δ-DERIVATIONS OF SIMPLE FINITE-DIMENSIONAL JORDAN SUPERALGEBRAS

I. B. Kaygorodov*

Keywords: δ-derivation, simple finite-dimensional Jordan superalgebra.
We describe non-trivial δ-derivations of semisimple finite-dimensional Jordan algebras over an algebraically closed field of characteristic not 2, and of simple finite-dimensional Jordan superalgebras over an algebraically closed field of characteristic 0 . For these classes of algebras and superalgebras, non-zero δ-derivations are shown to be missing for $\delta \neq 0, \frac{1}{2}, 1$, and we give a complete account of $\frac{1}{2}$-derivations.

INTRODUCTION

The notion of derivation for an algebra was generalized by many mathematicians along quite different lines. Thus, in [1], the reader can find the definitions of a derivation of a subalgebra into an algebra and of an $\left(s_{1}, s_{2}\right)$-derivation of one algebra into another, where s_{1} and s_{2} are some homomorphisms of the algebras. Back in the 1950s, Herstein explored Jordan derivations of prime associative rings of characteristic $p \neq 2$; see [2]. (Recall that a Jordan derivation of an algebra A is a linear mapping $j_{d}: A \rightarrow A$ satisfying the equality $j_{d}(x y+y x)=j_{d}(x) y+x j_{d}(y)+j_{d}(y) x+y j_{d}(x)$, for any $x, y \in A$.) He proved that the Jordan derivation of such a ring is properly a standard derivation. Later on, Hopkins in [3] dealt with antiderivations of Lie algebras (for definition of an antiderivation, see [1]). The antiderivation, on the other hand, is a special case of a δ-derivation - that is, a linear mapping μ of an algebra such that $\mu(x y)=\delta(\mu(x) y+x \mu(y))$, where δ is some fixed element of the ground field.

Subsequently, Filippov generalized Hopkin's results in [4] by treating prime Lie algebras over an associative commutative ring Φ with unity and $\frac{1}{2}$. It was proved that every prime Lie Φ-algebra, on which a nondegenerated symmetric invariant bilinear form is defined, has no non-zero δ-derivation if $\delta \neq-1,0, \frac{1}{2}, 1$. In [4], also, $\frac{1}{2}$-derivations were described for an arbitrary prime Lie Φ-algebra $A\left(\frac{1}{6} \in \Phi\right)$ with a non-degenerate symmetric invariant bilinear form defined on the algebra. It was shown that the linear mapping $\phi: A \rightarrow A$ is a $\frac{1}{2}$-derivation iff $\phi \in \Gamma(A)$, where $\Gamma(A)$ is the centroid of A. This implies that if A is a central simple Lie algebra over a field of characteristic $p \neq 2,3$ on which a non-degenerate symmetric invariant bilinear form is defined, then every $\frac{1}{2}$-derivation ϕ has the form $\phi(x)=\alpha x, \alpha \in \Phi$. At a later time, Filippov described δ-derivations for prime alternative and non-Lie Mal'tsev Φ-algebras with some restrictions on the operator ring Φ. In [5], for instance, it was stated that algebras in these classes have no non-zero δ-derivations if $\delta \neq 0, \frac{1}{2}, 1$.

In the present paper, we come up with an account of non-trivial δ-derivations for semisimple finitedimensional Jordan algebras over an algebraically closed field of characteristic not 2, and for simple finitedimensional Jordan superalgebras over an algebraically closed field of characteristic 0 . For these classes of

[^0][^1]algebras and superalgebras, non-zero δ-derivations are shown to be missing for $\delta \neq 0, \frac{1}{2}, 1$, and we provide in a complete description of $\frac{1}{2}$-derivations.

The paper is divided into four parts. In Sec. 1, relevant definitions are given and known results cited. In Sec. 2, we deal with δ-Derivations of simple and semisimple finite-dimensional Jordan algebras. In Secs. 3 and $4, \delta$-derivations are described for simple finite-dimensional Jordan supercoalgebras over an algebraically closed field of characteristic 0 . For some superalgebras, note, the condition on the characteristic may be weakened so as to be distinct from 2. A proof for the main theorem is based on the classification theorem for simple finite-dimensional superalgebras and on the results obtained in Secs. 3 and 4.

1. BASIC FACTS AND DEFINITIONS

Let F be a field of characteristic $p, p \neq 2$. An algebra A over F is Jordan if it satisfies the following identities:

$$
x y=y x, \quad\left(x^{2} y\right) x=x^{2}(y x) .
$$

Jordan algebras arise naturally from the associative algebras. If in an associative algebra A we replace multiplication $a b$ by symmetrized multiplication $a \circ b=\frac{1}{2}(a b+b a)$ then we will face a Jordan algebra. Denote this algebra by $A^{(+)}$. Below are essential examples of Jordan algebras.
(1) The algebra $J(V, f)$ of bilinear form. Let $f: V \times V \longrightarrow F$ be a symmetric bilinear form on a vector space V. On the direct sum $J=F \cdot 1+V$ of vector spaces, we then define multiplication by setting $1 \cdot v=v \cdot 1=v$ and $v_{1} \cdot v_{2}=f\left(v_{1}, v_{2}\right) \cdot 1$; under this multiplication, $J=J(V, f)$ is a Jordan algebra. If the form f is non-degenerate and $\operatorname{dim} V>1$, then the algebra $J(V, f)$ is simple.
(2) The Jordan algebra $H\left(D_{n}, J\right)$. Here, $n \geqslant 3, D$ is a composition algebra, which is associative for $n>3, j: d \rightarrow \bar{d}$ is a canonical involution in D, and $J: X \rightarrow \bar{X}$ is a standard involution in D_{n}.

THEOREM 1.1 [6]. Every simple finite-dimensional Jordan algebra A over an algebraically closed field F of characteristic not 2 is isomorphic to one of the following algebras:
(1) $F \cdot 1$;
(2) $J(V, f)$;
(3) $H\left(D_{n}, J\right)$.

We recall the definition of a superalgebra. Let Γ be a Grassmann algebra over F, which is generated by elements $1, e_{1}, \ldots, e_{n}, \ldots$ and is defined by relations $e_{i}^{2}=0, e_{i} e_{j}=-e_{j} e_{i}$. Products $1, e_{i_{1}} e_{i_{2}} \ldots e_{i_{k}}$, $i_{1}<i_{2}<\ldots<i_{k}$, form a basis for Γ over F. Denote by Γ_{0} and Γ_{1} the subspaces generated by products of even and odd lengths, respectively. Then Γ is represented as a direct sum of these subspaces, $\Gamma=\Gamma_{0}+\Gamma_{1}$, with $\Gamma_{i} \Gamma_{j} \subseteq \Gamma_{i+j(\bmod 2)}, i, j=0,1$. In other words, Γ is a Z_{2}-graded algebra (or superalgebra) over F.

Now let $A=A_{0}+A_{1}$ be any supersubalgebra over F. Consider a tensor product of F-algebras, $\Gamma \otimes A$. Its subalgebra

$$
\Gamma(A)=\Gamma_{0} \otimes A_{0}+\Gamma_{1} \otimes A_{1}
$$

is called a Grassmann envelope for A.
Let Ω be some variety of algebras over F. A Z_{2}-graded algebra $A=A_{0}+A_{1}$ is a Ω-superalgebra if its Grassmann envelope $\Gamma(A)$ is an algebra in Ω. In particular, $A=A_{0} \oplus A_{1}$ is a Jordan superalgebra if its Grassmann envelope $\Gamma(A)$ is a Jordan algebra.

In [7], it was shown that every simple finite-dimensional associative superalgebra over an algebraically closed field F is isomorphic either to $A=M_{m, n}(F)$, which is the matrix algebra $M_{m+n}(F)$, or to $B=Q(n)$,
which is a subalgebra of $M_{2 n}(F)$. Gradings of superalgebras A and B are the following:

$$
\begin{aligned}
& A_{0}=\left\{\left.\left(\begin{array}{cc}
A & 0 \\
0 & D
\end{array}\right) \right\rvert\, A \in M_{m}(F), D \in M_{n}(F)\right\} \\
& A_{1}=\left\{\left.\left(\begin{array}{cc}
0 & B \\
C & 0
\end{array}\right) \right\rvert\, B \in M_{m, n}(F), C \in M_{n, m}(F)\right\}, \\
& B_{0}=\left\{\left.\left(\begin{array}{cc}
A & 0 \\
0 & A
\end{array}\right) \right\rvert\, A \in M_{n}(F)\right\}, B_{1}=\left\{\left.\left(\begin{array}{cc}
0 & B \\
B & 0
\end{array}\right) \right\rvert\, B \in M_{n}(F)\right\} .
\end{aligned}
$$

Let $A=A_{0}+A_{1}$ be an associative superalgebra. The vector space of A can be endowed with the structure of a Jordan supersubalgebra $A^{(+)}$, by defining new multiplication as follows: $a \circ b=\frac{1}{2}\left(a b+(-1)^{p(a) p(b)} b a\right)$. In this case $p(a)=i$ if $a \in A_{i}$.

Using the above construction, we arrive at superalgebras

$$
\begin{gathered}
M_{m, n}(F)^{(+)}, m \geqslant 1, n \geqslant 1 \\
Q(n)^{(+)}, n \geqslant 2
\end{gathered}
$$

Now, we define the superinvolution $j: A \rightarrow A$. A graded endomorphism $j: A \rightarrow A$ is called a superinvolution if $j(j(a))=a$ and $j(a b)=(-1)^{p(a) p(b)} j(b) j(a)$. Let $H(A, j)=\{a \in A: j(a)=a\}$. Then $H(A, j)=H\left(A_{0}, j\right)+H\left(A_{1}, j\right)$ is a subsuperalgebra of $A^{(+)}$. Below are superalgebras which are obtained from $M_{n, m}(F)$ via a suitable superinvolution:
(1) the Jordan superalgebra $\operatorname{osp}(n, m)$, consisting of matrices of the form $\left(\begin{array}{ll}A & B \\ C & D\end{array}\right)$, where $A^{T}=A \in$ $M_{n}(F), C=Q^{-1} B^{T}, D=Q^{-1} D^{T} Q \in M_{2 m}(F)$, and $Q=\left(\begin{array}{cr}0 & E_{m} \\ -E_{m} & 0\end{array}\right) ;$
(2) the Jordan superalgebra $P(n)$, consisting of matrices of the form $\left(\begin{array}{ll}A & B \\ C & D\end{array}\right)$, where $B^{T}=-B$, $C^{T}=C$, and $D=A^{T}$, with $A, B, C, D \in M_{n}(F)$.

THEOREM $1.2[8,9]$. Every simple finite-dimensional non-trivial (i.e., with a non-zero odd part) Jordan superalgebra A over an algebraically closed field F of characteristic 0 is isomorphic to one of the following superalgebras:

$$
M_{m, n}(F)^{(+)} ; Q(n)^{(+)} ; \operatorname{osp}(n, m) ; P(n) ; J(V, f) ; D_{t}, t \neq 0 ; K_{3} ; K_{10} ; J\left(\Gamma_{n}\right), n>1
$$

The superalgebras $J(V, f), D_{t}, K_{3}, K_{10}$, and $J\left(\Gamma_{n}\right)$ will be defined below.
Let $\delta \in F$. A linear mapping ϕ of A is called a δ-derivation if

$$
\begin{equation*}
\phi(x y)=\delta(x \phi(y)+\phi(x) y) \tag{1}
\end{equation*}
$$

for arbitrary elements $x, y \in A$.
The definition of a 1-derivation coincides with the conventional definition of a derivation. A 0-derivation is any endomorphism ϕ of A such that $\phi\left(A^{2}\right)=0$. A non-trivial δ-derivation is a δ-derivation which is not a 1-derivation, nor a 0-derivation. Obviously, for any algebra, the multiplication operator by an element of the ground field F is a $\frac{1}{2}$-derivation. We are interested in the behavior of non-trivial δ-derivations of semisimple finite-dimensional Jordan algebras over an algebraically closed field of characteristic not 2, and of simple finite-dimensional Jordan superalgebras over an algebraically closed field of characteristic 0 .

2. δ-DERIVATIONS FOR SEMISIMPLE FINITE-DIMENSIONAL JORDAN ALGEBRAS

In this section, we look at how non-trivial δ-derivations of simple finite-dimensional Jordan algebras behave over an algebraically closed field F of characteristic distinct from 2. As a consequence, we furnish a description of δ-derivations for semisimple finite-dimensional Jordan algebras over an algebraically closed field of characteristic not 2 .

THEOREM 2.1. Let ϕ be a non-trivial δ-derivation of a superalgebra A with unity e over a field F of characteristic not 2. Then $\delta=\frac{1}{2}$.

Proof. Let $\delta \neq \frac{1}{2}$. Then $\phi(e)=\phi(e \cdot e)=\delta(\phi(e)+\phi(e))=2 \delta \phi(e)$, that is, $\phi(e)=0$. Thus $\phi(x)=\phi(x \cdot e)=\delta(\phi(x)+x \phi(e))=\delta \phi(x)$ for arbitrary $x \in A$. Contradiction. The theorem is proved.

LEMMA 2.2. Let ϕ be a non-trivial $\frac{1}{2}$-derivation of a Jordan algebra A isomorphic to the ground field. Then $\phi(x)=\alpha x, \alpha \in F$.

Proof. Let e be unity in A. Then

$$
\begin{equation*}
\phi(x)=2 \phi(x e)-\phi(x)=x \phi(e) \tag{2}
\end{equation*}
$$

that is, $\phi(x)=\alpha x, \alpha \in F$. The lemma is proved.
LEMMA 2.3. Let ϕ be a non-trivial $\frac{1}{2}$-derivation of an algebra $J(V, f)$. Then $\phi(x)=\alpha x$ for $\alpha \in F$.
Proof. Let $\phi(e)=\alpha e+v$, where $\alpha \in F$ and $v \in V$. From (2), it follows that $\phi(x)=x \phi(e)$ for any $x \in J(V, f)$.

For $w \in V$, we then have

$$
\begin{aligned}
\alpha f(w, w) e+f(w, w) v & =w^{2}(\alpha e+v)=\phi\left(w^{2}\right)=\frac{1}{2}(w \phi(w)+\phi(w) w) \\
& =w \phi(w)=w(w(\alpha e+v))=w(\alpha w+f(v, w) e) \\
& =\alpha f(w, w) e+f(w, v) w .
\end{aligned}
$$

As the result, $f(w, w) v=f(w, v) w$. Now, since w is arbitrary and $\operatorname{dim}(V)>1$, we have $v=0$. Thus $\phi(x)=\alpha x$ for any $x \in J(V, f)$. The lemma is proved.

LEMMA 2.4. Let ϕ be a non-trivial $\frac{1}{2}$-derivation of an algebra $H\left(D_{n}, J\right), n \geqslant 3$. Then $\phi(x)=\alpha x$ for $\alpha \in F$.

Proof. Relevant information on composition algebras can be found in [6]. Let $\phi(e)=\alpha e+v$, where $v=\sum_{i, j=1} x_{i, j} e_{i, j}, x_{1,1}=0, x_{i, j}=\overline{x_{j, i}}, \alpha \in F, x_{i, j} \in D$.

From (2), for $x \in H\left(D_{n}, J\right)$ arbitrary, we have

$$
\begin{equation*}
x^{2} \circ(\alpha e+v)=\phi\left(x^{2}\right)=x \circ \phi(x)=x \circ(x \circ(\alpha e+v)), x^{2} \circ v=x \circ(x \circ v) . \tag{3}
\end{equation*}
$$

If we put $x=e_{k, k}$ we obtain $\sum_{j=1}^{n} x_{k, j} e_{k, j}+\sum_{i=1}^{n} x_{i, k} e_{i, k}=2 e_{k, k}^{2} \circ v=2 e_{k, k} \circ\left(e_{k, k} \circ v\right)=\frac{1}{2}\left(\sum_{j=1}^{n} x_{k, j} e_{k, j}+\right.$ $\left.x_{k, k} e_{k, k}+x_{k, k} e_{k, k}+\sum_{i=1}^{n} x_{i, k} e_{i, k}\right)$, whence $v=\sum_{i=1}^{n} x_{i, i} e_{i, i}$.

For $x=e_{n, k}+e_{k, n}$ substituted in (3), we have $x_{n, n} e_{n, n}+x_{k, k} e_{k, k}=\left(e_{n, k}+e_{k, n}\right)^{2} \circ \sum_{i=1}^{n} x_{i, i} e_{i, i}=$ $\left(e_{n, k}+e_{k, n}\right) \circ\left(\left(e_{n, k}+e_{k, n}\right) \circ \sum_{i=1}^{n} x_{i, i} e_{i, i}\right)=\left(e_{n, k}+e_{k, n}\right) \circ \frac{1}{2}\left(x_{n, n} e_{k, n}+x_{k, k} e_{k, n}+x_{k, k} e_{n, k}+x_{n, n} e_{n, k}\right)=$ $\frac{1}{2}\left(x_{k, k} e_{k, k}+x_{k, k} e_{n, n}+x_{n, n} e_{k, k}+x_{n, n} e_{n, n}\right)$, which yields $x_{n, n}=x_{n-1, n-1}=\ldots=x_{1,1}=0$ and $v=0$.

Consequently, $\phi(x)=\alpha x$ for any $x \in H\left(D_{n}, J\right)$. The lemma is proved.
THEOREM 2.5. Let ϕ be a non-trivial δ-derivation of a simple finite-dimensional Jordan algebra A over an algebraically closed field F of characteristic distinct from 2 . Then $\delta=\frac{1}{2}$ and $\phi(x)=\alpha x, \alpha \in F$.

The proof follows from Theorems 1.1, 2.1 and Lemmas 2.2-2.4.
THEOREM 2.6. Let ϕ be a non-trivial δ-derivation of a semisimple finite-dimensional Jordan algebra $A=\bigoplus_{i=1}^{n} A_{i}$, where A_{i} are simple algebras, over an algebraically closed field of characteristic not 2 . Then $\delta=\frac{1}{2}$, and for $x=\sum_{i=1}^{n} x_{i}$ where $x_{i} \in A_{i}$, we have $\phi(x)=\sum_{i=1}^{n} \alpha_{i} x_{i}, \alpha_{i} \in F$.

Proof. Unity in A_{k} is denoted by e_{k}. If $x_{i} \in A_{i}$, then $\phi\left(x_{i}\right)=x_{i}^{+}+x_{i}^{-}$, where $x_{i}^{+} \in A_{i}$ and $x_{i}^{-} \notin A_{i}$. Put $e^{i}=\sum_{k=1}^{n} e_{k}-e_{i}$ and $\phi\left(e^{i}\right)=e^{i+}+e^{i-}$, where $e^{i+} \in A_{i}$ and $e^{i-} \notin A_{i}$. Then $0=\phi\left(x_{i} \cdot e^{i}\right)=$ $\delta\left(\phi\left(x_{i}\right) \cdot e^{i}+x_{i} \cdot \phi\left(e^{i}\right)\right)=\delta\left(\left(x_{i}^{+}+x_{i}^{-}\right) e^{i}+x_{i}\left(e^{i+}+e^{i-}\right)\right)=\delta\left(x_{i}^{-}+x_{i} \cdot e^{i+}\right)$, which yields $x_{i}^{-}=0$. Consequently, the mapping ϕ is invariant on A_{i}. In virtue of Theorem 2.5, $\delta=\frac{1}{2}$ and $\phi\left(x_{i}\right)=\alpha_{i} x_{i}$ for some $\alpha_{i} \in F$ defined for A_{i} with $x_{i} \in A_{i}$ arbitrary. It is easy to verify that the mapping ϕ, given by the rule $\phi\left(\sum_{i=1}^{n} x_{i}\right)=\sum_{i=1}^{n} \alpha_{i} x_{i}, x_{i} \in A_{i}$, is a $\frac{1}{2}$-derivation. The theorem is proved.

3. δ-DERIVATIONS FOR SIMPLE FINITE-DIMENSIONAL JORDAN SUPERALGEBRAS WITH UNITY

In this section, all superalgebras but $J\left(\Gamma_{n}\right)$ are treated over a field of characteristic not 2. The superalgebra $J\left(\Gamma_{n}\right)$ is treated over a field of characteristic 0 . Among the title superalgebras are $M_{m, n}(F)^{(+)}$, $Q(n)^{(+)} \operatorname{osp}(n, m), P(n), J(V, f)$, and $J\left(\Gamma_{n}\right)$. Theorem 2.1 implies that these superalgebras all lack in non-trivial δ-derivations, for $\delta \neq \frac{1}{2}$. Therefore, we need only consider the case of a $\frac{1}{2}$-derivation.

LEMMA 3.1. Let ϕ be a non-trivial $\frac{1}{2}$-derivation of $M_{m, n}(F)^{(+)}$. Then $\phi(x)=\alpha x$ for some $\alpha \in F$.
Proof. It is easy to see that, for $1 \leqslant i, j \leqslant n+m$, elements $e_{i, j}$ form a basis for the superalgebra $M_{m, n}(F)^{(+)}$. Let $\phi\left(e_{i, j}\right)=\sum_{k, l=1}^{m+n} \alpha_{k, l}^{i, j} e_{k, l}$, where $\alpha_{k, l}^{i, j} \in F, i, j=1, \ldots, n+m$.

If in (1) we put $x=y=e_{i, i}$ we arrive at

$$
\sum_{k, l=1}^{m+n} \alpha_{k, l}^{i, i} e_{k, l}=\phi\left(e_{i, i}\right)=\phi\left(e_{i, i}^{2}\right)=\frac{1}{2}\left(e_{i, i} \circ \phi\left(e_{i, i}\right)+\phi\left(e_{i, i}\right) \circ e_{i, i}\right)=\frac{1}{2}\left(\sum_{l=1}^{n+m} \alpha_{i, l}^{i, i} e_{i, l}+\sum_{k=1}^{n+m} \alpha_{k, i}^{i, i} e_{k, i}\right),
$$

whence $\phi\left(e_{i, i}\right)=\alpha_{i} e_{i, i}$, where $\alpha_{i}=\alpha_{i, i}^{i, i}, i=1, \ldots, m+n$.
Substituting $x=e_{i, j}$ and $y=e_{i, i}, i \neq j$, in (1), we obtain

$$
\sum_{k, l=1}^{m+n} \alpha_{k, l}^{i, j} e_{k, l}=\phi\left(e_{i, j}\right)=2 \phi\left(e_{i, j} \circ e_{i, i}\right)=\frac{1}{2}\left(\alpha_{i} e_{i, j}+\sum_{l=1}^{m+n} \alpha_{i, l}^{i, j} e_{i, l}+\sum_{k=1}^{m+n} \alpha_{k, i}^{i, j} e_{k, i}\right) .
$$

Analyzing the resulting equalities, we conclude that $\alpha_{i, j}^{i, j}=\alpha_{i}$. A similar argument for $e_{i, j}$ and $e_{j, j}$ yields $\alpha_{i, j}^{i, j}=\alpha_{j}$. Since ϕ is linear, $\phi(e)=\alpha e$. Using (2) gives $\phi(x)=\alpha x$, for any $x \in M_{n, m}(F)^{(+)}$. The lemma is proved.

LEMMA 3.2. Let ϕ be a non-trivial $\frac{1}{2}$-derivation of $Q(n)^{(+)}$. Then $\phi(x)=\alpha x$, where $\alpha \in F$.
Proof. Clearly, $\Delta_{i, j}=e_{i, j}+e_{n+i, n+j}$ and $\Delta^{i, j}=e_{n+i, j}+e_{i, n+j}$ form a basis for the superalgebra $Q(n)^{(+)}$.

On the basis elements, the following relations hold:

$$
\Delta_{i, j} \circ \Delta_{k, l}=\frac{1}{2}\left(\delta_{j, k} \Delta_{i, l}+\delta_{l, i} \Delta_{k, j}\right), \quad \Delta_{i, j} \circ \Delta^{k, l}=\frac{1}{2}\left(\delta_{j, k} \Delta^{i, l}+\delta_{l, i} \Delta^{k, j}\right) .
$$

Let $\phi\left(\Delta_{i, j}\right)=\sum_{k, l=1}^{n} \alpha_{k, l}^{i, j} \Delta_{k, l}+\sum_{k, l=1}^{n} \alpha_{k, l}^{* i, j} \Delta^{k, l}$. Put $x=y=\Delta_{i, i}$ in (1). Then

$$
\begin{gathered}
\sum_{k, l=1}^{n} \alpha_{k, l}^{i, i} \Delta_{k, l}+\sum_{k, l=1}^{n} \alpha_{k, l}^{* i, i} \Delta^{k, l}=\phi\left(\Delta_{i, i}\right)=\phi\left(\Delta_{i, i}^{2}\right)=\frac{1}{2}\left(\Delta_{i, i} \circ \phi\left(\Delta_{i, i}\right)+\phi\left(\Delta_{i, i}\right) \circ \Delta_{i, i}\right)= \\
\frac{1}{2}\left(\sum_{l=1}^{n} \alpha_{i, l}^{i, i} \Delta_{i, l}+\sum_{k=1}^{n} \alpha_{k, i}^{i, i} \Delta_{k, i}+\sum_{k=1}^{n} \alpha_{k, i}^{* i, i} \Delta^{k, i}+\sum_{l=1}^{n} \alpha_{i, l}^{* i, i} \Delta^{i, l}\right)
\end{gathered}
$$

Consequently, $\phi\left(\Delta_{i, i}\right)=\alpha_{i} \Delta_{i, i}+\alpha^{i} \Delta^{i, i}$, where $\alpha_{i}=\alpha_{i, i}^{i, i}$ and $\alpha^{i}=\alpha_{i, i}^{* i, i}$.
If we substitute $x=\Delta_{i, i}$ and $y=\Delta_{i, j}, i \neq j$, in (1) we obtain

$$
\begin{gathered}
\sum_{k, l=1}^{n}\left(\alpha_{k, l}^{i, j} \Delta_{k, l}+\alpha_{k, l}^{* i, j} \Delta^{k, l}\right)=\phi\left(\Delta_{i, i}\right)=2 \phi\left(\Delta_{i, i} \circ \Delta_{i, j}\right)= \\
\frac{1}{2}\left(\alpha_{i} \Delta_{i, j}+\alpha^{i} \Delta^{i, j}+\sum_{l=1}^{n} \alpha_{i, l}^{i, j} \Delta_{i, l}+\sum_{k=1}^{n} \alpha_{k, i}^{i, j} \Delta_{k, i}+\sum_{l=1}^{n} \alpha_{i, l}^{* i, j} \Delta^{i, l}+\sum_{k=1}^{n} \alpha_{k, i}^{* i, j} \Delta^{k, i}\right)
\end{gathered}
$$

Hence $\alpha_{i, j}^{i, j}=\alpha_{i}, \alpha_{i, j}^{* i, j}=\alpha^{i}$.
A similar argument for $\Delta_{j, j}$ and $\Delta_{i, j}$ yields

$$
\phi\left(\Delta_{i, j}\right)=\alpha_{j, j}^{i, j} \Delta_{j, j}+\alpha_{j} \Delta_{i, j}+\alpha_{j, j}^{* i, j} \Delta^{j, j}+\alpha^{j} \Delta^{i, j}
$$

These relations readily imply that $\alpha_{i}=\alpha_{j}=\alpha$ and $\alpha^{i}=\alpha^{j}=\beta$, that is, $\phi\left(\Delta_{i, i}\right)=\alpha \Delta_{i, i}+\beta \Delta^{i, i}$.
Clearly, $\phi(E)=\alpha E+\beta \Delta$, where E is unity in $Q(n)^{(+)}$, and $\Delta=\sum_{i=1}^{n}\left(e_{i, n+i}+e_{n+i, i}\right)$. Suppose that $\beta \neq 0$ and $\phi(x)=\alpha x+\beta \Delta \circ x$ is a $\frac{1}{2}$-derivation. A mapping $\psi: Q(n)^{(+)} \rightarrow Q(n)^{(+)}$, for which $\psi(x)=\Delta \circ x$, likewise is a $\frac{1}{2}$-derivation. Obviously, $\frac{1}{2}\left(\Delta^{i, i}-\Delta^{j, j}\right)=\psi\left(\Delta^{i, j} \circ \Delta^{j, i}\right)=\frac{1}{2}\left(\left(\Delta^{i, j} \circ \Delta\right) \circ \Delta^{j, i}+\Delta^{i, j} \circ\left(\Delta^{j, i} \circ \Delta\right)\right)=0$. On the other hand, $\Delta^{i, i}-\Delta^{j, j} \neq 0$. Consequently, $\beta=0$, that is, $\phi(x)=\alpha x$. The lemma is proved.

LEMMA 3.3. Let ϕ be a non-trivial $\frac{1}{2}$-derivation of $\operatorname{osp}(n, m)$. Then $\phi(x)=\alpha x$ for some $\alpha \in F$.
Proof. It is easy to see that $E=\sum_{i=1}^{n} \Delta_{i}+\sum_{j=1}^{m} \Delta^{j}$, where $\Delta^{j}=e_{n+j, n+j}+e_{n+m+j, n+m+j}$ and $\Delta_{i}=e_{i, i}$ is unity in the supersubalgebra $\operatorname{osp}(n, m)$. Let

$$
\phi\left(\Delta_{i}\right)=\sum_{k, l=1}^{n+2 m} \alpha_{k, l}^{i} e_{k, l}, i=1, \ldots, n, \quad \phi\left(\Delta^{j}\right)=\sum_{k, l=1}^{n+2 m} \beta_{k, l}^{j} e_{k, l}, j=1, \ldots, m .
$$

If we put $x=y=\Delta_{i}, i=1, \ldots, n$, in (1) we obtain $\sum_{k, l=1}^{n+2 m} \alpha_{k, l}^{i} e_{k, l}=\phi\left(\Delta_{i}\right)=\phi\left(\Delta_{i}^{2}\right)=\frac{1}{2}\left(\phi\left(\Delta_{i}\right) \circ \Delta_{i}+\right.$ $\left.\Delta_{i} \circ \phi\left(\Delta_{i}\right)\right)=\frac{1}{2}\left(\sum_{k=1}^{n+2 m} \alpha_{k, i}^{i} e_{k, i}+\sum_{l=1}^{n+2 m} \alpha_{i, l}^{i} e_{i, l}\right)$, which yields $\phi\left(\Delta_{i}\right)=\alpha_{i} \Delta_{i}, i=1, \ldots, n$.

Put $x=y=\Delta^{i}, i=1, \ldots, m$, in (1). Then

$$
\begin{gathered}
\sum_{k, l=1}^{n+2 m} \beta_{k, l}^{i} e_{k, l}=\phi\left(\Delta^{i}\right)=\phi\left(\left(\Delta^{i}\right)^{2}\right)=\frac{1}{2}\left(\Delta^{i} \circ \phi\left(\Delta^{i}\right)+\phi\left(\Delta^{i}\right) \circ \Delta^{i}\right)= \\
\frac{1}{2}\left(\sum_{k=1}^{n+2 m} \beta_{k, n+i}^{i} e_{k, n+i}+\sum_{k=1}^{n+2 m} \beta_{k, n+m+i}^{i} e_{k, n+m+i}+\sum_{l=1}^{n+2 m} \beta_{n+i, l}^{i} e_{n+i, l}+\sum_{l=1}^{n+2 m} \beta_{n+m+i, l}^{i} e_{n+m+i, l}\right)
\end{gathered}
$$

By the definition of $\operatorname{osp}(n, m)$, we have $\beta_{n+i, n+m+i}^{i}=\beta_{m+n+i, n+i}^{i}=0$ and $\beta_{n+i, n+i}^{i}=\beta_{n+m+i, n+m+i}^{i}$. Thus $\phi\left(\Delta^{j}\right)=\beta_{j} \Delta^{j}, j=1, \ldots, m$.

Let $\left(e_{i, j}+e_{j, i}\right) \in \operatorname{osp}(n, m), i, j=1, \ldots, n$, and $\phi\left(e_{i, j}+e_{j, i}\right)=\sum_{k, l=1}^{2 m+n} \gamma_{k, l}^{i, j} e_{k, l}$. If we put $x=e_{i, j}+e_{j, i}$ and $y=\Delta_{i}$ in (1) we arrive at

$$
\sum_{k, l=1}^{2 m+n} \gamma_{k, l}^{i, j} e_{k, l}=\phi\left(e_{i, j}+e_{j, i}\right)=2 \phi\left(\left(e_{i, j}+e_{j, i}\right) \circ \Delta_{i}\right)=\frac{1}{2}\left(\sum_{k=1}^{2 m+n} \gamma_{k, i}^{i, j} e_{k, i}+\sum_{l=1}^{2 m+n} \gamma_{i, l}^{i, j} e_{i, l}+\alpha_{i}\left(e_{i, j}+e_{j, i}\right)\right) .
$$

In view of the last relation, $\gamma_{j, i}^{i, j}=\gamma_{i, j}^{i, j}=\alpha_{i}$. Similar calculations for $e_{i, j}+e_{j, i}$ and Δ_{j} give $\gamma_{j, i}^{i, j}=\gamma_{i, j}^{i, j}=$ α_{j}. Ultimately, $\phi\left(\Delta_{i}\right)=\alpha \Delta_{i}, i=1, \ldots, n$.

Let $E_{i j}=\left(e_{n+i, n+j}+e_{n+m+j, n+m+i}\right) \in \operatorname{osp}(n, m), i, j=1, \ldots, m$, and $\phi\left(E_{i j}\right)=\sum_{k, l=1}^{2 m+n} \omega_{k, l}^{i, j} e_{k, l}$. Put $x=E_{i j}$ and $y=\Delta^{i}$ in (1); then

$$
\begin{gathered}
\sum_{k, l=1}^{2 m+n} \omega_{k, l}^{i, j} e_{k, l}=\phi\left(E_{i j}\right)=2 \phi\left(E_{i j} \circ \Delta^{i}\right)=\frac{1}{2}\left(\sum_{l=1}^{2 m+n} \omega_{n+i, l}^{i, j} e_{n+i, l}+\sum_{k=1}^{2 m+n} \omega_{k, n+i}^{i, j} e_{k, n+i}+\right. \\
\left.\sum_{l=1}^{2 m+n} \omega_{n+m+i, l}^{i, j} e_{n+m+i, l}+\sum_{k=1}^{2 m+n} \omega_{k, n+m+i}^{i, j} e_{k, n+m+i}+\beta_{i} E_{i j}\right) .
\end{gathered}
$$

Consequently, $\omega_{n+i, n+j}^{i, j}=\omega_{n+m+j, n+m+i}^{i, j}=\beta_{i}$.
A similar argument for $E_{i j}$ and Δ^{j} shows that $\omega_{n+i, n+j}^{i, j}=\omega_{n+m+j, n+m+i}^{i, j}=\beta_{j}$ with $1 \leqslant i, j \leqslant m$. Eventually we conclude that $\phi\left(\Delta^{j}\right)=\beta \Delta^{j}, j=1, \ldots, m$.

Let $E^{11}=e_{1, n+m+1}-e_{n+1,1} \in \operatorname{osp}(n, m)$ and $\phi\left(E^{11}\right)=\sum_{k, l=1}^{2 m+n} \nu_{k, l} e_{k, l}$. If we put $x=E^{11}$ and $y=\Delta^{1}$ in (1) we have

$$
\begin{gathered}
\sum_{k, l=1}^{2 m+n} \nu_{k, l} e_{k, l}=\phi\left(E^{11}\right)=2 \phi\left(E^{11} \circ \Delta^{1}\right)=\frac{1}{2}\left(\sum_{k=1}^{2 m+n}\left(\nu_{k, n+1} e_{k, n+1}+\nu_{k, n+m+1} e_{k, n+m+1}\right)+\right. \\
\left.\sum_{l=1}^{2 m+n}\left(\nu_{n+1, l} e_{n+1, l}+\nu_{n+m+1, l} e_{n+m+1, l}\right)+\alpha E^{11}\right),
\end{gathered}
$$

whence $\nu_{1, m+n+1}=\nu_{n+1,1}=\alpha$. Further, for $x=E^{11}$ and $y=\Delta_{1}$ substituted in (1), we obtain

$$
\sum_{k, l=1}^{2 m+n} \nu_{k, l} e_{k, l}=\phi\left(E^{11}\right)=2 \phi\left(\left(E^{11}\right) \circ \Delta_{1}\right)=\frac{1}{2}\left(\sum_{l=1}^{2 m+n} \nu_{1, l} e_{1, l}+\sum_{k=1}^{2 m+n} \nu_{k, 1} e_{k, 1}+\beta E^{11}\right)
$$

and $\nu_{1, m+n+1}=\nu_{n+1,1}=\beta$. Thus $\alpha=\beta$ and $\phi(E)=\alpha E$. From (2), it follows that $\phi(y)=\alpha y$ for any element $y \in \operatorname{osp}(n, m)$. The lemma is proved.

LEMMA 3.4. Let ϕ be a $\frac{1}{2}$-derivation of $P(n)$. Then $\phi(x)=\alpha x$, where $\alpha \in F$.
Proof. Let $\Delta_{i, j}=e_{i, j}+e_{n+j, n+i}, E=\sum_{i=1}^{n} \Delta_{i, i}$ be unity in the superalgebra $P(n)$, and $\phi\left(\Delta_{i, j}\right)=$ $\sum_{k, l=1}^{2 n} \alpha_{k, l}^{i, j} e_{k, l}$. If in (1) we put $x=y=\Delta_{i, i}$ we arrive at

$$
\sum_{k, l=1}^{2 n} \alpha_{k, l}^{i, i} e_{k, l}=\phi\left(\Delta_{i, i}\right)=\phi\left(\Delta_{i, i}^{2}\right)=\frac{1}{2}\left(\sum_{l=1}^{2 n} \alpha_{n+i, l}^{i, i} e_{n+i, l}+\sum_{k=1}^{2 n} \alpha_{k, n+i}^{i, i} e_{k, n+i}+\sum_{l=1}^{2 n} \alpha_{i, l}^{i, i} e_{i, l}+\sum_{k=1}^{2 n} \alpha_{k, i}^{i, i} e_{k, i}\right) .
$$

The definition of $P(n)$ implies $\alpha_{i, n+i}^{i, i}=0$. Therefore, $\phi\left(\Delta_{i, i}\right)=\alpha_{i, i}^{i, i} e_{i, i}+\alpha_{n+i, n+i}^{i, i} e_{n+i, n+i}+\alpha_{n+i, i}^{i, i} e_{n+i, i}$.

Put $x=\Delta_{i, i}$ and $y=\Delta_{i, j}$ in (1). Then

$$
\begin{aligned}
& \sum_{k, l=1}^{2 n} \alpha_{k, l}^{i, j} e_{k, l}= \phi\left(\Delta_{i, j}\right)=2 \phi\left(\Delta_{i, i} \circ \Delta_{i, j}\right) \\
&=\frac{1}{2}\left(\alpha_{i, i}^{i, i} e_{i, j}+\alpha_{n+i, n+i}^{i, i} e_{n+j, n+i}+\alpha_{n+i, i}^{i, i} e_{n+j, i}+\alpha_{n+i, i}^{i, i} e_{n+i, j}\right. \\
&\left.+\sum_{l=1}^{2 n} \alpha_{i, l}^{i, j} e_{i, l}+\sum_{k=1}^{2 n} \alpha_{k, i}^{i, j} e_{k, i}+\sum_{l=1}^{2 n} \alpha_{n+i, l}^{i, j} e_{n+i, l}+\sum_{k=1}^{2 n} \alpha_{k, n+i}^{i, j} e_{k, n+i}\right)
\end{aligned}
$$

Thus $\alpha_{i, i}^{i, i}=\alpha_{i, j}^{i, j}, \alpha_{n+i, n+i}^{i, i}=\alpha_{n+j, n+i}^{i, i}$, and $\alpha_{n+i, i}^{i, i}=\alpha_{n+j, i}^{i, j}$.
Arguing similarly for $\Delta_{j, j}$ and $\Delta_{i, j}$, we obtain $\alpha_{j, j}^{j, j}=\alpha_{i, j}^{i, j}, \alpha_{n+j, n+j}^{j, j}=\alpha_{n+j, n+i}^{i, i}$, and $\alpha_{n+j, j}^{j, j}=\alpha_{n+j, i}^{i, j}$. In view of the definition of $P(n)$ and the relations above, we have $\phi\left(\Delta_{i, i}\right)=\alpha \Delta_{i, i}+\beta e_{n+i, i}$. The fact that the mapping ϕ is linear implies $\phi(E)=\alpha E+\beta \Delta, \Delta=\sum_{i=1}^{n}\left(e_{n+i, i}\right)$.

Suppose that $\beta \neq 0$ and $\phi(x)=\alpha x+\beta \Delta \circ x$ is a $\frac{1}{2}$-derivation. Then a mapping $\psi: P(n) \rightarrow P(n)$, where $\psi(x)=\Delta \circ x$, likewise is a $\frac{1}{2}$-derivation. We argue to show that this is not so. Let $b_{j, i}=e_{j, n+i}-e_{i, n+j}$. Then $\psi\left(\Delta_{i, j} \circ b_{j, i}\right)=\psi(0)=0$; but $\frac{1}{2}\left(\psi\left(\Delta_{i, j}\right) \circ b_{j, i}+\Delta_{i, j} \circ \psi\left(b_{j, i}\right)\right)=\frac{1}{2}\left(\left(\Delta_{i, j} \circ \Delta\right) \circ b_{j, i}+\Delta_{i, j} \circ\left(b_{j, i} \circ \Delta\right)\right)=$ $\frac{1}{4}\left(\left(e_{n+j, i}+e_{n+i, j}\right) \circ\left(e_{j, n+i}-e_{i, n+j}\right)+\left(e_{j, i}-e_{i, j}-e_{n+j, n+i}+e_{n+i, n+j}\right) \circ\left(e_{i, j}+e_{n+j, n+i}\right)\right)=\frac{1}{8} \Delta_{i, i} \neq 0$ on the other hand. Hence ψ is not a $\frac{1}{2}$-derivation. Therefore, $\beta=0$ and $\phi(x)=\alpha x$. The lemma is proved.

We define the Jordan superalgebra $J(V, f)$. Let $V=V_{0}+V_{1}$ be a Z_{2}-graded vector space on which a non-degenerate superform $f(.,):. V \times V \rightarrow F$ is defined so that it is symmetric on V_{0} and is skew-symmetric on V_{1}. Also $f\left(V_{1}, V_{0}\right)=f\left(V_{0}, V_{1}\right)=0$. Consider a direct sum of vector spaces, $J=F \oplus V$. Let e be unity in the field F. Define, then, multiplication by the formula $(\alpha+v)(\beta+w)=(\alpha \beta+f(v, w)) e+(\alpha w+\beta v)$. The given superalgebra has grading $J_{0}=F+V_{0}, J_{1}=V_{1}$. It is easy to see that e is unity in $J(V, f)$.

LEMMA 3.5. Let ϕ be a $\frac{1}{2}$-derivation of $J(V, f)$. Then $\phi(x)=\alpha x$, where $\alpha \in F$.
Proof. Let $\phi(e)=\alpha e+v_{0}+v_{1}, v_{i} \in V_{i}$. Putting $x=z_{i}, y=e$, and $z_{i} \in V_{i}$ in (1), we obtain $\phi\left(z_{i}\right)=2 \phi\left(z_{i} e\right)-\phi\left(z_{i}\right)=\phi\left(z_{i}\right) e+z_{i} \phi(e)-\phi\left(z_{i}\right)=\alpha z_{i}+f\left(z_{i}, v_{i}\right) e$, whence $\phi\left(z_{i}\right)=\alpha z_{i}+f\left(z_{i}, v_{i}\right) e$.

If we put $x=z_{0}$ and $y=z_{1}$ in (1) we arrive at $0=\phi\left(z_{1} z_{0}\right)=\frac{1}{2}\left(\phi\left(z_{1}\right) z_{0}+z_{1} \phi\left(z_{0}\right)\right)=f\left(z_{1}, v_{1}\right) z_{0}+$ $f\left(z_{0}, v_{0}\right) z_{1}$. By the definition of a superform f, we have $v_{0}=0$ and $v_{1}=0$, that is, $\phi(e)=\alpha e$. Using (2) yields $\phi(x)=\alpha x, \alpha \in F$, for any $x \in J(V, f)$. The lemma is proved.

Consider the Grassmann algebra Γ with (odd) anticommutative generators $e_{1}, e_{2}, \ldots, e_{n}, \ldots$ In order to define new multiplication, we use the operation

$$
\frac{\partial}{\partial e_{j}}\left(e_{i_{1}} e_{i_{2}} \ldots e_{i_{n}}\right)= \begin{cases}(-1)^{k-1} e_{i_{1}} e_{i_{2}} \ldots e_{i_{k-1}} e_{i_{k+1}} \ldots e_{i_{n}} & \text { if } j=i_{k}, \\ 0 & \text { if } j \neq i_{l}, l=1, \ldots, n\end{cases}
$$

For $f, g \in \Gamma_{0} \bigcup \Gamma_{1}$, Grassmann multiplication is defined thus:

$$
\{f, g\}=(-1)^{p(f)} \sum_{j=1}^{\infty} \frac{\partial f}{\partial e_{j}} \frac{\partial g}{\partial e_{j}} .
$$

Let $\bar{\Gamma}$ be an isomorphic copy of Γ under the isomorphic mapping $x \rightarrow \bar{x}$. Consider a direct sum of vector spaces, $J(\Gamma)=\Gamma+\bar{\Gamma}$, and endow it with the structure of a Jordan superalgebra, setting $A_{0}=\Gamma_{0}+\overline{\Gamma_{1}}$ and $A_{1}=\Gamma_{1}+\overline{\Gamma_{0}}$, with multiplication \bullet. We obtain

$$
a \bullet b=a b, \bar{a} \bullet b=(-1)^{p(b)} \overline{a b}, a \bullet \bar{b}=\overline{a b}, \bar{a} \bullet \bar{b}=(-1)^{p(b)}\{a, b\}
$$

where $a, b \in \Gamma_{0} \bigcup \Gamma_{1}$ and $a b$ is the product in Γ. Let Γ_{n} be a subalgebra of Γ generated by elements $e_{1}, e_{2}, \ldots, e_{n}$. By $J\left(\Gamma_{n}\right)$ we denote the subsuperalgebra $\Gamma_{n}+\overline{\Gamma_{n}}$ of $J(\Gamma)$. If $n \geqslant 2$ then $J\left(\Gamma_{n}\right)$ is a simple Jordan superalgebra.

LEMMA 3.6. Let ϕ be a $\frac{1}{2}$-derivation of $J\left(\Gamma_{n}\right)$. Then $\phi(x)=\alpha x$, where $\alpha \in F$.
Proof. Let $\phi(1)=\alpha \gamma+\beta \bar{\nu}$, where $\alpha, \beta \in F, \gamma \in \Gamma$, and $\bar{\nu} \in \bar{\Gamma}$. Put $y=1$ in (1); then

$$
\begin{equation*}
\phi(x)=2 \phi(x \bullet 1)-\phi(x)=\phi(x)+x \bullet \phi(1)-\phi(x)=x \bullet \phi(1) . \tag{4}
\end{equation*}
$$

If in (1) we put $x=\overline{e_{i}}, y=\overline{e_{i}}, i=1, \ldots, n$, with (4) in mind, we arrive at

$$
\phi(1)=\phi\left(\overline{e_{i}} \bullet \overline{e_{i}}\right)=\frac{1}{2}\left(\phi\left(\overline{e_{i}}\right) \bullet \overline{e_{i}}+\overline{e_{i}} \bullet \phi\left(\overline{e_{i}}\right)\right)=\phi\left(\overline{e_{i}}\right) \bullet \overline{e_{i}}=\overline{e_{i}} \bullet\left(\overline{e_{i}} \bullet \phi(1)\right) .
$$

For any x of the form $e_{i_{1}} e_{i_{2}} \ldots e_{i_{k}}$, obviously, we have

$$
\begin{align*}
& \overline{e_{i}} \bullet\left(\overline{e_{i}} \bullet x\right)= \begin{cases}x & \text { if } \frac{\partial x}{\partial e_{i}}=0 \\
0 & \text { otherwise }\end{cases} \tag{5}\\
& \overline{e_{i}} \bullet\left(\overline{e_{i}} \bullet \bar{x}\right)= \begin{cases}\bar{x} & \text { if } \frac{\partial x}{\partial e_{i}} \neq 0 \\
0 & \text { otherwise }\end{cases} \tag{6}
\end{align*}
$$

Let $\gamma=\gamma^{i+}+e_{i} \gamma^{i-}$ and $\bar{\nu}=\overline{\nu^{i+}}+e_{i} \overline{\nu^{i-}}$, where $\gamma^{i-}, \gamma^{i+}, \nu^{i-}, \nu^{i+}$ do not contain e_{i}. Since i is arbitrary, in view of (5) and (6), we have $\gamma=1$ and $\nu=e_{1} \ldots e_{n}$. Thus $\phi(1)=\alpha \cdot 1+\beta \overline{e_{1} \ldots e_{n}}$. Relation (4) entails

$$
\begin{aligned}
& \phi\left(e_{1}\right)=e_{1} \bullet \phi(1)=e_{1} \bullet\left(\alpha \cdot 1+\beta \overline{e_{1} \ldots e_{n}}\right)=\alpha e_{1}, \\
& \phi\left(\overline{e_{1}}\right)=\overline{e_{1}} \bullet \phi(1)=\overline{e_{1}} \bullet\left(\alpha \cdot 1+\beta \overline{e_{1} \ldots e_{n}}\right)=\alpha \overline{e_{1}}+\beta e_{2} \ldots e_{n} .
\end{aligned}
$$

The relations above, combined with the condition in (1), imply $0=\phi\left(e_{1} \bullet \overline{e_{1}}\right)=\frac{1}{2}\left(e_{1} \bullet \phi\left(\overline{e_{1}}\right)+\phi\left(e_{1}\right) \bullet \overline{e_{1}}\right)=$ $\frac{\beta}{2} e_{1} \ldots e_{n}$; that is, $\phi(1)=\alpha \cdot 1$. From (2), we conclude that $\phi(x)=\alpha x$ for any element $x \in J\left(\Gamma_{n}\right)$. The lemma is proved.

4. δ-DERIVATIONS FOR JORDAN SUPERALGEBRAS

$$
K_{3}, D_{t}, K_{10}
$$

In this section, we confine ourselves to non-trivial δ-derivations of simple finite-dimensional Jordan superalgebras K_{3}, K_{10}, and D_{t} over an algebraically closed field of characteristic p not equal to 2 . For the superalgebra K_{10}, we require in addition that $p \neq 3$. In conclusion, we formulate a theorem on δ-derivations for simple finite-dimensional Jordan superalgebras over an algebraically closed field of characteristic 0 .

The three-dimensional Kaplansky superalgebra K_{3} is defined thus:

$$
\left(K_{3}\right)_{0}=F e,\left(K_{3}\right)_{1}=F z+F w,
$$

where $e^{2}=e, e z=\frac{1}{2} z, e w=\frac{1}{2} w$, and $[z, w]=e$.
LEMMA 4.1. Let ϕ be a non-trivial δ-derivation of K_{3}. Then $\delta=\frac{1}{2}$ and $\phi(x)=\alpha x$, where $\alpha \in F$.
Proof. Let $\phi(e)=\alpha_{e} e+\beta_{e} z+\gamma_{e} w, \phi(z)=\alpha_{1} e+\beta_{1} z+\gamma_{1} w$, and $\phi(w)=\alpha_{2} e+\beta_{2} z+\gamma_{2} w$, where $\alpha_{e}, \alpha_{1}, \alpha_{2}, \beta_{e}, \beta_{1}, \beta_{2}, \gamma_{e}, \gamma_{1}, \gamma_{2} \in F$. If we put $x=y=e$ in (1) we obtain

$$
\alpha_{e} e+\beta_{e} z+\gamma_{e} w=\phi(e)=\phi\left(e^{2}\right)=\delta(e \phi(e)+\phi(e) e)=\delta\left(2 \alpha_{e} e+\beta_{e} z+\gamma_{e} w\right) .
$$

Thus it suffices to consider the following two cases:
(1) $\delta=\frac{1}{2}$;
(2) $\delta \neq \frac{1}{2}, \phi(e)=0$.

In the former case, $\phi(e)=\alpha e$, where $\alpha=\alpha_{e}$. Case (1), for $x=e$ and $y=z$, entails $\alpha_{1} e+\beta_{1} z+\gamma_{1} w=$ $\phi(z)=2 \phi(e z)=2 \cdot \frac{1}{2}(e \phi(z)+\phi(e) z)=\alpha_{1} e+\frac{1}{2}\left(\beta_{1} z+\gamma_{1} w+\alpha z\right)$, whence $\beta_{1}=\frac{1}{2}\left(\beta_{1}+\alpha\right)$ and $\gamma_{1}=\frac{1}{2} \gamma_{1}$; that is, $\beta_{1}=\alpha$ and $\gamma_{1}=0$. Similarly, substituting in (1) $x=e$ and $y=w$, we obtain $\gamma_{2}=\alpha$ and $\beta_{2}=0$. For $x=z$ and $y=w$ in (1), we have $\alpha e=\phi(e)=\phi([z, w])=\frac{1}{2}(z \phi(w)+\phi(z) w)=\frac{1}{2}\left(\frac{1}{2} \alpha_{2} z+\alpha e+\frac{1}{2} \alpha_{1} w+\alpha e\right)$, whence $\phi(e)=\alpha e, \phi(z)=\alpha z$, and $\phi(w)=\alpha w$, where $\alpha \in F$. Consequently, $\phi(x)=\alpha x$ for any $x \in K_{3}$.

We handle the second case. For $x=e$ and $y=z$ in (1), we have $\alpha_{1} e+\beta_{1} z+\gamma_{1} w=\phi(z)=2 \phi(e z)=$ $2 \delta(e \phi(z)+\phi(e) z)=\delta\left(2 \alpha_{1} e+\beta_{1} z+\gamma_{1} w\right)$, which yields $\phi(z)=0$. Similarly, we arrive at $\phi(w)=0$. The fact that ϕ is linear implies $\phi=0$. The lemma is proved.

At the moment, we define a one-parameter family of four-dimensional superalgebras D_{t}. For $t \in F$ fixed, the given family is defined thus:

$$
D_{t}=\left(D_{t}\right)_{0}+\left(D_{t}\right)_{1},
$$

where $\left(D_{t}\right)_{0}=F e_{1}+F e_{2},\left(D_{t}\right)_{1}=F x+F y, e_{i}^{2}=e_{i}, e_{1} e_{2}=0, e_{i} x=\frac{1}{2} x, e_{i} y=\frac{1}{2} y,[x, y]=e_{1}+t e_{2}$, $i=1,2$.

LEMMA 4.2. Let ϕ be a non-trivial δ-derivation of D_{t}. Then $\delta=\frac{1}{2}$ and $\phi(x)=\alpha x$, where $\alpha \in F$.
Proof. Let

$$
\begin{aligned}
\phi\left(e_{1}\right) & =\alpha_{1} e_{1}+\beta_{1} e_{2}+\gamma_{1} z+\lambda_{1} w, \phi\left(e_{2}\right)=\alpha_{2} e_{1}+\beta_{2} e_{2}+\gamma_{2} z+\lambda_{2} w \\
\phi(z) & =\alpha_{z} e_{1}+\beta_{z} e_{2}+\gamma_{z} z+\lambda_{z} w, \phi(w)=\alpha_{w} e_{1}+\beta_{w} e_{2}+\gamma_{w} z+\lambda_{w} w
\end{aligned}
$$

with coefficients in F.
Putting $x=y=e_{1}$ and then $x=y=e_{2}$ in (1), we obtain $\alpha_{1} e_{1}+\beta_{1} e_{2}+\gamma_{1} z+\lambda_{1} w=\phi\left(e_{1}\right)=\phi\left(e_{1}^{2}\right)=$ $2 \delta\left(e_{1} \phi\left(e_{1}\right)\right)=2 \delta \alpha_{1} e_{1}+\delta \gamma_{1} z+\delta \lambda_{1} w$ and $\alpha_{2} e_{1}+\beta_{2} e_{2}+\gamma_{2} z+\lambda_{2} w=2 \delta \beta_{2} e_{2}+\delta \gamma_{2} z+\delta \lambda_{2} w$, whence $\alpha_{1}=2 \delta \alpha_{1}$, $\beta_{1}=0, \gamma_{1}=\delta \gamma_{1}, \lambda_{1}=\delta \lambda_{1}, \alpha_{2}=0, \beta_{2}=2 \delta \beta_{2}, \gamma_{2}=\delta \gamma_{2}, \lambda_{2}=\delta \lambda_{2}$.

There are two cases to consider:
(1) $\delta=\frac{1}{2}, \beta_{1}=\alpha_{2}=\gamma_{1}=\gamma_{2}=\lambda_{1}=\lambda_{2}=0$;
(2) $\delta \neq \frac{1}{2}, \alpha_{1}=\alpha_{2}=\beta_{1}=\beta_{2}=\gamma_{1}=\gamma_{2}=\lambda_{1}=\lambda_{2}=0$.

In the former case, $\phi\left(e_{1}\right)=\alpha_{1} e_{1}$ and $\phi\left(e_{2}\right)=\beta_{2} e_{2}$. Put $x=e_{1}$ and $y=z$ in condition (1); then $\alpha_{z} e_{1}+\beta_{z} e_{2}+\gamma_{z} z+\lambda_{z} w=\phi(z)=2 \phi\left(e_{1} z\right)=2 \cdot \frac{1}{2}\left(e_{1} \phi(z)+\phi\left(e_{1}\right) z\right)=\alpha_{z} e_{1}+\frac{1}{2}\left(\gamma_{z} z+\lambda_{z} w+\alpha_{1} z\right)$, which yields $\alpha_{1}=\gamma_{z}, \beta_{z}=\lambda_{z}=0$.

For $x=e_{2}$ and $y=z$ in (1), we have $\alpha_{z} e_{1}+\gamma_{z} z=\phi(z)=2 \phi\left(e_{2} z\right)=2 \cdot \frac{1}{2}\left(e_{2} \phi(z)+\phi\left(e_{2}\right) z\right)=\frac{1}{2}\left(\gamma_{z} z+\beta_{2} z\right)$, whence $\gamma_{z}+\beta_{2}=2 \gamma_{z}, \alpha_{z}=0, \alpha_{1}=\beta_{2}$, and $\phi(z)=\alpha z$, where $\alpha=\alpha_{1}$. Similarly, we conclude that $\phi(w)=\alpha w$. The mapping ϕ is linear; so $\phi(x)=\alpha x, \alpha \in F$, for any $x \in D_{t}$.

We handle the second case. Put $x=e_{1}$ and $y=z$ in (1); then $\alpha_{z} e_{1}+\beta_{z} e_{2}+\lambda_{z} z+\gamma_{z} w=\phi(z)=$ $2 \phi\left(e_{1} z\right)=2 \delta\left(e_{1} \phi(z)+\phi\left(e_{1}\right) z\right)=\delta\left(2 \alpha_{z} e_{1}+\lambda_{z} z+\gamma_{z} w\right)$, which yields $\phi(z)=0$. Arguing similarly for w, we arrive at $\alpha_{w} e_{1}+\beta_{w} e_{2}+\gamma_{w} z+\lambda_{w} w=\delta\left(2 \alpha_{w} e_{1}+\gamma_{w} z+\lambda_{w} w\right)$. Consequently, $\phi(w)=0$. Ultimately, the linearity of ϕ implies $\phi=0$. The lemma is proved.

The simple ten-dimensional Kac superalgebra K_{10} is defined thus:

$$
\begin{gathered}
K_{10}=A \oplus M,\left(K_{10}\right)_{0}=A,\left(K_{10}\right)_{1}=M, \text { where } A=A_{1} \oplus A_{2}, \\
A_{1}=F e_{1}+F u z+F u w+F v z+F v w,
\end{gathered}
$$

$$
A_{2}=F e_{2}, M=F z+F w+F u+F v
$$

Multiplication is specified by the following conditions:

$$
\begin{gathered}
e_{i}^{2}=e_{i}, e_{1} \text { is unity in } A_{1}, e_{i} m=\frac{1}{2} m \text { for any } m \in M \\
{[u, z]=u z,[u, w]=u w,[v, z]=v z,[v, w]=v w} \\
{[z, w]=e_{1}-3 e_{2},[u, z] w=-u,[v, z] w=-v,[u, z][v, w]=2 e_{1}}
\end{gathered}
$$

all other non-zero products are obtained from the above either by applying one of the skew-symmetries $z \leftrightarrow w$ or $u \leftrightarrow v$ or by substituting $z \leftrightarrow u$ and $w \leftrightarrow v$ simultaneously.

LEMMA 4.3. Let ϕ be a non-trivial δ-derivation of K_{10}. Then $\delta=\frac{1}{2}$ and $\phi(x)=\alpha x$, where $\alpha \in F$.
Proof. Let

$$
\begin{aligned}
& \phi\left(e_{1}\right)=\alpha_{1} e_{1}+\alpha_{2} e_{2}+\alpha_{3} z+\alpha_{4} w+\alpha_{5} u+\alpha_{6} v+\alpha_{7} u z+\alpha_{8} u w+\alpha_{9} v z+\alpha_{10} v w, \\
& \phi\left(e_{2}\right)=\beta_{1} e_{1}+\beta_{2} e_{2}+\beta_{3} z+\beta_{4} w+\beta_{5} u+\beta_{6} v+\beta_{7} u z+\beta_{8} u w+\beta_{9} v z+\beta_{10} v w, \\
& \phi(z)=\gamma_{1}^{z} e_{1}+\gamma_{2}^{z} e_{2}+\gamma_{3}^{z} z+\gamma_{4}^{z} w+\gamma_{5}^{z} u+\gamma_{6}^{z} v+\gamma_{7}^{z} u z+\gamma_{8}^{z} u w+\gamma_{9}^{z} v z+\gamma_{10}^{z} v w, \\
& \phi(w)=\gamma_{1}^{w} e_{1}+\gamma_{2}^{w} e_{2}+\gamma_{3}^{w} z+\gamma_{4}^{w} w+\gamma_{5}^{w} u+\gamma_{6}^{w} v+\gamma_{7}^{w} u z+\gamma_{8}^{w} u w+\gamma_{9}^{w} v z+\gamma_{10}^{w} v w, \\
& \phi(u)=\gamma_{1}^{u} e_{1}+\gamma_{2}^{u} e_{2}+\gamma_{3}^{u} z+\gamma_{4}^{u} w+\gamma_{5}^{u} u+\gamma_{6}^{u} v+\gamma_{7}^{u} u z+\gamma_{8}^{u} u w+\gamma_{9}^{u} v z+\gamma_{10}^{u} v w, \\
& \phi(v)=\gamma_{1}^{v} e_{1}+\gamma_{2}^{v} e_{2}+\gamma_{3}^{v} z+\gamma_{4}^{v} w+\gamma_{5}^{v} u+\gamma_{6}^{v} v+\gamma_{7}^{v} u z+\gamma_{8}^{v} u w+\gamma_{9}^{v} v z+\gamma_{10}^{v} v w,
\end{aligned}
$$

where all coefficients are in F.
For $x=y=e_{1}$ in (1), we have

$$
\begin{gathered}
\alpha_{1} e_{1}+\alpha_{2} e_{2}+\alpha_{3} z+\alpha_{4} w+\alpha_{5} u+\alpha_{6} v+\alpha_{7} u z+\alpha_{8} u w+\alpha_{9} v z+\alpha_{10} v w= \\
\phi\left(e_{1}\right)=\phi\left(e_{1}^{2}\right)=\delta\left(\phi\left(e_{1}\right) e_{1}+e_{1} \phi\left(e_{1}\right)\right)= \\
2 \delta\left(\alpha_{1} e_{1}+\frac{1}{2} \alpha_{3} z+\frac{1}{2} \alpha_{4} w+\frac{1}{2} \alpha_{5} u+\frac{1}{2} \alpha_{6} v+\alpha_{7} u z+\alpha_{8} u w+\alpha_{9} v z+\alpha_{10} v w\right)
\end{gathered}
$$

whence $\alpha_{1}=2 \delta \alpha_{1}, \alpha_{2}=0, \alpha_{3}=\delta \alpha_{3}, \alpha_{4}=\delta \alpha_{4}, \alpha_{5}=\delta \alpha_{5}, \alpha_{6}=\delta \alpha_{6}, \alpha_{7}=2 \delta \alpha_{7}, \alpha_{8}=2 \delta \alpha_{8}, \alpha_{9}=2 \delta \alpha_{9}$, $\alpha_{10}=2 \delta \alpha_{10}$.

Putting $x=y=e_{2}$ in (1), we obtain

$$
\begin{gathered}
\beta_{1} e_{1}+\beta_{2} e_{2}+\beta_{3} z+\beta_{4} w+\beta_{5} u+\beta_{6} v+\beta_{7} u z+\beta_{8} u w+\beta_{9} v z+\beta_{10} v w= \\
\phi\left(e_{2}\right)=\phi\left(e_{2}^{2}\right)=\delta\left(\phi\left(e_{2}\right) e_{2}+e_{2} \phi\left(e_{2}\right)\right)=2 \delta e_{2} \phi\left(e_{2}\right)= \\
2 \delta\left(\beta_{2} e_{2}+\frac{1}{2} \beta_{3} z+\frac{1}{2} \beta_{4} w+\frac{1}{2} \beta_{5} u+\frac{1}{2} \beta_{6} v\right)
\end{gathered}
$$

which yields $\beta_{1}=0, \beta_{2}=2 \delta \beta_{2}, \beta_{3}=\delta \beta_{3}, \beta_{4}=\delta \beta_{4}, \beta_{5}=\delta \beta_{5}, \beta_{6}=\delta \beta_{6}, \beta_{7}=\beta_{8}=\beta_{9}=\beta_{10}=0$.
Consequently, it suffices to consider the following two cases:
(1) $\delta=\frac{1}{2}$;
(2) $\delta \neq \frac{1}{2}, \phi\left(e_{1}\right)=\phi\left(e_{2}\right)=0$.

In the former case, $\phi\left(e_{1}\right)=\alpha_{1} e_{1}+\alpha_{7} u z+\alpha_{8} u w+\alpha_{9} v z+\alpha_{10} v w$ and $\phi\left(e_{2}\right)=\alpha e_{2}$. Put $x=e_{2}$ and $y=z$ in (1); then

$$
\begin{gathered}
\gamma_{1}^{z} e_{1}+\gamma_{2}^{z} e_{2}+\gamma_{3}^{z} z+\gamma_{4}^{z} w+\gamma_{5}^{z} u+\gamma_{6}^{z} v+\gamma_{7}^{z} u z+\gamma_{8}^{z} u w+\gamma_{9}^{z} v z+\gamma_{10}^{z} v w= \\
\phi(z)=2 \phi\left(z e_{2}\right)=\phi(z) e_{2}+z \phi\left(e_{2}\right)= \\
\gamma_{2}^{z} e_{2}+\frac{1}{2} \gamma_{3}^{z} z+\frac{1}{2} \gamma_{4}^{z} w+\frac{1}{2} \gamma_{5}^{z} u+\frac{1}{2} \gamma_{6}^{z} v+\frac{1}{2} \alpha z
\end{gathered}
$$

and so $\phi(z)=\gamma_{2}^{z} e_{2}+\alpha z$. If in (1) we put $x=e_{1}$ and $y=z$ we obtain $\gamma_{2}^{z} e_{2}+\alpha z=\phi(z)=2 \phi\left(z e_{1}\right)=$ $\phi(z) e_{1}+z \phi\left(e_{1}\right)=\left(\gamma_{2}^{z} e_{2}+\alpha z\right) e_{1}+z\left(\alpha_{1} e_{1}++\alpha_{7} u z+\alpha_{8} u w+\alpha_{9} v z+\alpha_{10} v w\right)$, whence $\gamma_{2}^{z}=0$ and $\alpha=\alpha_{1} ;$ that is, $\phi(z)=\alpha z$. Similarly, for w, u, and v, we have $\phi(u)=\alpha u, \phi(v)=\alpha v$, and $\phi(w)=\alpha w$. Hence
$\phi(u z)=\phi([u, z])=\frac{1}{2}(\phi(u) z+u \phi(z))=\frac{1}{2}(\alpha[u, z]+\alpha[u, z])=\alpha u z$. Analogously, we obtain $\phi(u w)=\alpha u w$, $\phi(v z)=\alpha v z$, and $\phi(v w)=\alpha v w$.

Let $x=[u, z]$ and $y=[v, w]$ in (1); then

$$
\begin{gathered}
2 \phi\left(e_{1}\right)=\phi([u, z][v, w])=\frac{1}{2}(\phi([u, z])[v, w]+[u, z] \phi([v, w]))= \\
\alpha[u, z][v, w]=2 \alpha e_{1} .
\end{gathered}
$$

The fact that ϕ is linear implies $\phi(x)=\alpha x, \alpha \in F$, for $x \in K_{10}$ arbitrary.
We handle the second case. Put $x=z$ and $y=e_{1}$ in (1). Then

$$
\begin{gathered}
\gamma_{1}^{z} e_{1}+\gamma_{2}^{z} e_{2}+\gamma_{3}^{z} z+\gamma_{4}^{z} w+\gamma_{5}^{z} u+\gamma_{6}^{z} v+\gamma_{7}^{z} u z+\gamma_{8}^{z} u w+\gamma_{9}^{z} v z+\gamma_{10}^{z} v w= \\
\phi(z)=2 \phi\left(z e_{1}\right)=2 \delta\left(\phi(z) e_{1}+z \phi\left(e_{1}\right)\right)= \\
2 \delta\left(\gamma_{1}^{z} e_{1}+\frac{1}{2} \gamma_{3}^{z} z+\frac{1}{2} \gamma_{4}^{z} w+\frac{1}{2} \gamma_{5}^{z} u+\frac{1}{2} \gamma_{6}^{z} v+\gamma_{7}^{z} u z+\gamma_{8}^{z} u w+\gamma_{9}^{z} v z+\gamma_{10}^{z} v w\right),
\end{gathered}
$$

which yields $\phi(z)=0$. Similarly, we arrive at $\phi(w)=\phi(v)=\phi(u)=0$. Since e_{1}, e_{2}, z, v, u, w generate K_{10}, we have $\phi=0$. The lemma is proved.

THEOREM 4.4. Let A be a simple finite-dimensional Jordan superalgebra over an algebraically closed field of characteristic 0 , and let ϕ be a non-trivial δ-derivation of A. Then $\delta=\frac{1}{2}$ and $\phi(x)=\alpha x$ for some $\alpha \in F$ and for any $x \in A$.

The proof follows from Theorems 1.2, 2.1 and Lemmas 3.1-3.6, 4.1-4.3.
Acknowledgments. I am grateful to A. P. Pozhidaev and V. N. Zhelyabin for their assistance.

REFERENCES

1. N. Jacobson, Lie Algebras, Wiley, New York (1962).
2. I. N. Herstein, "Jordan derivations of prime rings," Proc. Am. Math. Soc., 8, 1104-1110 (1958).
3. N. C. Hopkins, "Generalized derivations of nonassociative algebras," Nova J. Math. Game Theory Alg., 5, No. 3, 215-224 (1996).
4. V. T. Filippov, "On δ-derivations of prime Lie algebras," Sib. Mat. Zh., 40, No. 1, 201-213 (1999).
5. V. T. Filippov, " δ-Derivations of prime alternative and Mal'tsev algebras," Algebra Logika, 39, No. 5, 618-625 (2000).
6. K. A. Zhevlakov, A. M. Slin'ko, I. P. Shestakov, and A. I. Shirshov, Jordan Algebras [in Russian], Novosibirsk State Univ., Novosibirsk (1978).
7. C. T. Wall, "Graded Brauer groups," J. Reine Ang. Math., 213, 187-199 (1964).
8. I. L. Kantor, "Jordan and Lie superalgebras defined by the Poisson algebra," in Algebra and Analysis [in Russian], Tomsk State Univ., Tomsk (1989), pp. 55-80.
9. V. G. Kac, "Classification of simple Z-graded Lie superalgebras and simple Jordan superalgebras," Comm. Alg., 5, 1375-1400 (1977).
10. M. Racine and E. Zel'manov, "Simple Jordan superalgebras," in Nonassociative Algebra and Its Applications, Math. Appl., Dordr., 303, S. González (ed.), Kluwer, Dordrecht (1994), pp. 344-349.
11. E. I. Zelmanov, "On prime Jordan algebras. II," Sib. Mat. Zh., 24, No. 1, 89-104 (1983).
12. V. T. Filippov, "On δ-derivations of Lie algebras," Sib. Mat. Zh., 39, No. 6, 1409-1422 (1998).

[^0]: *Supported by RFBR grant No. 05-01-00230 and by RF Ministry of Education and Science grant No. 11617.

[^1]: Sobolev Institute of Mathematics, Novosibirsk State University; Kaygorodov.Ivan@gmail.com.

