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We describe non-trivial §-derivations of semisimple finite-dimensional Jordan algebras over an
algebraically closed field of characteristic not 2, and of simple finite-dimensional Jordan super-
algebras over an algebraically closed field of characteristic 0. For these classes of algebras and
superalgebras, non-zero d-derivations are shown to be missing for § # 0, %, 1, and we give a
complete account of %—dem'vations.

INTRODUCTION

The notion of derivation for an algebra was generalized by many mathematicians along quite different
lines. Thus, in [1], the reader can find the definitions of a derivation of a subalgebra into an algebra and of
an (s1, s2)-derivation of one algebra into another, where s; and s are some homomorphisms of the algebras.
Back in the 1950s, Herstein explored Jordan derivations of prime associative rings of characteristic p # 2; see
[2]. (Recall that a Jordan derivation of an algebra A is a linear mapping j4 : A — A satisfying the equality
Jalzy +yzx) = ja(z)y + xjaly) + jaly)x + yja(z), for any z,y € A.) He proved that the Jordan derivation
of such a ring is properly a standard derivation. Later on, Hopkins in [3] dealt with antiderivations of Lie
algebras (for definition of an antiderivation, see [1]). The antiderivation, on the other hand, is a special case
of a §-derivation — that is, a linear mapping p of an algebra such that p(zy) = §(u(z)y + 2u(y)), where §
is some fixed element of the ground field.

Subsequently, Filippov generalized Hopkin’s results in [4] by treating prime Lie algebras over an associa-
tive commutative ring ® with unity and % It was proved that every prime Lie ®-algebra, on which a non-
degenerated symmetric invariant bilinear form is defined, has no non-zero é-derivation if § # —1,0, %, 1. In
[4], also, %-derivations were described for an arbitrary prime Lie ®-algebra A (% € fI>) with a non-degenerate
symmetric invariant bilinear form defined on the algebra. It was shown that the linear mapping ¢ : A — A
is a 3-derivation iff ¢ € I'(A), where I'(A) is the centroid of A. This implies that if 4 is a central simple Lie
algebra over a field of characteristic p # 2,3 on which a non-degenerate symmetric invariant bilinear form
is defined, then every %-derivation ¢ has the form ¢(z) = az, a € . At a later time, Filippov described
6-derivations for prime alternative and non-Lie Mal’tsev ®-algebras with some restrictions on the operator
ring ®. In [5], for instance, it was stated that algebras in these classes have no non-zero d-derivations if
§#0,%,1.

In the present paper, we come up with an account of non-trivial §-derivations for semisimple finite-
dimensional Jordan algebras over an algebraically closed field of characteristic not 2, and for simple finite-

dimensional Jordan superalgebras over an algebraically closed field of characteristic 0. For these classes of
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algebras and superalgebras, non-zero J-derivations are shown to be missing for ¢ # 0, %, 1, and we provide
in a complete description of %—derivations.

The paper is divided into four parts. In Sec. 1, relevant definitions are given and known results cited. In
Sec. 2, we deal with §-Derivations of simple and semisimple finite-dimensional Jordan algebras. In Secs. 3
and 4, d-derivations are described for simple finite-dimensional Jordan supercoalgebras over an algebraically
closed field of characteristic 0. For some superalgebras, note, the condition on the characteristic may be
weakened so as to be distinct from 2. A proof for the main theorem is based on the classification theorem

for simple finite-dimensional superalgebras and on the results obtained in Secs. 3 and 4.

1. BASIC FACTS AND DEFINITIONS

Let F be a field of characteristic p, p # 2. An algebra A over F' is Jordan if it satisfies the following
identities:
xy = yx, (*y)r=a*(yz).

Jordan algebras arise naturally from the associative algebras. If in an associative algebra A we replace
multiplication ab by symmetrized multiplication a o b = %(ab + ba) then we will face a Jordan algebra.
Denote this algebra by A(+). Below are essential examples of Jordan algebras.

(1) The algebra J(V, f) of bilinear form. Let f : V x V — F be a symmetric bilinear form on a
vector space V. On the direct sum J = F'- 14V of vector spaces, we then define multiplication by setting
1-v=v-1=wvand vy -va = f(v1,v2) - 1; under this multiplication, J = J(V, f) is a Jordan algebra. If the
form f is non-degenerate and dimV > 1, then the algebra J(V f) is simple.

(2) The Jordan algebra H(D,,J). Here, n > 3, D is a composition algebra, which is associative for
n >3, j:d— dis a canonical involution in D, and J : X — X is a standard involution in D,,.

THEOREM 1.1 [6]. Every simple finite-dimensional Jordan algebra A over an algebraically closed
field F' of characteristic not 2 is isomorphic to one of the following algebras:

(1) F-1

(2) J(V., £);

(3) H(D,, J).

We recall the definition of a superalgebra. Let I" be a Grassmann algebra over F', which is generated
2 _

by elements 1,eq,...,€y,,... and is defined by relations e;

0, ejej = —eje;. Products 1,e;,¢€4, ... 64,
i1 < i < ... <1, form a basis for I over F. Denote by I'y and I'; the subspaces generated by products of
even and odd lengths, respectively. Then I' is represented as a direct sum of these subspaces, I' = T'g + I'y,
with I € T4 j(mod 2)s 4,J = 0, 1. In other words, I is a Z-graded algebra (or superalgebra) over F.

Now let A = Ay + A; be any supersubalgebra over F. Consider a tensor product of F-algebras, I' ® A.
Its subalgebra

INA)=To®Ag+T'1 ® A;

is called a Grassmann envelope for A.

Let Q be some variety of algebras over F. A Zs-graded algebra A = Ay + A; is a Q-superalgebra if its
Grassmann envelope I'(A) is an algebra in Q. In particular, A = Ay ® A; is a Jordan superalgebra if its
Grassmann envelope I'(A4) is a Jordan algebra.

In [7], it was shown that every simple finite-dimensional associative superalgebra over an algebraically
closed field F is isomorphic either to A = M,, ,,(F'), which is the matrix algebra M,, 4, (F), or to B = Q(n),



which is a subalgebra of Ms,, (F). Gradings of superalgebras A and B are the following:

A 0
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Let A = Ap+A; be an associative superalgebra. The vector space of A can be endowed with the structure

Ae M, (F), De Mn(F)} ;

By B e Mn(F)} .

of a Jordan supersubalgebra A(T) by defining new multiplication as follows: aob = %(ab + (—=1)P(@)P(®)pg),
In this case p(a) =i if a € A;.

Using the above construction, we arrive at superalgebras
My (F)D, m 21, n>1;

Qn) ), n>2

Now, we define the superinvolution j : A — A. A graded endomorphism j : A — A is called a
superinvolution if j(j(a)) = a and j(ab) = (—1)P@P®)j(b)j(a). Let H(A,j) = {a € A : j(a) = a}. Then
H(A,j) = H(Ao,j) + H(A1,j) is a subsuperalgebra of A*). Below are superalgebras which are obtained

from M, ,,,(F') via a suitable superinvolution:

B
(1) the Jordan superalgebra osp(n,m), consisting of matrices of the form < > , where AT = A ¢

C
- _ 0 E,
M, (F),C=Q 'BT, D=Q 'DTQ € My,,(F), and Q = ( B 0 );
B

>, where BT = —B,
D

A
(2) the Jordan superalgebra P(n), consisting of matrices of the form ( o

CT =C,and D = AT, with A, B,C,D € M,(F).

THEOREM 1.2 [8, 9]. Every simple finite-dimensional non-trivial (i.e., with a non-zero odd part)
Jordan superalgebra A over an algebraically closed field F' of characteristic 0 is isomorphic to one of the
following superalgebras:

Mm,n(F)(Jr); Q(”)(H; osp(n,m); P(n); J(V, f); Dy, t # 0; K35 Kio; J(I'n), n > 1.

The superalgebras J(V, f), D;, K3, K10, and J(I';,) will be defined below.

Let 6 € F. A linear mapping ¢ of A is called a §-derivation if

P(zy) = 0(zo(y) + ¢(x)y) (1)

for arbitrary elements z,y € A.

The definition of a 1-derivation coincides with the conventional definition of a derivation. A 0-derivation
is any endomorphism ¢ of A such that ¢(A2?) = 0. A non-trivial 6-derivation is a §-derivation which is not
a 1-derivation, nor a O-derivation. Obviously, for any algebra, the multiplication operator by an element
of the ground field F' is a %—derivation. We are interested in the behavior of non-trivial d-derivations of
semisimple finite-dimensional Jordan algebras over an algebraically closed field of characteristic not 2, and

of simple finite-dimensional Jordan superalgebras over an algebraically closed field of characteristic 0.



2. -DERIVATIONS FOR SEMISIMPLE FINITE-DIMENSIONAL
JORDAN ALGEBRAS

In this section, we look at how non-trivial d-derivations of simple finite-dimensional Jordan algebras
behave over an algebraically closed field F' of characteristic distinct from 2. As a consequence, we furnish
a description of J-derivations for semisimple finite-dimensional Jordan algebras over an algebraically closed
field of characteristic not 2.

THEOREM 2.1. Let ¢ be a non-trivial é-derivation of a superalgebra A with unity e over a field F’
of characteristic not 2. Then ¢ = %

Proof. Let § # 1. Then ¢(e) = ¢(e-e) = 5(d(e) + d(e)) = 25¢(e), that is, ¢(e) = 0. Thus
d(x) = o(x-e) = d(p(x) + zp(e)) = d¢(z) for arbitrary = € A. Contradiction. The theorem is proved.

LEMMA 2.2. Let ¢ be a non-trivial %—derivation of a Jordan algebra A isomorphic to the ground
field. Then ¢(z) = ax, a € F.

Proof. Let e be unity in A. Then

¢(x) = 2¢(ze) — d(x) = x¢(e), (2)

that is, ¢(x) = ax, o € F. The lemma is proved.
LEMMA 2.3. Let ¢ be a non-trivial i-derivation of an algebra J(V, f). Then ¢(z) = az for o € F.
Proof. Let ¢(e) = ae + v, where o € F and v € V. From (2), it follows that ¢(z) = x¢(e) for any
ze J(V, [).

For w € V, we then have

af(w,wle + f(w,w)v = w(ae+v) = p(w?) = 5(wp(w) + P(w)w)
= wo(w) = w(w(ae +v)) = wlaw + f(v,w)e)
= af(w,w)e+ f(w,v)w.

As the result, f(w,w)v = f(w,v)w. Now, since w is arbitrary and dim(V) > 1, we have v = 0. Thus
¢(z) = ax for any € J(V, f). The lemma is proved.

LEMMA 2.4. Let ¢ be a non-trivial 1-derivation of an algebra H(D,,J), n > 3. Then ¢(x) = oz for
acF.

Proof. Relevant information on composition algebras can be found in [6]. Let ¢(e) = ae + v, where
v = Z Tij€ijy T1,1 = 0, Tij :m, o€ _F7 T € D.

ij=1

From (2), for « € H(D,, J) arbitrary, we have

2?0 (ae+v) = p(z?) =20 ¢(x) =z 0 (x0 (ae+v)), 2°0v=1x0(x0V). (3)
If we put @ = ej we obtain ) xp jer; + > Tik€ir = 2ez,k ov = 2y 0 (exrov) = %(Z T jCh,j +
j=1 i=1 j=1

n n
Tk kChk + ThkChk + D Tik€ik), Whence v =3 x;;€; ;.
=1 =1

n
For © = e, + ek, substituted in (3), we have T, nenn + Trrerk = (enk + €kn)? 0 > @i€ii =
i=1

n

(en,k + ek,n) o ((en,k + ek,n) o Z zi,iei,i) = (6n,k + ek,n) o %(In,nek,n + Tk k€k,n + Tk klnk + xn,nen,k) =
=1
i=

%(zhkek,k + Tk penn + Tnnekk + Tnnénn), which yields 2, , = zp_1n—1=... =211 =0and v =0.



Consequently, ¢(x) = ax for any « € H(D,,,J). The lemma is proved.

THEOREM 2.5. Let ¢ be a non-trivial §-derivation of a simple finite- dimensional Jordan algebra A
over an algebraically closed field F' of characteristic distinct from 2. Then § = 3 and ¢(z) = az, o € F.
The proof follows from Theorems 1.1, 2.1 and Lemmas 2.2-2.4.

THEOREM 2.6. Let ¢ be a non-trivial §-derivation of a semisimple finite-dimensional Jordan algebra

A = @ A;, where A; are simple algebras, over an algebraically closed field of characteristic not 2. Then

=1
n

and for z = Z x; where x; € A;, we have ¢(x) = Z X, o € F.
=1 i=1
Proof. Umty in Ay, is denoted by ex. If x; € A;, then ¢(x;) = x +x;

§=13,

., Where zj‘ € A; and z; ¢ A,
Put ¢ = Z er — e; and ¢(e') = et + €7, where et € A; and €'~ ¢ A;. Then 0 = ¢(x; - ') =
k=1

S((x;) - ¢+ - p(eh)) = S((xf + 27 )e! + zi(e'T + €'7)) = §(z; + x; - eF), which yields z; = 0.
Consequently, the mapping ¢ is invariant on A;. In virtue of Theorem 2.5, § = % and ¢(z;) = az; for
some «; € F defined for A; with z; € A; arbitrary. It is easy to verify that the mapping ¢, given by the

n n
rule ¢ (Z 331) =Y oz, x; € A, is a %—derivation. The theorem is proved.
i=1 i=1

3. -DERIVATIONS FOR SIMPLE FINITE-DIMENSIONAL
JORDAN SUPERALGEBRAS WITH UNITY

In this section, all superalgebras but J(I',,) are treated over a field of characteristic not 2. The super-
algebra J(T,,) is treated over a field of characteristic 0. Among the title superalgebras are M,, ,(F)*),
Q(n) ), osp(n,m), P(n), J(V,f), and J(I',). Theorem 2.1 implies that these superalgebras all lack in
non-trivial §-derivations, for § # 5. Therefore, we need only consider the case of a i-derivation.

LEMMA 3.1. Let ¢ be a non-trivial %-derivation of My, ,(F)*). Then ¢(z) = ax for some a € F.
Proof. It is easy to see that for 1 < 7,5 < n+ m, elements e; ; form a basis for the superalgebra

Mo (F)F). Let dlei ;) = ; ozk lek 1, where a 6 F.ij=1,....,n+m.

If in (1) we put x =y = e;; we arrive at

min . n+m . n+m
S aphens = dleis) = d(e2,;) = 2esi 0 dleii) + dlei) oeii) = (Z apein + Z ayen, z)v

k=1 ’

whence ¢(e; ;) = a;e;;, where a; = abl = 1,....,m+n.

1’L7

Substituting z =e; ; and y = e;;, i # 7, in (1), we obtain

m—+n 1 m—+n m—+n
S oay lekl = ¢(€i;) =2¢(eij0€:4) =3 <aiei,j + > a Teis + Z Oék Ter, z>
k=1 =1
Analyzing the resulting equalities, we conclude that az; = ;. A similar argument for e; ; and e;; yields
@;’} = ;. Since ¢ is linear, ¢(e) = ae. Using (2) gives ¢(z) = ax, for any = € My, 1 (F)F). The lemma is
proved.

LEMMA 3.2. Let ¢ be a non-trivial -derivation of Q(n)™*). Then ¢(x) = ax, where o € F.

Proof. Clearly, A;; = €;j + entintj and A™ = e,4; ;i + €; ,4; form a basis for the superalgebra

Q).



On the basis elements, the following relations hold:

Ai,j o AkJ = %((%JCA“ + 5171'Ak,j)7 Ai,j o ARl = %((%JCAZ-’Z + 5[7¢Ak’j).

n n
Let p(Aij) = > ap Akl + > a“’jA“ Put 2 =y =A;; in (1). Then
o l=

1 k=1
k; a Ak l k; ZiiiAk’l = ¢(Ai) = (ZS(A?J = %(A” 0 p(Asi) + d(Aii) 0 Ay i) =
=1 =1

' n n . ) n S
(z i+ 2 A+ X apiaki+ 5 ai‘fiW’l) :
Consequently, ¢(A; ;) = a;A;; + oAb, where o; = a and o = oz*z )t
If we substitute z = A;; and y = A; j, 1 # j, in (1) we obtain

klz_l(a;;%k,l + o AR = ¢(A ) = 20(A 0 A ) =

% (azA” + alAB 4 Z al’fA” + Z ak’]A;” + Z a; ’JA” + Z a*”]Ak 1)

UV RN (2% R |
Hence o = a4, a; /7 = o,

A similar argument for A; ; and A; ; yields
d)(Az j) = 05 A] i+ OLJAz j+ a*l’JAJ J 1 ad AW

These relations readily imply that o; = o; = a and of =of =8, that is, p(Ai;) = al;; + BAHE,
Clearly, ¢(E) = aE+ A, where E is unity in Q(n)(*), and A = Z (€i,n+i+€ntii). Suppose that 5 # 0

=1

and ¢(z) = ax+BAoz is a L-derivation. A mapping 1) : Q(n)*) — Q(n)*), for which ¢)(z) = Aoz, likewise

is a 2-derivation. Obviously, 2(A» — AJT) = (A" o AIT) = %((A” o A)o AVt + AW o (Ao A)) =

On the other hand, A%® — AJJ = (0. Consequently, 8 = 0, that is, ¢(z) = ax. The lemma is proved.
LEMMA 3.3. Let ¢ be a non-trivial i-derivation of osp(n,m). Then ¢(z) = ax for some a € F.

n m . )
Proof. It is easy to see that E = Y A; + > A7, where AV = €54 n+tj + €ntmtjntm+j and A; = e;;
i=1 j=1
is unity in the supersubalgebra osp(n, m). Let

n+2m . n+2m )
P(Ai) = > ap ekl i=1,...,n, ¢(A N= ﬁklekl, =1,...,m.
k=1 k=1
n+2m
Ifweput v =y =A;,i=1,...,n,in (1) we obtain > o} ex; = d(A;) = d(A2) = L(p(A;) 0 A; +
k=1

n+2m n+2m

Ajod(A;)) = % < > afc’iekﬂ- + > aﬁ)lei’l>, which yields ¢(A;) = oAy, i =1,...,n.
k=1 I=1
Putx =y=A%i=1,...,m,in (1). Then
n+2m

3 Brens = 6(A7) = 6((A7)?) = (AT 0 (M) + 9(AT) 0 AT) =

k=1

1 n+2m n+2m n+2m n+2m
% P % %
2 kzl ﬁk,n+iek7n+i + kz Bk,n+m+i6k,n+m+i + lzjl ﬁn+i,len+i;l + 12:1 ﬁn+m+i,len+m+i;l .
—= =1 = =



By the definition of osp(n,m), we have 3}, ;1 voii = Binintingi =0and Bl s = B nimyqe Thus
O(AY) =007, 5=1,...,m
2m-+n

Let (e;; +ej;) € osp(n,m), 1,5 =1,...,n, and ¢(e;; +e;;) = Z 7,; ekt If we put © = e;; + e

and y = A, in (1) we arrive at

2m—+n - 2m—+n ; 2m—+n s
S et = dlens +e50) = 20((eis +e50) 0 A) = ( 5 e+ 3 emaz(emem).
k=1

; : ; LI AT Qi ions - o o (2% RN 2 B
In view of the last relation, 777 = ;% = «;. Similar calculations for e; j +€;; and A; give v = 7, =

a;. Ultimately, ¢(A;) =aA;,i=1,...,n
o 2m—+n i
Let E;j = (entintj + €ntmtjntm+i) € osp(n,m), 4,5 = 1,...,m, and ¢(E;;) = > wklekl Put
k=1

= E;; and y = A’ in (1); then

Z wk lekl - (z)(Elj) = 2¢)(E1] © Al) Z wnJrz 1€n+i,l + Z W]; ,V,LJrzek n+z+

2m+n i <2m+n i 2m—+n
l_

2m+n 2m+4n
lz wn+m+z 1€n+mi,l + Z wk n+m+zek ntm+i + ﬂzEm .

Consequently, w,%; ;= wn+m+] ntmai = Bi-
A similar argument for E;; and A7 shows that wh
Eventually we conclude that ¢(A7) = AT, j=1,...,m

= wh = B; with 1 < 7,5 < m.

n+7, n+j n+m+] n+m-+1

2m4n

Let B = €1 ym+1 — €nt1.1 € 0sp(n,m) and qS(EH) > vgaery. If we put 2 = E' and y = Al in
k=1
(1) we have
2m—+n 1 2m-+n
> Vkiery = (EM) =20(EM o AY) = 5| 3 (Vkmt1€kmt1 F Ventmt1€hntm)t
k=1 k=1

2m—+n 1
Z (Vn+1,len+1,l + Vn+m+1,len+m+1,l) + aE )
=1

whence V1 y4n41 = Vnt1,1 = «. Further, for z = E'' and y = A, substituted in (1), we obtain

2m+n 2m+n 2m+n
> vkiers = G(EM) =2¢0((E') 0 Ay) = ( Y vigeni+ Y. Vkaega + 5E11>
k=1 =1 k=1

and V1 mint+1 = Vnt11 = 0. Thus a = § and ¢(F) = aFE. From (2), it follows that ¢(y) = ay for any
element y € osp(n, m). The lemma is proved.

LEMMA 3.4. Let ¢ be a 3-derivation of P(n). Then ¢(z) = ax, where a € F.
Proof. Let A;; = €;j + entjnti,» £ = >, A;; be unity in the superalgebra P(n), and ¢(A; ;) =

Z ak lekl If in (1) we put x =y = A, ; we arrive at
k=1

2n y 9 1 2n i 2n y 2n i 2n y
k;l Q. 1kl = P(Aii) = ¢(AF;) =5 lZl QpLiientil + kZI Oyt iChinti + lzl ;€0 + kZl Qy ki |-

The definition of P(n) implies 041 n_H = 0. Therefore, ¢(A;;) = a el i+ an_H naiCntinti t an_H iCnti,i-



Put z =A,,; and y = A, ; in (1). Then
klz O‘kzekl A(Aij) = 20(Ag 0 A )

=3 (ai,iem T Oy mtiCntjndi T Qg il QL il

2n 2n .
5
+ Z CY ell + Z ak zek i+ E an+z 16n+i,l + Z ak,n+iekyn+i> .
=1 k=1

i 1,] 7,1 4, 1]
Thus o, a”,anﬂnﬂ—anﬂnﬂ,andoszr” anﬂl N B
, JJ _ o bi o d _ _ b
Argumg similarly for A;; and A; ;, we obtain Q= Qs = anﬂ i and anﬂ =

In view of the definition of P(n) and the relations above We have ¢(A; ;) = al;; + Bentii. The fact that
the mapping ¢ is linear implies ¢(E) = aE + A, A = Z (entii)-
Suppose that 8 # 0 and ¢(z) = ax+ Aoz is a 7—der1vat10n Then a mapping ¢ : P(n) — P(n), where

P(x) = Ao x, likewise is a %—derlvatlon. We argue to show that this is not so. Let bj; = €;n4i — €intj-
Then 1)(A; j0bjq) = (0) = 0; but 3(h(Ai ;) 0bji+ Aijorp(bji)) = 5((Aij0A)obji+Ajjo0(bji0A)) =
i((enﬂ',i +enyig) 0 (€jnyi — €imtj) + (i —€ij — €ntjnti+ €ntintj) 0 (€ij + €nijnyi)) = %Azz # 0 on
the other hand. Hence v is not a %—derivation. Therefore, § = 0 and ¢(z) = ax. The lemma is proved.

We define the Jordan superalgebra J(V, f). Let V = V; + V; be a Zs-graded vector space on which a
non-degenerate superform f(.,.) : VxV — F is defined so that it is symmetric on V; and is skew-symmetric
on Vi. Also f(V1,Vp) = f(Vo, V1) = 0. Consider a direct sum of vector spaces, J = F @ V. Let e be unity
in the field F. Define, then, multiplication by the formula (a + v)(8 + w) = (af + f(v,w))e + (aw + [v).
The given superalgebra has grading Jo = F' 4+ Vp, J; = V3. It is easy to see that e is unity in J(V, f).

LEMMA 3.5. Let ¢ be a %—derivation of J(V, f). Then ¢(x) = ax, where o € F..

Proof. Let ¢(e) = ae +vo + v1, v; € V;. Putting 2 = z;, y = e, and 2z; € V; in (1), we obtain
O(2i) = 2¢(zi€) — (i) = d(zi)e + zid(e) — d(2i) = az; + f(2;,vi)e, whence ¢(z;) = az; + f(z;, vi)e.

If we put = zp and y = 21 in (1) we arrive at 0 = ¢(2120) = 3(¢(21)20 + 216(20)) = f(21,v1)z0 +
f(20,v0)z1. By the definition of a superform f, we have vy = 0 and v; = 0, that is, ¢(e) = ae. Using (2)
yields ¢(z) = az, a € F, for any x € J(V, f). The lemma is proved.

Consider the Grassmann algebra I" with (odd) anticommutative generators e, ea,...,€y,,.... In order

to define new multiplication, we use the operation

k-1 e
(=1)* lej €iy .. €5 €y €5, if =1y,

o) e —
l' ‘Z- DY ] —
86_7’( 11 712 Zn) { 0 lf]#ll, l—l,...,n

For f,g € Ty UT'1, Grassmann multiplication is defined thus:

(.0} = (10 52 g

.7
Let T be an isomorphic copy of I under the isomorphic mapping « — Z. Consider a direct sum of vector

spaces, J(I') = ' + T, and endow it with the structure of a Jordan superalgebra, setting Ay = I'g +I'; and
Ay =T + T, with multiplication e. We obtain

aeb=abaeb=(—1"®ab, aeb=uab, aeb=(—1)""{a,b},



where a,b € Tg|JT'; and ab is the product in I'. Let T',, be a subalgebra of T' generated by elements
e1,e,...,en. By J(I';,) we denote the subsuperalgebra I',, +T',, of J(I'). If n > 2 then J(I',) is a simple

Jordan superalgebra.

LEMMA 3.6. Let ¢ be a 3-derivation of J(I',). Then ¢(z) = ax, where a € F.
Proof. Let ¢(1) = ay + 87, where a, 3 € F, v €T, and 7 € T. Put y = 1 in (1); then

o(x) = 20(x 0 1) — 9(x) = B(x) + x 0 6(1) — d(x) =z ® (1). (4)

Ifin (1) weput z =¢;, y=¢;,i=1,...,n, with (4) in mind, we arrive at
¢(1) = o€ 0 &) = 5(6(e) o & + & » 6()) = p(e;) o & = & @ (€ 0 (1))

For any z of the form e;, e, ... ¢;,, obviously, we have

z if §£ =0,

Ge(eion)= oc: (5)
0 otherwise;
T if 5= £ 0,

(6)

€ o(c,eT) =
0 otherwise.

Let v = 4" +¢;4'~ and 7 = vt +e;v'~, where v*~, 7", v~ 1" do not contain e;. Since i is arbitrary,

in view of (5) and (6), we have y =1 and v =e; ...e,. Thus ¢(1) = a -1+ fe; .- €,. Relation (4) entails

dler) = erop(l)=ero(a-1+fe1.¢e,) = aey,
p(E1) = ereg(l)=ere(a-1+fe1.6n) = aer+ Pez...ep.

The relations above, combined with the condition in (1), imply 0 = ¢(e10€7) = £ (e10¢(e7)+¢(e1)oer) =
gel ...epn; that is, ¢(1) = a - 1. From (2), we conclude that ¢(z) = ax for any element z € J(I';). The

lemma is proved.

4. )-DERIVATIONS FOR JORDAN SUPERALGEBRAS
KS’ Dt> KlO

In this section, we confine ourselves to non-trivial d-derivations of simple finite-dimensional Jordan
superalgebras K3, Kig, and D; over an algebraically closed field of characteristic p not equal to 2. For the
superalgebra Ko, we require in addition that p # 3. In conclusion, we formulate a theorem on d-derivations
for simple finite-dimensional Jordan superalgebras over an algebraically closed field of characteristic 0.

The three-dimensional Kaplansky superalgebra K3 is defined thus:

(K3)0 = Fe, (Kg)l :FZ+F1U,

where €2 = ¢, ez = %z, ew = %w, and [z, w] = e.

LEMMA 4.1. Let ¢ be a non-trivial d-derivation of K3. Then § = 1 and ¢(z) = ax, where a € F.
Proof. Let ¢(e) = ace + fez + Yew, ¢(z) = are + B1z + 71w, and ¢(w) = ase + faz + yow, where
Qe, 1,2, Be, 81, B2, Ye, V1,2 € F. If we put x =y = e in (1) we obtain

ace + ez +7ew = p(e) = d(e®) = d(ed(e) + p(e)e) = 8(2ace + fez + Yew).



Thus it suffices to consider the following two cases:

(1) o=1

(2) 6 # 3, ¢(e) = 0.

In the former case, ¢(e) = ae, where o = .. Case (1), for = e and y = z, entails aye + f1z + w =
B(2) = 20(c2) = 2- 1(e9(2) + $(e)2) = are + L(Brz + 71w +az), whence B = 3(8; +a) and 71 = 17 that
is, f1 = a and ; = 0. Similarly, substituting in (1) = e and y = w, we obtain 75 = a and 2 = 0. For
z=zand y =w in (1), we have ae = ¢(e) = ¢([z,w]) = 3 (26(w) + ¢(2)w) = (322 + ae + ayw + ae),
whence ¢(e) = ae, ¢(z) = az, and ¢(w) = aw, where o € F. Consequently, ¢(x) = ax for any x € Ks.

We handle the second case. For z = e and y = z in (1), we have aje + f12 + mw = ¢(z) = 2¢(ez) =
20(ed(2) + @(€)z) = §(2are + Bz + y1w), which yields ¢(z) = 0. Similarly, we arrive at ¢(w) = 0. The fact
that ¢ is linear implies ¢ = 0. The lemma is proved.

At the moment, we define a one-parameter family of four-dimensional superalgebras D;. For t € F
fixed, the given family is defined thus:

Dy = (D)o + (Di)1,

where (Dy)o = Fey + Fey, (Dy)1 = Fo + Fy, €2 = €;, eres = 0, e,z = 1z, ey = 1y, [2,y] = e1 + teo,

i=1,2.
LEMMA 4.2. Let ¢ be a non-trivial d-derivation of D;. Then § = 3 and ¢(z) = ax, where a € F.
Proof. Let

dler) = oarer+ frex +mz+  w, dea) = azer + Paez + Y2z + Aow,
d)(Z) = e+ e +724+ Aw, d)(w) = el + Buwea + Vw2 + Apw,

with coefficients in F.

Putting z = y = e; and then x = y = e5 in (1), we obtain aje; + Brea + 712 + Mw = ¢(e1) = ¢(e?) =
20(e1¢(e1)) = 20ae1 +0712+0 1w and ageq + Baea +722+ Aaw = 20 Faea+ 022+ Aaw, whence a; = 25ay,
B1=0,7 =671, At =X, aa =0, B2 = 2002, 72 = 072, A2 = 0Aa.

There are two cases to consider:

(Dé=35bi=as=m=7=A=X=0;

(2)6#3, m==F=Ff=m=1=>=>A=0

In the former case, ¢(e1) = aje; and ¢(eg) = Paea. Put & = e; and y = z in condition (1); then
azer + B.ea + 7.2 + Aw = ¢(z) = 2¢(e12) = 2 - %(elqb(z) + ¢le1)z) = azer + %(Ayzz + Aw + ay2), which
yields a; = 7,, 6, = A, =0.

For z = ez and y = z in (1), we have a.e1+7.2 = ¢(2) = 2¢(e2z) = 2-3(e20(2)+9(e2)2) = 1 (1224 B22),
whence v, + B2 = 27v,, a, = 0, a1 = o, and ¢(z) = @z, where @ = «3. Similarly, we conclude that
¢(w) = aw. The mapping ¢ is linear; so ¢(z) = ax, o € F, for any x € D;.

We handle the second case. Put 2 = e; and y = z in (1); then a.e; + S.e2 + Aoz + yw = ¢(2) =
2¢(e1z) = 20(e10(z) + p(e1)z) = 6(2ae1 + Az + Y. w), which yields ¢(z) = 0. Arguing similarly for w, we
arrive at ayyer + Buwes + Ywz + Apw = 0(2ae1 + Yz + Apw). Consequently, ¢p(w) = 0. Ultimately, the
linearity of ¢ implies ¢ = 0. The lemma is proved.

The simple ten-dimensional Kac superalgebra K¢ is defined thus:
K10 = A &b M, (KIO)O = A, (Klo)l = M, Where A = A1 @D AQ,

Ay = Fey + Fuz + Fuw + Fvz + Fow,

10



Ay = Feo,M = Fz+ Fw+ Fu + Fo.
Multiplication is specified by the following conditions:

e% = e;, e1 is unity in Ay, e;m = %m for any m € M,
[u, 2] = uz, [u,w] = uw, [v,z] = vz, [v,w] = vw,

[Za w] =61 — 3627 [’U,, Z}’UJ = —u, [’U, Z]’LU = -, [U, Z] [U7w] = 261;

all other non-zero products are obtained from the above either by applying one of the skew-symmetries

z <> w or u < v or by substituting z < u and w < v simultaneously.

LEMMA 4.3. Let ¢ be a non-trivial §-derivation of Ky9. Then § = % and ¢(z) = ax, where o € F.
Proof. Let

odle1) = arer + ases + sz + agw + asu + agv + aruz + aguw + agvz + agvw,
P(e2) = Brer + Paea + B3z + Baw + Bsu + fev + fruz + fyuw + Povz + Brovw,
¢(2) =vier +75e2 + 732 +yijw + Bu+ v +y7uz +guw + Y5vz + Yigow,

(w) ="er + 73’2 + 752 + ¥ w + 3w+ 90 + 7 uz + g uw + vz + ypow,
(

(

<

P(u) = t'er +y5es + 752 + 75w + YU + g0 +y7uz + puw +gvz + ipvw,
¢(v) =ter +r5e2 + 752 +fw + y5u + v + yruz +uw + vz + fpvw,

where all coefficients are in F'.

For z =y = e; in (1), we have

are] + ases + a3z + agw + asu + agv + aruz + aguw + aguz + agrw =
dler) = ¢(e) = 6(d(er)er +erd(er)) =

1 1 1 1
26(arer + 5032 + souw + a5u + 5060 + aruz + aguw + aguz + ajguw),

whence a; = 20a1, as = 0, ag = dag, ag = day, as = das, ag = dag, ar = 207, ag = 20ag, ag = 20y,
Q10 — 25@10.
Putting = y = e in (1), we obtain

Bie1 + Baes + B3z + Baw + PBsu + Bev + Bruz + Pguw + Bovz + Brovw =
Plea) = p(e3) = d(B(ez)ez + eagp(ea)) = 20eag(en) =
26(Boe2 + 1 B3z + 1 Baw + 1 B5u + L Bsv),

which yields 81 = 0, B2 = 2032, 3 = 033, B4 = 0034, B5 = 0835, B = 036, Br = Bs = Bo = P10 = 0.
Consequently, it suffices to consider the following two cases:
(1) 6=4:
(2) 6 # %; d(e1) = ¢(e2) = 0.
In the former case, ¢(e1) = are; + ayuz + aguw + agvz + ajgpvw and ¢(ez) = aes. Put = ey and

y =z in (1); then

Yier + e +932 +Yiw +y5u + 50 +yFuz + guw + 502 + yipvw =
P(2) = 2¢(ze2) = p(2)ea + 2¢(e2) =
Y5ea + %Wgz + %ij + %Wgu + %ng + %az,
and so ¢(z) = y5ea + az. If in (1) we put = e; and y = z we obtain Y5es + az = ¢(z) = 2¢(ze1) =
d(z)er + zp(e1) = (V5ex + az)er + z(ar1e1 + +azuz + aguw + agvz + agpvw), whence v5 = 0 and a = a;
that is, ¢(z) = az. Similarly, for w, u, and v, we have ¢(u) = au, ¢(v) = av, and ¢(w) = aw. Hence

11



P(uz) = ¢([u, 2]) = 3(d(u)z + up(z)) = 3(afu, 2] + afu, z]) = auz. Analogously, we obtain @(vw) = auw,
d(vz) = avz, and ¢(vw) = avw.

Let z = [u, z] and y = [v,w] in (1); then

2¢(e1) = o([u, 2][v, w]) = 5(6([u, 2])[v, w] + [u, 2]¢([v, w])) =

2
alu, z][v, w] = 2ae;.

The fact that ¢ is linear implies ¢(z) = ax, o € F, for x € K;o arbitrary.
We handle the second case. Put x = z and y = €3 in (1). Then

yier +v5e2 + 732 + yjw + Yiu + v + y7uz + guw +5vz + yjpow =
P(2) = 2¢(ze1) = 20(p(2)er + 2¢(e1)) =
20(vier + 3732 + gYiw + 35U + 3750 + Yuz + duw +§uz + vprw),
which yields ¢(z) = 0. Similarly, we arrive at ¢(w) = ¢(v) = ¢(u) = 0. Since eq, €2, 2, v, u, w generate Kiq,
we have ¢ = 0. The lemma is proved.

THEOREM 4.4. Let A be a simple finite-dimensional Jordan superalgebra over an algebraically closed
field of characteristic 0, and let ¢ be a non-trivial §-derivation of A. Then § = % and ¢(x) = ax for some
a € F and for any z € A.

The proof follows from Theorems 1.2, 2.1 and Lemmas 3.1-3.6, 4.1-4.3.
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