
δ-DERIVATIONS OF SIMPLE

FINITE-DIMENSIONAL

JORDAN SUPERALGEBRAS

I. B. Kaygorodov∗ UDC 512.554

Keywords: δ-derivation, simple finite-dimensional Jordan superalgebra.

We describe non-trivial δ-derivations of semisimple finite-dimensional Jordan algebras over an
algebraically closed field of characteristic not 2, and of simple finite-dimensional Jordan super-
algebras over an algebraically closed field of characteristic 0. For these classes of algebras and
superalgebras, non-zero δ-derivations are shown to be missing for δ 6= 0, 1

2 , 1, and we give a
complete account of 1

2 -derivations.

INTRODUCTION

The notion of derivation for an algebra was generalized by many mathematicians along quite different
lines. Thus, in [1], the reader can find the definitions of a derivation of a subalgebra into an algebra and of
an (s1, s2)-derivation of one algebra into another, where s1 and s2 are some homomorphisms of the algebras.
Back in the 1950s, Herstein explored Jordan derivations of prime associative rings of characteristic p 6= 2; see
[2]. (Recall that a Jordan derivation of an algebra A is a linear mapping jd : A→ A satisfying the equality
jd(xy + yx) = jd(x)y + xjd(y) + jd(y)x+ yjd(x), for any x, y ∈ A.) He proved that the Jordan derivation
of such a ring is properly a standard derivation. Later on, Hopkins in [3] dealt with antiderivations of Lie
algebras (for definition of an antiderivation, see [1]). The antiderivation, on the other hand, is a special case
of a δ-derivation — that is, a linear mapping µ of an algebra such that µ(xy) = δ(µ(x)y + xµ(y)), where δ
is some fixed element of the ground field.

Subsequently, Filippov generalized Hopkin’s results in [4] by treating prime Lie algebras over an associa-
tive commutative ring Φ with unity and 1

2 . It was proved that every prime Lie Φ-algebra, on which a non-
degenerated symmetric invariant bilinear form is defined, has no non-zero δ-derivation if δ 6= −1, 0, 1

2 , 1. In
[4], also, 1

2 -derivations were described for an arbitrary prime Lie Φ-algebra A
(

1
6 ∈ Φ

)
with a non-degenerate

symmetric invariant bilinear form defined on the algebra. It was shown that the linear mapping φ : A→ A

is a 1
2 -derivation iff φ ∈ Γ(A), where Γ(A) is the centroid of A. This implies that if A is a central simple Lie

algebra over a field of characteristic p 6= 2, 3 on which a non-degenerate symmetric invariant bilinear form
is defined, then every 1

2 -derivation φ has the form φ(x) = αx, α ∈ Φ. At a later time, Filippov described
δ-derivations for prime alternative and non-Lie Mal’tsev Φ-algebras with some restrictions on the operator
ring Φ. In [5], for instance, it was stated that algebras in these classes have no non-zero δ-derivations if
δ 6= 0, 1

2 , 1.
In the present paper, we come up with an account of non-trivial δ-derivations for semisimple finite-

dimensional Jordan algebras over an algebraically closed field of characteristic not 2, and for simple finite-
dimensional Jordan superalgebras over an algebraically closed field of characteristic 0. For these classes of

∗Supported by RFBR grant No. 05-01-00230 and by RF Ministry of Education and Science grant No. 11617.

Sobolev Institute of Mathematics, Novosibirsk State University; Kaygorodov.Ivan@gmail.com.

1 1



algebras and superalgebras, non-zero δ-derivations are shown to be missing for δ 6= 0, 1
2 , 1, and we provide

in a complete description of 1
2 -derivations.

The paper is divided into four parts. In Sec. 1, relevant definitions are given and known results cited. In
Sec. 2, we deal with δ-Derivations of simple and semisimple finite-dimensional Jordan algebras. In Secs. 3
and 4, δ-derivations are described for simple finite-dimensional Jordan supercoalgebras over an algebraically
closed field of characteristic 0. For some superalgebras, note, the condition on the characteristic may be
weakened so as to be distinct from 2. A proof for the main theorem is based on the classification theorem
for simple finite-dimensional superalgebras and on the results obtained in Secs. 3 and 4.

1. BASIC FACTS AND DEFINITIONS

Let F be a field of characteristic p, p 6= 2. An algebra A over F is Jordan if it satisfies the following
identities:

xy = yx, (x2y)x = x2(yx).

Jordan algebras arise naturally from the associative algebras. If in an associative algebra A we replace
multiplication ab by symmetrized multiplication a ◦ b = 1

2 (ab + ba) then we will face a Jordan algebra.
Denote this algebra by A(+). Below are essential examples of Jordan algebras.

(1) The algebra J(V, f) of bilinear form. Let f : V × V −→ F be a symmetric bilinear form on a
vector space V . On the direct sum J = F · 1 + V of vector spaces, we then define multiplication by setting
1 · v = v · 1 = v and v1 · v2 = f(v1, v2) · 1; under this multiplication, J = J(V, f) is a Jordan algebra. If the
form f is non-degenerate and dimV > 1, then the algebra J(V, f) is simple.

(2) The Jordan algebra H(Dn, J). Here, n > 3, D is a composition algebra, which is associative for
n > 3, j : d→ d is a canonical involution in D, and J : X → X is a standard involution in Dn.

THEOREM 1.1 [6]. Every simple finite-dimensional Jordan algebra A over an algebraically closed
field F of characteristic not 2 is isomorphic to one of the following algebras:

(1) F · 1;
(2) J(V, f);
(3) H(Dn, J).
We recall the definition of a superalgebra. Let Γ be a Grassmann algebra over F , which is generated

by elements 1, e1, . . . , en, . . . and is defined by relations e2i = 0, eiej = −ejei. Products 1, ei1ei2 . . . eik
,

i1 < i2 < . . . < ik, form a basis for Γ over F . Denote by Γ0 and Γ1 the subspaces generated by products of
even and odd lengths, respectively. Then Γ is represented as a direct sum of these subspaces, Γ = Γ0 + Γ1,
with ΓiΓj ⊆ Γi+j(mod 2), i, j = 0, 1. In other words, Γ is a Z2-graded algebra (or superalgebra) over F .

Now let A = A0 +A1 be any supersubalgebra over F . Consider a tensor product of F -algebras, Γ⊗A.
Its subalgebra

Γ(A) = Γ0 ⊗A0 + Γ1 ⊗A1

is called a Grassmann envelope for A.
Let Ω be some variety of algebras over F . A Z2-graded algebra A = A0 + A1 is a Ω-superalgebra if its

Grassmann envelope Γ(A) is an algebra in Ω. In particular, A = A0 ⊕ A1 is a Jordan superalgebra if its
Grassmann envelope Γ(A) is a Jordan algebra.

In [7], it was shown that every simple finite-dimensional associative superalgebra over an algebraically
closed field F is isomorphic either to A = Mm,n(F ), which is the matrix algebra Mm+n(F ), or to B = Q(n),
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which is a subalgebra of M2n(F ). Gradings of superalgebras A and B are the following:

A0 =

{(
A 0
0 D

) ∣∣∣∣∣ A ∈Mm(F ), D ∈Mn(F )

}
,

A1 =

{(
0 B

C 0

)∣∣∣∣∣ B ∈Mm,n(F ), C ∈Mn,m(F )

}
,

B0 =

{(
A 0
0 A

) ∣∣∣∣∣ A ∈Mn(F )

}
, B1 =

{(
0 B

B 0

) ∣∣∣∣∣ B ∈Mn(F )

}
.

Let A = A0+A1 be an associative superalgebra. The vector space of A can be endowed with the structure
of a Jordan supersubalgebra A(+), by defining new multiplication as follows: a ◦ b = 1

2 (ab+ (−1)p(a)p(b)ba).
In this case p(a) = i if a ∈ Ai.

Using the above construction, we arrive at superalgebras

Mm,n(F )(+), m > 1, n > 1;

Q(n)(+), n > 2.

Now, we define the superinvolution j : A → A. A graded endomorphism j : A → A is called a
superinvolution if j(j(a)) = a and j(ab) = (−1)p(a)p(b)j(b)j(a). Let H(A, j) = {a ∈ A : j(a) = a}. Then
H(A, j) = H(A0, j) +H(A1, j) is a subsuperalgebra of A(+). Below are superalgebras which are obtained
from Mn,m(F ) via a suitable superinvolution:

(1) the Jordan superalgebra osp(n,m), consisting of matrices of the form

(
A B

C D

)
, where AT = A ∈

Mn(F ), C = Q−1BT , D = Q−1DTQ ∈M2m(F ), and Q =

(
0 Em

−Em 0

)
;

(2) the Jordan superalgebra P (n), consisting of matrices of the form

(
A B

C D

)
, where BT = −B,

CT = C, and D = AT , with A,B,C,D ∈Mn(F ).

THEOREM 1.2 [8, 9]. Every simple finite-dimensional non-trivial (i.e., with a non-zero odd part)
Jordan superalgebra A over an algebraically closed field F of characteristic 0 is isomorphic to one of the
following superalgebras:

Mm,n(F )(+); Q(n)(+); osp(n,m); P (n); J(V, f); Dt, t 6= 0; K3; K10; J(Γn), n > 1.
The superalgebras J(V, f), Dt, K3, K10, and J(Γn) will be defined below.
Let δ ∈ F . A linear mapping φ of A is called a δ-derivation if

φ(xy) = δ(xφ(y) + φ(x)y) (1)

for arbitrary elements x, y ∈ A.
The definition of a 1-derivation coincides with the conventional definition of a derivation. A 0-derivation

is any endomorphism φ of A such that φ(A2) = 0. A non-trivial δ-derivation is a δ-derivation which is not
a 1-derivation, nor a 0-derivation. Obviously, for any algebra, the multiplication operator by an element
of the ground field F is a 1

2 -derivation. We are interested in the behavior of non-trivial δ-derivations of
semisimple finite-dimensional Jordan algebras over an algebraically closed field of characteristic not 2, and
of simple finite-dimensional Jordan superalgebras over an algebraically closed field of characteristic 0.
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2. δ-DERIVATIONS FOR SEMISIMPLE FINITE-DIMENSIONAL
JORDAN ALGEBRAS

In this section, we look at how non-trivial δ-derivations of simple finite-dimensional Jordan algebras
behave over an algebraically closed field F of characteristic distinct from 2. As a consequence, we furnish
a description of δ-derivations for semisimple finite-dimensional Jordan algebras over an algebraically closed
field of characteristic not 2.

THEOREM 2.1. Let φ be a non-trivial δ-derivation of a superalgebra A with unity e over a field F

of characteristic not 2. Then δ = 1
2 .

Proof. Let δ 6= 1
2 . Then φ(e) = φ(e · e) = δ(φ(e) + φ(e)) = 2δφ(e), that is, φ(e) = 0. Thus

φ(x) = φ(x · e) = δ(φ(x) + xφ(e)) = δφ(x) for arbitrary x ∈ A. Contradiction. The theorem is proved.

LEMMA 2.2. Let φ be a non-trivial 1
2 -derivation of a Jordan algebra A isomorphic to the ground

field. Then φ(x) = αx, α ∈ F .
Proof. Let e be unity in A. Then

φ(x) = 2φ(xe)− φ(x) = xφ(e), (2)

that is, φ(x) = αx, α ∈ F . The lemma is proved.

LEMMA 2.3. Let φ be a non-trivial 1
2 -derivation of an algebra J(V, f). Then φ(x) = αx for α ∈ F .

Proof. Let φ(e) = αe + v, where α ∈ F and v ∈ V . From (2), it follows that φ(x) = xφ(e) for any
x ∈ J(V, f).

For w ∈ V , we then have

αf(w,w)e+ f(w,w)v = w2(αe+ v) = φ(w2) = 1
2 (wφ(w) + φ(w)w)

= wφ(w) = w(w(αe+ v)) = w(αw + f(v, w)e)
= αf(w,w)e+ f(w, v)w.

As the result, f(w,w)v = f(w, v)w. Now, since w is arbitrary and dim(V ) > 1, we have v = 0. Thus
φ(x) = αx for any x ∈ J(V, f). The lemma is proved.

LEMMA 2.4. Let φ be a non-trivial 1
2 -derivation of an algebra H(Dn, J), n > 3. Then φ(x) = αx for

α ∈ F .
Proof. Relevant information on composition algebras can be found in [6]. Let φ(e) = αe + v, where

v =
∑

i,j=1

xi,jei,j , x1,1 = 0, xi,j = xj,i, α ∈ F , xi,j ∈ D.

From (2), for x ∈ H(Dn, J) arbitrary, we have

x2 ◦ (αe+ v) = φ(x2) = x ◦ φ(x) = x ◦ (x ◦ (αe+ v)), x2 ◦ v = x ◦ (x ◦ v). (3)

If we put x = ek,k we obtain
n∑

j=1

xk,jek,j +
n∑

i=1

xi,kei,k = 2e2k,k ◦ v = 2ek,k ◦ (ek,k ◦ v) = 1
2 (

n∑
j=1

xk,jek,j +

xk,kek,k + xk,kek,k +
n∑

i=1

xi,kei,k), whence v =
n∑

i=1

xi,iei,i.

For x = en,k + ek,n substituted in (3), we have xn,nen,n + xk,kek,k = (en,k + ek,n)2 ◦
n∑

i=1

xi,iei,i =

(en,k + ek,n) ◦ ((en,k + ek,n) ◦
n∑

i=1

xi,iei,i) = (en,k + ek,n) ◦ 1
2 (xn,nek,n + xk,kek,n + xk,ken,k + xn,nen,k) =

1
2 (xk,kek,k + xk,ken,n + xn,nek,k + xn,nen,n), which yields xn,n = xn−1,n−1 = . . . = x1,1 = 0 and v = 0.
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Consequently, φ(x) = αx for any x ∈ H(Dn, J). The lemma is proved.

THEOREM 2.5. Let φ be a non-trivial δ-derivation of a simple finite-dimensional Jordan algebra A
over an algebraically closed field F of characteristic distinct from 2. Then δ = 1

2 and φ(x) = αx, α ∈ F .
The proof follows from Theorems 1.1, 2.1 and Lemmas 2.2-2.4.

THEOREM 2.6. Let φ be a non-trivial δ-derivation of a semisimple finite-dimensional Jordan algebra

A =
n⊕

i=1

Ai, where Ai are simple algebras, over an algebraically closed field of characteristic not 2. Then

δ = 1
2 , and for x =

n∑
i=1

xi where xi ∈ Ai, we have φ(x) =
n∑

i=1

αixi, αi ∈ F .

Proof. Unity in Ak is denoted by ek. If xi ∈ Ai, then φ(xi) = x+
i + x−i , where x+

i ∈ Ai and x−i /∈ Ai.

Put ei =
n∑

k=1

ek − ei and φ(ei) = ei+ + ei−, where ei+ ∈ Ai and ei− /∈ Ai. Then 0 = φ(xi · ei) =

δ(φ(xi) · ei + xi · φ(ei)) = δ((x+
i + x−i )ei + xi(ei+ + ei−)) = δ(x−i + xi · ei+), which yields x−i = 0.

Consequently, the mapping φ is invariant on Ai. In virtue of Theorem 2.5, δ = 1
2 and φ(xi) = αixi for

some αi ∈ F defined for Ai with xi ∈ Ai arbitrary. It is easy to verify that the mapping φ, given by the

rule φ
(

n∑
i=1

xi

)
=

n∑
i=1

αixi, xi ∈ Ai, is a 1
2 -derivation. The theorem is proved.

3. δ-DERIVATIONS FOR SIMPLE FINITE-DIMENSIONAL
JORDAN SUPERALGEBRAS WITH UNITY

In this section, all superalgebras but J(Γn) are treated over a field of characteristic not 2. The super-
algebra J(Γn) is treated over a field of characteristic 0. Among the title superalgebras are Mm,n(F )(+),
Q(n)(+), osp(n,m), P (n), J(V, f), and J(Γn). Theorem 2.1 implies that these superalgebras all lack in
non-trivial δ-derivations, for δ 6= 1

2 . Therefore, we need only consider the case of a 1
2 -derivation.

LEMMA 3.1. Let φ be a non-trivial 1
2 -derivation of Mm,n(F )(+). Then φ(x) = αx for some α ∈ F .

Proof. It is easy to see that, for 1 6 i, j 6 n + m, elements ei,j form a basis for the superalgebra

Mm,n(F )(+). Let φ(ei,j) =
m+n∑
k,l=1

αi,j
k,lek,l, where αi,j

k,l ∈ F , i, j = 1, . . . , n+m.

If in (1) we put x = y = ei,i we arrive at

m+n∑
k,l=1

αi,i
k,lek,l = φ(ei,i) = φ(e2i,i) = 1

2 (ei,i ◦ φ(ei,i) + φ(ei,i) ◦ ei,i) = 1
2

(
n+m∑
l=1

αi,i
i,lei,l +

n+m∑
k=1

αi,i
k,iek,i

)
,

whence φ(ei,i) = αiei,i, where αi = αi,i
i,i, i = 1, . . . ,m+ n.

Substituting x = ei,j and y = ei,i, i 6= j, in (1), we obtain

m+n∑
k,l=1

αi,j
k,lek,l = φ(ei,j) = 2φ(ei,j ◦ ei,i) = 1

2

(
αiei,j +

m+n∑
l=1

αi,j
i,l ei,l +

m+n∑
k=1

αi,j
k,iek,i

)
.

Analyzing the resulting equalities, we conclude that αi,j
i,j = αi. A similar argument for ei,j and ej,j yields

αi,j
i,j = αj . Since φ is linear, φ(e) = αe. Using (2) gives φ(x) = αx, for any x ∈Mn,m(F )(+). The lemma is

proved.

LEMMA 3.2. Let φ be a non-trivial 1
2 -derivation of Q(n)(+). Then φ(x) = αx, where α ∈ F .

Proof. Clearly, ∆i,j = ei,j + en+i,n+j and ∆i,j = en+i,j + ei,n+j form a basis for the superalgebra
Q(n)(+).
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On the basis elements, the following relations hold:

∆i,j ◦∆k,l = 1
2 (δj,k∆i,l + δl,i∆k,j), ∆i,j ◦∆k,l = 1

2 (δj,k∆i,l + δl,i∆k,j).

Let φ(∆i,j) =
n∑

k,l=1

αi,j
k,l∆k,l +

n∑
k,l=1

α∗i,jk,l ∆k,l. Put x = y = ∆i,i in (1). Then

n∑
k,l=1

αi,i
k,l∆k,l +

n∑
k,l=1

α∗i,ik,l ∆k,l = φ(∆i,i) = φ(∆2
i,i) = 1

2 (∆i,i ◦ φ(∆i,i) + φ(∆i,i) ◦∆i,i) =

1
2

(
n∑

l=1

αi,i
i,l∆i,l +

n∑
k=1

αi,i
k,i∆k,i +

n∑
k=1

α∗i,ik,i ∆k,i +
n∑

l=1

α∗i,ii,l ∆i,l

)
.

Consequently, φ(∆i,i) = αi∆i,i + αi∆i,i, where αi = αi,i
i,i and αi = α∗i,ii,i .

If we substitute x = ∆i,i and y = ∆i,j , i 6= j, in (1) we obtain

n∑
k,l=1

(αi,j
k,l∆k,l + α∗i,jk,l ∆k,l) = φ(∆i,i) = 2φ(∆i,i ◦∆i,j) =

1
2

(
αi∆i,j + αi∆i,j +

n∑
l=1

αi,j
i,l ∆i,l +

n∑
k=1

αi,j
k,i∆k,i +

n∑
l=1

α∗i,ji,l ∆i,l +
n∑

k=1

α∗i,jk,i ∆k,i

)
.

Hence αi,j
i,j = αi, α

∗i,j
i,j = αi.

A similar argument for ∆j,j and ∆i,j yields

φ(∆i,j) = αi,j
j,j∆j,j + αj∆i,j + α∗i,jj,j ∆j,j + αj∆i,j .

These relations readily imply that αi = αj = α and αi = αj = β, that is, φ(∆i,i) = α∆i,i + β∆i,i.

Clearly, φ(E) = αE+β∆, where E is unity in Q(n)(+), and ∆ =
n∑

i=1

(ei,n+i+en+i,i). Suppose that β 6= 0

and φ(x) = αx+β∆◦x is a 1
2 -derivation. A mapping ψ : Q(n)(+) → Q(n)(+), for which ψ(x) = ∆◦x, likewise

is a 1
2 -derivation. Obviously, 1

2 (∆i,i −∆j,j) = ψ(∆i,j ◦∆j,i) = 1
2 ((∆i,j ◦∆) ◦∆j,i + ∆i,j ◦ (∆j,i ◦∆)) = 0.

On the other hand, ∆i,i −∆j,j 6= 0. Consequently, β = 0, that is, φ(x) = αx. The lemma is proved.

LEMMA 3.3. Let φ be a non-trivial 1
2 -derivation of osp(n,m). Then φ(x) = αx for some α ∈ F .

Proof. It is easy to see that E =
n∑

i=1

∆i +
m∑

j=1

∆j , where ∆j = en+j,n+j + en+m+j,n+m+j and ∆i = ei,i

is unity in the supersubalgebra osp(n,m). Let

φ(∆i) =
n+2m∑
k,l=1

αi
k,lek,l, i = 1, . . . , n, φ(∆j) =

n+2m∑
k,l=1

βj
k,lek,l, j = 1, . . . ,m.

If we put x = y = ∆i, i = 1, . . . , n, in (1) we obtain
n+2m∑
k,l=1

αi
k,lek,l = φ(∆i) = φ(∆2

i ) = 1
2 (φ(∆i) ◦∆i +

∆i ◦ φ(∆i)) = 1
2

(
n+2m∑
k=1

αi
k,iek,i +

n+2m∑
l=1

αi
i,lei,l

)
, which yields φ(∆i) = αi∆i, i = 1, . . . , n.

Put x = y = ∆i, i = 1, . . . ,m, in (1). Then

n+2m∑
k,l=1

βi
k,lek,l = φ(∆i) = φ((∆i)2) = 1

2 (∆i ◦ φ(∆i) + φ(∆i) ◦∆i) =

1
2

(
n+2m∑
k=1

βi
k,n+iek,n+i +

n+2m∑
k=1

βi
k,n+m+iek,n+m+i +

n+2m∑
l=1

βi
n+i,len+i,l +

n+2m∑
l=1

βi
n+m+i,len+m+i,l

)
.
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By the definition of osp(n,m), we have βi
n+i,n+m+i = βi

m+n+i,n+i = 0 and βi
n+i,n+i = βi

n+m+i,n+m+i. Thus
φ(∆j) = βj∆j , j = 1, . . . ,m.

Let (ei,j + ej,i) ∈ osp(n,m), i, j = 1, . . . , n, and φ(ei,j + ej,i) =
2m+n∑
k,l=1

γi,j
k,lek,l. If we put x = ei,j + ej,i

and y = ∆i in (1) we arrive at

2m+n∑
k,l=1

γi,j
k,lek,l = φ(ei,j + ej,i) = 2φ((ei,j + ej,i) ◦∆i) = 1

2

(
2m+n∑
k=1

γi,j
k,iek,i +

2m+n∑
l=1

γi,j
i,l ei,l + αi(ei,j + ej,i)

)
.

In view of the last relation, γi,j
j,i = γi,j

i,j = αi. Similar calculations for ei,j + ej,i and ∆j give γi,j
j,i = γi,j

i,j =
αj . Ultimately, φ(∆i) = α∆i, i = 1, . . . , n.

Let Eij = (en+i,n+j + en+m+j,n+m+i) ∈ osp(n,m), i, j = 1, . . . ,m, and φ(Eij) =
2m+n∑
k,l=1

ωi,j
k,lek,l. Put

x = Eij and y = ∆i in (1); then

2m+n∑
k,l=1

ωi,j
k,lek,l = φ(Eij) = 2φ(Eij ◦∆i) = 1

2

(
2m+n∑

l=1

ωi,j
n+i,len+i,l +

2m+n∑
k=1

ωi,j
k,n+iek,n+i+

2m+n∑
l=1

ωi,j
n+m+i,len+m+i,l +

2m+n∑
k=1

ωi,j
k,n+m+iek,n+m+i + βiEij

)
.

Consequently, ωi,j
n+i,n+j = ωi,j

n+m+j,n+m+i = βi.
A similar argument for Eij and ∆j shows that ωi,j

n+i,n+j = ωi,j
n+m+j,n+m+i = βj with 1 6 i, j 6 m.

Eventually we conclude that φ(∆j) = β∆j , j = 1, . . . ,m.

Let E11 = e1,n+m+1 − en+1,1 ∈ osp(n,m) and φ(E11) =
2m+n∑
k,l=1

νk,lek,l. If we put x = E11 and y = ∆1 in

(1) we have

2m+n∑
k,l=1

νk,lek,l = φ(E11) = 2φ(E11 ◦∆1) = 1
2

(
2m+n∑
k=1

(νk,n+1ek,n+1 + νk,n+m+1ek,n+m+1)+

2m+n∑
l=1

(νn+1,len+1,l + νn+m+1,len+m+1,l) + αE11

)
,

whence ν1,m+n+1 = νn+1,1 = α. Further, for x = E11 and y = ∆1 substituted in (1), we obtain

2m+n∑
k,l=1

νk,lek,l = φ(E11) = 2φ((E11) ◦∆1) = 1
2

(
2m+n∑

l=1

ν1,le1,l +
2m+n∑
k=1

νk,1ek,1 + βE11

)

and ν1,m+n+1 = νn+1,1 = β. Thus α = β and φ(E) = αE. From (2), it follows that φ(y) = αy for any
element y ∈ osp(n,m). The lemma is proved.

LEMMA 3.4. Let φ be a 1
2 -derivation of P (n). Then φ(x) = αx, where α ∈ F .

Proof. Let ∆i,j = ei,j + en+j,n+i, E =
n∑

i=1

∆i,i be unity in the superalgebra P (n), and φ(∆i,j) =

2n∑
k,l=1

αi,j
k,lek,l. If in (1) we put x = y = ∆i,i we arrive at

2n∑
k,l=1

αi,i
k,lek,l = φ(∆i,i) = φ(∆2

i,i) = 1
2

(
2n∑
l=1

αi,i
n+i,len+i,l +

2n∑
k=1

αi,i
k,n+iek,n+i +

2n∑
l=1

αi,i
i,lei,l +

2n∑
k=1

αi,i
k,iek,i

)
.

The definition of P (n) implies αi,i
i,n+i = 0. Therefore, φ(∆i,i) = αi,i

i,iei,i + αi,i
n+i,n+ien+i,n+i + αi,i

n+i,ien+i,i.

7



Put x = ∆i,i and y = ∆i,j in (1). Then

2n∑
k,l=1

αi,j
k,lek,l = φ(∆i,j) = 2φ(∆i,i ◦∆i,j)

= 1
2

(
αi,i

i,iei,j + αi,i
n+i,n+ien+j,n+i + αi,i

n+i,ien+j,i + αi,i
n+i,ien+i,j

+
2n∑
l=1

αi,j
i,l ei,l +

2n∑
k=1

αi,j
k,iek,i +

2n∑
l=1

αi,j
n+i,len+i,l +

2n∑
k=1

αi,j
k,n+iek,n+i

)
.

Thus αi,i
i,i = αi,j

i,j , α
i,i
n+i,n+i = αi,i

n+j,n+i, and αi,i
n+i,i = αi,j

n+j,i.
Arguing similarly for ∆j,j and ∆i,j , we obtain αj,j

j,j = αi,j
i,j , α

j,j
n+j,n+j = αi,i

n+j,n+i, and αj,j
n+j,j = αi,j

n+j,i.
In view of the definition of P (n) and the relations above, we have φ(∆i,i) = α∆i,i + βen+i,i. The fact that

the mapping φ is linear implies φ(E) = αE + β∆, ∆ =
n∑

i=1

(en+i,i).

Suppose that β 6= 0 and φ(x) = αx+β∆◦x is a 1
2 -derivation. Then a mapping ψ : P (n) → P (n), where

ψ(x) = ∆ ◦ x, likewise is a 1
2 -derivation. We argue to show that this is not so. Let bj,i = ej,n+i − ei,n+j .

Then ψ(∆i,j ◦ bj,i) = ψ(0) = 0; but 1
2 (ψ(∆i,j) ◦ bj,i +∆i,j ◦ψ(bj,i)) = 1

2 ((∆i,j ◦∆) ◦ bj,i +∆i,j ◦ (bj,i ◦∆)) =
1
4 ((en+j,i + en+i,j) ◦ (ej,n+i − ei,n+j) + (ej,i − ei,j − en+j,n+i + en+i,n+j) ◦ (ei,j + en+j,n+i)) = 1

8∆i,i 6= 0 on
the other hand. Hence ψ is not a 1

2 -derivation. Therefore, β = 0 and φ(x) = αx. The lemma is proved.
We define the Jordan superalgebra J(V, f). Let V = V0 + V1 be a Z2-graded vector space on which a

non-degenerate superform f(. , .) : V ×V → F is defined so that it is symmetric on V0 and is skew-symmetric
on V1. Also f(V1, V0) = f(V0, V1) = 0. Consider a direct sum of vector spaces, J = F ⊕ V . Let e be unity
in the field F . Define, then, multiplication by the formula (α+ v)(β + w) = (αβ + f(v, w))e+ (αw + βv).
The given superalgebra has grading J0 = F + V0, J1 = V1. It is easy to see that e is unity in J(V, f).

LEMMA 3.5. Let φ be a 1
2 -derivation of J(V, f). Then φ(x) = αx, where α ∈ F .

Proof. Let φ(e) = αe + v0 + v1, vi ∈ Vi. Putting x = zi, y = e, and zi ∈ Vi in (1), we obtain
φ(zi) = 2φ(zie)− φ(zi) = φ(zi)e+ ziφ(e)− φ(zi) = αzi + f(zi, vi)e, whence φ(zi) = αzi + f(zi, vi)e.

If we put x = z0 and y = z1 in (1) we arrive at 0 = φ(z1z0) = 1
2 (φ(z1)z0 + z1φ(z0)) = f(z1, v1)z0 +

f(z0, v0)z1. By the definition of a superform f , we have v0 = 0 and v1 = 0, that is, φ(e) = αe. Using (2)
yields φ(x) = αx, α ∈ F , for any x ∈ J(V, f). The lemma is proved.

Consider the Grassmann algebra Γ with (odd) anticommutative generators e1, e2, . . . , en, . . . . In order
to define new multiplication, we use the operation

∂
∂ej

(ei1ei2 . . . ein) =

{
(−1)k−1ei1ei2 . . . eik−1eik+1 . . . ein if j = ik,

0 if j 6= il, l = 1, . . . , n.

For f, g ∈ Γ0

⋃
Γ1, Grassmann multiplication is defined thus:

{f, g} = (−1)p(f)
∞∑

j=1

∂f
∂ej

∂g
∂ej

.

Let Γ be an isomorphic copy of Γ under the isomorphic mapping x→ x. Consider a direct sum of vector
spaces, J(Γ) = Γ + Γ, and endow it with the structure of a Jordan superalgebra, setting A0 = Γ0 + Γ1 and
A1 = Γ1 + Γ0, with multiplication •. We obtain

a • b = ab, a • b = (−1)p(b)ab, a • b = ab, a • b = (−1)p(b){a, b},
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where a, b ∈ Γ0

⋃
Γ1 and ab is the product in Γ. Let Γn be a subalgebra of Γ generated by elements

e1, e2, . . . , en. By J(Γn) we denote the subsuperalgebra Γn + Γn of J(Γ). If n > 2 then J(Γn) is a simple
Jordan superalgebra.

LEMMA 3.6. Let φ be a 1
2 -derivation of J(Γn). Then φ(x) = αx, where α ∈ F .

Proof. Let φ(1) = αγ + βν, where α, β ∈ F , γ ∈ Γ, and ν ∈ Γ. Put y = 1 in (1); then

φ(x) = 2φ(x • 1)− φ(x) = φ(x) + x • φ(1)− φ(x) = x • φ(1). (4)

If in (1) we put x = ei, y = ei, i = 1, . . . , n, with (4) in mind, we arrive at

φ(1) = φ(ei • ei) = 1
2 (φ(ei) • ei + ei • φ(ei)) = φ(ei) • ei = ei • (ei • φ(1)).

For any x of the form ei1ei2 . . . eik
, obviously, we have

ei • (ei • x) =




x if ∂x

∂ei
= 0,

0 otherwise;
(5)

ei • (ei • x) =




x if ∂x

∂ei
6= 0,

0 otherwise.
(6)

Let γ = γi+ +eiγ
i− and ν = νi+ +eiνi−, where γi−, γi+, νi−, νi+ do not contain ei. Since i is arbitrary,

in view of (5) and (6), we have γ = 1 and ν = e1 . . . en. Thus φ(1) = α · 1 + βe1 . . . en. Relation (4) entails

φ(e1) = e1 • φ(1) = e1 • (α · 1 + βe1 . . . en) = αe1,

φ(e1) = e1 • φ(1) = e1 • (α · 1 + βe1 . . . en) = αe1 + βe2 . . . en.

The relations above, combined with the condition in (1), imply 0 = φ(e1•e1) = 1
2 (e1•φ(e1)+φ(e1)•e1) =

β
2 e1 . . . en; that is, φ(1) = α · 1. From (2), we conclude that φ(x) = αx for any element x ∈ J(Γn). The
lemma is proved.

4. δ-DERIVATIONS FOR JORDAN SUPERALGEBRAS
K3, Dt, K10

In this section, we confine ourselves to non-trivial δ-derivations of simple finite-dimensional Jordan
superalgebras K3, K10, and Dt over an algebraically closed field of characteristic p not equal to 2. For the
superalgebra K10, we require in addition that p 6= 3. In conclusion, we formulate a theorem on δ-derivations
for simple finite-dimensional Jordan superalgebras over an algebraically closed field of characteristic 0.

The three-dimensional Kaplansky superalgebra K3 is defined thus:

(K3)0 = Fe, (K3)1 = Fz + Fw,

where e2 = e, ez = 1
2z, ew = 1

2w, and [z, w] = e.

LEMMA 4.1. Let φ be a non-trivial δ-derivation of K3. Then δ = 1
2 and φ(x) = αx, where α ∈ F .

Proof. Let φ(e) = αee + βez + γew, φ(z) = α1e + β1z + γ1w, and φ(w) = α2e + β2z + γ2w, where
αe, α1, α2, βe, β1, β2, γe, γ1, γ2 ∈ F . If we put x = y = e in (1) we obtain

αee+ βez + γew = φ(e) = φ(e2) = δ(eφ(e) + φ(e)e) = δ(2αee+ βez + γew).
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Thus it suffices to consider the following two cases:
(1) δ = 1

2 ;
(2) δ 6= 1

2 , φ(e) = 0.
In the former case, φ(e) = αe, where α = αe. Case (1), for x = e and y = z, entails α1e+ β1z + γ1w =

φ(z) = 2φ(ez) = 2 · 1
2 (eφ(z)+φ(e)z) = α1e+ 1

2 (β1z+γ1w+αz), whence β1 = 1
2 (β1 +α) and γ1 = 1

2γ1; that
is, β1 = α and γ1 = 0. Similarly, substituting in (1) x = e and y = w, we obtain γ2 = α and β2 = 0. For
x = z and y = w in (1), we have αe = φ(e) = φ([z, w]) = 1

2 (zφ(w) + φ(z)w) = 1
2 (1

2α2z + αe+ 1
2α1w + αe),

whence φ(e) = αe, φ(z) = αz, and φ(w) = αw, where α ∈ F . Consequently, φ(x) = αx for any x ∈ K3.
We handle the second case. For x = e and y = z in (1), we have α1e + β1z + γ1w = φ(z) = 2φ(ez) =

2δ(eφ(z)+φ(e)z) = δ(2α1e+β1z+ γ1w), which yields φ(z) = 0. Similarly, we arrive at φ(w) = 0. The fact
that φ is linear implies φ = 0. The lemma is proved.

At the moment, we define a one-parameter family of four-dimensional superalgebras Dt. For t ∈ F

fixed, the given family is defined thus:
Dt = (Dt)0 + (Dt)1,

where (Dt)0 = Fe1 + Fe2, (Dt)1 = Fx + Fy, e2i = ei, e1e2 = 0, eix = 1
2x, eiy = 1

2y, [x, y] = e1 + te2,
i = 1, 2.

LEMMA 4.2. Let φ be a non-trivial δ-derivation of Dt. Then δ = 1
2 and φ(x) = αx, where α ∈ F .

Proof. Let

φ(e1) = α1e1 + β1e2 + γ1z + λ1w, φ(e2) = α2e1 + β2e2 + γ2z + λ2w,

φ(z) = αze1 + βze2 + γzz + λzw, φ(w) = αwe1 + βwe2 + γwz + λww,

with coefficients in F .
Putting x = y = e1 and then x = y = e2 in (1), we obtain α1e1 + β1e2 + γ1z + λ1w = φ(e1) = φ(e21) =

2δ(e1φ(e1)) = 2δα1e1+δγ1z+δλ1w and α2e1+β2e2+γ2z+λ2w = 2δβ2e2+δγ2z+δλ2w, whence α1 = 2δα1,
β1 = 0, γ1 = δγ1, λ1 = δλ1, α2 = 0, β2 = 2δβ2, γ2 = δγ2, λ2 = δλ2.

There are two cases to consider:
(1) δ = 1

2 , β1 = α2 = γ1 = γ2 = λ1 = λ2 = 0;
(2) δ 6= 1

2 , α1 = α2 = β1 = β2 = γ1 = γ2 = λ1 = λ2 = 0.
In the former case, φ(e1) = α1e1 and φ(e2) = β2e2. Put x = e1 and y = z in condition (1); then

αze1 + βze2 + γzz + λzw = φ(z) = 2φ(e1z) = 2 · 1
2 (e1φ(z) + φ(e1)z) = αze1 + 1

2 (γzz + λzw + α1z), which
yields α1 = γz, βz = λz = 0.

For x = e2 and y = z in (1), we have αze1+γzz = φ(z) = 2φ(e2z) = 2· 12 (e2φ(z)+φ(e2)z) = 1
2 (γzz+β2z),

whence γz + β2 = 2γz, αz = 0, α1 = β2, and φ(z) = αz, where α = α1. Similarly, we conclude that
φ(w) = αw. The mapping φ is linear; so φ(x) = αx, α ∈ F , for any x ∈ Dt.

We handle the second case. Put x = e1 and y = z in (1); then αze1 + βze2 + λzz + γzw = φ(z) =
2φ(e1z) = 2δ(e1φ(z) + φ(e1)z) = δ(2αze1 + λzz + γzw), which yields φ(z) = 0. Arguing similarly for w, we
arrive at αwe1 + βwe2 + γwz + λww = δ(2αwe1 + γwz + λww). Consequently, φ(w) = 0. Ultimately, the
linearity of φ implies φ = 0. The lemma is proved.

The simple ten-dimensional Kac superalgebra K10 is defined thus:

K10 = A⊕M, (K10)0 = A, (K10)1 = M, where A = A1 ⊕A2,

A1 = Fe1 + Fuz + Fuw + Fvz + Fvw,
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A2 = Fe2,M = Fz + Fw + Fu+ Fv.

Multiplication is specified by the following conditions:

e2i = ei, e1 is unity in A1, eim = 1
2m for any m ∈M ,

[u, z] = uz, [u,w] = uw, [v, z] = vz, [v, w] = vw,
[z, w] = e1 − 3e2, [u, z]w = −u, [v, z]w = −v, [u, z][v, w] = 2e1;

all other non-zero products are obtained from the above either by applying one of the skew-symmetries
z ↔ w or u↔ v or by substituting z ↔ u and w ↔ v simultaneously.

LEMMA 4.3. Let φ be a non-trivial δ-derivation of K10. Then δ = 1
2 and φ(x) = αx, where α ∈ F .

Proof. Let

φ(e1) = α1e1 + α2e2 + α3z + α4w + α5u+ α6v + α7uz + α8uw + α9vz + α10vw,

φ(e2) = β1e1 + β2e2 + β3z + β4w + β5u+ β6v + β7uz + β8uw + β9vz + β10vw,

φ(z) = γz
1e1 + γz

2e2 + γz
3z + γz

4w + γz
5u+ γz

6v + γz
7uz + γz

8uw + γz
9vz + γz

10vw,

φ(w) = γw
1 e1 + γw

2 e2 + γw
3 z + γw

4 w + γw
5 u+ γw

6 v + γw
7 uz + γw

8 uw + γw
9 vz + γw

10vw,

φ(u) = γu
1 e1 + γu

2 e2 + γu
3 z + γu

4w + γu
5 u+ γu

6 v + γu
7 uz + γu

8 uw + γu
9 vz + γu

10vw,

φ(v) = γv
1e1 + γv

2e2 + γv
3z + γv

4w + γv
5u+ γv

6v + γv
7uz + γv

8uw + γv
9vz + γv

10vw,

where all coefficients are in F .
For x = y = e1 in (1), we have

α1e1 + α2e2 + α3z + α4w + α5u+ α6v + α7uz + α8uw + α9vz + α10vw =
φ(e1) = φ(e21) = δ(φ(e1)e1 + e1φ(e1)) =

2δ(α1e1 + 1
2α3z + 1

2α4w + 1
2α5u+ 1

2α6v + α7uz + α8uw + α9vz + α10vw),

whence α1 = 2δα1, α2 = 0, α3 = δα3, α4 = δα4, α5 = δα5, α6 = δα6, α7 = 2δα7, α8 = 2δα8, α9 = 2δα9,
α10 = 2δα10.

Putting x = y = e2 in (1), we obtain

β1e1 + β2e2 + β3z + β4w + β5u+ β6v + β7uz + β8uw + β9vz + β10vw =
φ(e2) = φ(e22) = δ(φ(e2)e2 + e2φ(e2)) = 2δe2φ(e2) =

2δ(β2e2 + 1
2β3z + 1

2β4w + 1
2β5u+ 1

2β6v),

which yields β1 = 0, β2 = 2δβ2, β3 = δβ3, β4 = δβ4, β5 = δβ5, β6 = δβ6, β7 = β8 = β9 = β10 = 0.
Consequently, it suffices to consider the following two cases:
(1) δ = 1

2 ;
(2) δ 6= 1

2 , φ(e1) = φ(e2) = 0.
In the former case, φ(e1) = α1e1 + α7uz + α8uw + α9vz + α10vw and φ(e2) = αe2. Put x = e2 and

y = z in (1); then

γz
1e1 + γz

2e2 + γz
3z + γz

4w + γz
5u+ γz

6v + γz
7uz + γz

8uw + γz
9vz + γz

10vw =
φ(z) = 2φ(ze2) = φ(z)e2 + zφ(e2) =

γz
2e2 + 1

2γ
z
3z + 1

2γ
z
4w + 1

2γ
z
5u+ 1

2γ
z
6v + 1

2αz,

and so φ(z) = γz
2e2 + αz. If in (1) we put x = e1 and y = z we obtain γz

2e2 + αz = φ(z) = 2φ(ze1) =
φ(z)e1 + zφ(e1) = (γz

2e2 + αz)e1 + z(α1e1 + +α7uz + α8uw + α9vz + α10vw), whence γz
2 = 0 and α = α1;

that is, φ(z) = αz. Similarly, for w, u, and v, we have φ(u) = αu, φ(v) = αv, and φ(w) = αw. Hence
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φ(uz) = φ([u, z]) = 1
2 (φ(u)z + uφ(z)) = 1

2 (α[u, z] + α[u, z]) = αuz. Analogously, we obtain φ(uw) = αuw,
φ(vz) = αvz, and φ(vw) = αvw.

Let x = [u, z] and y = [v, w] in (1); then

2φ(e1) = φ([u, z][v, w]) = 1
2 (φ([u, z])[v, w] + [u, z]φ([v, w])) =

α[u, z][v, w] = 2αe1.

The fact that φ is linear implies φ(x) = αx, α ∈ F , for x ∈ K10 arbitrary.
We handle the second case. Put x = z and y = e1 in (1). Then

γz
1e1 + γz

2e2 + γz
3z + γz

4w + γz
5u+ γz

6v + γz
7uz + γz

8uw + γz
9vz + γz

10vw =
φ(z) = 2φ(ze1) = 2δ(φ(z)e1 + zφ(e1)) =

2δ(γz
1e1 + 1

2γ
z
3z + 1

2γ
z
4w + 1

2γ
z
5u+ 1

2γ
z
6v + γz

7uz + γz
8uw + γz

9vz + γz
10vw),

which yields φ(z) = 0. Similarly, we arrive at φ(w) = φ(v) = φ(u) = 0. Since e1, e2, z, v, u, w generate K10,
we have φ = 0. The lemma is proved.

THEOREM 4.4. Let A be a simple finite-dimensional Jordan superalgebra over an algebraically closed
field of characteristic 0, and let φ be a non-trivial δ-derivation of A. Then δ = 1

2 and φ(x) = αx for some
α ∈ F and for any x ∈ A.

The proof follows from Theorems 1.2, 2.1 and Lemmas 3.1-3.6, 4.1-4.3.
Acknowledgments. I am grateful to A. P. Pozhidaev and V. N. Zhelyabin for their assistance.
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