1√

ρ , here 1 ≤ µ ≤ δ. Then {eii, eµij} are an orthogonal basis for

V , and each basis vector has length 1√
ρ . Such a basis is referred to as a Jordan basis with

respect to Jordan frame {eii}.
For any orthonomal basis {eα}nα=1 of V , one can verify that∑

e2
α = ne,

∑
L2
eα(x) = ρ

(
1 +

ρ− 2

4
δ

)
x+

ρδ

4
trx e,∑

| [Leα , Leβ ]x〉〈[Leα , Leβ ]x |= 1

ρ

(
1 +

ρ− 2

4
δ

)
(Lx2 − Lx2).(2.4)

Here is a convention we shall adopt: x is reserved for a point in the smooth space V ,
and u, v, z, w are reserved for vectors in vector space V . We shall also use V to denote the
Euclidean space with underlying smooth space V and Riemannian metric ds2

E :

TxV × TxV → R
((x, u), (x, v)) 7→ 〈u | v〉.(2.5)

Finally, we would like to remark that, if one takes Jordan algebras as analogues of Lie
algebras, then euclidean Jordan algebras are the analogues of semi-simple compact Lie
algebras.

2.3. Structure algebras and TKK Algebras. As always, we let V be a finite dimensional
simple euclidean Jordan algebra. We use Ω to denote the symmetric cone of V and Str(V )
to denote the structure group of V . By definition, Ω is the topological interior of

{x2 | x ∈ V }

and
Str(V ) = {g ∈ GL(V ) | P (gx) = gP (x)g′ ∀x ∈ V }.

Here P (x) := 2L2
x − Lx2 and it is called the quadratic representation of x.
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We write V C for the complexification of V , denote by TΩ the tube domain associated
with V . By definition, TΩ = V ⊕ iΩ. We say that map f : TΩ → TΩ is a holomorphic au-
tomorphism of TΩ if f is invertible and both f and f−1 are holomorphic. We use Aut(TΩ)
to denote the group of holomorphic automorphisms of TΩ.

It is a fact that both Str(V ) and Aut(TΩ) are Lie groups. The Lie algebra of Str(V ) is
referred to as the structure algebra of V and is denoted by str(V ) or simply str, the Lie
algebra of Aut(TΩ) is referred to as the conformal algebra of V and is denoted by co(V )
or simply co, and its universal enveloping algebra is called the TKK algebra of V . The
simply connected Lie group with co as its Lie algebra, denoted by Co(V ) or simply Co,
shall be referred to as the conformal group of V .

Both the structure algebra and the conformal algebra have a simple direct algebraic
description, cf. Subsection 1.2. While the structure algebra is reductive, the conformal
algebra is simple.

Since co is a non-compact real simple Lie algebra, it admits a Cartan involution θ,
unique up to conjugations by inner automorphisms. Indeed, one can choose θ such that

θ(Xu) = Yu, θ(Yu) = Xu, θ(Suv) = S∗uv = −Svu.

The resulting Cartan decomposition is co = u⊕ p with

u = spanR{[Lu, Lv], Xw + Yw | u, v, w ∈ V }, p = spanR{Lu, Xv − Yv | u, v ∈ V }.

Note that u is reductive with center spanned by Xe + Ye and its semi-simple part ū is

spanR{[Lu, Lv], Xw + Yw | u, v, w ∈ (Re)⊥}.

Sometime we need to emphasize the dependence on V , then we rewrite u as u(V ). It is a
fact that str and u are different real forms of the same complex reductive Lie algebra. In
fact, one can identify their complexfications as follows:

[Lu, Lv]↔ [Lu, Lv], − i
2

(Xw + Yw)↔ Lw.(2.6)

Recall that e11 denotes the first element of a Jordan frame for V . The following lemma
has been proved in Subsection 4.2 of Ref. [8].

Lemma 2.1. There is a maximally compact θ-stable Cartan subalgebra for co, with respect
to which, there is a simple root system consisting of imaginary roots α0, α1, . . . , αr such
that, for i ≥ 1, αi is compact with Hαi , E±αi ∈ ūC, and α0 is non-compact with

Hα0 = i(Xe11 + Ye11), E±α0 =
i

2
(Xe11 − Ye11)∓ Le11 .

2.4. The decomposition of the action of Str(V ) on P(V ). The structure group acts on
V linearly, so it acts on P(V ) — the set of complex-valued polynomial functions on V .
The goal here is to describe the known decomposition of the action of Str(V ) on P(V )
into irreducible components.

With a Jordan frame {eii} for V chosen, for 1 ≤ k ≤ ρ, we let ek = e11 + · · · + ekk.
Denote by Vk the eigenspace of Lek with eigenvalue 1 and by Pk the orthogonal projection
of V onto Vk. Then Vk is a simple euclidean Jordan algebra of rank k and there is a
filtration of euclidean Jordan algebras:

V1 ⊂ V2 · · · ⊂ Vρ = V.
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Let m ∈ Zρ. We write m = (m1, . . . ,mρ) and say that m ≥ 0 ifm1 ≥ . . . ≥ mρ ≥ 0.
Let

∆m(x) =

ρ∏
i=1

∆i(x)mi−mi+1 ,

here mρ+1 = 0, ∆i(x) is the determinant of Pi(x), considered as an element of Vi.
For m ≥ 0, we let Pm(V ) be the subspace of P(V ) generated by the polynomials

g · ∆m, g ∈ Str(V ). The polynomials belonging to Pm(V ) are homogeneous of degree
|m| =

∑
mi, hence Pm(V ) is finite dimensional.

Theorem XI.2.4 of Ref. [4]. The subspaces Pm(V ) are mutually inequivalent irreducible
as representation spaces of Str(V ), and P(V ) is the direct sum

P(V ) =
⊕
m≥0

Pm(V ).

Since P(V ) consists of complex-valued polynomials on V , the representations in this
theorem naturally extends to the complxification of Str(V ). Using the identification in Eq.
(2.6), these representations naturally becomes representations of u.

From here on, as representations of u, P(V ) and Pm(V ) shall always be viewed in this
sense. For later use, we use ξν to denote the one-dimensional representation of u such that
− i

2 (Xe + Ye) acts as the scalar multiplication by −ν ρ2 .

3. REALIZATIONS OF TKK ALGEBRAS

The goal of this section is to realize the TKK algebras. The results and their presenta-
tions here are strongly influenced by the thinking/practice in physics. Although our per-
spective is different, we don’t claim any originality here, because most (maybe all) of the
materials presented here should be known to the experts in one area or another area.

We start with the classical realization on symplectic space T ∗V , from which the opera-
tor realizations follow via the straightforward canonical quantization. Due to the operator
ordering ambiguity, we get a family of operator realizations, parametrized by a real pa-
rameter ν. The case ν = 2n/ρ is well-known to physicists, cf. Ref. [6]. The case
ν > 1 + (ρ− 1)δ has been worked out by M. Aristidou, M. Davidson and G. Ólafsson [7]
by an indirect method.

3.1. The classical realization of TKK algebras. As is well-known, the total cotangent
space T ∗V is a natural symplectic space. By virtue of the euclidean metric ds2

E on V , one
can identify T ∗V with the total tangent space TV . Now the tangent bundle and cotangent
bundle of V both have a natural trivialization, with respect to which, one can denote an
element of T ∗V by (x, p) and its corresponding element in TV by (x, π). We fix an or-
thonormal basis {eα} for V so that we can write x = xαeα and π = παeα. Then the basic
Poisson bracket relations on TV are {xα, πβ} = δαβ , {xα, xβ} = 0, and {πα, πβ} = 0.

Introduce the moment functions

Suv := 〈Suv(x) | π〉, Xu := 〈x | {πuπ}〉, Yv := 〈x | v〉(3.1)

on TV . The following theorem would be well-known to experts on Jordan algebra.
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Theorem 1. As polynomial functions on TV , Suv ,Xu and Yv satisfy the following Poisson
bracket relations: for any u, v, z and w in V ,

{Xu,Xv} = 0, {Yu,Yv} = 0, {Xu,Yv} = −2Suv,

{Suv,Xz} = X{uvz}, {Suv,Yz} = −Y{vuz},

{Suv,Szw} = S{uvz}w − Sz{vuw}.

(3.2)

Proof. It is clear that {Yu,Yv} = 0.

{Xu,Yv} = {〈x | {πuπ}〉, 〈x | v〉}
= −2〈x | {vuπ}〉 = −2〈Suv(x) | π〉
= −2Suv.

{Suv,Yz} = {〈Suv(x) | π〉, 〈x | z〉}
= −〈Suv(x) | z〉 = −〈x | {vuz}〉
= −Y{vuz}.

{Suv,Szw} = {〈Suv(x) | π〉, 〈Szw(x) | π〉}
= 〈SuvSzw(x) | z〉 − 〈SzwSuv(x) | z〉
= 〈[Suv, Szw](x) | z〉 = 〈(S{uvz}w − Sz{vuw})(x) | z〉
= S{uvz}w − Sz{vuw}.

{Suv,Xz} = {〈Suv(x) | π〉, 〈x | {πzπ}〉}
= −〈Suv(x) | {πzπ}〉+ 2〈x | {πz{vuπ}}〉
= 〈x | 2SπzSvu(π)− SvuSπz(π)}〉
= 〈x | SπzSvu(π)− [Svu, Sπz](π)}〉
= 〈x | Sπz({vuπ})− S{vuπ}z(π) + Sπ{uvz}(π)}〉
= 〈x | {π{uvz}π}〉
= X{uvz}.

Finally, since3

{Xu,Xe} = {〈x | {πuπ}〉, 〈x | π2〉}
= 2〈x | π{πuπ}〉 − 2〈x | {πuπ2}〉
= 2〈x | (2L3

π − 3LπLπ2 + Lπ3)u〉
= 0

for any u ∈ V , we have

{Xu,Xv} = {Xu, {Lv,Xe}}
= {{Xu,Lv},Xe}+ {Lv, {Xu,Xe}}
= −{Xuv,Xe} = 0.

�

3Here, we use the fact that, for any Jordan algebra, identity Lu3 = −2L3
u+3LuLu2 holds for any u ∈ V . See

line 12 on page 27 of Ref. [4].
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3.2. The operator realizations of TKK Algebras. The canonical quantization involves
promoting classical physical variables O to differential operators Ô (or the duals Ǒ) using
recipe: πα → −i ∂

∂xα (or xα → i ∂
∂πα ). Here is a word of warning: in order to get

anti-hermitian differential operators in the end, instead of using the quantized differential
operators, we actually use the quantized differential operators multiplied by −i.

For simplicity we write
∑
α eα

∂
∂xα as /∂ and

∑
α eα

∂
∂πα as \∂. We introduce differential

operators on V :

Ŝuv := −〈Suv(x) | /∂〉, X̂u := i〈x | {/∂u/∂}〉, Ŷv := −i〈x | v〉.(3.3)

and differential operators on V ∗:

Šuv := 〈Svu(π) | \∂〉, X̌u := 〈{πuπ} | \∂〉, Y̌v := 〈v | \∂〉.(3.4)

It is easy to see that the TKK commutation relations (1.4) hold when all O there are re-
placed by either their hat version or their check version. Note that the check version is
well-known to physicists, cf. Ref. [6]. However, the quantization has ambiguity because
of the operator ordering problem. To get the general version of quantization, we let ν be a
real parameter and introduce differential operators on V :

Śuv(ν) := Ŝuv −
ν

2
tr (uv), X́u(ν) := X̂u + iνtr (u/∂), Ýv(ν) := Ŷv.(3.5)

and differential operators on V ∗:

S̀uv(ν) := Šuv −
ν∗

2
tr (uv), X̀u(ν) := X̌u − ν∗tr (uπ), Ỳv(ν) := Y̌v.(3.6)

where ν∗ = ν − 2n
ρ .

Theorem 2. The TKK commutation relations (1.4) still hold when allO there are replaced
by either their acute version or their grave version.

Proof. When ν = 0, the proof is essentially the same as the proof of Theorem 1, so we
skip it. For the general case, we shall verify the acute version and leave the grave version
to the readers.

Verify that [Ýu(ν), Ýv(ν)] = 0:

[Ýu(ν), Ýv(ν)] = [Ŷu, Ŷv] = 0.

Verify that [Śuv(ν), Ýz(ν)] = −Ý{vuz}(ν):

[Śuv(ν), Ýz(ν)] = [Ŝuv, Ŷz] = −Ŷ{vuz} = −Ý{vuz}(ν).

Verify that [Śuv, Śzw] = Ś{uvz}w − Śz{vuw}: Since [Ŝuv, Ŝzw] = Ŝ{uvz}w − Ŝz{vuw},
all we need to check is that

tr ({uvz}w) = tr (z{vuw}), i.e., 〈Suv(z) | w〉 = 〈z | Svu(w)〉
which is true because S′uv = Svu.

Verify that [X́u(ν), Ýv] = −2Śuv:

[X́u(ν), Ýv(ν)] = [X̂u + iνtr (u/∂), Ŷv]

= −2Ŝuv + νtr (uv)

= −2Śuv(ν).

Verify that [Śuv(ν), X́z(ν)] = X́{uvz}(ν):

[Śuv(ν), X́z(ν)] = [Ŝuv(ν), X̂z + iνtr (z/∂)]

= X̂{uvz} + iρν[Ŝuv, 〈z | /∂〉]
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= X̂{uvz} + iρν〈Suv(z) | /∂〉
= X́{uvz}(ν).

Verify that [X́u(ν), X́v(ν)] = 0:

[X́u(ν), X́v(ν)] = [X̂u + iρν〈u | /∂〉, X̂v + +iρν〈v | /∂〉]
= iρν[X̂u, 〈v | /∂〉]− < u↔ v >
= −ρν[〈x | {/∂u/∂}〉, 〈v | /∂〉]− < u↔ v >
= ρν〈v | {/∂u/∂}〉− < u↔ v >

= ρν
(

2〈v/∂ | u/∂}〉 − 〈uv | /∂2〉
)
− < u↔ v >

= 0.

�

In the remainder of this paper, let us focus the attention on the operator realization on
V : O → Ó(ν) for a fixed ν. Note that this operator realization provides a linear action of
the TKK algebra on C∞(V ). We shall investigate the unitarity of this action in the next
section. In order to do that, let us make some preparations here.

Let P(V ) be the algebra of C-valued polynomial functions on V , and PI(V ) be the
vector subspace consisting of polynomials of degree at most I . Let

D́(V ) = e−rP(V ), D́I(V ) = e−rPI(V ).(3.7)

It is clear that the action of co on C∞(V ), which maps O to Ó(ν), leaves D́(V ) invariant.
Let us denote by πν this action on D́(V ).

Recall that ν is a real parameter and u is the maximal compact Lie subalgebra of co.

Theorem 3. Let He = i(Xe + Ye), πν |u be the restriction of πν from co to u.
i) πν |u leaves D́I(V ) invariant and commutes with the inclusion of D́I−1(V ) into

D́I(V ), consequently it induces a linear action on D́I(V )/D́I−1(V ).
ii) As a representation of u, D́I(V )/D́I−1(V ) is isomorphic to

PI(V ) :=

mρ(ν)+1=0⊕
m≥0,|m|=I

ξν ⊗ Pm(V )

under the map sending p ∈ PI(V ) into e−rp+ D́I−1(V ) ∈ D́I(V )/D́I−1(V ).
iii) The induced linear map

H́e : D́I(V )/D́I−1(V )→ D́I(V )/D́I−1(V )

is the scalar multiplication by (2I + νρ).
iv) πν is unitarizable =⇒ ν ≥ 0.
v) e−r is a lowest weight state with weight νλ0.
vi) πν is indecomposable.

Proof. i) Since

er
−i
2

(X́u + Ýu)e−r =
1

2
(〈x | {/∂u/∂}〉+ νtr (u/∂)) + L̂u −

ν

2
tru,(3.8)

(X́u + Ýu) maps D́I into D́I . It is also clear that [Ĺu, Ĺv] maps D́I into D́I . Therefore, in
view of the fact that

u = spanR{[Lu, Lv], Xw + Yw | u, v, w ∈ V },

the linear action of u on D́ leaves D́I invariant. The rest is clear.



GENERALIZED KEPLER PROBLEMS I: WITHOUT MAGNETIC CHARGES 15

ii) That is clear from Eq. (3.8) and the last paragraph of Subsection 2.4.
iii) For any homogeneous degree I polynomial p, we have

i(X́e + Ýe)e
−rp ≡ e−r(−2L̂e + νρ)p mod D́I−1

≡ (2I + νρ)e−rp mod D́I−1.

iv) Let E± := i
2 (Xe − Ye)∓ See. Then

[He, E±] = ±2E±, [E+, E−] = −He.

Suppose that πν is unitarizable, and (, ) is the inner product on D́. Let ψ0 = e−r . Since
||πν(E+)ψ0||2 ≥ 0 and πν(E−)ψ0 = 0, using relation [E+, E−] = −He, we arrive at
(ψ0, πν(He)ψ0) ≥ 0, i.e., νρ||ψ0||2 ≥ 0. So ν ≥ 0.

v) Let us take the simple root system α0, . . . , αr specified in Lemma 2.1. Since D́0

(= spanC{ψ0}) is one dimensional and ū is semi-simple, the action of ūC on D́0 must be
trivial. Therefore, for i ≥ 1, in view of the fact that E±αi , Hαi ∈ ūC, we have

πν(E−αi)ψ0 = 0, πν(Hαi)ψ0 = 0.(3.9)

On the other hand, since E−α0
= i

2 (Xe11 − Ye11) + Le11 and Hα0
= i(Xe11 + Ye11), by

a computation, we have

erÉ−α0
e−r = −1

2
(〈x | {/∂e11/∂}〉+ νtr (e11/∂)) ,

erH́α0
e−r = −〈x | {/∂e11/∂}〉 − νtr (e11/∂)− 2L̂e11 + ν,

so it is easy to see that

πν(E−α0
)ψ0 = 0, πν(Hα0

)ψ0 = νψ0.(3.10)

Therefore, in view of the fact that α0(Hα0
) = 2, Eqns (3.9) and (3.10) imply that ψ0 is a

lowest weight state with weight νλ0.
vi) In view of the fact that operator Ýv is the multiplication by−i〈v | x〉, this is obvious:

e−r
∑

i1,...,in

αi1···inx
i1
1 · · ·xinn =

 ∑
i1,...,in

αi1···in(iÝe1)i1 · · · (iÝen)in

ψ0.

�

We shall show in the next section that πν is irreducible when ν > (ρ − 1) δ2 and is not
irreducible when ν = k δ2 , k = 0, 1, . . . , (ρ − 1). The collection of theses values of ν,
denoted byW(V ), is called the Wallach set for V . So

W(V ) =

{
k
δ

2
| k = 0, 1, . . . , ρ− 1

}
∪
(

(ρ− 1)
δ

2
,∞
)
.

It is known from Ref. [11] that the set of scalar-type unitary lowest weight representation
of Co is isomorphic toW(V ). We shall show in the next section that these representations
are precisely the irreducible quotient of these πν , also denoted by πν .

As mentioned in the introduction, the operator realizations as given in Eq. (3.5) are not
unitary with respect to the obvious L2-inner product

(ψ1, ψ2) =

∫
V

ψ̄1ψ2 dm,

where dm is the Lebesgue measure. The right inner product must be found in order to have
unitary realizations. For that, let us move on to the next section.
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4. QUANTIZATIONS OF TKK ALGEBRAS

The goal of this section is to investigate the unitarity of representation πν obtained
in the previous section. The question is to find a positive hermitian form (, )ν on D́(V )

with respect to which operators Ó(ν) are all anti-hermitian. More generally, (, )ν can be
semi-positive because then πν descends to a unitary representation by formally setting the
“spurious states” (i.e., elements of D́(V ) with zero norm) as zero. It is a fact from Ref. [4]
that such a (, )ν does exist for ν in the Wallach set. Our purpose here is to present a new
route towards this fact along with its refinements.

The case ν = δ
2 is already known form our work in Ref. [8]. Recall from Ref. [8], the

J-Kepler problem for V is a dynamic problem on P — the submanifold of V consisting
of semi-positive elements of rank one. By comparing Remark 8 and Proposition 8.1 from
Ref. [8] with Theorem 2 here, we have

(ψ1, ψ2) δ
2

=

∫
P

ψ̄1 ψ2 r
−1−(ρ/2−1)d vol.(4.1)

Here, vol is the volume form for the Kepler metric

ds2
K :=

2

ρ
ds2
E − dr2.(4.2)

It is clear that, as a vector subspace of D́(V ), the space of “spurious states” consists of
elements of D́(V ) which vanish on P .

With this result in mind, it is not hard to imagine what the general picture should be:
replacing P by the submanifold of V consisting of semi-positive elements of a fixed pos-
itive rank. Of course, some technical hurdles must be overcome. The initial hurdle is the
generalization of the Kepler metric in Eq. (4.2). The second hurdle is the generalization of
the extra factor r−1−(ρ/2−1)d in measure

dµ δ
2

:= r−1−(ρ/2−1)d vol.

It turns out, the second hurdle simply disappears by itself as we walk along a natural
path towards quantizations of TKK algebras. The clue for removing the first hurdle comes
from the study of the universal Kepler problem in Ref. [9], as we shall sketch below.

We have noted in the past that the total tangent space of a Riemannian manifold is a
symplectic manifold, and if N is a submanifold of M , then TN is a symplectic submani-
fold of TM . With this understood, we remarked in Ref. [9] that, by restricting the classical
universal hamiltonian

H =
1

2

〈x | π2〉
r

− 1

r

from TV to TP , one obtains the classical hamiltonian for the J-Kepler problem. Since
the first term inH should be identified with the kinetic energy, we must have the following
new formula for the Kepler metric:

(π, π)ds2K =
〈x | π2〉

r
=
〈π | Lx | π〉

r
,(4.3)

a fact which can be verified directly. Now it becomes clear how to generalize the Kepler
metric.
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4.1. Canonical cones. We say that an element x ∈ V is semi-positive if x = y2 for some
y ∈ V . Let us denote by Q the space of semi-positive elements in V and recall that Str
is the structure group of V . Then one can check that the action of Str on V leaves Q
invariant, so we have a partition of Q into the disjoint union of Str-orbits:

Q = ∪ρk=0Ck.
Here, homogeneous space Ck is the space of semi-positive elements of rank k. Note that,
C0 = {0}, Cρ is the symmetric cone Ω of V , and Q is the topological closure of Ω.

As a sub-manifold of the Euclidean space V , Ck has an induced Riemannian metric.
When we say that TCk is a symplectic manifold, it is this Riemannian metric that is used
to identify TCk with T ∗Ck. However, the Riemannian metric for the Kepler-type dynamics
on Ck is a different one, which we shall describe below.

For any u ∈ V , since Lu: V → V is self-adjoint, we have an orthogonal decomposition
V = ImLu ⊕ kerLu, with respect to which, Lu decomposes as Lu = L̄u ⊕ 0. Since L̄u
is invertible, we can introduce endomorphism

1

Lu

def
= L̄−1

u ⊕ 0(4.4)

on V . For any x ∈ Ck, one can check that the tangent space TxCk is {x} × ImLx, the
normal space NxCk is {x} × kerLx .

Definition 1 (Canonical Metric). The canonical metric on Ck, denoted by ds2
K , is defined

as follows:

TxCk × TxCk → R
((x, u), (x, v)) 7→ r〈u | 1

Lx
| v〉 = r〈u | L̄−1

x | v〉.(4.5)

One can check that, on C1, the canonical metric is the Kepler metric introduced in Ref.
[8]. On the symmetric cone Ω, the canonical metric is

TxΩ× TxΩ → R
((x, u), (x, v)) 7→ r〈u | Lx−1 | v〉.(4.6)

Definition 2 (Canonical Cone). Let V be a simple Euclidean Jordan algebra of rank ρ, Ck
be its submanifold consisting of the semi-positive elements of rank k, 1 ≤ k ≤ ρ. The V ’s
canonical cone of rank k is defined to be the Riemannian manifold (Ck, ds2

K), where ds2
K

is the canonical metric in Definition 1 .

We remark that, since the action of structure group on V leaves Ck invariant, for any
u, v ∈ V and x ∈ Ck, Ŝuv|x ∈ TxCk; i.e., Ŝuv descends to a vector field on Ck, which shall
still be denoted by Ŝuv . Since Lu = Sue, we write L̂u for Ŝue. In the remainder of this
paper, we shall use ∆ (vol resp.) denote the Laplace operator (the volume form resp.) on a
Riemannian manifold, e.g., a canonical cone.

4.2. Basic facts on canonical cones. We use Tr to denote the trace for endomorphisms on
V . For any x in the canonical cone, we use Px: V → V to denote the orthogonal projection
onto Im Lx. Throughout this subsection, we focus our attention on a fixed canonical cone
C of rank k.

Let us start with a local analysis of the canonical metric around a point x0 ∈ C. Choose
a Jordan frame {eii}ρi=1 such that

x0 =

k∑
i=1

λieii
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for some positive numbers λ1, . . . , λk. With this Jordan frame {eii}ρi=1 fixed, we let
N :=

⊕
j≥i≥k Vij and T be the orthogonal complement of N in (euclidean vector space)

V . Then Tx0C = {x0} × T .
For any x ∈ V , one can uniquely decompose x = x0 + t + y with t ∈ T and y ∈ N .

Now if we assume that x is always in C, then

y = O(|t|2) near x0.

Choose basis {ei} for T which is orthonormal with respect to the inner product on V .
Write t = tiei and the canonical metric ds2

K as hijdti dtj , then

hij(x) = 〈e | x〉〈xi | L̄−1
x | xj〉,

where xi = ∂x
∂ti . Let gij := 〈xi | xj〉, then

gij(x) = δij +O(|t|2) near x0.

As usual, the inverse of [gij ] is denoted by [gij ] and the inverse of [hij ] is denoted by
[hij ]. It is easy to see that

hij(x) =
gik(x)〈xk | Lx | xl〉glj(x)

〈e | x〉
.

Consequently, when x ∈ C is near x0, we have

hij(x) =
〈xi | Lx | xj〉
〈e | x〉

+O(|t|2)

=
〈ei | x0ej〉
〈e | x0〉

(
1− 〈e | t〉
〈e | x0〉

)
+
〈ei | tej〉
〈e | x0〉

+O(|t|2).(4.7)

Proposition 4.1. Fix a canonical cone. Let vol be its volume form, and Lu the Lie deriv-
ative with respect to vector field L̂u. Then

Lu(
1

r
vol) = −2λu

1

r
vol,(4.8)

where

2λu = − 1
2Tr(

1
Lx
Lux) + Tr(PxLu) + 〈u|x〉

〈e|x〉
(
TrPx

2 − 1
)
.(4.9)

Consequently, λu depends on u linearly and

L̂u(λv) = L̂v(λu), Ŝuv(λzw)− Ŝzw(λuv) = λ{uvz}w − λz{vuw}.(4.10)

Proof. We just need to show that

Lu(vol) = −2λ̃uvol

at a point x0, where

− 2λ̃u =
1

2
Tr
(
−〈u | x〉
〈e | x〉

Px +
1

Lx
Lxu

)
− Tr(PxLu).(4.11)

Recall that ds2
K = hij dt

i dtj . Since vol =
√
h dt1 ∧ dt2 ∧ · · · where h = det[hij ], we

have
Lu(vol) = L̂u(ln

√
h)vol +

∑
i

√
h dt1 ∧ · · · ∧Lu(dti) ∧ · · · .

Since Lu(dti) = dLu(〈ei | x〉) = −d(〈xei | u〉), we have

Lu(dti) = −〈e2
i | u〉dti at x0,
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consequently,

− 2λ̃u = L̂u(ln
√
h)− 〈

∑
i

e2
i | u〉 at x0.(4.12)

In view of Eq. (4.7), for x near x0,

h = det[
〈ei | x0ej〉
〈e | x0〉

]−1

(
1 + Tr

(
〈e | t〉
〈e | x0〉

Px0
− 1

Lx0

Lt

))
+O(|t|2),

so

L̂u(ln
√
h)|x0

=
1

2
Tr
(
−〈u | x0〉
〈e | x0〉

Px0
+

1

Lx0

Lx0u

)
.(4.13)

Since
1

ρ

∑
i

e2
i = (1 +

δ(ρ− k − 1)

2
)

k∑
j=1

ejj +
δk

2
e,

where k is the rank of the canonical cone, we have

〈
∑
i

e2
i | u〉 = (1 +

δ(ρ− k − 1)

2
)

k∑
j=1

ujj +
δk

2
tru

= Tr(Px0
Lu).(4.14)

Plugging Eqs. (4.13) and (4.14) into Eq. (4.12), we arrive at Eq. (4.11).
Since [LL̂u

,LL̂v
] = L[L̂u,L̂v ], in view of fact that the Kepler metric is invariant under

the action of the Aut(J), we have [LL̂u
,LL̂v

]( 1
rvol) = 0. Then

−2
(
L̂u(λv)− L̂v(λu)

)
· 1

r
vol = 0,

consequently L̂u(λv) = L̂v(λu).
Since [LŜuv

,LŜzw
] = L[Ŝuv,Ŝzw] = LŜ{uvz}w−Ŝz{vuw} , acting on 1

rvol, we have

Ŝuv(λzw)− Ŝzw(λuv) = λ{uvz}w − λz{vuw}.
�

In the remainder of this paper, we let

S̃uv = Ŝuv − λuv , L̃u = S̃ue.(4.15)

Proposition 4.2. Fix a canonical cone and let ∆ be its Laplace operator. Then

[r∆, 〈u | x〉] = −2L̃u, u ∈ V.(4.16)

Proof. Upon observing that [r∆, 〈u | x〉] is a linear differential operator, it suffices to
verify that

[[r∆, 〈u | x〉], 〈v | x〉](1) = [−2L̃u, 〈v | x〉](1), [r∆, 〈u | x〉](1) = −2L̃u(1),

i.e.,

[[r∆, 〈u | x〉], 〈v | x〉](1) = 2〈uv | x〉, r∆(〈u | x〉) = 2λu.(4.17)

In view of the fact that ∗∆f = d ∗ df , [[∗∆, 〈u | x〉], 〈v | x〉](1) is equal to

d ∗ d(〈u | x〉〈v | x〉)− 〈u | x〉d ∗ d(〈v | x〉)− 〈v | x〉d ∗ d(〈u | x〉)
= d(〈u | x〉) ∧ ∗d(〈v | x〉) + d〈v | x〉 ∧ ∗d(〈u | x〉)
= 2〈u | xi〉hij〈v | xj〉 vol,
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so
[[r∆, 〈u | x〉], 〈v | x〉](1)|x0 = 2〈u | ei〉〈ei | Lx0 |ej〉〈v | ej〉 = 2〈uv | x0〉.

The first identity of Eq. (4.17) is verified.
In view of the fact that ∗∆(f) = d

(∑
i,j h

ij∂ifι∂j (vol)
)

, we have

∗ r∆(〈u | x〉)|x0
= rd

∑
i,j

hij〈u | xi〉ι∂j (vol)

∣∣∣∣∣∣
x0

= − rd

(
1

r
ιL̂u(vol)

)∣∣∣∣
x0

= −Lu(vol)|x0
− 〈e | ux〉

r
vol|x0

= −rLu(
1

r
vol)|x0

Eq.(4.8)
= 2λuvol|x0 .

The second identity of Eq. (4.17) is verified. �

As we have demonstrated in Ref. [8], to check a commutation relation on the Kepler
cone, it is easier to check the corresponding one on V . For this reason, we wish to lift r∆
to a second order differential operator on V with rational functions as its coefficients. In
order to do that, we first need to lift λu to a rational function on V . Let ck(x) (τk(x) resp.)
be the polynomial in trx, trx2, . . . , trxk such that, if x =

∑k
i=1 λieii, then

ck(x) =

k∏
i=1

λi

τk(x) =
∏

1≤i<j≤k

(λi + λj) resp.

 .

For example, c1(x) = trx, τ1(x) = 1, c2(x) = 1
2 ((trx)2 − trx2) and τ2(x) = trx. Let

Dk = k[1 + (ρ− k+1
2 )δ] — the dimension of the canonical cone of rank k, and

ϕk = τ δk · c
δ−1
k · r2−Dk .(4.18)

For example, D1 = 1 + (ρ− 1)δ, and ϕ1 = r−δ(ρ−2) up to a multiplicative constant. Note
that ϕk is a rational function on V and is positive on the canonical cone of rank k. From
here one, we shall call ϕk the phi-function on the canonical cone of rank k.

With an orthonormal basis {eα} for V chosen, we write x as xαeα, ∂
∂xα as ∂α. Recall

that /∂ =
∑
α eα∂α.

Proposition 4.3. Fix a canonical cone of rank k. Let ϕ be its phi-function, ∆ its Laplace
operator. Then

i) λu can be lifted to a rational function on V :

4λu = L̂u lnϕ+ δktru .(4.19)

ii) r∆ can be lifted to a second order differential operator on V with rational function
coefficients:

r∆ = 〈x | /∂2〉+ 2
∑
α λeα∂α .(4.20)
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Proof. i) We just need to prove the identity at a point x0 on the canonical cone. Choose
a Jordan frame {eii} such that x0 =

∑k
i=1 λieii for some numbers λ1, . . . , λk. Then we

extend {√ρeii}ρi=1 to an orthonomal basis {eα} such that ei =
√
ρeii, 1 ≤ i ≤ k, and

{ei}Dki=1 is an basis of ImLx0
.

In view of that fact that xkxl = xk+l and tr (xk0ej) = 0 for j > k, by induction on m,
we have

L̂u(trxm)|x0
= −

k∑
i=1

〈ux0 | ei〉∂i(trxm)|x0
,

consequently

L̂uϕ|x0 = −
k∑
i=1

〈ux0 | ei〉∂iϕ|x0 .(4.21)

The rest of the proof is just a straightforward computation based on identity (4.21), so we
leave it to readers.

ii) Since both sides are differential operators without the zero-th order term, in view of
identity (4.16), we just need to show that

[〈x | /∂2〉+ 2
∑
α

λeα∂α, 〈u | x〉] = −2L̃u,

something that can be easily verified. �

For ν ∈ W(V ) \ {0}, we introduce integer

ρ(ν) =

 k if ν = k δ2 ,

ρ if ν > (ρ− 1) δ2 .
(4.22)

and rational function

ϕ(ν) :=

 ϕk if ν = k δ2 ,

ϕρ det(x)2ν−ρδ if ν > (ρ− 1) δ2

(4.23)

on V . Note that ϕ(ν) is always positive on the canonical cone of rank ρ(ν).
For canonical cone C, we let

D́(C) := {ψ : C → C | ψ ∈ D́(V )}, D́I(C) := {ψ : C → C | ψ ∈ D́I(V )}.

Proposition 4.4. Let ν ∈ W(V ) \ {0} and C be the canonical cone of rank ρ(ν). Then

D́(C) is dense in L2(C,
√
ϕ(ν)

r vol).

Proof. Let us write dµν for
√
ϕ(ν)

r vol. Let Cc(C) be the set of compactly-supported con-
tinuous complex-valued functions and

M =

∫
C
e−2r dµν .

It is clear that M > 0. By applying Theorem A.1 in appendix A, one can easily check that
M <∞.

Suppose that f ∈ L2(C, dµ) and ε > 0. By Theorem 3.14 in Ref. [12], there is
g ∈ Cc(C) such that

||f − g||L2 <
ε

2
.(4.24)
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Since erg ∈ Cc(C), by the Stone-Weierstrass Theorem in Ref. [13], there is a polynomial
p such that

|erg − p| < ε

2
√
M

on C,(4.25)

so

||g − e−rp||L2 =

(∫
C
|g − e−rp|2 dµν

) 1
2

<
ε

2

(
1

M

∫
C
e−2r dµν

) 1
2

using Eq. (4.25)

=
ε

2
.(4.26)

Combining Eqs (4.24) and (4.26), we have

||f − e−rp||L2 ≤ ||f − g||L2 + ||g − e−rp||L2 < ε.

�

Let

U(ν) :=


r
4

(
∆(lnϕ(ν)) + 1

4 |d lnϕ(ν)|2
)

if ν ≤ (ρ− 1) δ2

r
4

(
∆(lnϕρ) + 1

4 |d lnϕρ|2
)

+ρ
4

(
(ν − n

ρ )2 − ( δ2 − 1)2
)

trx−1 if ν > (ρ− 1) δ2 .

(4.27)

Here, d and | | denote the exterior derivative operator and the point-wise norm for differen-
tial one-form on C respectively, x−1 denotes the Jordan inverse of x ∈ Ω. Note that U(ν)

can be lifted to a rational function on V . Recall that L̃u = L̂u − λu.

Proposition 4.5. Let ν ∈ W(V ) \ {0} and C be the canonical cone of rank ρ(ν).
i) As differential operator on C,

L̃u = 4
√
ϕρ(ν)Ĺu(ν)

1
4
√
ϕρ(ν)

.(4.28)

ii) As differential operator on C,

r∆ = 4
√
ϕ(ν)(−iX́e(ν))

1
4
√
ϕ(ν)

+ U(ν).(4.29)

This proposition says that L̃u and r∆ are not as hard as they might look. To prove this
proposition, with the help of Proposition 4.3, one just needs to do some straightforward
and relative short computations, so we skip the proof.

4.3. The unitary realizations of TKK algebras on canonical cones. Let ν ∈ W(V ) \
{0} and C a canonical cone of rank ρ(ν). Recall that ϕ(ν), a rational function introduced
in Eq. (4.23), is always positive on C. Upon recalling the definitions of D́(C) and D́I(C)
in the paragraph preceding to Proposition 4.4, in view of Proposition 4.5, we introduce

D̃(C) = 4
√
ϕ(ν) D́(C), D̃I(C) = 4

√
ϕ(ν) D́I(C)

and differential operators with common domain D̃(C):

S̃uv(ν) = 4
√
ϕ(ν)Śuv(ν)

1
4
√
ϕ(ν)

,
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X̃u(ν) = 4
√
ϕ(ν)X́u(ν)

1
4
√
ϕ(ν)

,

Ỹv(ν) = 4
√
ϕ(ν)Ýv(ν)

1
4
√
ϕ(ν)

.

Note that these differential operators on C can be lifted to differential operators on V .

Proposition 4.6. Let ν ∈ W \ {0} and C a canonical cone of rank ρ(ν).
i) The TKK commutation relations (1.4) hold under the replacement of O by Õ(ν).
ii) D̃(C) is a dense subset of L2

(
C, 1

rvol
)
.

iii) S̃uv(ν), X̃u(ν) and Ỹv(ν) are anti-hermitian operators on D̃(C) with respect to
hermitian inner product

(ψ1, ψ2) =

∫
C
ψ̄1 ψ2

1

r
vol.

iv) Let D̃I(C) be the orthogonal complement of D̃I−1(C) in D̃I(C), then, under the
unitary u-action, we have the following orthogonal decomposition

D̃(C) =

∞⊕
I=0

D̃I(C).(4.30)

Moreover, the finite dimensional vector space D̃I(C) is the eigenspace of H̃e := i(X̃e+Ỹe)
with eigenvalue (2I + νρ).

v) Assume that m ∈ Zρ with m ≥ 0 and mρ(ν)+1 = 0. For and only for such m,
we let D̃m(C) be the orthogonal projection of 4

√
ϕ(ν)e−rPm(V ) onto D̃|m|(C). Then, as

unitary representations of u, we have isomorphism D̃m(C) ∼= ξν⊗Pm(V ) and orthogonal
decomposition into irreducibles:

D̃I(C) =

mρ(ν)+1=0⊕
m≥0,|m|=I

D̃m(C).(4.31)

Proof. i) This quickly follows from Theorem 2.
ii) This quickly follows from Proposition 4.4.
iii) We start the proof with the following two observations: 1) multiplication by a real-

valued function is hermitian, herece Ỹv is anti-hermitian; 2) r∆ is hermitian, hence X̃e is
anti-hermitian in view of part ii) of Proposition 4.5. Combining these observations with
the commutation relations in part i), the proof follows quickly.

iv) The orthogonal decomposition follows from the following two facts: 1) the u-action
is unitary, a fact from part iii) above, 2) the u-action commutes with the inclusion of
DI−1(C) into DI(C), a fact implied by part i) of Theorem 3. The remaining part follows
from the fact that H̃e is hermitian and part iii) of Theorem 3.

v) This follows from part ii) of Theorem 3. �

Remark 4.1. In view of Proposition 4.6, the semi-positive hermitian form (, )ν mentioned
in the beginning paragraph of this section is

(ψ1, ψ2)ν =

∫
C
ψ̄1 ψ2

√
ϕ(ν)

r
vol(4.32)

and the space of “spurious states” consists of functions in D́(V ) which vanish on C. One
can check that Eq. (4.32) is a generalization of Eq. (4.1) and D́(C) is the quotient of D́(V )
by the the space of “spurious states”. Therefore, the measure dµν mentioned in Subsection
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1.5 is equal to
√
ϕ(ν)

r vol. When ν > (ρ− 1) δ2 , up to a multiplicative constant, this explicit
formula for dµν agrees with the one retrieved from the bottom line of page 271 in Ref. [4].
Of course, our explicit formula works even if ν takes a discrete value k δ2 , 1 ≤ k < ρ.

Denote by Ũ(V ) (or simply Ũ) the simply connected Lie group whose Lie algebra is
u(V ). Recall thatW(V ) is the Wallach set of V , λ0 is the fundamental weight conjugate
to the unique non-compact simple root α0 in the simple root system for co in Lemma 2.1.

Theorem 4. Let V be a simple euclidean Jordan algebra, ν ∈ W(V ) \ {0}, and C be V ’s
canonical cone of rank ρ(ν). Under the action of co(V ) which maps O to Õ(ν), D̃(C)
becomes a unitary lowest weight (co(V ), Ũ(V ))-module with lowest weight νλ0 and has
the following multiplicity free K-type formula:

D̃(C) =

mρ(ν)+1=0⊕
m≥0

D̃m(C).(4.33)

Therefore, as a representation of Ũ(V ), D̃(C) ∼=
⊕mρ(ν)+1=0

m≥0 ξν ⊗ Pm(V ).
Consequently, upon integration, L2

(
C, 1

rvol
)

becomes a unitary lowest weight repre-
sentation πν for Co(V ) with the same lowest weight.

Proof. Parts i), iii) and iv) of Proposition 4.6 imply that D̃(C) is a unitary (co(V ), Ũ(V ))-
module. The K-type formula follows from parts iv) and v) of Proposition 4.6. Combining
with parts v) and vi) of Theorem 3, we arrive at first part of this theorem. The second
part follows from the first part, part ii) of Proposition 4.6, and a fundamental theorem of
Harish-Chandra.

�

In view of the classification theorem in Ref. [11], the nontrivial scalar-type unitary
lowest weight representations of Co(V ) are exhausted by representations πν in the above
theorem.

5. GENERALIZED QUANTUM KEPLER PROBLEMS WITHOUT MAGNETIC CHARGES

In Ref. [9], we introduce the universal hamiltonian for the Kepler problem in terms
of the generators of TKK algebra, and remark that whenever we have a quantization for
the TKK algebra, we have a super-integrable model of the Kepler-type. In view of the
quantizations for the TKK algebra presented in the last section, we have some new super-
integrable models of Kepler-type.

As before, V is a simple euclidean Jordan algebra of rank ρ and degree δ, W(V ) is
its Wallach set. For a canonical cone inside V of rank k, we use ϕk to denote the phi-
function defined in Eq. (4.18) and ∆ to denote its (non-positive) Laplace operator. For
ν ∈ W(V ) \ {0}, we let

V (ν) :=


1
8

(
∆(lnϕk) + 1

4 |d lnϕk|2
)

if ν = k δ2 ,

1
8

(
∆(lnϕρ) + 1

4 |d lnϕρ|2
)

+ρ
8

(
(ν − n

ρ )2 − ( δ2 − 1)2
)

tr x−1

r if ν > (ρ− 1) δ2 .

(5.1)

and call V (ν) the quantum-correction potential on the canonical cone of rank ρ(ν).
Note that V (ν) = U(ν)

2r . Here is the definition of the generalized quantum Kepler problem
attached to πν :
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Definition 3 (Generalized Quantum Kepler Problems). Let V be a simple euclidean Jordan
algebra and ν ∈ W(V ) \ {0}. The ν-th generalized quantum Kepler problem of V is the
quantum mechanical system for which the configuration space is the canonical cone of
rank ρ(ν), and the hamiltonian H̃(ν) (or simply H̃) is

− 1

2
∆ + V (ν)− 1

r
.(5.2)

Here, ∆ and V (ν) are the Laplace operator and the quantum-correction potential respec-
tively.

One can verify that when ν = δ
2 , generalized quantum Kepler problem is the J-Kepler

problem in Ref. [8], and to get the original Kepler problem we need to take V = Γ(3) and
ν = 1.

5.1. Solution of the bound state problem. Given a generalized quantum Kepler prob-
lem on a canonical cone C, the bound state problem is primarily the following (energy)
spectrum problem: 

H̃ψ = Eψ∫
C
|ψ|2 vol < ∞, ψ 6≡ 0.

(5.3)

It turns out that E has to take certain discrete values. For example, for the original Kepler
problem, we have E = − 1

2n2 , n = 1, 2, . . .
We shall use HI to denote the I-th energy eigenspace, I = 0, 1, . . . and H to denote

the Hilbert space of bound states — the L2-completion of
⊕∞

I=0 HI .

Theorem 5. Let V be a simple euclidean Jordan algebra and ν ∈ W(V ) \ {0}. For the
ν-th generalized quantum Kepler problem of V , the following statements are true:

i) The bound state energy spectrum is

EI = − 1/2

(I + ν ρ2 )2

where I = 0, 1, 2, . . .
ii) As a representation of Ũ(V ), HI

∼=
⊕mρ(ν)+1=0

m≥0,|m|=I ξν ⊗ Pm(V ).
iii) H provides a realization for representation πν .

Proof. In view of part iv) of Proposition 4.6, we start with the eigenvalue problem for
− 1

2H̃e:

− 1

2
H̃eψ̃ = −nI ψ̃,(5.4)

where nI = I + ν ρ2 and ψ̃ 6≡ 0 is square integrable with respect to measure 1
rvol on the

canonical cone of rank ρ(ν). The above equation can be recast as

−1

2

(
∆− U(ν)

r
+

2nI
r

)
ψ̃(x) = −1

2
ψ̃(x).

Let ψ(x) := ψ̃( xnI ), then the preceding equation becomes(
−1

2
∆ + V (ν)− 1

r

)
ψ(x) = −1/2

n2
I

ψ(x),
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i.e.,

H̃ψ = −1/2

n2
I

ψ.(5.5)

One can check that ψ is square integrable with respect to measure vol. Therefore, ψ̃ is an
eigenfunction of H̃e with eigenvalue 2nI ⇒ ψ is an eigenfunction of H̃ with eigenvalue
− 1/2
n2
I

. By turning the above arguments backward, with the help of an explicit form of

the eigenfunctions for H̃ , one can show that the converse of this statement is also true.
Therefore, in view of parts iv) and v) of Proposition 4.6, we have

HI
∼= D̃I(C) ∼=

mρ(ν)+1=0⊕
m≥0,|m|=I

ξν ⊗ Pm(V ).

Introduce

τ :
⊕∞

I=0 HI ←− D̃(C) =
⊕mρ(ν)+1=0

m≥0 D̃m(C)

cmψ̃m( x
n|m|

) ←−| ψ̃m(x) ∈ D̃m(C)
(5.6)

Here cm is a constant depending on m. The value of cm can be determined and τ can be
shown to be an isometry, provided that an analogue of Theorem 2 in Ref. [10] for general-
ized Laguerre polynomials can be established, something that definitely can be done. Since
D̃(C) is a unitary highest weight Harish-Chandra module, and τ is an isometry,

⊕∞
I=0 HI

becomes a unitary highest weight Harish-Chandra module. Since the L2-completion of⊕∞
I=0 HI is the Hilbert space of bound states, we arrive at part iii) of this theorem. �

We conclude this section with a remark. Generalized Kepler problems are natural
generalizations of the J-Kepler problems, but with an important difference: the energy
eigenspaces are no longer always irreducible representations of Ũ(V ), cf. part ii) of the
theorem above.

APPENDIX A. POLAR COORDINATES

The purpose of this section is to understand the polar coordinates on Ck. The theorem
obtained here is an extension of Theorem VI.2.3 in Ref. [4] from symmetric cones to
canonical cones and the presentation follows that of Section 2 of Chapter VI in Ref. [4].

We fix a Jordan frame: e11, . . . , eρρ and a Jordan basis {eii, eµij}. We denote by Vij the
corresponding (i, j)-Peirce component of V . Let

Rk =

{
k∑
i=1

aieii | ai ∈ R

}
, R+

k =

{
k∑
i=1

aieii | a1 > a2 > · · · > ak > 0

}
Let K be the identity component of Aut(V ) and Mk be the subgroup K fixing each point
a ∈ Rk:

Mk = {g ∈ K | ∀a ∈ Rk, ga = a}
and mk be its Lie algebra:

mk = {X ∈ der | ∀a ∈ Rk, Xa = 0}

For i < j, we define
lij = {[Leii , Lξ] | ξ ∈ Vij}
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Let
lk =

∑
1≤i≤k,i<j

lij

Proposition A.1. Let a =
∑k
i=1 aieii ∈ R

+
k . For X ∈ der, (a,Xa) ∈ TaCk is orthogonal

to TaR+
k , and if ai 6= aj for i 6= j, the map

lk → (TaR
+
k )⊥

X 7→ (a,Xa)(A.1)

is an isomorphism.

Proof. For X = [Lu, Lv], u and v in V , and for a ∈ R+
k and (x, b) in TaR+

k :

((a,Xa), (a, b)) = 〈a | e〉〈Xa | L̄−1
a b〉

= 〈a | e〉〈[La, LL̄−1
a b]u | v〉

= 0(A.2)

because both La and LL̄−1
a b, being of diagonal form with respect to the Jordan basis, com-

mute with each other.
Assume that 1 ≤ i ≤ k and i < j ≤ ρ. For X in lij :

X = [Leii , Lξ], ξ ∈ Vij ,

and for a =
∑k
i=1 aieii in R+

k we have

Xa =
1

4
(aj − ai)ξ.

Here it is understood that aj = 0 if j > k. Therefore, the range of the map X 7→ Xa
contains the subspaces Vij and the sum ⊕

1≤i≤k,i<j

Vij .

Since (TaR
+
k )⊥ = {a} ×

⊕
1≤i≤k,i<j Vij , map (A.1) is onto, hence must be an isomor-

phism because the dimensions of the domain and the target are equal. �

Corollary A.1. —i) As a vector space, we have

der = mk ⊕ lk.

ii) Map

φ : K/Mk ×R+
k → Ck

(gMk, a) 7→ ga

has dense range and is a diffeomorphism onto its range.

Theorem A.1. Write dµk δ2 for
√
ϕk
r vol. Under the identification map φ, we have

dµk δ2
= C volK/Mk

∏
1≤i<j≤k

(ai − aj)δ
k∏
i=1

(
a
δ
2 (ρ−k+1)−1
i dai

)
(A.3)

where volK/Mk
is the K-invariant measure on K/Mk and C is a constant depending only

on Ck.
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Proof. We start with a local parametrization of Ck around point a ∈ R+
k :

x = exp

 1≤α≤δ∑
1≤i≤k,i<j≤ρ

xαijX
α
ij

a.
Here, Xα

ij = [Leii , Leαij ] . Then

dx|a =

k∑
i=1

eiidai +

1≤α≤δ∑
1≤i≤k,i<j≤ρ

1

4
(aj − ai)eαijdxαij |xαij=0,

where it is understood that aj = 0 if j > k. Therefore

ds2
K |a = 〈a | e〉〈dx | L̄−1

a dx〉 |a

=
〈a | e〉
ρ

∑
i

1

ai
da2
i +

1

8

1≤α≤δ∑
1≤i≤k,i<j≤ρ

(aj − ai)2

ai + aj
(dxαij)

2 |xαij=0

 ,(A.4)

so, up to a multiplicative numerical constant, we have

vol|a = (rDk/2c
1
2 (δ(ρ−k)−1)

k τ
− δ2
k )|a

∏
1≤i<j≤k

(ai−aj)δ
k∧
i=1

dai
∧ i<j≤ρ∧

1≤i≤k,1≤α≤δ

dxαij |xαij=0

and

dµk δ2
|a = ck(a)

δ
2 (ρ−k+1)−1

∏
1≤i<j≤k

(ai − aj)δ
k∧
i=1

dai
∧ i<j≤ρ∧

1≤i≤k,1≤α≤δ

dxαij |xαij=0.

On the other hand, since K is a simple Lie group, one can show that Xα
ij’s are mutually

orthogonal with respect to the negative-definite Cartan-Killing form4, so the K-invariant
volume form on K/Mk at eMk is equal to

∧i<j≤ρ
1≤i≤k,1≤α≤δ dx

α
ij |xαij=0 modulo a multiplica-

tive numerical constant. Since dµk is also K-invariant, up to a multiplicative numerical
constant, we have

dµk δ2
= volK/Mk

∏
1≤i<j≤k

(ai − aj)δ
k∏
i=1

(
a
δ
2 (ρ−k+1)−1
i dai

)
as a measure. �

As a side remark, we would like to mention the fact that integral∫
Ω

e−2r det(x)ν−ρ
δ
2 dµρ δ2

is finite if and only if ν > (ρ− 1) δ2 .

4One just needs to show that the trace of Xα
ijX

α′
i′j′ is zero if (i, j, α) 6= (i′, j′, α′).
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APPENDIX B. LIST OF NOTATIONS

The purpose here is to list some basic notations and terminologies for this paper and its
sequels.

• V — a (finite dimensional) simple euclidean Jordan algebra;
• e, ρ, δ, and n — reserved for the identity element, rank, degree, and dimension of
V ;

• tru, detu — the trace, determinant of u ∈ V ;
• 〈u | v〉— the inner product of u, v ∈ V , and is chosen to be 1

ρ tr (uv);
• x — reserved for a generic point in V when V is considered as a smooth space;
• r — reserved for function 〈e | 〉 on smooth space V ;
• {eα}— an orthonormal basis for V ;
• xα — the coordinates of x ∈ V with respect to basis {eα};
• π — reserved for a generic point in V when V is considered as the tangent space

of V ;
• πα — the coordinates of π ∈ V with respect to basis {eα};
• /∂ — a shorthand notation for

∑
α eα

∂
∂xα ;

• \∂ — a shorthand notation for
∑
α eα

∂
∂πα ;

• d — the exterior derivative operator;
• vol — the volume form;
• uv — the Jordan product of u, v ∈ V ;
• {uvw}— the Jordan triple product of u, v, w ∈ V ;
• Lu — the multiplication by u ∈ V ;
• Suv — defined to be [Lu, Lv] + Luv , so Suvw = {uvw};
• W(V ) — the Wallach set of V ;
• P(V ) — the set of complex-valued polynomial functions on V ;
• der(V ), der — the derivation algebra of V ;
• str(V ), str — the structure algebra of V , it is generated by Lu, u ∈ V ;
• co(V ), co — the conformal algebra of V ;
• u(V ), u — the maximal compact Lie subalgebra of co;
• Aut(V ) — the automorphism group of V ;
• Str(V ), Str — the structure group of V ;
• Co(V ), Co — the conformal group of V , and is defined to be the simply connected

Lie group with co as its Lie algebra;
• Ũ(V ), Ũ— the simply connected Lie group with u as its Lie algebra;
• H̃(ν), H̃ — the hamiltonian of the generalized Kepler problem corresponding to

Wallach parameter ν;
• HI — the Ith energy eigenspace for H̃;
• H — the Hilbert space of bound states for H̃ .

REFERENCES

[1] P. Jordan, Z. Phys. 80 (1933), 285.
[2] P. Jordan, J. von Neumann and E. P. Wigner, Ann. Math. 35 (1934), 29.
[3] K. McCrimmon, A taste of Jordan algebras, Universitext, Springer-Verlag, New York, 2004.
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