The Splittest Kac Superalgebra K_{10}

Kevin McCrimmon
Department of Mathematics
University of Virginia, Charlottesville, Virginia
kmm4m@virginia.edu

Abstract

We present an isotope of the usual version of the Kac 10-dimensional Jordan superalgebra K_{10} over a general ring of scalars Φ (isomorphic to the original version when $i, \frac{1}{\sqrt{2}} \in \Phi$, but not in characteristic 2), which we take as the "correct" split model for the simple superalgebra in all characteristics. This $J=A \oplus M$ has unit the sum of three reduced orthogonal idempotents. We exhibit a "quaternionic" model $J \subseteq(H \otimes H \boxplus \Phi f) \oplus H$ of the bimodule structure for this model and the original one, as well as an "exterior" model $J \cong \Lambda^{2}(M) \oplus M$ for both the bimodule structure and the odd product. We give a reference table for all quadratic and triple products, and use this to explicitly describe all inner super-derivations. In a subsequent article we will use this table to investigate the structure of the Grassmann envelope. ${ }^{1}$

Our version $s K_{10}=K_{10}^{s}$ of the Kac 10-dimensional quadratic Jordan superalgebra $K_{10}(\Phi)$ over a general ring of scalars Φ will be split even further than that of Dan King [2]. The Kac superalgebra consists of an even Jordan algebra $A=\operatorname{Jord}(Q, e) \boxplus \Phi f$ which is the direct sum of a 5 -dimensional algebra $\operatorname{Jord}(Q, e)$ of a nondegenerate quadratic form and a 1-dimensional ideal Φf, together with a 4-dimensional odd bimodule M having odd products into A. The algebra was called "split" in [2] because the quadratic form has maximal Witt index: in the linear case $\operatorname{Jord}(Q, e)=\Phi e \oplus V$ where the form is thought of as residing on V and is there a direct sum of two hyperbolic planes; in the quadratic case the form resides on the entire 5 -dimensional space including the basepoint e, and there it is a direct sum of two hyperbolic planes and a 1-dimensional "split" line $Q(e)=1$. However, in characteristic 2 this Q is traceless (hence in the terminology of Loos [4] totally ramified), with the property that $x^{2}=-Q(x) e$ for all x, so there are no proper idempotents. In the structure theory for quadratic Jordan algebras this is considered an aberrant case: the "standard" degree-2 algebra has unit a sum of two reduced orthogonal idempotents, $A=\Phi e_{1} \oplus \Phi e_{2} \oplus V$, and the traceless form arises as a (non-isomorphic) isotope of this standard form. In Jordan theory there is a hierarchy: "reduced" means "has enough idempotents", while "split" means reduced and the coordinate algebra splits. Thus we will refer to our version $J=\Phi e_{1} \oplus \Phi e_{2} \oplus \Phi f \oplus V \oplus M$ as (intrinsically) split, and demote the version [2] to (merely) standard (it is extrinsically split if $\frac{1}{2} \in \Phi$).

Throughout, we consider unital Jordan superalgebras, \mathbb{Z}_{2}-graded algebras $J=J_{0} \oplus J_{1}=A \oplus M$ over an arbitrary ring of scalars Φ (possibly of characteristic 2) with graded bilinear and trilinear products $\langle x, y\rangle=V_{x}(y),\langle x, y, z\rangle=V_{x, y}(z)$ and even products $U_{a} x, a^{2}$ quadratic in a and linear in x, such that $\langle a, y, b\rangle=U_{a, b} y=\left(U_{a+b}-U_{a}-U_{b}\right) y$ is the linearization of the U-operator, and similarly $\langle a, b\rangle=\langle a, 1, b\rangle=(a+b)^{2}-a^{2}-b^{2}$ is the linearization of the square. We define $U_{m, p} n:=\langle m, n, p\rangle$, even though there is no odd U-operator U_{m} which gives rise to this. ${ }^{2}$ In the absence of a scalar $\frac{1}{2}$, the bilinear products are not sufficient to determine the quadratic products, so we will devote much effort to describing the quadratic products both in the usual and the split version of K_{10}.

[^0]To avoid subscripts (of which we will have more than enough already), we follow the RacineZelmanov convention [7] and distinguish even from odd by using letters a, b, c, d, e, f, g (but u, v for the vector part of $\operatorname{Jord}(Q, e)$ in $\left.K_{10}\right)$ to denote even elements of $J_{0}=A$, and letters m, n, p to denote odd elements of $J_{1}=M$; general homogeneous elements of J of will be denoted by x, y, z (of degree $\operatorname{deg}(\mathrm{x})$ etc.). We denote Jordan bilinear and trilinear products by braces $\{a, .$.$\} , Lie$ products by brackets $[x, .$.$] , and androgynous superproducts by \langle x, .$.$\rangle . By abuse of notation we will$ write $(-1)^{x}$ for $(-1)^{\operatorname{deg}(x)},(-1)^{x y}$ for $(-1)^{\operatorname{deg}(x) \operatorname{deg}(y)}$ [-1 if both x, y are odd, +1 otherwise], and $(-1)^{x y z}$ for $(-1)^{\operatorname{deg}(x) \operatorname{deg}(y)+\operatorname{deg}(y) \operatorname{deg}(z)+\operatorname{deg}(z) \operatorname{deg}(x)}$ ["majority rule': -1 if the majority are odd, +1 if the majority are even].

The super-Jordan axioms are that the Grassmann envelope $\Gamma(J)$ becomes a unital quadratic Jordan algebra under "natural" quadratic product. The (as yet not fully listed) quadratic superidentities $F\left(a_{1}, \ldots, a_{r}, m_{1}, \ldots, m_{s}\right)=0$ (homogeneous of degree 1 in each m_{i}) are determined by Grassmann detour from quadratic Jordan identities $F\left(1 \otimes a_{1}, \ldots, 1 \otimes a_{r}, \gamma_{1} \otimes m_{1}, \ldots, \gamma_{s} \otimes m_{r}\right)=0$ in the Grassmann envelope for independent Grassmann variables $\gamma_{i} \in \Gamma_{1}$. For later reference we recall certain of these basic identities for Jordan superalgebra $J: M$ is a Jordan bimodule for the quadratic Jordan algebra A and for $m, n, p \in M, a, b \in A$, homogeneous $x, y, z \in J$
(0.1.1) Switching Rule $\langle x, y, z\rangle+(-1)^{x y}\langle y, x, z\rangle=\langle\langle x, y\rangle, z\rangle$,

$$
\text { SuperSymmetry }\langle x, y\rangle=(-1)^{x y}\langle y, x\rangle, \quad\langle x, y, z\rangle=(-1)^{x y z}\langle z, y, x\rangle \text {, }
$$

(0.1.2) Even Symmetry $\langle a, m\rangle=\langle m, a\rangle,\langle a, m, b\rangle=\langle b, m, a\rangle,\langle a, b, m\rangle=\langle m, b, a\rangle$,

$$
\text { Odd Alternation }\langle m, m\rangle=\langle m, n, m\rangle=0,\langle m, n\rangle=-\langle n, m\rangle,\langle m, x, n\rangle=-\langle n, x, m\rangle
$$

If $1=\sum_{i=1}^{n} e_{i}$ is a supplementary sum of orthogonal idempotents, the Peirce decomposition of J is $J=\bigoplus_{i \leq j} J_{i j}$ with Peirce projections $E_{i i}=U_{e_{i}}, E_{i j}=U_{e_{i}, e_{j}}$ on $J_{i j}=J_{j i}$. In the case of a single idempotent e, we denote these by $J_{i}, E_{i}\left(E_{2}=U_{e}, E_{1}=U_{e, 1-e}, E_{0}=U_{1-e}\right.$ (in our unital case $1-e$ exists in J, but in general it exists in the unital hull). They satisfy the standard rules
(0.2.1) Peirce Orthogonality $\left\langle J_{i j}, J_{k \ell}\right\rangle=\left\langle J_{i j}, J_{k \ell}, J_{m n}\right\rangle=0$ unless indices can be linked,
(0.2.2) $\quad J_{i i}^{2} \subseteq J_{i i},\left\langle J_{i j}, J_{i j}\right\rangle \subseteq J_{i j}^{2} \subseteq J_{i i}+J_{j j},\left\langle J_{i j}, J_{j k}\right\rangle \subseteq J_{i k} \quad(k \neq i), \quad\left\langle J_{i j}, J_{j k}, J_{k \ell}\right\rangle \subseteq J_{i \ell}$,
(0.2.3) $\quad U_{A_{i j}} J_{i i} \subseteq J_{j j}, U_{A_{i j}} J_{i j} \subseteq J_{i j}, U_{A_{i j}} J_{k \ell}=0 \quad((k \ell) \neq(i, i),(i j),(j j))$,
(0.2.4) Triple Reduction Formulas $\langle a, a, m\rangle=\left\langle a^{2}, m\right\rangle,\langle m, m, x\rangle=\langle m,\langle m, x\rangle\rangle$, If $x_{i}, y_{i} \in J_{i}(e)(i=2,0, j=3-i), z_{1}, w_{1} \in J_{1}(e)$ then $\left\langle z_{1}, w_{1}, x_{i}\right\rangle=E_{i i}\left\langle z_{1},\left\langle w_{1}, x_{i}\right\rangle\right\rangle$, $\left\langle x_{i}, y_{i}, z_{1}\right\rangle=\left\langle x_{i},\left\langle y_{i}, z_{1}\right\rangle\right\rangle, \quad\left\langle z_{1}, y_{i}, w_{1}\right\rangle=E_{j j}\left\langle z_{1},\left\langle y_{i}, w_{1}\right\rangle\right\rangle=E_{j j}\left\langle\left\langle z_{1}, y_{i}\right\rangle, w_{1}\right\rangle$.
These formulas show that in Jordan superalgebras many of the trilinear products are determined by bilinear products together with the Peirce decomposition; in the split case we will see that all trilinear products are so determined.

1 Bases for the Kac superalgebra

The standard version of the quadratic Kac superalgebra $K_{10}(\Phi)=A \oplus M=(B \boxplus \Phi f) \oplus M$ is a free $\Phi-$ module of dimension 10 over Φ with 6 -dimensional even space A the direct sum of $B=\operatorname{Jord}(Q, e)$ (the 5 -dimensional Jordan algebra of a quadratic form Q on $\Phi e \oplus V$ with basepoint e) and a 1dimensional Φf, and with 4 -dimensional odd space M, which is a Jordan A-bimodule M with bilinear and trilinear products $\langle\cdot, \cdot\rangle: M \times M \rightarrow A,\langle\cdot, \cdot, \cdot\rangle: M \times M \times M \rightarrow A$. The King basis [2, p.31][3, p.391-2], which was adapted from Kac's corrected characteristic zero model to work for arbitrary scalars, consists of 10 elements $x_{0}, y_{0}, \tilde{x}_{0}, \tilde{y}_{0}, e, f, x_{1}, y_{1}, \tilde{x}_{1}, \tilde{y}_{1}$ which we shall relabel as $v_{1}, v_{2}, v_{3}, v_{4}, e, f, m_{1}, m_{2}, m_{3}, m_{4}$ (King used subscripts to denote parity J_{0}, J_{1}, whereas we will use A, M for that purpose, leaving subscripts free to label items in a list). Here e, f are orthogonal idempotents, e the unit of $\operatorname{Jor} d(Q, e)$, the quadratic form is

$$
\begin{equation*}
Q(b)=\beta^{2}-\beta_{1} \beta_{2}-\beta_{3} \beta_{4}, \quad T(b)=2 \beta \quad \text { for } \quad b=\beta e+\beta_{1} v_{1}+\beta_{2} v_{2}+\beta_{3} v_{3}+\beta_{4} v_{4} \tag{1.1}
\end{equation*}
$$

so the commutative circle products on V are $\left\{v_{1}, v_{2}\right\}=\left\{v_{3}, v_{4}\right\}=e$: the multiplication in the direct sum $A=B \boxplus \Phi f$ is given by that in the separate sumands, where for $b=\beta e+v$ in any
$B=\operatorname{Jord}(Q, e)=\Phi e \oplus V$ we have quadratic products

$$
U_{b} b^{\prime}=Q\left(b, \overline{b^{\prime}}\right) b-Q(b) \overline{b^{\prime}}, \quad b^{2}=T(b) b-Q(b) e \quad\left(T(b)=2 \beta, Q(b)=\beta^{2}+Q(v), \bar{b}=T(b) e-b\right) .
$$

For our particular V with $Q\left(v_{i}\right)=0, Q\left(v_{i}, v_{j}\right)=-\delta_{j i^{\prime}}, \overline{v_{i}}=-v_{i}$ we get [introducing the convention that $1^{\prime}=2,2^{\prime}=1,3^{\prime}=4,4^{\prime}=3$ for switching among the "paired" indices 1,2 and 3,4]

$$
\begin{gather*}
U_{e} b=b, \quad\{e, e, b\}=\{e, b, e\}=2 b, \quad U_{v_{i}} e=v_{i}^{2}=0, \quad U_{v_{i}} v_{j}=\delta_{j i^{\prime}} v_{i}, \quad\left\{v_{i}, v_{i}, B\right\}=0, \\
\left\{v_{i}, v_{j}, v_{k}\right\}=\delta_{j i^{\prime}} v_{k}+\delta_{j k^{\prime}} v_{i}-\delta_{k i^{\prime}} v_{j}, \quad\left\{v_{i}, v_{j}, e\right\}=\left\{v_{i}, e, v_{j}\right\}=\left\{v_{i}, v_{j}\right\}=\delta_{j i^{\prime}} e \tag{1.2}\\
\left\{v_{i}, v_{i^{\prime}}, v_{i}\right\}=2 v_{i}, \quad\left\{v_{i}, v_{i^{\prime}}, v_{j}\right\}=v_{j}, \quad\left\{v_{i}, v_{j}, v_{i^{\prime}}\right\}=-v_{j} \quad\left(j \neq i, i^{\prime}\right) .
\end{gather*}
$$

The Peirce decomposition (0.2) of J relative to e (equivalently, $1=e+f$) is $J=A_{2} \oplus A_{0} \oplus M_{1}$ for $A_{2}=\Phi e+V=B, A_{0}=\Phi f, M_{1}=M$. Thus King's action of A on M is given by

(1.3)		Bimodule Product $\langle A, M\rangle$							
$\langle\rangle$,	x_{1}	y_{1}	\tilde{x}_{1}	\tilde{y}_{1}	$\langle\rangle$,	m_{1}	m_{2}	m_{3}	m_{4}
x_{0}	0	\tilde{y}_{1}	x_{1}	0	v_{1}	0	m_{4}	m_{1}	0
y_{0}	\tilde{x}_{1}	0	0	y_{1}	v_{2}	m_{3}	0	0	m_{2}
\tilde{x}_{0}	0	$-\tilde{x}_{1}$	0	x_{1}	v_{3}	0	$-m_{3}$	0	m_{1}
\tilde{y}_{0}	\tilde{y}_{1}	0	$-y_{1}$	0	v_{4}	m_{4}	0	$-m_{2}$	0
e, f	x_{1}	y_{1}	\tilde{x}_{1}	\tilde{y}_{1}	e, f	m_{1}	m_{2}	m_{3}	m_{4}

Bimodule Structure

From the Peirce rules (0.2) for the bilinear actions of $B=A_{2}$ and $\Phi f=A_{0}$ on $M=M_{1}$ we immediately get rules for the trilinear actions on M :

$$
\begin{gather*}
\langle e, m\rangle=\langle f, m\rangle=\langle e, m, f\rangle=\langle e, e, m\rangle=\langle f, f, m\rangle=m, \quad\langle e, b, m\rangle=\langle b, e, m\rangle=\langle b, m, f\rangle=\langle b, m\rangle, \\
U_{e} M=U_{B} M=U_{B, B} M=U_{f} M=\langle f, B, M\rangle=\langle B, f, M\rangle=\left\langle v_{i}, v_{i}, M\right\rangle=0, \tag{1.4}\\
\left\langle b, b^{\prime}, m\right\rangle=\left\langle b,\left\langle b^{\prime}, m\right\rangle\right\rangle, \quad\langle f, m, b\rangle=\langle b, e, m\rangle=\langle e, b, m\rangle=\langle b, m\rangle .
\end{gather*}
$$

These rules allow us to give us a complete description of $J=A \oplus M$ as bimodule, equivalently, as a split null extension (before we introduce a nontrivial product on the odd space). We have general trilinear actions $V_{v_{i}, v_{k}}=V_{v_{i}} V_{v_{k}}, V_{v_{i}, v_{i}}=0, V_{v_{i}, v_{i^{\prime}}}+V_{v_{i^{\prime}}, v_{i}}=\mathbf{1}_{M}, V_{v_{i}, v_{j}}=-V_{v_{j}, v_{i}}\left(j \neq i, i^{\prime}\right)$, and particular actions: $V_{v_{2}}$ kills m_{2}, m_{3} and sends $m_{1}, m_{4} \longrightarrow m_{3}, m_{2} \xrightarrow{V_{v_{1}}} m_{1}, m_{4}$ for $V_{v_{1}, v_{2}}$; similarly V_{3} kills m_{1}, m_{3} and sends $m_{2}, m_{4} \longrightarrow-m_{3}, m_{1}$, which is sent $\xrightarrow{V_{v_{1}}}-m_{1}, 0$ for $V_{v_{1}, v_{3}}$, and sent $\xrightarrow{V_{v_{2}}} 0,-m_{3}$ for $V_{v_{2}, v_{3}}$; likewise V_{4} kills m_{2}, m_{4} and sends $m_{1}, m_{3} \longrightarrow m_{4},-m_{2}$, which is sent $\xrightarrow{V_{v_{1}}} 0,-m_{4}$ for $V_{v_{1}, v_{4}}$, sent $\xrightarrow{V_{v_{2}}} m_{2}, 0$ for $V_{v_{2}, v_{4}}$, and sent $\xrightarrow{V_{v_{3}}} m_{1}, m_{3}$ for $V_{v_{3}, v_{4}}$. We can summarize these together with (1.2), (1.4) in the table ${ }^{3}$

[^1](1.5.1) V-Operators $V_{A}, V_{A, A}$

$V_{a}, \quad V_{a}(x)=\langle a, x\rangle$	v_{1}	v_{2}	v_{3}	v_{4}	e	f	m_{1}	m_{2}	m_{3}	m_{4}
$V_{v_{1}}=V_{v_{1}, e}=V_{e, v_{1}}$	0	e	0	0	$2 v_{1}$	0	0	m_{4}	m_{1}	0
$V_{v_{2}}=V_{v_{2}, e}=V_{e, v_{2}}$	e	0	0	0	$2 v_{2}$	0	m_{3}	0	0	m_{2}
$V_{v_{3}}=V_{v_{3}, e}=V_{e, v_{3}}$	0	0	0	e	$2 v_{3}$	0	0	$-m_{3}$	0	m_{1}
$V_{v_{4}}=V_{v_{4}, e}=V_{e, v_{4}}$	0	0	e	0	$2 v_{4}$	0	m_{4}	0	$-m_{2}$	0
$V_{e}=V_{e, e}$	$2 v_{1}$	$2 v_{2}$	$2 v_{3}$	$2 v_{4}$	$2 e$	0	m_{1}	m_{2}	m_{3}	m_{4}
$V_{f}=V_{f, f}$	0	0	0	0	0	$2 f$	m_{1}	m_{2}	m_{3}	m_{4}
$V_{v_{1}, v_{2}}$	$2 v_{1}$	0	v_{3}	v_{4}	e	0	m_{1}	0	0	m_{4}
$V_{v_{2}, v_{1}}$	0	$2 v_{2}$	v_{3}	v_{4}	e	0	0	m_{2}	m_{3}	0
$V_{v_{3}, v_{4}}$	v_{1}	v_{2}	$2 v_{3}$	0	e	0	m_{1}	0	m_{3}	0
$V_{v_{4}, v_{3}}$	v_{1}	v_{2}	0	$2 v_{4}$	e	0	0	m_{2}	0	m_{4}
$V_{v_{1}, v_{3}}=-V_{v_{3}, v_{1}}$	0	$-v_{3}$	0	v_{1}	0	0	0	$-m_{1}$	0	0
$V_{v_{2}, v_{3}}=-V_{v_{3}, v_{2}}$	$-v_{3}$	0	0	v_{2}	0	0	0	0	0	m_{3}
$V_{v_{1}, v_{4}}=-V_{v_{4}, v_{1}}$	0	$-v_{4}$	v_{1}	0	0	0	0	0	$-m_{4}$	0
$V_{v_{2}, v_{4}}=-V_{v_{4}, v_{2}}$	$-v_{4}$	0	v_{2}	0	0	0	m_{2}	0	0	0
	$V_{v_{i}, v_{i}}=V_{f, B}=V_{B, f}=0$							$V_{b, b^{\prime}}=V_{b} V_{b^{\prime}}$ on M		

(1.5.2)	U-Operators $U_{A}, U_{A, A}$					
$U_{v_{1}}$	0	v_{1}	0	0	0	0
$U_{v_{2}}$	v_{2}	0	0	0	0	0
$U_{v_{3}}$	0	0	0	v_{3}	0	0
$U_{v_{4}}$	0	0	v_{4}	0	0	0
U_{e}	v_{1}	v_{2}	v_{3}	v_{4}	e	0
U_{f}	0	0	0	0	0	f
$U_{v_{1}, v_{2}}=U_{v_{2}, v_{1}}$	0	0	$-v_{3}$	$-v_{4}$	e	0
$U_{v_{1}, v_{3}}=U_{v_{3}, v_{1}}$	0	v_{3}	0	v_{1}	0	0
$U_{v_{1}, v_{4}}=U_{v_{4}, v_{1}}$	0	v_{4}	v_{1}	0	0	0
$U_{v_{2}, v_{3}}=U_{v_{3}, v_{2}}$	v_{3}	0	0	v_{2}	0	0
$U_{v_{2}, v_{4}}=U_{v_{4}, v_{2}}$		0	v_{2}	0	0	0
$U_{v_{3}, v_{4}}=U_{v_{4}, v_{3}}$	$-v_{1}$	$-v_{2}$	0	0	e	0
$a^{2}=U_{a} 1$	0	0	0	0	e	f
$\begin{gathered} U_{b, b}=2 U_{b}, U_{e, b}=V_{b}, U_{f, b}=0 \text { on } A, \\ U_{f, b}=V_{b}, U_{f}=U_{e, b}=U_{b}=U_{b, b^{\prime}}=0 \text { on } M \end{gathered}$						

Odd Products

King defines [3, p.392] the alternating odd bilinear product on M by a basis-free recipe involving an alternating bilinear form σ on M and an alternating product \star from $M \times M \rightarrow V$ by

$$
\begin{equation*}
\langle m, n\rangle:=\sigma(m, n) g+2 m \star n \quad(g:=e-3 f), \quad m \star n:=\sum_{i=1}^{4} \sigma\left(\left\langle v_{i}, m\right\rangle, n\right) v_{i}^{\prime} \tag{1.6}
\end{equation*}
$$

[where $\sigma\left(m_{1}, m_{2}\right)=\sigma\left(m_{3}, m_{4}\right)=1$ and v^{\prime} denotes the anti-isometric involution $\sigma\left(v^{\prime}, w^{\prime}\right)=\sigma(w, v)$ on V determined by $v_{i}^{\prime}=v_{i^{\prime}}$ for $1^{\prime}=2,3^{\prime}=4$ as in (1.2)] as described by the table

(1.7) Products \star and σ on M									
\star	m_{1}	m_{2}	m_{3}	m_{4}	σ	m_{1}	m_{2}	m_{3}	m_{4}
m_{1}	0	0	$-v_{3}$	v_{1}	m_{1}	0	1	0	0
m_{2}	0	0	$-v_{2}$	$-v_{4}$	m_{2}	-1	0	0	0
m_{3}	v_{3}	v_{2}	0	0	m_{3}	0	0	0	1
m_{4}	$-v_{1}$	v_{4}	0	0	m_{4}	0	0	-1	0

Note for future reference that from (1.7), (1.3) and some calculation we see

$$
\begin{gather*}
\text { for } j \neq i, i^{\prime} \text { we have }\left\langle V,\left(\Phi m_{i}+\Phi m_{i^{\prime}}\right)\right\rangle \subseteq \Phi m_{j}+\Phi m_{j^{\prime}}, \tag{1.8}\\
\hline \begin{array}{|ll}
\sigma\left(\left\langle v, m_{i}\right\rangle, m_{i}\right)=0, & m_{i} \star m_{i}=m_{i} \star m_{i^{\prime}}=\left\langle\left(m_{i} \star m_{j}\right), m_{i}\right\rangle=0, \\
\sigma\left(m_{i}, m_{i^{\prime}}\right)=(-1)^{i^{\prime}}, & \left\langle\left(m_{i} \star m_{j}\right), m_{i^{\prime}}\right\rangle=(-1)^{i^{\prime}} m_{j}, \\
\sigma\left(m_{i}, m_{j}\right)=0, & \left\langle\left(m_{i} \star m_{j}\right), m_{i^{\prime}}\right\rangle+\left\langle\left(m_{i^{\prime}} \star m_{j}\right), m_{i}\right\rangle=0 . \\
\hline
\end{array}
\end{gather*}
$$

We can summarize the odd product by the table

(1.9)		Odd Product $\langle M, M\rangle$							
$\langle\cdot, \cdot\rangle$	x_{1}	y_{1}	\tilde{x}_{1}	\tilde{y}_{1}	$\langle\cdot, \cdot\rangle$	m_{1}	m_{2}	m_{3}	m_{4}
x_{1}	0	g	$-2 \tilde{x}_{0}$	$2 m_{0}$	m_{1}	0	g	$-2 v_{3}$	$2 v_{1}$
y_{1}	$-g$	0	$-2 y_{0}$	$-2 \tilde{y}_{0}$	m_{2}	$-g$	0	$-2 v_{2}$	$-2 v_{4}$
\tilde{x}_{1}	$2 \tilde{x}_{0}$	$2 y_{0}$	0	g	m_{3}	$2 v_{3}$	$2 v_{2}$	0	g
\tilde{y}_{1}	$-2 m_{0}$	$2 \tilde{y}_{0}$	$-g$	0	m_{4}	$-2 v_{1}$	$2 v_{4}$	$-g$	0

The definition of the odd product seems quite mysterious at this point. Notice that odd products $\left\langle m_{i}, m_{j}\right\rangle$ for $j \neq i^{\prime}$ produces vectors $v \in V$ "orthogonal" to m_{i}, m_{j} :

$$
\begin{equation*}
\left\langle\left\langle m_{i}, m_{j}\right\rangle, m_{i}\right\rangle=\left\langle\left\langle m_{i}, m_{j}\right\rangle, m_{j}\right\rangle=0 \quad\left(j \neq i^{\prime}\right) \tag{1.10}
\end{equation*}
$$

This will become clearer using the Shestakov basis below and the exterior representation in the next section.

Comparison with Racine-Zel'manov

The classification paper [7] of Racine and Zel'manov uses a slightly different basis $e, f, u_{1}, u_{2}, u_{3}, u_{4}$, $x_{1}, y_{1}, x_{2}, y_{2}$ (changing their v_{i} to u_{i} to avoid conflict with our v_{i}) with prescribed dot products. To describe the products $\langle x, y\rangle$ in the quadratic case we must double all the dot products $x \cdot y$ in the RZ-list. We introduce $v_{i}=\frac{1}{2} u_{i}$ so that $\left\{v_{i}, v_{j}\right\}=\frac{1}{2} u_{i} \cdot u_{j}, u_{i}=2 v_{i},\left\{v_{1}, v_{2}\right\}=\left\{v_{3}, v_{4}\right\}=e$ and $\left\langle v_{i}, m\right\rangle=u_{i} \cdot m$, but $\left\langle m, m^{\prime}\right\rangle=2 m \cdot m^{\prime}$. If we further introduce temporary $w_{1}:=-x_{1}, w_{2}:=$ $-y_{1}, w_{3}:=y_{2}, w_{4}:=-x_{2}$ and $n_{i}:=\frac{1}{\sqrt{2}} w_{i},{ }^{4}$ then the bilinear action of A on M is given by

[^2]| (1.11) | RZ-Bimodule Product $\langle A, M\rangle$ | | | | | RZ-Odd Product | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| . | x_{1} | y_{1} | x_{2} | y_{2} | | x_{1} | y_{1} | x_{2} | y_{2} |
| u_{1} | 0 | x_{2} | 0 | $-x_{1}$ | x_{1} | 0 | g | u_{1} | u_{3} |
| u_{2} | $-y_{2}$ | 0 | y_{1} | 0 | y_{1} | -g | 0 | $-u_{4}$ | u_{2} |
| u_{3} | 0 | y_{1} | x_{1} | 0 | x_{2} | $-u_{1}$ | u_{4} | 0 | g |
| u_{4} | x_{2} | 0 | 0 | y_{1} | y_{2} | $-u_{3}$ | $-u_{2}$ | $-g$ | 0 |
| \langle, | $-x_{1}$ | $-y_{1}$ | y_{2} | $-x_{2}$ | \langle, | $-x_{1}$ | $-y_{1}$ | y_{2} | $-x_{2}$ |
| $v_{1}=\frac{1}{2} u_{1}$ | 0 | $-x_{2}$ | $-x_{1}$ | 0 | x_{1} | 0 | $-2 g$ | $2 u_{3}$ | $-2 u_{1}$ |
| $v_{2}=\frac{1}{2} u_{2}$ | y_{2} | 0 | 0 | $-y_{1}$ | y_{1} | $2 g$ | 0 | $2 u_{2}$ | $2 u_{4}$ |
| $v_{3}=\frac{1}{2} u_{3}$ | 0 | $-y_{2}$ | 0 | $-x_{1}$ | y_{2} | $2 u_{3}$ | $2 u_{2}$ | 0 | $2 g$ |
| $v_{4}=\frac{1}{2} u_{4}$ | $-x_{2}$ | 0 | y_{1} | 0 | x_{2} | $2 u_{1}$ | $-2 u_{4}$ | $-2 g$ | 0 |
| $\langle\cdot, \cdot\rangle$ | w_{1} | w_{2} | w_{3} | w_{4} | $\langle\cdot, \cdot\rangle$ | w_{1} | w_{2} | w_{3} | w_{4} |
| v_{1} | 0 | w_{4} | w_{1} | 0 | $w_{1}=-x_{1}$ | 0 | $2 g$ | $-4 v_{3}$ | $4 v_{1}$ |
| v_{2} | w_{3} | 0 | 0 | w_{2} | $w_{2}=-y_{1}$ | $-2 g$ | 0 | $-4 v_{2}$ | $-4 v_{4}$ |
| v_{3} | 0 | $-w_{3}$ | 0 | w_{1} | $w_{3}=y_{2}$ | $4 v_{3}$ | $4 v_{2}$ | 0 | $2 g$ |
| v_{4} | w_{4} | 0 | $-w_{2}$ | 0 | $w_{4}=-x_{2}$ | $-4 v_{1}$ | $4 v_{4}$ | $-2 g$ | 0 |
| $\langle\cdot, \cdot\rangle$ | n_{1} | n_{2} | n_{3} | n_{4} | $\langle\cdot, \cdot\rangle$ | n_{1} | n_{2} | n_{3} | n_{4} |
| v_{1} | 0 | n_{4} | n_{1} | 0 | $n_{1}=\frac{1}{\sqrt{2}} w_{1}$ | 0 | g | $-2 v_{3}$ | $2 v_{1}$ |
| v_{2} | n_{3} | 0 | 0 | n_{2} | $n_{2}=\frac{1}{\sqrt{2}} w_{2}$ | $-g$ | 0 | $-2 v_{2}$ | $-2 v_{4}$ |
| v_{3} | 0 | $-n_{3}$ | 0 | n_{1} | $n_{3}=\frac{1}{\sqrt{2}} w_{3}$ | $2 v_{3}$ | $2 v_{2}$ | 0 | g |
| v_{4} | n_{4} | 0 | $-n_{2}$ | 0 | $n_{4}=\frac{1}{\sqrt{2}} w_{4}$ | $-2 v_{1}$ | $2 v_{4}$ | $-g$ | 0 |
| e, f | n_{1} | n_{2} | n_{3} | n_{4} | | | | | |

which are clearly the same as tables (1.3),(1.9) with m_{i} replaced by n_{i}.

Comparison with Shestakov

The most illuminating basis for K_{10}, organizing the elements with an easy-to-remember multipication table which clearly explains which bimodule products are zero, is due to Ivan Shestakov. His approach was described at the 1996 Oberwolfach Tagung on Jordan Algebras, and was meant to appear in a definitive book on Jordan superalgebras which regretfully was never written. ${ }^{5}$ The Shestakov basis uses the 4 odd elements x, y, u, v (our $m_{1}, m_{2}, m_{3}, m_{4}$) to parameterize the even variables: A is spanned by $e, f, u x, u y, v x, v y$ where $u y:=u \cdot y=:-y u$, etc. Thus the alternating basic odd products $m \cdot n$ are trivial to remember, except that instead of two more basic elements $x y$, uv we have $g:=e-3 f(x \cdot y=-y \cdot x=u \cdot v=-v \cdot u=g)$. The rules for the even-odd products are that e, f act identically $(\langle e, m\rangle=\langle f, m\rangle=m)$ and $u y \in A$ kills its parent elements $u, y \in M$, while for non-parents there must be a linked pair x, y or u, v (corresponding to $m_{1}^{\prime}=m_{2}, m_{3}^{\prime}=m_{4}$), in which case the product in order gives $(y u) \cdot v=-y,(u y) \cdot x=u$ [the pair elements cancel each other out, leaving the remaining element with + if the order is reversed (y, x) and - for the usual order (u, v)]. Thus the even element $u y$ can only take on values u, y when multiplied by M.

To adjust the products to work in the quadratic case we introduce odd $m_{1}:=\frac{1}{\sqrt{2}} x, m_{2}:=$ $\frac{1}{\sqrt{2}} y, m_{3}:=\frac{1}{\sqrt{2}} u, m_{4}:=\frac{1}{\sqrt{2}} v$ and even $v_{31}:=-v_{13}:=\frac{1}{2} u x, v_{32}:=-v_{23}:=\frac{1}{2} u y, v_{41}:=-v_{14}:=$ $\frac{1}{2} v x, v_{42}:=-v_{24}:=\frac{1}{2} v y$, so that $\left\langle m_{1}, m_{2}\right\rangle=\left\langle m_{3}, m_{1}\right\rangle=2 m_{3} \cdot m_{1}=u \cdot x=u x=2 v_{31}$ and $\left\langle v_{31}, m_{2}\right\rangle=2\left(\frac{1}{2} u x\right) \cdot \frac{1}{\sqrt{2}} y=-\frac{1}{\sqrt{2}} u=-m_{3}$, etc. With this notation the bilinear products become

$$
\begin{gather*}
\hline \text { for } i \neq j, j^{\prime}\left\langle v_{i j}, m_{j}\right\rangle=\left\langle v_{i j}, m_{i}\right\rangle=0, \quad\left\langle v_{i j}, m_{j^{\prime}}\right\rangle=(-1)^{j} m_{i}=-\sigma\left(m_{j}, m_{j^{\prime}}\right) m_{i}, \tag{1.12}\\
\left\langle m_{i}, m_{j}\right\rangle=v_{i j}=-v_{j i} \quad\left(v_{i i}:=0\right), \quad\left\langle m_{i}, m_{i^{\prime}}\right\rangle=(-1)^{i^{\prime}} g . \\
\hline
\end{gather*}
$$

The complete table of bilinear products is given by

[^3]| (1.13) | S-Bimodule Product $\langle A, M\rangle$ | | | | | S-Odd Product | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| \cdot | x | y | u | v | \cdot | x | y | u | v |
| $u x$ | 0 | -u | 0 | x | x | 0 | g | $-u x$ | $-v x$ |
| uy | u | 0 | 0 | y | y | -g | 0 | -uy | $-v y$ |
| $v x$ | 0 | -v | $-x$ | 0 | u | $u x$ | uy | 0 | g |
| $v y$ | v | 0 | -y | 0 | v | $v x$ | $v y$ | -g | 0 |
| <, > | m_{1} | m_{2} | m_{3} | m_{4} | \langle, | m_{1} | m_{2} | m_{3} | m_{4} |
| v_{31} | 0 | $-m_{3}$ | 0 | m_{1} | m_{1} | 0 | $-g$ | $-2 v_{31}$ | $2 v_{14}$ |
| v_{32} | m_{3} | 0 | 0 | m_{2} | m_{2} | g | 0 | $-2 v_{32}$ | $-2 v_{42}$ |
| v_{41} | 0 | $-m_{4}$ | $-m_{1}$ | 0 | m_{3} | $2 v_{31}$ | $2 v_{32}$ | 0 | g |
| v_{42} | m_{4} | 0 | $-m_{2}$ | 0 | m_{4} | $-2 v_{14}$ | $2 v_{42}$ | $-g$ | 0 |
| $\langle\cdot, \cdot\rangle$ | m_{1} | m_{2} | m_{3} | m_{4} | | | | | |
| v_{14} | 0 | m_{4} | m_{1} | 0 | | | | | |
| v_{32} | m_{3} | 0 | 0 | m_{2} | | | | | |
| v_{31} | 0 | $-m_{3}$ | 0 | m_{1} | | | | | |
| v_{42} | m_{4} | 0 | $-m_{2}$ | 0 | | | | | |
| e, f | m_{1} | m_{2} | m_{3} | m_{4} | | | | | |

which are clearly the same as tables (1.3),(1.9) with $v_{1}, v_{2}, v_{3}, v_{4}$ replaced by $v_{14}, v_{32}, v_{31}, v_{42}$. Note that the subspaces $\mathcal{M}_{1}:=\operatorname{Span}\left(m_{1}, v_{14}, v_{31}\right)=\operatorname{Span}(x, v x, u x)=\mathcal{X}, \mathcal{M}_{2}:=\operatorname{Span}\left(m_{2}, v_{32}, v_{42}\right)=$ $\operatorname{Span}(y, u y, v y)=\mathcal{Y}, \mathcal{M}_{3}:=\operatorname{Span}\left(m_{3}, v_{32}, v_{31}\right)=\operatorname{Span}(u, u x, u y)=\mathcal{U}, \mathcal{M}_{4}:=\operatorname{Span}\left(m_{4}, v_{14}, v_{42}\right)=$ $\operatorname{Span}(v, v x, v y)=\mathcal{V}$ all have $\mathcal{M}_{i}^{2}=0$ (explaining all the zero products).

Comparison with Involution Basis

We will later pass to an isotope determined by

$$
\begin{align*}
& s:=u+f:=v_{1}+v_{2}+f, \quad s^{2}=1,,^{*}:=U_{s} \text { is an involutive automorphism of } J \text { with } \tag{1.14}\\
& e^{*}=e, f^{*}=f, v_{1}^{*}=v_{2}, v_{3}^{*}=-v_{3}, v_{4}^{*}=-v_{4}, \quad m^{*}=\langle u, m\rangle, m_{1}^{*}=m_{3}, m_{2}^{*}=m_{4} .
\end{align*}
$$

In terms of this involution we obtain an involution basis $e, f, b:=v_{1}, b^{*}:=v_{2}, c:=v_{3}, d:=$ $v_{4}, m_{1}, m_{2}, m_{1}^{*}:=m_{3}, m_{2}^{*}:=m_{4}$. In terms of this basis the bilinear products become

(1.15)									-Bimodule Products	
b	m_{1}	m_{2}	m_{1}^{*}	m_{2}^{*}	$\langle\cdot, \cdot\rangle$	m_{1}	m_{2}	m_{1}^{*}	m_{2}^{*}	
b^{*}	m_{1}^{*}	m_{2}^{*}	m_{1}	0	m_{1}	0	g	$-2 c$	$2 b$	
c	0	$-m_{1}^{*}$	0	m_{2}	m_{2}	$-g$	0	$-2 b^{*}$	$-2 d$	
d	m_{2}^{*}	0	$-m_{2}$	0	m_{1}^{*}	$2 c$	$2 b^{*}$	0	g	
m_{2}^{*}	$-2 b$	$2 d$	$-g$	0						

Notice that in terms of the involution basis the third and fourth columns of the table are redundant (as the subdiagonal of the original odd table is redundant by skew-symmetry), since by the involution once you know the actions $\langle p, x\rangle$ of all p on x you know all actions $\left\langle p, x^{*}\right\rangle=\left\langle p^{*}, x\right\rangle^{*}$ on x^{*}.

2 The Quaternion Model

We can model the split null extension structure of J (M as bimodule for A) using quaternions. We can identify M with a copy of a split quaternion algebra $H=M_{2}(\Phi)$ via $m_{1}, m_{2}, m_{3}, m_{4} \xrightarrow{\varphi}$ $e_{11}, e_{22}, e_{21}, e_{12}$, so M becomes a regular bimodule for H. Since V is the direct sum of two hyperbolic planes, the Clifford algebra of Q on V is the graded tensor product $H \widehat{\otimes} H$ of two split
quaternion algebras, i.e., the product of two split quaternion subalgebras $H^{\prime}, H^{\prime \prime}$ graded in the natural diagonal/off-diagonal way where H_{0}^{\prime} commutes with $H^{\prime \prime}$ and $H_{0}^{\prime \prime}$ commutes with H^{\prime}, but H_{1}^{\prime} anti-commutes with $H_{1}^{\prime \prime}$.

Here $H^{\prime}:=L_{H}=\Phi\left[L_{e_{12}}, L_{e_{21}}\right]$ is isomorphic to H via the left-regular representation. Despite the twist, $H^{\prime \prime}:=\Phi\left[S R_{\overline{e_{21}}}, S R_{\overline{e_{12}}}\right]$ for $S:=L_{e_{22}-e_{11}}$ is also isomorphic to $H: H$ is isomorphic to right multiplications $R_{H}^{o p} \cong R_{\bar{H}}$ under the standard quaterion involution $a \mapsto \bar{a}$, and the twist due to S doesn't change a split quaternion algebra, since $\left(\begin{array}{cc}a & b \\ c & d\end{array}\right) \longrightarrow\left(\begin{array}{cc}a & \sigma b \\ \sigma c & d\end{array}\right)$ is an automorphism of $M_{2}(\Phi)$ [indeed, $a+m \rightarrow a+\sigma m$ is an automorphism of any \mathbb{Z}_{2}-graded algebra when $\sigma^{2}=1$]. Here the $R_{e_{i i}}$ spanning the even $H_{0}^{\prime \prime}$ commute with all of $L_{H}=H^{\prime}$, and the $L_{e_{i i}}$ spanning the even H_{0}^{\prime} commute with all of $R_{\bar{H}}$ and S, hence with $H^{\prime \prime}$, but the odd H_{1}^{\prime} anti-commute with $H_{1}^{\prime \prime}$ (indeed, with all $S R_{H}$) since $\left(S R_{a}\right) L_{b}=S L_{b} R_{a}=\left(S L_{a} S^{-1}\right) S R_{a}=(-1)^{b} L_{b}\left(S R_{a}\right)$ where $S L_{e_{i j}} S^{-1}=L_{e_{22}-e_{11}} L_{e_{i j}} L_{e_{22}-e_{11}}=(-1)^{i} L_{e_{i i}} L_{e_{i j}}(-1)^{j} L_{e_{j j}}=(-1)^{i+j} L_{e_{i j}}$ is the grading automorphism on $M_{2}(\Phi)$. Thus the multiplication algebra $L_{H} R_{\bar{H}}$ of H is the graded tensor product of two split quaternion subalgebras $H^{\prime}, H^{\prime \prime}$; it is generated by operators $V_{1}:=L_{e_{21}}, V_{2}:=L_{e_{12}}, V_{3}:=$ $S R_{\overline{e_{21}}}=L_{e_{11}-e_{22}} R_{e_{21}}, V_{4}:=S R_{\overline{e_{12}}}=L_{e_{11}-e_{22}} R_{e_{12}}$ with action

$$
\text { (2.1) Regular Quaternion Action } A \times H
$$

Action of V on:	e_{11}	e_{22}	e_{21}	e_{12}
$V_{1}=L_{e_{12}}$	0	e_{12}	e_{11}	0
$V_{2}=L_{e_{21}}$	e_{21}	0	0	e_{22}
$V_{3}=L_{e_{11}-e_{22}} R_{e_{21}}$	0	$-e_{21}$	0	e_{11}
$V_{4}=L_{e_{11}-e_{22}} R_{e_{12}}$	e_{12}	0	$-e_{22}$	0
$V_{e}=V_{f}=I$	e_{11}	e_{22}	e_{21}	e_{12}

which is clearly equivalent to our action of V on M in (1.3).
Moreover, the operators V_{i} generate a Jordan subalgebra $\Phi \mathbf{1}_{H} \oplus \sum_{i=1}^{4} \Phi V_{i} \subseteq L_{H} R_{\bar{H}} \cong H \otimes H$ isomorphic to $B=\operatorname{Jord}(Q, e)$,

$$
\begin{equation*}
V_{i}^{2}=\left\{V_{i}, V_{j}\right\}=0\left(j \neq i^{\prime}\right), \quad V_{e}=\left\{V_{i}, V_{i^{\prime}}\right\}=\mathbf{1}_{H} \tag{2.2}
\end{equation*}
$$

Indeed, all $V_{i}^{2}=0$ since for $j \neq i$ we have $L_{e_{i j}}^{2}=L_{e_{i j}^{2}}=0, R_{e_{i j}}^{2}=R_{e_{i j}^{2}}=0$, while $\left\{V_{1}, V_{2}\right\}=$ $\left\{L_{e_{12}}, L_{e_{21}}\right\}=\left\{L_{e_{12}, e_{21}}\right\}=L_{e_{11}+e_{22}}=\mathbf{1}_{H}$, similarly $\left\{V_{3}, V_{4}\right\}=L_{e_{11}-e_{22}}^{2} R_{\left\{e_{12}\right\}, e_{21}}=L_{e_{11}+e_{22}} R_{e_{11}+e_{22}}=$ $\mathbf{1}_{H}$, and for $r=1,2, s=3,4$ we have $\left\{V_{r}, V_{j}\right\}=L_{\left\{e_{i j}, e_{11}-e_{22}\right\}} R_{e_{k l}}=0$. Thus $J=B \boxplus \Phi f \oplus M$ imbeds as split null extension in $(H \otimes H \boxplus \Phi f) \oplus H$. However, the excrescence Φf is hard to explain, and the form the odd product takes on $M \cong H \longrightarrow H \otimes H \boxplus \Phi f$ is unilluminating.

3 The Exterior Model

A better way to view the bimodule and odd product, suggested by the Shestakov basis, is through the exterior algebra $\Lambda(M)$. Since $M=\Lambda^{1}(M)$ is a free Φ-module with ordered basis $m_{1}, m_{2}, m_{3}, m_{4}$, the exterior product $\Lambda^{2}(M)$ is free of rank 6 with basis $\Lambda_{1}^{2}:=m_{1} \wedge m_{4}, \Lambda_{2}^{2}:=m_{3} \wedge m_{2}, \Lambda_{3}^{2}:=$ $m_{3} \wedge m_{1}, \Lambda_{4}^{2}:=m_{4} \wedge m_{2}, E:=\Lambda_{5}^{2}:=m_{1} \wedge m_{2}, F:=\Lambda_{6}^{2}:=m_{3} \wedge m_{4}$, and $\Lambda^{3}(M)$ is free of rank 4 with $\operatorname{basis} \Lambda_{i}^{3}:=m_{i} \wedge m_{4} \wedge m_{3}=-m_{i} \wedge m_{3} \wedge m_{4}(i=1,2), \Lambda_{j}^{3}:=m_{j} \wedge m_{2} \wedge m_{1}=-m_{j} \wedge m_{1} \wedge m_{2}(j=3,4)$, and $\Lambda^{4}(M)$ is free of rank 1 with basis $\Lambda_{1}^{4}:=E \wedge F=\Lambda_{5}^{2} \wedge \Lambda_{6}^{2}=m_{1} \wedge m_{2} \wedge m_{3} \wedge m_{4}$. Denote the subspace of $\Lambda^{2}(M)$ spanned by $\Lambda_{i}^{2}, 1 \leq i \leq 4$ by S, so $\Lambda^{2}(M)=S \oplus \Phi E \oplus \Phi F$.

We obtain an identification isomorphism $\varphi^{(2)}: \Lambda^{2}(M)=S \oplus \Phi E \oplus \Phi F \longrightarrow A=V \oplus \Phi e \oplus \Phi f$ and contraction isomorphisms $\varphi^{(3)}: \Lambda^{3}(M) \longrightarrow \Lambda^{1}(M)=M, \varphi^{(4)}: \Lambda^{4}(M) \longrightarrow \Phi$, and a fake copy $\sim: \Lambda^{2}(M)=S \oplus \Phi E \oplus \Phi F \longrightarrow \widetilde{\Lambda}^{2}(M):=S \oplus \Phi 1^{0} \subseteq \Lambda^{2}(M) \oplus \Lambda^{0}(M)$ defined on these bases via

$$
\begin{equation*}
\varphi^{(2)}\left(\Lambda_{i}^{2}\right):=v_{i}(1 \leq i \leq 4), \varphi^{(2)}\left(\Lambda_{5}^{2}\right)=\varphi^{(2)}(E):=e, \varphi^{(2)}\left(\Lambda_{6}^{2}\right)=\varphi^{(2)}(F):=f \tag{3.1.1}
\end{equation*}
$$

i.e., $\quad m_{1} \wedge m_{4}, m_{3} \wedge m_{2}, m_{3} \wedge m_{1}, m_{4} \wedge m_{2}, m_{1} \wedge m_{2}, m_{3} \wedge m_{4} \xrightarrow{\varphi^{(2)}} v_{1}, v_{2}, v_{3}, v_{4}, e, f$,
(3.1.2) $\widetilde{s}=s(s \in S), \quad \widetilde{\Lambda}_{5}^{2}=: \widetilde{\Lambda}_{6}^{2}=: 1^{0}$,
(3.1.3) $\quad \varphi^{(3)}\left(\Lambda_{i}^{3}\right):=\varphi^{(3)}\left(m_{i} \wedge m_{4} \wedge m_{3}\right):=m_{i}(i=1,2), \varphi^{(3)}\left(m_{j} \wedge m_{2} \wedge m_{1}\right):=m_{j}(j=3,4)$,
(3.1.4) $\quad \varphi^{(4)}\left(\Lambda_{1}^{4}\right):=\varphi^{(4)}\left(m_{1} \wedge m_{2} \wedge m_{3} \wedge m_{4}\right):=1=-\varphi^{(4)}\left(m_{3} \wedge m_{1} \wedge m_{4} \wedge m_{2}\right)$,
(3.1.5) $\quad V_{\Lambda_{i}^{2}}:=\varphi \circ L_{\Lambda_{i}^{2}}: M=\Lambda^{1}(M) \rightarrow \Lambda^{3}(M) \rightarrow M(1 \leq i \leq 4), V_{\Lambda_{k}^{2}}:=L_{\widetilde{\Lambda}_{k}^{2}}=L_{1^{0}}=\mathbf{1}_{M}(k=5,6)$.

Abbreviating $\Lambda_{i}^{2}, \varphi^{(3)}$ by Λ_{i}, φ, we obtain an action table
(3.2) Exterior Bimodule Action $\langle\ell, m\rangle:=\varphi^{(3)}(\tilde{\ell} \wedge m)$

V_{ℓ}	m_{1}	m_{2}	m_{3}	m_{4}
$\begin{gathered} V_{\Lambda_{1}}= \\ \varphi \circ L_{m_{1} \wedge m_{4}} \end{gathered}$	$\varphi\left(m_{1} \wedge m_{4} \wedge m_{1}\right)=$	$\begin{gathered} \varphi\left(m_{1} \wedge m_{4} \wedge m_{2}\right)= \\ \varphi\left(m_{4} \wedge m_{2} \wedge m_{1}\right)= \\ m_{4} \end{gathered}$	$\begin{gathered} \varphi\left(m_{1} \wedge m_{4} \wedge m_{3}\right)= \\ m_{1} \end{gathered}$	$\varphi\left(m_{1} \wedge m_{4} \wedge m_{4}\right)=$ 0
$\begin{gathered} V_{\Lambda_{2}}= \\ \varphi \circ L_{m_{3} \wedge m_{2}} \end{gathered}$	$\varphi\left(m_{3} \wedge m_{2} \wedge m_{1}\right)=$ m_{3}	$\varphi\left(m_{3} \wedge m_{2} \wedge m_{2}\right)=$ 0	$\varphi\left(m_{3} \wedge m_{2} \wedge m_{3}\right)=$ 0	$\begin{gathered} \varphi\left(m_{3} \wedge m_{2} \wedge m_{4}\right)= \\ \varphi\left(m_{2} \wedge m_{4} \wedge m_{3}\right)= \\ m_{2} \end{gathered}$
$\begin{gathered} V_{\Lambda_{3}}= \\ \varphi \circ L_{m_{3} \wedge m_{1}} \end{gathered}$	$\varphi\left(m_{3} \wedge m_{1} \wedge m_{1}\right)=$	$\begin{gathered} \varphi\left(m_{3} \wedge m_{1} \wedge m_{2}\right)= \\ \varphi\left(-m_{3} \wedge m_{2} \wedge m_{1}\right)= \\ -m_{3} \end{gathered}$	$\varphi\left(m_{3} \wedge m_{1} \wedge m_{3}\right)=$ 0	$\begin{gathered} \varphi\left(m_{3} \wedge m_{1} \wedge m_{4}\right)= \\ \varphi\left(m_{1} \wedge m_{4} \wedge m_{3}\right)= \\ \left.m_{1}\right) \end{gathered}$
$\begin{gathered} V_{\Lambda_{4}}= \\ \varphi \circ L_{m_{4} \wedge m_{2}} \end{gathered}$	$\begin{gathered} \varphi\left(m_{4} \wedge m_{2} \wedge m_{1}\right)= \\ m_{4} \end{gathered}$	$\varphi\left(m_{4} \wedge m_{2} \wedge m_{2}\right)=$ 0	$\begin{gathered} \varphi\left(m_{4} \wedge m_{2} \wedge m_{3}\right)= \\ \varphi\left(-m_{2} \wedge m_{4} \wedge m_{3}\right)= \\ -m_{2} \end{gathered}$	$\varphi\left(m_{4} \wedge m_{2} \wedge m_{4}\right)=$ 0
$\begin{aligned} & V_{\Lambda_{k}}=L_{\tilde{\Lambda}_{k}} \\ &= L_{1^{0}}(k=5,6) \\ & \hline \end{aligned}$	m_{1}	m_{2}	m_{3}	m_{4}

Clearly this coincides with (1.3), and exhibits the bimodule action of V on M as "contracted" multiplication of $\Lambda^{2}(M)$ on $\Lambda^{1}(M)$ in the exterior algebra (though with a somewhat artificial replacement of exterior multiplication by $E=\Lambda_{5}, F=\Lambda_{6} \in \Lambda^{2}(M)$ representing e, f by multiplication by $1 \in \Lambda^{0}(M)$; our notation E, F indicates that these are only "honorary" members of $\Lambda^{2}(M)$).

We can also represent the odd multiplication in a natural way through the exterior algebra: there is a natural exterior product of M into $\Lambda^{2}(M)$, which we map to $S \oplus \Phi G \approx V \oplus \Phi g \subset A$ via

$$
\psi\left(\Lambda_{i}\right):=2 \Lambda_{i}(1 \leq i \leq 4), \quad \psi\left(\Lambda_{5}\right):=\psi\left(\Lambda_{6}\right):=G=E-3 F
$$

(3.3) Exterior Odd Product $\langle m, n\rangle=\psi(m \wedge n)$

$\langle m, n\rangle$	m_{1}	m_{2}	m_{3}	m_{4}
m_{1}	$\psi\left(m_{1} \wedge m_{1}\right)=0$	$\psi\left(m_{1} \wedge m_{2}\right)=G$	$\psi\left(m_{1} \wedge m_{3}\right)=-2 \Lambda_{3}$	$\psi\left(m_{1} \wedge m_{4}\right)=2 \Lambda_{1}$
m_{2}	$\psi\left(m_{2} \wedge m_{1}\right)=-G$	$\psi\left(m_{2} \wedge m_{2}\right)=0$	$\psi\left(m_{2} \wedge m_{3}\right)=-2 \Lambda_{2}$	$\psi\left(m_{2} \wedge m_{4}\right)=-2 \Lambda_{4}$
m_{3}	$\psi\left(m_{3} \wedge m_{1}\right)=2 \Lambda_{3}$	$\psi\left(m_{3} \wedge m_{2}\right)=2 \Lambda_{2}$	$\psi\left(m_{3} \wedge m_{3}\right)=0$	$\psi\left(m_{3} \wedge m_{4}\right)=G$
m_{4}	$\psi\left(m_{4} \wedge m_{1}\right)=-2 \Lambda_{1}$	$\psi\left(m_{4} \wedge m_{2}\right)=2 \Lambda_{4}$	$\psi\left(m_{4} \wedge m_{3}\right)=-G$	$\psi\left(m_{4} \wedge m_{4}\right)=0$

This is just (1.9) in disguise. Tables (3.2-3) are essentially the Shestakov Product Table (1.13).
The exterior viewpoint also allows us to express the symmetric bilinear form $Q(v, w)=Q\left(\varphi^{(2)}(s)\right.$, $\left.\varphi^{(2)}(t)\right)$ on $V=\varphi^{(2)}(S)$ as

$$
\begin{equation*}
Q\left(\varphi^{(2)}(s), \varphi^{(2)}(t)\right)=-\varphi^{(4)}(s \wedge t), \text { for } s \wedge t=t \wedge s=\sigma(s, t) m_{1} \wedge m_{2} \wedge m_{3} \wedge m_{4} \tag{3.4}
\end{equation*}
$$

since from (3.1) $\Lambda_{i} \wedge \Lambda_{j}=0$ due to repeated wedge factors m_{k} except for the disjoint $\Lambda_{1} \wedge \Lambda_{2}=$ $m_{1} \wedge m_{4} \wedge m_{3} \wedge m_{2}=-m_{1} \wedge m_{2} \wedge m_{3} \wedge m_{4}$ and $\Lambda_{3} \wedge \Lambda_{4}=m_{3} \wedge m_{1} \wedge m_{4} \wedge m_{2}=-m_{1} \wedge m_{2} \wedge m_{3} \wedge m_{4}$. We
can also explain the "complementary" vector $v_{i}^{\prime}=v_{i^{\prime}}$ as that corresponding to the complementary subset of the index set $\{1,2,3,4\}$,

$$
\begin{equation*}
\left(\Lambda_{I}^{2}\right)^{\prime}=\Lambda_{\{1,2,3,4\} \backslash I}^{2} \tag{3.5}
\end{equation*}
$$

where we parameterize $\Lambda_{i}^{2}=m_{j} \wedge m_{k}\left(m_{j}<m_{k}\right.$ in the ordering $\left.m_{3}<m_{1}<m_{4}<m_{2}\right)$ by the subset $I=\{j, k\}$

4 A Compendium of Triple Products

For quadratic Jordan algebras or superalgebras when $\frac{1}{2} \notin \Phi$, the bilinear products do not determine the quadratic and triple products by the usual rules $2 U_{a} a^{\prime}=\left\{a,\left\{a, a^{\prime}\right\}\right\}-\left\{a^{2}, a^{\prime}\right\}$ and $2\left\langle x_{i}, y_{j}, z_{k}\right\rangle=\left\langle\left\langle x_{i}, y_{j}\right\rangle, z_{k}\right\rangle+\left\langle x_{i},\left\langle y_{j}, z_{k}\right\rangle\right\rangle-(-1)^{i j+j k+k i}\left\langle y_{j},\left\langle x_{i}, z_{j k}\right\rangle\right\rangle$. We will see below that in the Kac superalgebra scheme K_{10} the bilinear and Peirce structure determines everything but the odd triple products, and only four values $\left\langle m_{i}, m_{j}, m_{k}\right\rangle(1 \leq i<j<k \leq 4)$ need to be determined: by Odd Alternation and Switching (0.1.1-2) any product with a repeated variable is determined, $\langle m, n, m\rangle=0,\langle m, n, p\rangle=-\langle p, m, n\rangle,\langle m, m, p\rangle=\langle m,\langle m, p\rangle\rangle$, so $\langle m, n, p\rangle+\langle n, m, p\rangle \equiv 0 \bmod -$ ulo bilinear products, and in a triple of distinct variables any one order determines the others, $\langle p, n, m\rangle=-\langle m, n, p\rangle \equiv+\langle n, m, p\rangle=-\langle p, m, n\rangle \equiv+\langle m, p, n\rangle=-\langle n, p, m\rangle$. We will see that in the split Kac superalgebra scheme $s K_{10}$ the quadratic structure is completely determined by the bilinear structure plus the Peirce decomposition (and King showed [2] that the odd product is determined up to a scalar by the bimodule structure). Thus two forms of $s K_{10}$ which have the same bilinear and Peirce structure must have the same quadratic and trilinear structure.

The quadratic operators U_{a} are determined by the Peirce relations, the quadratic form Q, and the bilinear products: $U_{a}=U_{\alpha e+v+\beta f}=\alpha^{2} U_{e}+U_{v}+\beta^{2} U_{f}+\alpha \beta U_{e, f}+\alpha U_{e, v}+\beta U_{f, v}$ where $U_{e}=E_{2}, U_{f}=$ $E_{0}, U_{e, f}=E_{1}$ are the Peirce projections on $J_{2}(e)=\Phi e+V=J_{0}(f), J_{0}(e)=\Phi f=J_{2}(f), J_{1}(e)=$ $M=J_{1}(f)$, while by Peirce relations (0.2.4) $U_{v} f=U_{v} M=0$ with $U_{v} b=Q(v, \bar{b}) v-Q(v) \bar{b}$ [as in (1.2)]; $U_{e, v} f=U_{e, v} M=0, U_{e, v} b=V_{v} b$; and $U_{f, v} f=U_{f, v} B=0, U_{f, v} m=V_{v} m$.

We will compile a complete list of all possible 10^{3} triple products of basis elements m, n, p from M and a, b, c from A (luckily symmetry and Peirce relations reduce this to a manageable collection). The trilinear products with no factors from M are just linearizations $U_{a, a^{\prime}} a^{\prime \prime}$ of the quadratic product U_{a} on A as above. These are just the familiar ones in the direct sum $A=B \boxplus \Phi f$, with those in $B=\operatorname{Jord}(Q, e)=\Phi e+V$ being given by (1.2), so we turn to the triple products with a single term from M.
Remark 4.1 The triple products with only one odd term are completely determined by the Peirce decomposition and the bilinear products as given in Table (1.5). The outer quadratic products $U_{a} m$ have $U_{B} M=U_{e_{3}} M=0$, so only triple products $\left\langle B, M, e_{3}\right\rangle$ survive, where $U_{b, e_{3}} m=V_{b} m$ reduces to a bilinear product as in (1.5.2). By Even Symmetry (0.1.2) the left multiplications $\left\langle m, a^{\prime}, a\right\rangle=$ $\left\langle a, a^{\prime}, m\right\rangle$ reduce similarly to repeated bilinear products since $V_{B, f}=V_{f, B}=0, V_{f, f} m=V_{f} m=m$, and $V_{b, b^{\prime}} m=V_{b} V_{b^{\prime}} m$ by Peirce Orthogonality (0.2.1) and Triple Reduction (0.2.4), which can be read off from Table (1.5.1).

We next consider triple products with two or more factors m, n, p from M and a from A.
Remark 4.2 The triple products with two odd terms are also completely determined by the Perice decomposition and the bilinear products in Tables (1.3), (1.9), since by Triple Reduction (0.2.4)

$$
\begin{gather*}
\left\langle m, a_{j}, n\right\rangle=E_{i}\left(\left\langle m,\left\langle a_{j}, n\right\rangle\right\rangle\right)=E_{i}\left(\left\langle\left\langle m, a_{j}\right\rangle, n\right\rangle\right) \tag{4.2.1}\\
\left\langle m, n, a_{j}\right\rangle=E_{j}\left(\left\langle m,\left\langle a_{j}, n\right\rangle\right\rangle\right) \quad\left(a_{j} \in A_{j}(e), j=0,2, i=2-j\right) .
\end{gather*}
$$

So far the triple products have all been determined by the bilinear products and the Peirce relations. This is not quite true of the triple products with all odd entries, though in the next section we will
see that when the Kac algebra is split further the more refined Peirce decomposition does indeed determine the triples.

For the time being, the odd triple product is defined in terms of the Peirce relations, and the alternating bilinear form σ of (1.7) according to King's explicit formula [3, p.393]
(4.3) $\langle m, n, p\rangle=\langle[m \star n-\sigma(m, n) e], p\rangle-\langle[p \star m-\sigma(p, m) e], n\rangle+\langle[n \star p-\sigma(n, p) e], m\rangle$,
and (4.2.1) can also be formulated as
(4.3.1) $\langle m, b, n\rangle=-3 \sigma(\langle m, b\rangle, n) f=-3 \sigma(m,\langle b, n\rangle) f(b \in B), \quad\langle m, f, n\rangle=\sigma(m, n) e+2 m \star n$
since $E_{0}\langle m, n\rangle=-3 \sigma(m, n) f, E_{2}(\langle m, n\rangle)=\sigma(m, n) e+2 m \star n$ for $\langle m, n\rangle=\sigma(m, n) g+2 m \star n[\mathrm{by}$ (1.6)].

From Alternation (0.1.2) we have general relations $\langle m, n, m\rangle=0,\langle m, n, p\rangle=-\langle p, n, m\rangle$, and (letting $1^{\prime}=2,3^{\prime}=4,4^{\prime}=3$ as in (1.2),(1.6)) we derive specific relations

$$
\begin{array}{ll}
\left\langle m_{i}, m_{k}, m_{i}\right\rangle=0, & \left\langle m_{i}, m_{k}, m_{j}\right\rangle+\left\langle m_{j}, m_{k}, m_{i}\right\rangle=0 \\
\left\langle m_{i^{\prime}}, m_{i}, m_{i}\right\rangle=(-1)^{i^{\prime}} 2 m_{i}, & \left\langle m_{j}, m_{i}, m_{i}\right\rangle=0 \quad\left(j \neq i^{\prime}\right) \tag{4.4}\\
\left\langle m_{i^{\prime}}, m_{i}, m_{j}\right\rangle=(-1)^{i^{\prime}} m_{j}, & \left\langle m_{i}, m_{j}, m_{i^{\prime}}\right\rangle=(-1)^{i^{\prime}} m_{j} \quad\left(j \neq i, i^{\prime}\right)
\end{array}
$$

since from (4.3), (1.8)

$$
\begin{aligned}
\left\langle m_{i^{\prime}}, m_{i}, m_{i}\right\rangle & =\left\langle\left[0-(-1)^{i} e\right], m_{i}\right\rangle-\left\langle\left[0-(-1)^{i^{\prime}} e\right], m_{i}\right\rangle+\left\langle[0-0], m_{i^{\prime}}\right\rangle=2(-1)^{i^{\prime}} m_{i} \\
\left\langle m_{j}, m_{i}, m_{i}\right\rangle & =\left\langle\left[m_{j} \star m_{i}-0\right], m_{i}\right\rangle-\left\langle\left[m_{i} \star m_{j}-0\right], m_{i}\right\rangle+\left\langle[0-0], m_{j}\right\rangle=0 \\
\left\langle m_{i^{\prime}}, m_{i}, m_{j}\right\rangle & =\left\langle\left[0-(-1)^{i} e\right], m_{j}\right\rangle-\left\langle\left[m_{j} \star m_{i^{\prime}}-0\right], m_{i}\right\rangle+\left\langle\left[m_{i} \star m_{j}-0\right], m_{i^{\prime}}\right\rangle \\
& =\left[(-1)^{i^{\prime}}+(-1)^{i}+(-1)^{i^{\prime}}\right] m_{j}=(-1)^{i^{\prime}} m_{j} \\
\left\langle m_{i}, m_{j}, m_{i^{\prime}}\right\rangle & =\left\langle\left[m_{i} \star m_{j}-0\right], m_{i^{\prime}}\right\rangle-\left\langle\left[0-(-1)^{i} e\right], m_{j}\right\rangle+\left\langle\left[m_{j} \star m_{i^{\prime}}-0\right], m_{i}\right\rangle \\
& =\left[(-1)^{i^{\prime}}+(-1)^{i}-(-1)^{i}\right] m_{j}=(-1)^{i^{\prime}} m_{j} .
\end{aligned}
$$

We quickly arrive at a table of outer odd multiplications, but less quickly at a table of left odd multiplications.
(4.5) Two- or Three Odd Products $\langle M, J, M\rangle,\langle M, M, J\rangle$

$U_{m, n}$	v_{1}	v_{2}	v_{3}	v_{4}	e	f	m_{1}	m_{2}	m_{3}	m_{4}
$U_{m_{1}, m_{2}}=-U_{m_{2}, m_{1}}$	0	0	0	0	$-3 f$	e	$-2 m_{1}$	$-2 m_{2}$	m_{3}	m_{4}
$U_{m_{1}, m_{3}}=-U_{m_{3}, m_{1}}$	0	0	0	$3 f$	0	$-2 v_{3}$	0	$-m_{3}$	0	m_{1}
$U_{m_{1}, m_{4}}=-U_{m_{4}, m_{1}}$	0	$-3 f$	0	0	0	$2 v_{1}$	0	$-m_{4}$	$-m_{1}$	0
$U_{m_{2}, m_{3}}=-U_{m_{3}, m_{2}}$	$3 f$	0	0	0	0	$-2 v_{2}$	m_{3}	0	0	m_{2}
$U_{m_{2}, m_{4}}=-U_{m_{4}, m_{2}}$	0	0	$3 f$	0	0	$-2 v_{4}$	m_{4}	0	$-m_{2}$	0
$U_{m_{3}, m_{4}}=-U_{m_{4}, m_{3}}$	0	0	0	0	$-3 f$	e	m_{1}	m_{2}	$-2 m_{3}$	$-2 m_{4}$
$V_{m, n}$	$V_{m, n} a_{j}=E_{j} V_{m} V_{n} a_{j}$									
$V_{m_{3}, m_{1}}=-V_{m_{1}, m_{3}}=V_{v_{3}}$	0	0	0	e	$2 v_{3}$	0	0	$-m_{3}$	0	m_{1}
$V_{m_{1}, m_{4}}=-V_{m_{4}, m_{1}}=V_{v_{1}}$	0	e	0	0	$2 v_{1}$	0	0	m_{4}	m_{1}	0
$V_{m_{3}, m_{2}}=-V_{m_{2}, m_{3}}=V_{v_{2}}$	e	0	0	0	$2 v_{2}$	0	m_{3}	0	0	m_{2}
$V_{m_{4}, m_{2}}=-V_{m_{2}, m_{4}}=V_{v_{4}}$	0	0	e	0	$2 v_{4}$	0	m_{4}	0	$-m_{2}$	0
$V_{m_{1}, m_{1}}=2 V_{v_{1}, v_{3}}$	0	$-2 v_{3}$	0	$2 v_{1}$	0	0	0	$-2 m_{1}$	0	0
$V_{m_{2}, m_{2}}=2 V_{v_{2}, v_{4}}$	$-2 v_{4}$	0	$2 v_{2}$	0	0	0	$2 m_{2}$	0	0	0
$V_{m_{3}, m_{3}}=2 V_{v_{3}, v_{2}}$	$2 v_{3}$	0	0	$-2 v_{2}$	0	0	0	0	0	$-2 m_{3}$
$V_{m_{4}, m_{4}}=2 V_{v_{4}, v_{1}}$	0	$2 v_{4}$	$-2 v_{1}$	0	0	0	0	0	$2 m_{4}$	0
$V_{m_{1}, m_{2}}$	$2 v_{1}$	0	$2 v_{3}$	0	e	$-3 f$	0	$-2 m_{2}$	$-m_{3}$	$-m_{4}$
$V_{m_{2}, m_{1}}$	0	$-2 v_{2}$	0	$-2 v_{4}$	$-e$	$3 f$	$2 m_{1}$	0	m_{3}	m_{4}
$V_{m_{3}, m_{4}}$	0	$2 v_{2}$	$2 v_{3}$	0	e	$-3 f$	$-m_{1}$	$-m_{2}$	0	$-2 m_{4}$
$V_{m_{4}, m_{3}}$	$-2 v_{1}$	0	0	$-2 v_{4}$	$-e$	$3 f$	m_{1}	m_{2}	$2 m_{3}$	0
$U_{m_{i}, m_{i}}=0, \quad R_{m_{j}, m_{i}}(a):=\left\langle a, m_{j}, m_{i}\right\rangle=-\left\langle m_{i}, m_{j}, a\right\rangle=-V_{m_{i}, m_{j}}(a)$										

Proof: The action of the outer multiplications $U_{m, n}$ on the odd m 's follows from the general recipes (4.4). For the action on the v 's, (4.2.1) shows that $U_{m_{i}, m_{j}} v$ vanishes if $\left\langle m_{i}, v\right\rangle$ or $\left\langle v, m_{j}\right\rangle$ vanishes, therefore Table (1.3) shows that for $v_{1} \perp m_{1}, m_{4}$ only $U_{m_{2}, m_{3}} v_{1}$ survives [with $E_{0} V_{m_{2}} V_{m_{3}} v_{1}=$ $\left.E_{0} V_{m_{2}} m_{1}=E_{0}(-g)=3 f\right]$, simlarly for $v_{2} \perp m_{2}, m_{3}$ only $U_{m_{1}, m_{4}}\left[\right.$ with $E_{0} V_{m_{1}} V_{m_{4}} v_{2}=E_{0} V_{m_{1}} m_{2}=$ $\left.E_{0}(g)=-3 f\right]$, for $v_{3} \perp m_{1}, m_{3}$ only $U_{m_{2}, m_{4}}$ [with $E_{0} V_{m_{2}} V_{m_{4}} v_{3}=E_{0} V_{m_{2}} m_{1}=3 f$ again], and for $v_{4} \perp m_{2}, m_{4}$ only $U_{m_{1}, m_{3}}\left[\right.$ with $\left.E_{0} V_{m_{1}} V_{m_{3}} v_{4}=-E_{0} V_{m_{1}} m_{2}=-E_{0}(g)=3 f\right] . U_{m, n} e=E_{0}(\langle m, n\rangle)$ and $U_{m, n} f=E_{2}(\langle m, n\rangle)$ are read directly from Table (1.9). This completes the table of U-operators.

The left multiplications acting on M can be read from the U-table, $V_{m_{i}, m_{j}}\left(m_{k}\right)=U_{m_{i}, m_{k}}\left(m_{j}\right)$, or from the general recipes (4.4): $V_{m_{i}, m_{i}}$ sends $m_{i}, m_{i^{\prime}}, m_{j} \longrightarrow 0,-(-1)^{i^{i}} 2 m_{i}=2(-1)^{i} m_{i}, 0$, while $V_{m_{i}, m_{i^{\prime}}}$ sends $m_{i}, m_{i^{\prime}}, m_{j} \longrightarrow 0,(-1)^{i} m_{i^{\prime}},(-1)^{i} m_{j}$, giving immediately the last 8 rows on M.

For the last 8 rows acting on A, reading Table (1.3) by columns and then reading Table (1.9) by rows shows that the ordered basis $v_{1}, v_{2}, v_{3}, v_{4}, e, f$ for A is sent by $V_{m} V_{n}$ as follows: $V_{m_{1}}$ sends $v_{1}, v_{2}, v_{3}, v_{4}, e, f \longrightarrow 0, m_{3}, 0, m_{4}, m_{1}, m_{1}$ which is then sent by $E_{j} V_{m_{1}}$ to $0,-2 v_{3}, 0,2 v_{1}, 0,0$ for $V_{m_{1}, m_{1}}$, and sent by $E_{j} V_{m_{2}}$ to $0,-2 v_{2}, 0,-2 v_{4},-e, 3 f$ for $V_{m_{2}, m_{1}}$.

Similarly $V_{m_{2}}$ sends $v_{1}, v_{2}, v_{3}, v_{4}, e, f \longrightarrow m_{4}, 0,-, m_{3}, 0, m_{2}, m_{2}$ which is then sent by $E_{j} V_{m_{1}}$ to $2 v_{1}, 0,2 v_{3}, 0, e,-3 f$ for $V_{m_{1}, m_{2}}$, and by $E_{j} V_{m_{2}}$ to $-2 v_{4}, 0,2 v_{2}, 0,0,0$ for $V_{m_{2}, m_{2}}$.

Likewise, $V_{m_{3}}$ sends $v_{1}, v_{2}, v_{3}, v_{4}, e, f \longrightarrow m_{1}, 0,0,-m_{2}, m_{3}, m_{3}$ which is then sent by $E_{j} V_{m_{3}}$ to $2 v_{3}, 0,0,-2 v_{2}, 0,0$ for $V_{m_{3}, m_{3}}$, and by $E_{j} V_{m_{4}}$ to $-2 v_{1}, 0,0,-2 v_{4},-e, 3 f$ for $V_{m_{4}, m_{3}}$.

Finally, $V_{m_{4}}$ sends $v_{1}, v_{2}, v_{3}, v_{4}, e, f \longrightarrow m_{2}, m_{1}, m_{4}, m_{4}$ which is sent by $E_{j} V_{m_{3}}$ to $0,2 v_{2}, 2 v_{3}, 0, e,-3 f$ for $V_{m_{3}, m_{4}}$, and by $E_{j} V_{m_{4}}$ to $0,2 v_{4},-2 v_{1}, 0,0,0$ for $V_{m_{4}, m_{4}} \cdot{ }^{6}$ Comparison of this with (1.5) shows (for no apparent reason)

$$
\begin{equation*}
V_{m_{1}, m_{1}}=2 V_{v_{1}, v_{3}}, V_{m_{2}, m_{2}}=2 V_{v_{2}, v_{4}}, V_{m_{3}, m_{3}}=2 V_{v_{3}, v_{2}}, V_{m_{4}, m_{4}}=2 V_{v_{4}, v_{1}} \tag{4.6}
\end{equation*}
$$

The remaining first 4 rows of left multiplications $V_{m, n}$ reduce to operators V_{b} which can be read off from Table (1.5): we claim that $V_{m_{3}, m_{1}}=-V_{m_{1}, m_{3}}=V_{v_{3}}, V_{m_{1}, m_{4}}=-V_{m_{4}, m_{1}}=V_{v_{1}}, V_{m_{3}, m_{2}}=$ $-V_{m_{2}, m_{3}}=V_{v_{2}}, V_{m_{4}, m_{2}}=-V_{m_{2}, m_{4}}=V_{v_{4}}$ as operators on all of J, since by (1.7) $m_{3} \star m_{1}=$ $v_{3}, m_{1} \star m_{4}=v_{1}, m_{3} \star m_{2}=v_{2}, m_{4} \star m_{2}=v_{4}$, where in general

$$
\begin{equation*}
\text { for } j \neq i, i^{\prime} \quad \text { we have } \quad V_{m_{i}, m_{j}}=V_{m_{i} \star m_{j}} \in V_{B} \tag{4.7}
\end{equation*}
$$

This holds on M since by (1.8) $V_{m_{i} \star m_{j}}$ sends $m_{i}, m_{i^{\prime}}, m_{j}, m_{j^{\prime}}$ to $0,(-1)^{i^{\prime}} m_{j}, 0,(-1)^{j} m_{i}$, while by (4.4) $\left\langle m_{i}, m_{j}, m_{i}\right\rangle=0,\left\langle m_{i}, m_{j}, m_{i^{\prime}}\right\rangle=(-1)^{i^{\prime}} m_{j},\left\langle m_{i}, m_{j}, m_{j}\right\rangle=0,\left\langle m_{i}, m_{j}, m_{j^{\prime}}\right\rangle=-\left\langle m_{j^{\prime}}, m_{j}, m_{i}\right\rangle=$ $-(-1)^{j^{\prime}} m_{i}=(-1)^{j} m_{i}$. To see it also holds on A, we check that $\left\langle m_{i}, m_{j}, f\right\rangle=E_{0}\left(\left\langle m_{i}, m_{j}\right\rangle\right)=$ $-3 \sigma\left(m_{i}, m_{j}\right) f=0=V_{m_{i} \star m_{j}}(f) \in V_{B} f$. Similarly $\left\langle m_{i}, m_{j}, e\right\rangle=E_{2}\left(\left\langle m_{i}, m_{j}\right\rangle\right)=E_{2}\left(\sigma\left(m_{i}, m_{j}\right) g+\right.$ $\left.2 m_{i} \star m_{j}\right)=0+2 m_{i} \star m_{j}=V_{m_{i} \star m_{j}}(e)$. Finally, $\left\langle m_{i}, m_{j}, v_{k}\right\rangle=E_{2}\left(\left\langle m_{i},\left\langle m_{j}, v_{k}\right\rangle\right\rangle\right)$ [by Triple Reduiction (0.2.4)] $=E_{2}\left(\sigma\left(m_{i},\left\langle m_{j}, v_{k}\right\rangle\right) g+2 m_{i} \star\left\langle m_{j}, v_{k}\right\rangle\right)$ [by (1.6)] $=\sigma\left(m_{i},\left\langle m_{j}, v_{k}\right\rangle\right) e$ [by (1.8) $m_{i} \star\left\langle V, m_{j}\right\rangle \in m_{i} \star\left(\Phi m_{i}+\Phi m_{i^{\prime}}\right)=0$], while $V_{m_{i} \star m_{j}}\left(v_{k}\right)=-V_{m_{j} \star m_{i}}\left(v_{k}\right)$ [by skewness of \star] $=$ $-\left(\sum_{\ell}\left\langle\sigma\left(\left\langle v_{\ell}, m_{j}\right\rangle, m_{i}\right) v_{\ell^{\prime}}\right), v_{k}\right\rangle=-\sum_{\ell} \sigma\left(\left\langle v_{\ell}, m_{j}\right\rangle, m_{i}\right) \delta_{\ell k} e=-\sigma\left(\left\langle v_{k}, m_{j}\right\rangle, m_{i}\right)=+\sigma\left(m_{i},\left\langle v_{k}, m_{j}\right\rangle\right)$ [by skewness of σ]. This establishes the last cases of (4.5).

Notice that most of the $V_{m, n}$ reduce rather mysteriously to $V_{a, b}$'s. We now turn to the mixed left multiplications $V_{a, m}, V_{m, a}$; they too reduce surprisingly to $V_{m, e}, V_{m, f}$:

$$
\begin{equation*}
V_{m, b}=V_{\langle b, m\rangle, e}, \quad V_{b, m}=V_{e,\langle b, m\rangle}, \quad V_{m, f}=V_{e, m}, \quad V_{f, m}=V_{m, e} \tag{4.8}
\end{equation*}
$$

because in the Peirce decomposition relative to e we have by Triple Reduction (0.2.4) that $\langle m, b, f\rangle=$ $0=\langle\langle b, m\rangle, e, f\rangle,\langle m, b, c\rangle=\langle\langle b, m\rangle, c\rangle=\langle\langle\langle b, m\rangle, e\rangle, c\rangle=\langle\langle b, m\rangle, e, c\rangle$, and $\langle m, b, n\rangle=E_{0}(\langle\langle b, m\rangle, n\rangle)=$

[^4]$\langle\langle b, m\rangle, e, n\rangle ;$ similarly $\langle b, m, f\rangle=\langle\langle b, m\rangle, f\rangle=\langle b, m\rangle=\langle e,\langle b, m\rangle, f\rangle,\langle b, m, c\rangle=0=\langle e,\langle b, m\rangle, c\rangle$, and $\langle b, m, n\rangle=E_{2}(\langle\langle b, m\rangle, n\rangle)=\langle e,\langle b, m\rangle, n\rangle ;$ by Switching $(0.1 .1) V_{m, f}=V_{\langle m, f\rangle}-V_{f, m}=$ $V_{m}-V_{f, m}=V_{1, m}-V_{f, m}=V_{e, m}$, dually $V_{f, m}=V_{m}-V_{m, f}=V_{m, 1-f}=V_{m, e}$. Thus
\[

$$
\begin{equation*}
V_{A, M}+V_{M, A}=V_{M, e}+V_{e, M}=V_{M, \Phi e+\Phi f} . \tag{4.9}
\end{equation*}
$$

\]

Combining this with (4.8), the 32 odd left multiplications reduce to 8 :

$$
\begin{array}{|l|l}
\hline V_{m_{1}, e}=V_{m_{3}, v_{1}}=V_{m_{4}, v_{3}}=V_{f, m_{1}}, & V_{e, m_{1}}=V_{v_{1}, m_{3}}=V_{v_{3}, m_{4}}=V_{m_{1}, f}, \\
V_{m_{2}, e}=-V_{m_{3}, v_{4}}=V_{m_{4}, v_{2}}=V_{f, m_{2}}, & V_{e, m_{2}}=-V_{v_{4}, m_{3}}=V_{v_{2}, m_{4}}=V_{m_{2}, f}, \tag{4.10}\\
V_{m_{3}, e}=V_{m_{1}, v_{2}}=-V_{m_{2}, v_{3}}=V_{f, m_{3}}, & V_{e, m_{3}}=V_{v_{2}, m_{1}}=-V_{v_{3}, m_{2}}=V_{m_{3}, f}, \\
V_{m_{4}, e}=V_{m_{1}, v_{4}}=V_{m_{2}, v_{1}}=V_{f, m_{4}}, & V_{e, m_{4}}=V_{v_{4}, m_{1}}=V_{v_{1}, m_{2}}=V_{m_{4}, f} . \\
\hline
\end{array}
$$

leading to the following brief table of values of these odd left multiplications.

	$V_{M, A}=V_{M, e}$						$V_{A, M}=V_{e, M}$			
$V_{m, a}(x)$ for $x=$	v_{1}	v_{2}	v_{3}	v_{4}	e	f	m_{1}	m_{2}	m_{3}	m_{4}
$V_{m_{1}, e}=V_{f, m_{1}}$	0	m_{3}	0	m_{4}	m_{1}	0	0	$-3 f$	0	0
$V_{m_{2}, e}=V_{f, m_{2}}$	m_{4}	0	$-m_{3}$	0	m_{2}	0	$3 f$	0	0	0
$V_{m_{3}, e}=V_{f, m_{3}}$	m_{1}	0	0	$-m_{2}$	m_{3}	0	0	0	0	$-3 f$
$V_{m_{4}, e}=V_{f, m_{4}}$	0	m_{2}	m_{1}	0	m_{4}	0	0	0	$3 f$	0
$V_{e, m_{1}}=V_{m_{1}, f}$	0	0	0	0	0	m_{1}	0	e	$-2 v_{3}$	$2 v_{1}$
$V_{e, m_{2}}=V_{m_{2}, f}$	0	0	0	0	0	m_{2}	-e	0	$-2 v_{2}$	$-2 v_{4}$
$V_{e, m_{3}}=V_{m_{3}, f}$	0	-	0	0	0	m_{3}	$2 v_{3}$	$2 v_{2}$	0	e
$V_{e, m_{4}}=V_{m_{4}, f}$	0	0	0	0	0	m_{4}	$-2 v_{1}$	$2 v_{4}$	$-e$	0

Proof: The table for $V_{m, e} a=V_{m} a$ can be read off vertically from the rows of (1.3) [note $V_{M, f} B=0, V_{m, f} f=m$] and $V_{m, a} n=U_{m, n} a$ from the f-column of (4.5) [or from (1.9)].

5 The Split Kac Superalgebra $s K_{10}(\Phi)$

In this section we introduce the isotope $s K_{10}(\Phi):=K_{10}(\Phi)^{\text {split }}:=K_{10}(\Phi)^{(s)}\left(s=v_{1}+v_{2}+f\right)$ of the standard Kac superalgebra scheme which provides 3 reduced idempotents over an arbitrary ring Φ of scalars. We find a "split basis" and compute all bilinear and trilinear products in this isotope. Later we will show that when $i, \frac{1}{\sqrt{2}} \in \Phi$ this isotope is isomorphic to the standard superalgebra.

We call this isotope the "split K_{10} scheme". Using $x^{*}=U_{s} x$ as promised in (1.12), its operations are^{7}

$$
\begin{aligned}
U_{a}^{(s)}\left(x_{i}\right) & :=U_{a} U_{s} x_{i}=U_{a} x_{i}^{*}, \quad a^{(2, s)}:=U_{a} s,, \quad 1^{(s)}:=s=u+f \\
\left\langle x_{i}, y_{j}\right\rangle^{(s)} & :=\left\langle x_{i}, s, y_{j}\right\rangle, \quad\left\langle x_{i}, y_{j}, z_{k}\right\rangle^{(s)}:=\left\langle x_{i}, U_{s} y_{j}, z_{k}\right\rangle=\left\langle x_{i}, y_{j}^{*}, z_{k}\right\rangle .
\end{aligned}
$$

Here A remains a subalgebra in the isotope, $A^{(s)}=B^{(u)} \boxplus(\Phi f)^{(f)}=\operatorname{Jord}(-Q, u) \boxplus \Phi f$ [since in general $\operatorname{Jord}(Q, e)^{(u)}=\operatorname{Jord}\left(Q(u) Q, u^{-1}\right)$ where here $Q(u)=-1,1^{(s)}=u^{-1}=u$. In particular, $f^{(2, s)}=U_{f} f=f, b^{(2, s)}=U_{b} u$ so $e^{(2, s)}=U_{e} u=u, v_{i}^{(2, s)}=U_{v_{i}}\left(v_{1}+v_{2}\right)=U_{v_{i}} v_{i^{\prime}}=v_{i} \quad(i=$ $1,2), v_{j}^{(2, s)}=0(j=3,4)$, and for the bilinear products we have the following table. For Peirce reasons which will become clear shortly, we re-order our basis for M as $m_{1}, m_{4}, m_{3}, m_{2}$ (interchanging the second and fourth members).

[^5](5.1) $s K_{10}$ Split Bimodule Products

$\left\langle a, a^{\prime}\right\rangle^{(s)}$	v_{1}	v_{2}	v_{3}	v_{4}	e	f	$\langle a, m\rangle^{(s)}$	m_{1}	m_{4}	m_{3}	m_{2}
v_{1}	$2 v_{1}$	0	v_{3}	v_{4}	e	0	v_{1}	m_{1}	m_{4}	0	0
v_{2}	0	$2 v_{2}$	v_{3}	v_{4}	e	0	v_{2}	0	0	m_{3}	m_{2}
v_{3}	v_{3}	v_{3}	0	$-u$	0	0	v_{3}	0	$-m_{3}$	0	m_{1}
v_{4}	v_{4}	v_{4}	$-u$	0	0	0	v_{4}	$-m_{2}$	0	m_{4}	0
e	e	e	0	0	$2 u$	0	e	m_{3}	m_{2}	m_{1}	m_{4}
f	0	0	0	0	0	$2 f$	f	m_{1}	m_{4}	m_{3}	m_{2}
$a^{(2, s)}$	v_{1}	v_{2}	0	0	u	f					

Proof: The algebra products with f follow from $\{f, b\}^{(s)}=\{f, s, b\}=0$, while $\left\{b, b^{\prime}\right\}^{(s)}=$ $\left\{b, u, b^{\prime}\right\}$ can be read directly from Table (1.5) by adding the v_{1} - and v_{2}-columns for the U-operators.

As for the bimodule products, these can be read from the V-operators of Table (1.5) [$\langle f, m\rangle^{(s)}=$ $\left.\langle f, s, m\rangle=\langle f, f, m\rangle=m,\langle b, m\rangle^{(s)}=\langle b, u, m\rangle=V_{b, v_{1}+v_{2}}(m)\right]$, or easily using $\langle b, u, m\rangle=\langle b,\langle u, m\rangle\rangle=$ $\left\langle b, m^{*}\right\rangle$ [recall (1.12)] so that the new product of b on $m_{1}, m_{4}, m_{3}, m_{2}$ is just the old product of b on $m_{3}, m_{2}, m_{1}, m_{4}$ [hence obtained from transposing the m_{1} and m_{3} columns in Table (1.3)].

Born Again

In particular, the elements v_{1}, v_{2}, f now become supplementary orthogonal idempotents and v_{3}, v_{4}, e, m_{1}, m_{4} span the Peirce 1 -space of v_{1}, while $v_{3}, v_{4}, e, m_{3}, m_{2}$ span the Peirce 1 -space of v_{2}. We make the further replacement of v_{3} by $-v_{3}$, so that $\left\langle-v_{3}, v_{4}\right\rangle^{(s)}=u$ in $B^{(u)}\left(\operatorname{as}\left\{v_{3}, v_{4}\right\}=e\right.$ in $\left.B\right)$. To indicate this Peirce structure we hereby rechristen our basis to indicate their Peirce space $J_{i j}$. When we use this new labelling it is clear that we are working in the isotope, so we drop the superscripts $\langle\ldots\rangle^{(s)}$ for isotope-products and use the usual notation $\langle\ldots\rangle, U_{a}$ for superalgebra products. Dressed in its new clothes

Old	v_{1}	v_{2}	$-v_{3}$	v_{4}	e	f	$v_{2}+v_{2}$	m_{1}	m_{4}	m_{3}	m_{2}	$\langle\ldots\rangle^{(s)}$	$U_{a}^{(s)}$
New	e_{1}	e_{2}	c_{12}	d_{12}	q_{12}	e_{3}	u	m_{13}	n_{13}	m_{23}	n_{23}	$\langle\ldots\rangle$	U_{a}

the new quadratic form becomes (compare with (1.1))

$$
\begin{equation*}
Q(b)=\beta_{1} \beta_{2}-\beta_{3} \beta_{4}-\beta_{5}^{2}, \quad T(b)=\beta_{1}+\beta_{2} \quad \text { for } \quad b=\beta_{1} e_{1}+\beta_{2} e_{2}+\beta_{3} c_{12}+\beta_{4} d_{12}+\beta_{5} q_{12} \tag{5.2}
\end{equation*}
$$

and the bimodule structure becomes
(5.3) $s K_{10}$ Bimodule Product

\circ	e_{1}	e_{2}	c_{12}	d_{12}	q_{12}	e_{3}	m_{13}	n_{13}	m_{23}	n_{23}
e_{1}	$2 e_{1}$	0	c_{12}	d_{12}	q_{12}	0	m_{13}	n_{13}	0	0
e_{2}	0	$2 e_{2}$	c_{12}	d_{12}	q_{12}	0	0	0	m_{23}	n_{23}
c_{12}	c_{12}	c_{12}	0	u	0	0	0	m_{23}	0	$-m_{13}$
d_{12}	d_{12}	d_{12}	u	0	0	0	$-n_{23}$	0	n_{13}	0
q_{12}	q_{12}	q_{12}	0	0	$2 u$	0	m_{23}	n_{23}	m_{13}	n_{13}
e_{3}	0	0	0	0	0	$2 e_{3}$	m_{13}	n_{13}	m_{23}	n_{23}
a^{2}	e_{1}	e_{2}	0	0	u	e_{3}				

We can also give a closed-form expression for the action of B_{12} on $M_{i 3}$:

$$
\begin{array}{|lll}
\hline\left\langle q_{12}, m_{i 3}\right\rangle=m_{j 3}, & \left\langle q_{12}, n_{i 3}\right\rangle=n_{j 3}, & \left\langle c_{12}, m_{i 3}\right\rangle=\left\langle d_{12}, n_{i 3}\right\rangle=0, \tag{5.4}\\
\left\langle c_{12}, n_{i 3}\right\rangle=(-1)^{j} m_{j 3}, & \left\langle d_{12}, m_{i 3}\right\rangle=(-1)^{i} n_{j 3}, & (j=3-i) .
\end{array}
$$

We can translate Table (1.5) directly into a bimodule table for the isotope.
(5.5) Split Bimodule Structure

$V, \quad\langle a, x\rangle=V_{a}(x)$	e_{1}	e_{2}	c_{12}	d_{12}	q_{12}	e_{3}	m_{13}	n_{13}	m_{23}	n_{23}
$V_{e_{1}, q_{12}}=V_{q_{12}, e_{2}}$	0	q_{12}	0	0	$2 e_{1}$	0	0	0	m_{13}	n_{13}
$V_{e_{2}, q_{12}}=V_{q_{12}, e_{1}}$	q_{12}	0	0	0	$2 e_{2}$	0	m_{23}	n_{23}	0	0
$V_{q_{12}, c_{12}}=-V_{c_{12}, q_{12}}$	0	0	0	q_{12}	$-2 c_{12}$	0	0	m_{13}	0	$-m_{23}$
$V_{d_{12}, q_{12}}=-V_{q_{12}, d_{12}}$	0	0	$-q_{12}$	0	$2 d_{12}$	0	n_{13}	0	$-n_{23}$	0
$V_{q_{12}, q_{12}}$	$2 e_{1}$	$2 e_{2}$	$2 c_{12}$	$2 d_{12}$	$2 q_{12}$	0	m_{13}	n_{13}	m_{23}	n_{23}
$V_{f}=V_{f, f}$	0	0	0	0	0	$2 f$	m_{13}	n_{13}	m_{23}	n_{23}
$V_{c_{12}}$	c_{12}	c_{12}	0	u	0	0	0	m_{23}	0	$-m_{13}$
$V_{d_{12}}$	d_{12}	d_{12}	u	0	0	0	$-n_{23}$	0	n_{13}	0
$V_{q_{12}}$	q_{12}	q_{12}	0	0	$2 u$	0	m_{23}	n_{23}	m_{13}	n_{13}
$V_{e_{1}}=V_{e_{1}, e_{1}}$	$2 e_{1}$	0	c_{12}	d_{12}	q_{12}	0	m_{13}	n_{13}	0	0
$V_{e_{2}}=V_{e_{2}, e_{2}}$	0	$2 e_{2}$	c_{12}	d_{12}	q_{12}	0	0	0	m_{23}	n_{23}
$V_{c_{12}, d_{12}}$	e_{1}	e_{2}	$2 c_{12}$	0	q_{12}	0	m_{13}	0	m_{23}	0
$V_{d_{12}, c_{12}}$	e_{1}	e_{2}	0	$2 d_{12}$	q_{12}	0	0	n_{13}	0	n_{23}
$V_{e_{1}, c_{12}}=V_{c_{12}, e_{2}}$	0	c_{12}	0	e_{1}	0	0	0	0	0	$-m_{13}$
$V_{e_{2}, c_{12}}=V_{c_{12}, e_{1}}$	c_{12}	0	0	e_{2}	0	0	0	m_{23}	0	0
$V_{e_{1}, d_{12}}=V_{d_{12}, e_{2}}$	0	d_{12}	e_{1}	0	0	0	0	0	n_{13}	0
$V_{e_{2}, d_{12}}=V_{d_{12}, e_{1}}$	d_{12}	0	e_{2}	0	0	0	$-n_{23}$	0	0	0
$a^{2}=U_{a} u$	e_{1}	e_{2}	0	0	u	f		$U_{f, b}=$	V_{b} on	
$V_{e_{1}, e_{2}}=V_{e_{2}, e_{1}}=0$,		$V_{c_{12}, c_{12}}=V_{d_{12}, d_{12}}=V_{f, B}=V_{B, f}=0$,						$V_{b^{\prime}, b}=V_{b^{\prime}} V_{b^{*}}$ on M		
$U_{b, b}=2 U_{b}$,			$u, b=V$	$U_{f}=U_{b}=U_{b, b^{\prime}}=0$ on M						

U	e_{1}	e_{2}	c_{12}	d_{12}	q_{12}	e_{3}
$U_{e_{1}}$	e_{1}	0	0	0	0	0
$U_{e_{2}}$	0	e_{2}	0	0	0	0
$U_{c_{12}}$	0	0	0	c_{12}	0	0
$U_{d_{12}}$	0	0	d_{12}	0	0	0
$U_{q_{12}}$	e_{2}	e_{1}	$-c_{12}$	$-d_{12}$	q_{12}	0
U_{f}	0	0	0	0	0	f
$U_{e_{1}, e_{2}}=U_{e_{2}, e_{1}}$	0	0	c_{12}	d_{12}	q_{12}	0
$U_{e_{1}, c_{12}}=U_{c_{12}, e_{1}}$	c_{12}	0	0	e_{1}	0	0
$U_{e_{1}, d_{12}}=U_{d_{12}, e_{1}}$	d_{12}	0	e_{1}	0	0	0
$U_{e_{1}, q_{12}}=U_{q_{12}, e_{1}}$	q_{12}	0	0	0	$2 e_{1}$	0
$U_{e_{2}, c_{12}}=U_{c_{12}, e_{2}}$	0	c_{12}	0	e_{2}	0	0
$U_{e_{2}, d_{12}}=U_{d_{12}, e_{2}}$	0	d_{12}	e_{2}	0	0	0
$U_{e_{2}, q_{12}}=U_{q_{12}, e_{2}}$	0	q_{12}	0	0	$2 e_{2}$	0
$U_{c_{12}, d_{12}}=U_{d_{12}, c_{12}}$	e_{2}	e_{1}	0	0	$-q_{12}$	0
$U_{q_{12}, c_{12}}=U_{c_{12}, q_{12}}$	0	0	0	q_{12}	$2 c_{12}$	0
$U_{q_{12}, d_{12}}=U_{d_{12}, q_{12}}$	0	0	q_{12}	0	$2 d_{12}$	0

Proof: Beginning with the V-operators $V_{a, b}^{(s)}=V_{a, b^{*}}$, we set $i=1,2, j=3-i, k=3,4$. For the first two lines we have $V_{e_{i}, q_{12}}^{(s)}=V_{v_{i}, e^{*}}=V_{v_{i}, e}=V_{v_{i}}=V_{e, v_{i}}=V_{e, v_{j}^{*}}=V_{q_{12}, e_{j}}^{(s)}$. Then $V_{v_{3}, e}=V_{e, v_{3}}$ becomes $V_{-c_{12}, q_{12}}^{(s)}=V_{q_{12}, c_{12}}^{(s)}$ and $V_{v_{4}, e}=V_{e, v_{4}}$ becomes $V_{d_{12}, q_{12}}^{(s)}=V_{q_{12},-d_{12}}^{(s)} ; V_{e, e}$ becomes $V_{q_{12}, q_{12}}^{(s)}, V_{f, f}$ remains $V_{f, f}^{(s)} ; V_{v_{i}, v_{j}}$ becomes $V_{e_{i}, e_{i}}^{(s)} ; V_{v_{3}, v_{4}}$ becomes $V_{-c_{12},-d_{12}}^{(s)}$, and dually for $V_{v_{4}, v_{3}}$; $V_{v_{i}, v_{3}}=-V_{v_{3}, v_{i}}$ becomes $V_{e_{i}, c_{12}}^{(s)}=-V_{-c_{12}, e_{j}}^{(s)} ; V_{v_{i}, v_{4}}=-V_{v_{4}, v_{i}}$ become $V_{e_{i},-d_{12}}^{(s)}=-V_{d_{12}, e_{j}}^{(s)}$ [so we negate the row in (1.5)]; $V_{b^{\prime}, b}=V_{b^{\prime}} V_{b}$ becomes $V_{b^{\prime}, b^{*}}^{(s)}=V_{b^{\prime}}^{(s)} V_{b^{*}}^{(s)}$ [by Peirce relations, not translation]. $V_{b}^{(s)}=V_{b, u}=V_{b, v_{1}}+V_{b, v_{2}}=V_{b, e_{2}}^{(s)}+V_{b, e_{1}}^{(s)}$ is obtained by adding the first two columns of V_{b} in (1.5). $V_{c_{12}}, V_{d_{12}}, V_{q_{12}}$ are most easily read directly from (5.4) [alternately, $V_{b}^{(s)}=V_{b, u}=V_{b, u^{*}}=V_{b, u}^{(s)}$ is the
$\operatorname{sum} V_{b, e_{1}}^{(s)}+V_{b, e_{2}}^{(s)}$ in (5.4)].
The U-operators are $U_{a, b}^{(s)}(x)=U_{a, b}\left(x^{*}\right)$, so we read their values directly from (1.5) with rows with c_{12} negated (due to $c_{12}=-v_{3}$), columns v_{1}, v_{2} interchanged, column v_{4} negated (but not column $c_{12}=-v_{3}$ since it is negated twice), omitting the m_{i} since $U_{B}^{(s)} M=0$. Here $U_{q_{12}, e_{i}}^{(s)} a=$ $U_{e, v_{i}} a^{*}=V_{v_{i}} a^{*}=\left\{v_{i}, a^{*}\right\}, \quad U_{q_{12}, c_{12}}^{(s)} a=-U_{e, v_{3}} a^{*}=-V_{v_{3}} a^{*}=-\left\{v_{3} a^{*}\right\}$, dually $U_{q_{12}, d_{12}}^{(s)}=\left\{v_{4}, a^{*}\right\}$ are read from (1.5).

Odd Products

Turning to the odd products, we introduce the abbreviation

$$
g_{i}:=2 v_{i}-3 f=2 e_{i}-3 e_{3} \quad(i=1,2) .
$$

Again $\langle m, n\rangle^{(s)}=\langle m, s, n\rangle$ can be read off Tables (1.3), (1.9) using $\langle m, s, n\rangle=\langle m, u+f, n\rangle=$ $E_{0}(\langle m,\langle u, m\rangle\rangle)+E_{2}(\langle m,\langle f, n\rangle\rangle)=E_{0}\left(\left\langle m, n^{*}\right\rangle\right)+E_{0}(\langle m, n\rangle)$, or by adding the v_{1}, v_{2}, f-columns of Table (4.5). This leads to $\left\langle m_{1}, m_{2}\right\rangle^{(s)}=0+0+e=q_{12}$ and $\left\langle m_{3}, m_{4}\right\rangle^{(s)}=0+0+e=$ $q_{12},\left\langle m_{1}, m_{3}\right\rangle^{(s)}=0+0-2 v_{3}=2 c_{12},\left\langle m_{1}, m_{4}\right\rangle^{(s)}=0-3 f+2 v_{1}=g_{1}$ and $\left\langle m_{2}, m_{3}\right\rangle^{(s)}=$ $3 f+0-2 v_{2}=-g_{2},\left\langle m_{2}, m_{4}\right\rangle^{(s)}=0+0-2 v_{4}=-2 d_{12}$, thus

$\left\langle m_{i 3}, n_{j 3}\right\rangle=q_{12}$,	$\left\langle m_{i 3}, m_{j 3}\right\rangle=(-1)^{j} 2 c_{12}$	$(j=3-i)$,
$\left\langle m_{i 3}, n_{i 3}\right\rangle=g_{i}$,	$\left\langle n_{i 3}, n_{j 3}\right\rangle=(-1)^{j} 2 d_{12}$,	

(5.7)	Isotope Odd Product				Split Odd Product				
$\langle\cdot, \cdot\rangle^{(s)}$	m_{1}	m_{4}	m_{3}	m_{2}	$\langle\cdot, \cdot\rangle$	m_{13}	n_{13}	m_{23}	n_{23}
m_{1}	0	g_{1}	$-2 v_{3}$	e	m_{13}	0	g_{1}	$2 c_{12}$	q_{12}
m_{4}	$-g_{1}$	0	-e	$2 v_{4}$	n_{13}	$-g_{1}$	0	$-q_{12}$	$2 d_{12}$
m_{3}	$2 v_{3}$	e	0	g_{2}	m_{23}	$-2 c_{12}$	q_{12}	0	g_{2}
m_{2}	$-e$	$-2 v_{4}$	$-g_{2}$	0	n_{23}	$-q_{12}$	$-2 d_{12}$	$-g_{2}$	0

Following the Shestakov model, we could write these in the more mnemonic form (for $i \neq j \in\{1,2\}$)

$$
\begin{gathered}
c_{12}=: b_{12}^{(m)}, d_{12}=: b_{12}^{(n)}, q_{12}=: b_{12}^{(m, n)} \text { with }\left\langle m_{13}, m_{23}\right\rangle=2 b_{12}^{(m)},\left\langle n_{13}, n_{23}\right\rangle=2 b_{12}^{(n)}, \\
\left\langle m_{i 3}, n_{j 3}\right\rangle=b_{12}^{(m, n)}, \quad\left\langle b_{12}^{(m)}, m_{i 3}\right\rangle=\left\langle b_{12}^{(n)}, n_{i 3}\right\rangle=0, \\
\left\langle b_{12}^{(m)}, n_{i 3}\right\rangle=(-1)^{j} m_{j 3},\left\langle b_{12}^{(n)}, m_{i 3}\right\rangle=(-1)^{i} n_{j 3},\left\langle b_{12}^{(m, n)}, m_{i 3}\right\rangle=m_{j 3},\left\langle b_{12}^{(m, n)}, n_{i 3}\right\rangle=n_{j 3} .
\end{gathered}
$$

Quaternion Representation

The quaternionic structure for the isotope is still easy to describe in terms of the split basis. Under the isomorphism φ of $\S 2$ our newly-ordered basis for M becomes $m_{13}, n_{13}, m_{23}, n_{23}=m_{1}, m_{4}, m_{3}, m_{2}$ $\xrightarrow{\varphi} e_{11}, e_{12}, e_{21}, e_{22}$ and the action (2.1) takes the form
$\quad(5.8)$ Split Quaternion Action $A \times H$

Action of V on:	e_{11}	e_{12}	e_{21}	e_{22}
$V_{e_{1}}=L_{e_{11}}$	e_{11}	e_{12}	0	0
$V_{e_{2}}=L_{e_{22}}$	0	0	e_{21}	e_{22}
$V_{c_{12}}=L_{e_{21}-e_{12}} R_{e_{21}}$,	0	e_{21}	0	$-e_{11}$
$V_{d_{12}}=L_{e_{12}-e_{21}} R_{e_{12}}$	$-e_{22}$	0	e_{12}	0
$V_{q_{12}}=L_{e_{12}+e_{21}}$	e_{21}	e_{22}	e_{11}	e_{12}
$V_{e_{3}}=\mathbf{1}_{M}$	e_{11}	e_{12}	e_{21}	e_{22}

Proof: In the isotope the actions are $V_{a}^{(s)}=V_{a, s}, V_{b}^{(s)}=V_{b, u}=V_{b} V_{u}$ where $V_{u}=V_{e_{1}+e_{2}}=$ $L_{e_{12}+e_{21}}$, so recalling the actions (2.1) we see

$$
\begin{aligned}
& V_{e_{1}}^{(s)}=V_{v_{1}} V_{u}=L_{e_{12}} L_{e_{12}+e_{21}}=L_{e_{11}}, \quad V_{e_{2}}^{(s)}=V_{v_{2}} V_{u}=L_{e_{21}} L_{e_{12}+e_{21}}=L_{e_{22}}, \\
& V_{c_{12}}^{(s)}=-V_{v_{3}} V_{u}=L_{e_{22}-e_{11}} R_{e_{21}} L_{e_{12}+e_{21}}=L_{e_{21}-e_{12}} R_{e_{21}}, \\
& V_{d_{12}}^{(s)}=V_{v_{4}} V_{u}=L_{e_{11}-e_{22}} R_{e_{12}} L_{e_{12}+e_{21}}=L_{e_{12}-e_{21}} R_{e_{12}}, \\
& V_{q_{12}}^{(s)}=V_{e} V_{u}=V_{u}=L_{e_{12}+e_{21}}, \quad V_{e_{3}}^{(s)}=V_{f, s}=V_{f, f}=V_{f}=\mathbf{1}_{M} .
\end{aligned}
$$

Thus the regular representation of the $V_{a}^{(s)}$ as quaternion multiplications on H is precisely the action of Table (5.3).

6 Split Triple Products

We now translate our tables for triple products in the standard K_{10} into tables for the split $s K_{10}$. We will see that all triple products are determined by bilinear products and the Peirce decomposition. We noted in Remark 4.1 that the triple products with only one odd term are completely determined by the Peirce decomposition and the bilinear products, of the form $V_{a^{\prime}, a}=V_{a^{\prime}} V_{a}$ or $U_{b}=U_{b^{\prime}, b}=$ $U_{f}=0$ and $U_{b, f}=V_{b}$ on M, which can all be read off from Table (5.3). Alternately, $U_{a}^{(s)}=U_{a} U_{s}=$ $U_{s^{*}}, V_{a^{\prime}, a}^{(s)}=V_{a^{\prime}, U_{s} a}=V_{a^{\prime}, a^{*}}$ can be read off directly from Bimodule Table (5.5). By Remark 4.2, triple products with two odd terms are outer $U_{m, n} a_{j}=E_{i}\left(\left\langle\left\langle m, a_{j}\right\rangle, n\right\rangle\right)=E_{i}\left(\left\langle m,\left\langle a_{j}, n\right\rangle\right\rangle\right)$ or left $V_{m, n} a_{j}=E_{j}\left(\left\langle m,\left\langle a_{j}, n\right\rangle\right\rangle\right)$.
(6.1) Split Two- or Three-Odd Multiplication $U_{M, M}, V_{M, M}$

$U_{m, n} p, V_{m, n} p$ for $p=$	e_{1}	e_{2}	c_{12}	d_{12}	q_{12}	e_{3}	m_{13}	n_{13}	m_{23}	n_{23}
$\left[U_{m, n} p^{*}, V_{m, n^{*}} p\right]$ for $\left.p^{*}=\right]$	[v_{2}]	[v_{1}]	[v3]	$\left[-v_{4}\right]$	[e]	[f]	[m_{3}]	[m_{2}]	[m_{1}]	[m_{4}]
$\begin{gathered} U_{m_{13}, n_{23}}=-U_{n_{23}, m_{13}} \\ {\left[=U_{m_{1}, m_{2}} *\right]} \end{gathered}$	0	0	0	0	$-3 e_{3}$	q_{12}	m_{23}	$-2 n_{23}$	$-2 m_{13}$	n_{13}
$\left\|\begin{array}{r} U_{m_{13}, m_{23}}=-U_{m_{23}, m_{13}} \\ {\left[=U_{m_{1}, m_{3}} *\right]} \end{array}\right\|$	0	0	0	$-3 e_{3}$	0	$2 c_{12}$	0	$-m_{23}$	0	m_{13}
$\left\|\begin{array}{r} U_{m_{13}, n_{13}}=-U_{n_{13}}, m_{13} \\ {\left[=U_{m_{1}, m_{4}} *\right]} \end{array}\right\|$	$-3 e_{3}$	0	0	0	0	$2 e_{1}$	$-m_{13}$	$-n_{13}$	0	0
$\begin{array}{r} U_{n_{23}, m_{23}}=-U_{m_{23}, n_{23}} \\ {\left[=U_{m_{2}, m_{3} *} *\right.} \end{array}$	0	$3 e_{3}$	0	0	0	$-2 e_{2}$	0	0	m_{23}	n_{23}
$U_{n_{23}, n_{13}}=-U_{n_{13}, n_{23}}$	0	0	$3 e_{3}$	0	0	$-2 d_{12}$	$-n_{23}$	0	n_{13}	0
$\begin{array}{r} U_{m_{23}, n_{13}}=-U_{n_{13}, m_{23}} \\ {\left[=U_{m_{3}, m_{4}} *\right]} \end{array}$	0	0	0	0	$-3 e_{3}$	q_{12}	$-2 m_{23}$	n_{23}	m_{13}	$-2 n_{13}$
$U_{m, m}=0$,			$U_{n, m}=-U_{m, n}, \quad V_{m, n} a_{i}=E_{j} V_{m} V_{n} a_{j}$							
$\begin{aligned} & V_{m_{23}, m_{23}}=V_{q_{12}, c_{12}} \\ & =-V_{m_{13}}, m_{13} \quad\left[=V_{m_{3}, m_{1}}\right] \end{aligned}$	0	0	0	q_{12}	$-2 c_{12}$	0	0	m_{13}	0	$-m_{23}$
$\left\lvert\, \begin{array}{ll} V_{m_{13}, n_{23}}=V_{q_{12}, e_{2}} \\ =-V_{n_{13}, m_{23}} & {\left[=V_{m_{1}, m_{4}}\right]} \end{array}\right.$	0	q_{12}	0	0	$2 e_{1}$	0	0	0	m_{13}	n_{13}
$\left\lvert\, \begin{aligned} & V_{m_{23}, n_{13}}=V_{q_{12}, e_{1}} \\ & =-V_{n_{23}, m_{13}} \quad\left[=V_{m_{3}, m_{2}}\right] \end{aligned}\right.$	q_{12}	0	0	0	$2 e_{2}$	0	m_{23}	n_{23}	0	0
$\begin{aligned} & V_{n_{13}, n_{13}}=-V_{q_{12}, d_{12}} \\ & =-V_{n_{23}, n_{23}} \quad\left[=V_{m_{4}, m_{2}}\right] \end{aligned}$	0	0	$-q_{12}$	0	$2 d_{12}$	0	n_{13}	0	$-n_{23}$	0
$V_{m_{13}, m_{23}}=2 V_{e_{1}, c_{12}}$	0	$2 c_{12}$	0	$2 e_{1}$	0	0	0	0	0	$-2 m_{13}$
$V_{n_{23}, n_{13}}=-2 V_{e_{2}, d_{12}}$	$-2 d_{12}$	0	$-2 e_{2}$	0	0	0	$2 n_{23}$	0	0	0
$V_{m_{23}, m_{13}}=-2 V_{c_{12}, e_{1}}$	$-2 c_{12}$	0	0	$-2 e_{2}$	0	0	0	$-2 m_{23}$	0	0
$V_{n_{13}, n_{23}}=2 V_{d_{12}, e_{2}}$	0	$2 d_{12}$	$2 e_{1}$	0	0	0	0	0	$2 n_{13}$	0
$\left[=V_{m_{4}, m_{4}}\right]$										
$V_{m_{13}, n_{13}} \quad\left[=V_{m_{1}, m_{2}}\right]$	$2 e_{1}$	0	$2 c_{12}$	0	q_{12}	$-3 e_{3}$	0	$-n_{13}$	$-m_{23}$	$-2 n_{23}$
$V_{n_{23}, m_{23}} \quad\left[=V_{m_{2}, m_{1}}\right]$	0	$-2 e_{2}$	0	$-2 d_{12}$	$-q_{12}$	$3 e_{3}$	$2 m_{13}$	n_{13}	m_{23}	0
$V_{m_{23}, n_{23}} \quad\left[=V_{m_{3}, m_{4}}\right]$	0	$2 e_{2}$	$2 c_{12}$	0	q_{12}	$-3 e_{3}$	$-m_{13}$	$-2 n_{13}$	0	$-n_{23}$
$V_{n_{13}, m_{13}}\left[=V_{m_{4}, m_{3}}\right]$	$-2 e_{1}$	0	0	$-2 d_{12}$	$-q_{12}$	$3 e_{3}$	m_{13}	0	$2 m_{23}$	n_{23}

Proof: This can be computed by brute force directly from Tables (5.4), (5.6). ${ }^{8}$ More elegantly, since $U_{m, n}^{(s)}(a)=U_{m, n}\left(a^{*}\right),\langle m, p, n\rangle^{(s)}=\left\langle m, U_{s} p, n\right\rangle=\left\langle m, p^{*}, n\right\rangle$, and the action of $U_{m, n}^{(s)}$ on $m_{1}, m_{4}, m_{3}, m_{2}$ is just that of $U_{m, n}$ on $m_{1}^{*}, m_{4}^{*}, m_{3}^{*}, m_{2}^{*}=m_{3}, m_{2}, m_{1}, m_{4}$, the U-table follows immediately from Table (4.5) by switching columns v_{1}, v_{2} (from $v_{1}^{*}=v_{2}$) and columns m_{1}, m_{3} and negating column v_{4} (from $v_{j}^{*}=-v_{j}$ for $j=3,4$), and remembering that $c_{12}^{*}=\left(-v_{3}\right)^{*}=v_{3}$.

We can similarly read off the V-operators directly from Table (4.5) via $V_{m, n}^{(s)}=V_{m, n^{*}}$ [switching columns m_{1}, m_{3}, recalling that $\left.m_{1}^{*}=m_{3}, m_{2}^{*}=m_{4}\right]$ so that $V_{m_{13}, m_{13}}^{(s)}=V_{m_{1}, m_{3}}=-V_{m_{3}, m_{1}}=$ $-V_{m_{23}, m_{23}}^{(s)} ; V_{m_{13}, n_{23}}^{(s)}=V_{m_{1}, m_{4}}=-V_{m_{4}, m_{1}}=-V_{n_{13}, m_{23}}^{(s)} ; V_{n_{23}, m_{13}}^{(s)}=V_{m_{2}, m_{3}}=-V_{m_{3}, m_{2}}=-V_{m_{23}, n_{13}}^{(s)} ;$ $V_{n_{23}, n_{23}}^{(s)}=V_{m_{2}, m_{4}}=-V_{m_{4}, m_{2}}=-V_{n_{13}, n_{13}}^{(s)} ; V_{m_{13}, m_{23}}^{(s)}=V_{m_{1}, m_{1}} ; V_{n_{23}, n_{13}}^{(s)}=V_{m_{2}, m_{2}} ; V_{m_{23}, m_{13}}^{(s)}=$ $V_{m_{3}, m_{3}} ; V_{n_{13}, n_{23}}^{(s)}=V_{m_{4}, m_{4}} ; V_{m_{13}, n_{13}}^{(s)}=V_{m_{1}, m_{2}} ; V_{n_{23}, m_{23}}^{(s)}=V_{m_{2}, m_{1}} ; V_{m_{23}, n_{23}}^{(s)}=V_{m_{3}, m_{4}} ; V_{n_{13}, m_{13}}^{(s)}=$ $V_{m_{4}, m_{3}}$.

Remark 6.2 Because the Peirce spaces $M_{i 3}$ are only 2-dimensional, all the odd triple products in the split Kac superalgebra are completely determined by Peirce orthogonality relations and Reductions from bilinear products.
Indeed, every triple $\left\langle x_{i 3}, y_{k 3}, z_{\ell 3}\right\rangle$ for $i, k, \ell=1,2$ will have a repeated index, hence by alternation (0.1.2) is of the form $\left\langle x_{i 3}, y_{j 3}, z_{i 3}\right\rangle$ or $\left\langle x_{i 3}, y_{i 3}, z_{i 3}\right\rangle$ or $\pm\left\langle x_{i 3}, y_{i 3}, z_{j 3}\right\rangle$ for $i=1,2, j=3-i$. But $\left\langle x_{i 3}, y_{j 3}, z_{i 3}\right\rangle=0$ by Peirce Orthogonality (0.2.1), $\left\langle x_{i 3}, z_{i 3}, y_{j 3}\right\rangle=\left\langle x_{i 3},\left\langle z_{i 3}, y_{j 3}\right\rangle\right\rangle$, while $\left\langle x_{i 3}, y_{i 3}, z_{i 3}\right\rangle$ for basis vectors from $M_{i 3}$ must have a repetition since $\operatorname{dim}\left(M_{i 3}\right)=2$, where from Reduction (0.2.4) we have $\langle m, n, m\rangle=0,\langle m, m, n\rangle=\langle m,\langle m, n\rangle\rangle=-\langle n, m, m\rangle$. This leads to the following reduction formulas for all odd triple products:

$$
\begin{array}{llll}
\left\langle m_{i 3}, m_{i 3}, n_{i 3}\right\rangle & =\left\langle m_{i 3},\left\langle m_{i 3}, n_{i 3}\right\rangle\right\rangle & \left\langle n_{i 3}, n_{i 3}, m_{i 3}\right\rangle & =\left\langle n_{i 3},\left\langle n_{i 3}, m_{i 3}\right\rangle\right\rangle \\
\left\langle m_{i 3}, m_{i 3}, m_{j 3}\right\rangle & =\left\langle m_{i 3},\left\langle m_{i 3}, m_{j 3}\right\rangle\right\rangle & \left\langle n_{i 3}, n_{i 3}, n_{j 3}\right\rangle & =\left\langle n_{i 3},\left\langle n_{i 3}, n_{j 3}\right\rangle\right\rangle \\
\left\langle m_{i 3}, m_{i 3}, n_{j 3}\right\rangle & =\left\langle m_{i 3},\left\langle m_{i 3}, n_{j 3}\right\rangle\right\rangle & \left\langle n_{i 3}, n_{i 3}, m_{j 3}\right\rangle & =\left\langle n_{i 3},\left\langle n_{i 3}, m_{j 3}\right\rangle\right\rangle \tag{6.3}\\
\left\langle m_{i 3}, n_{i 3}, n_{j 3}\right\rangle & =\left\langle m_{i 3},\left\langle n_{i 3}, n_{j 3}\right\rangle\right\rangle & \left\langle n_{i 3}, m_{i 3}, m_{j 3}\right\rangle & =\left\langle n_{i 3},\left\langle m_{i 3}, m_{j 3}\right\rangle\right\rangle \\
\left\langle n_{i 3}, m_{i 3}, n_{j 3}\right\rangle & =\left\langle n_{i 3},\left\langle m_{i 3}, n_{j 3}\right\rangle\right\rangle & \left\langle m_{i 3}, n_{i 3}, m_{j 3}\right\rangle & =\left\langle m_{i 3},\left\langle n_{i 3}, m_{j 3}\right\rangle\right\rangle
\end{array}
$$

We can translate Table (4.11) into a table of odd left multiplications for the split algebra, where the identity e for B becomes $u=e_{1}+e_{2}$. (4.9) shows again that $V_{A, M}+V_{M, A}=V_{M, \Phi u+\Phi f}$, where $V_{M_{i 3}, u}=V_{M_{i 3}, e_{i}}$. Since in the isotope $v_{1}, v_{2}, v_{3}, v_{4}, e, f, m_{1}, m_{2}, m_{3}, m_{4} \longrightarrow e_{1}, e_{2}, c_{12}, d_{12}, q_{12}, e_{3}, m_{13}$, n_{23}, m_{23}, n_{13} and $V_{m_{i}, b}^{(s)}=V_{m_{i}, b^{*}}$ with $e_{1}, e_{2}, c_{12}, d_{12}, q_{12}, e_{3}, m_{13}, n_{13}, m_{23}, n_{23} \xrightarrow{*} e_{2}, e_{1},-c_{12},-d_{12}$, $q_{12}, e_{3}, m_{23}, n_{23}, m_{13}, n_{13}$, the 8 odd left multiplications reduce to:

$$
\begin{array}{|lll}
\hline V_{m_{13}, q_{12}}=V_{m_{23}, e_{2}}=V_{n_{13}, c_{12}}=V_{e_{3}, m_{23}}, & V_{q_{12}, m_{23}}=V_{e_{1}, m_{13}}=-V_{c_{12}, n_{23}}=V_{m_{13}, e_{3}}, \\
V_{n_{23}, q_{12}}=V_{m_{23}, d_{12}}=V_{n_{13}, e_{1}}=V_{e_{3}, n_{13}}, & V_{q_{12}, n_{13}}=-V_{d_{12}, m_{13}}=V_{e_{2}, n_{23}}=V_{n_{23}, e_{3}}, \\
V_{m_{23}, q_{12}}=V_{m_{13}, e_{1}}=-V_{n_{23}, c_{12}}=V_{e_{3}, m_{13}}, & V_{q_{12}, m_{13}}=V_{e_{2}, m_{23}}=V_{c_{12}, n_{13}}=V_{m_{23}, e_{3}}, \tag{6.4}\\
V_{n_{13}, q_{12}}=-V_{m_{13}, d_{12}}=V_{n_{23}, e_{2}}=V_{e_{3}, n_{23}}, & V_{q_{12}, n_{23}}=V_{d_{12}, m_{23}}=V_{e_{1}, n_{13}}=V_{n_{13}, e_{3}}, \\
\hline
\end{array}
$$

leading to the following brief table of values of these odd left multiplications.

[^6](6.5) Odd Left Multiplications $\langle M, A, J\rangle=\langle A, M, J\rangle$

$V_{m, a}(x)$ for $x=$	e_{1}	e_{2}	c_{12}	d_{12}	q_{12}	e_{3}	m_{13}	n_{13}	m_{23}	n_{23}
$V_{m_{13}, e_{1}}$	m_{13}	0	0	$-n_{23}$	m_{23}	0	0	$-3 e_{3}$	0	0
$V_{n_{13}, e_{1}}$	n_{13}	0	m_{23}	0	n_{23}	0	$3 e_{3}$	0	0	0
$V_{m_{23}, e_{2}}$	0	m_{23}	0	n_{13}	m_{13}	0	0	0	0	$-3 e_{3}$
$V_{n_{23}, e_{2}}$	0	n_{23}	$-m_{13}$	0	n_{13}	0	0	0	$3 e_{3}$	0
$V_{m_{13}, e_{3}}$	0	0	0	0	0	m_{13}	0	$2 e_{1}$	$2 c_{12}$	q_{12}
$V_{n_{13}, e_{3}}$	0	0	0	0	0	n_{13}	$-2 e_{1}$	0	$-q_{12}$	$2 d_{12}$
$V_{m_{23}, e_{3}}$	0	0	0	0	0	m_{23}	$-2 c_{12}$	q_{12}	0	$2 e_{2}$
$V_{n_{23}, e_{3}}$	0	0	0	0	0	n_{23}	$-q_{12}$	$-2 d_{12}$	$-2 e_{2}$	0

Proof: This is just table (4.11)with the m_{2}, m_{4} columns and m_{1}, m_{3} rows and m_{2}, m_{4} rows switched, and the v_{3} column negated. Alternately, the values for $V_{m, e} a=V_{m} a$ and $V_{m, a} n=U_{m, n} a$ can be read off (vertically) from (1.3), [note $V_{M, f} B=0, V_{m, f} f=m$] and from the f-column of (4.5) [or from (1.9)].

7 Inner Super-Derivations

We will compile a table of inner super-derivations $D=D_{0}+D_{1}=\alpha \mathbf{1}_{s K}+\sum V_{x_{i}, y_{i}}$ with $D(1)=0$. An analysis of all derivations of the Kac and other simple superalgebras has been carried out by Michael Smith [8] in general, and by G. Benkart and A. Elduque [1] for the Kac algebra in characteristic $\neq 2$. Recall that by Grassmann detour $D=D_{0}+D_{1}$ is a super-derivation of a unital quadratic Jordan superalgebra J iff $\widetilde{D}:=\gamma_{0} \otimes D_{0}+\gamma_{1} \otimes D_{1}$ is a derivation of the Grassmann envelope for all $\gamma_{i} \in \Gamma_{i}$. Intrinsically, the conditions amount to the following conditions for the homogeneous components D_{i} on homogeneous elements $x, y, z \in \Gamma(J)$:

$$
\begin{aligned}
& D_{i}\langle x, y, z\rangle=\left\langle D_{i}(x), y, z\right\rangle+(-1)^{i x}\left\langle x, D_{i}(y), z\right\rangle+(-1)^{i x+i y}\left\langle x, y, D_{i}(z)\right\rangle, \\
& D_{i}\left(U_{a} x\right)=\left\langle D_{i}(a), x, a\right\rangle+U_{a} D_{i}(x), \quad \text { which imply } \\
& \left\langle D_{i}, V_{x, y}\right\rangle=V_{D_{i}(x), y}+(-1)^{i x} V_{x, D_{i}(y)}, \quad D_{i}\langle x, z\rangle=\left\langle D_{i}(x), z\right\rangle+(-1)^{i x}\left\langle x, D_{i}(z)\right\rangle, \\
& D_{i}(\hat{1})=0, \quad D_{i}\left(a^{2}\right)=\left\langle D_{i}(a), a\right\rangle .
\end{aligned}
$$

By a Grassmann detour, ${ }^{9}$ the left multiplications $V_{i}=V_{s, t}(i=\operatorname{deg}(s)+\operatorname{deg}(t))$ belong to the structure Lie superalgebra, satisfying

$$
\begin{align*}
& V_{i}\langle x, y, z\rangle=\left\langle V_{i}(x), y, z\right\rangle-(-1)^{i x}\left\langle x, V_{i}^{*}(y), z\right\rangle+(-1)^{i x+i y}\left\langle x, y, V_{i}(z)\right\rangle, \\
& V_{i}\left(U_{a} x\right)=\left\langle V_{i}(a), x, a\right\rangle-(-1)^{i} U_{a} V_{i}^{*}(x), \quad V_{i}\left(a^{2}\right)=\left\langle V_{i}(a), a\right\rangle-U_{a} v_{i}, \tag{7.2}\\
& V_{i}(\langle x, z\rangle)=\left\langle V_{i}(x), z\right\rangle-(-1)^{i x}\left\langle x, v_{i}, z\right\rangle+(-1)^{i x}\left\langle x, V_{i}(z)\right\rangle, \\
& V_{i}(1)=(-1)^{s t} V_{i}^{*}(1)=\langle s, t\rangle=: v_{i} \quad\left(V_{i}^{*}=V_{t, s}\right) .
\end{align*}
$$

The map $V_{s, t}$ is itself a superderivation iff $v_{i}=\langle s, t\rangle=0$, since a general inner structural map $W_{i}=\sum V_{s_{k}, t_{k}}$ is a superderivation iff $W_{i}(\hat{1})=\sum\left\langle s_{k}, t_{k}\right\rangle=0$, in which case $W_{i}^{*}=-(-1)^{i} W$. Automatically all $D_{x_{i}, y_{j}}:=V_{x_{i}, y_{j}}-(-1)^{i j} V_{y_{j}, x_{i}}$ and all $D_{m}:=V_{m, m}$ for odd m are super-derivations [since $\left\langle x_{i}, y_{j}\right\rangle=(-1)^{i j}\left\langle y_{j}, x_{i}\right\rangle$ by supersymmetry (0.1.1) and $\langle m, m\rangle=0$ by odd alternation (0.1.2)], as are all Smith derivations of the form V_{x} for $2 x=0$ (see [8] for more on this phenomenon), in particular ηV_{x} if $\eta \in \Phi_{2^{\perp}}=\{\eta \mid 2 \eta=0\}$, so in $\operatorname{Inder}(J)$ we have the standard inner super-derivations

[^7]\[

$$
\begin{align*}
& D_{m}:=V_{m, m}, \quad D_{m, n}:=V_{m, n}+V_{n, m}, \quad D_{a, b}:=V_{a, b}-V_{b, a}, \quad S\left(a^{\prime}\right):=V_{a^{\prime}} \quad \text { in } \operatorname{Inder}(J)_{0}, \\
& D_{m, a}:=V_{m, a}-V_{a, m}, \quad S_{m^{\prime}}:=V_{m^{\prime}} \quad \text { in } \operatorname{Inder}(J)_{1} \quad\left(\text { for } \quad 2 a^{\prime}=2 m^{\prime}=0\right) . \tag{7.3}
\end{align*}
$$
\]

In general, the odd $V_{m, n}$ do not contribute many new inner derivations, since they are skewsymmetric by Switching (0.1.1): we have general rules

$$
\begin{gathered}
D_{a, a}=0, D_{x, y}=-(-1)^{x y} D_{y, x}, D_{x, 1}=0, V_{m, n}-V_{a, b} \in \operatorname{Inder}(J) \text { if }\langle m, n\rangle=\{a, b\}, \\
\text { If } a, b \in A \text { have }\{a, b\}=0 \text { then } V_{a, b}=-V_{b, a} \in \operatorname{Inder}(J)_{0} \text { with } \quad D_{a, b}=2 V_{a, b}, \\
V_{m, n}-V_{n, m}=V_{\langle n, m\rangle} \in V_{A}, \quad 2 V_{m, n}=D_{m, n}+V_{\langle m, n\rangle} \in D_{M, M}+V_{A}, \\
V_{a, b}=V_{b, a}=0 \quad \text { if } a \in A_{2}\left(e_{i}\right), b \in A_{0}\left(e_{i}\right) \quad\left(\text { so } D_{A, e_{3}}=D_{e_{1}, e_{2}}=0\right) .
\end{gathered}
$$

using Peirce Orthogonality (0.2.1) and noting that $\{a, b\}=0$ implies $V_{a, b}(1)=\{a, b\}=0$ and $V_{b, a}=V_{\{a, b\}}-V_{a, b}\left[\right.$ by Switching (0.1.1)] $=-V_{a, b}$, so $D_{a, b}=2 V_{a, b}$.

In the particular case of the split Kac superalgebra $J=s K_{10}(\Phi)$ the odd standard and even Smith inner super-derivations reduce to

$$
\begin{equation*}
D_{m, e_{3}}=-D_{m, u}, D_{m, b}=D_{\langle m, b\rangle, u}=\Delta_{\langle m, b\rangle} \text { for } \Delta_{m}:=D_{m, u}=V_{m, u_{*}}\left(u_{*}:=u-e_{3}\right), \tag{7.5}
\end{equation*}
$$

since by (4.8) $D_{m, b}=V_{m, b}-V_{b, m}=V_{\{m, b\}, u}-V_{u,\langle b, m\rangle}=D_{\{m, b\}, u}$ and $D_{m, e_{3}}=D_{u, m}=-D_{m, u}$ with $\Delta_{m}:=D_{m, u}=V_{m, u}-V_{u, m}=V_{m, u}-V_{m, e_{3}}=V_{m, u_{*}}\left[\right.$ for reassurance, note $\left\langle m, u_{*}, 1\right\rangle=$ $\langle m, u\rangle-\left\langle m, e_{3}\right\rangle=m-m=0$ so this is indeed a superderivation].

With this notation out of the way, we can describe all the inner super-derivations.

Inner Super-Derivation Theorem 7.6 The space $\operatorname{Inder}\left(s K_{10}\right)=\mathcal{I}_{0} \oplus \mathcal{I}_{1}$ of inner derivations of $s K_{10}$ is $\mathcal{I} \cong\left(\right.$ osp $\left._{1,2}(\Phi) \otimes \Phi[\mu]\right) \oplus D_{0}\left(\Phi_{2 \perp}\right)$,

$$
\begin{aligned}
& \mathcal{I}_{0}=\mathcal{D} \oplus \mathcal{D}^{\prime} \oplus D_{0}\left(\Phi_{2 \perp}\right) \cong s l_{2}(\Phi) \oplus \operatorname{sl}_{2}(\Phi) \mu \oplus D_{0}\left(\Phi_{2 \perp}\right)=\left(s l_{2}(\Phi) \otimes \Phi[\mu]\right) \oplus D_{0}\left(\Phi_{2 \perp}\right) \\
& \mathcal{I}_{1}:=\mathcal{E} \oplus \mathcal{E}^{\prime} \cong M_{13} \oplus M_{23} \cong V(\Phi) \oplus V(\Phi)=V(\Phi) \otimes \Phi[\mu] \quad\left(V(\Phi):=\Phi^{2}\right)
\end{aligned}
$$

where μ is a scalar in $\Phi[\mu]$ with $\mu^{2}=-1$. Here the even inner derivations are built from ${ }^{10}$

$$
\mathcal{D}:=\bigoplus_{i=1,2,3} \Phi D_{i} \text { for } D_{1}:=V_{c_{12}, q_{12}}, \quad D_{2}:=V_{q_{12}, d_{12}}, \quad D_{3}:=D_{c_{12}, d_{12}}
$$

where we have alternate descriptions

$$
\begin{align*}
& D_{3}=3\left(V_{c_{12}, d_{12}}-\mathbf{1}_{M}\right)+V_{e_{1}}-V_{m_{13}, n_{13}}=3\left(V_{c_{12}, d_{12}}-\mathbf{1}_{M}\right)+V_{e_{2}}-V_{m_{23}, n_{23}} ; \\
& \mathcal{D}^{\prime}:=\bigoplus_{i=1,2,3} \Phi D_{i}^{\prime} \text { for } D_{1}^{\prime}:=D_{e_{1}, c_{12}}=V_{e_{1}-e_{2}, c_{12}}, \quad D_{2}^{\prime}:=D_{e_{1}, d_{12}}=V_{e_{1}-e_{2}, d_{12}}, \tag{7.6.1}\\
& D_{3}^{\prime}:=-D_{e_{1}, q_{12}}=V_{q_{12}, e_{1}-e_{2}} ; \\
& D_{0}\left(\Phi_{2 \perp}\right) \text { consists of all } D_{0}(\eta):=S_{\eta e_{2}}=\eta V_{e_{2}}\left(\eta \in \Phi_{2^{\perp}}\right) \\
& \quad\left(\text { so } D_{0}=0 \text { if } \Phi \text { has no 2-torsion }\right) .
\end{align*}
$$

The odd superderivations are built from

$$
\begin{array}{llll}
\mathcal{E}=\oplus_{i=1,2} \Phi \Delta_{i} & \text { for } & \Delta_{1}=\Delta_{m_{13}}=V_{m_{13}, u_{*}}, & \Delta_{2}=\Delta_{n_{13}}=V_{n_{13}, u_{*}}, \\
\mathcal{E}^{\prime}=\bigoplus_{i=1,2} \Phi \Delta_{i}^{\prime} & \text { for } & \Delta_{1}^{\prime}=\Delta_{m_{23}}=V_{m_{23}, u_{*}}, & \Delta_{2}^{\prime}=\Delta_{n_{23}}=V_{n_{23}, u_{*} *} . \tag{7.6.2}
\end{array}
$$

The action of the inner derivations on the split basis is given by the table

[^8](7.6.3) Even Inner Derivations $\mathcal{I}_{0} \quad\left(k:=e_{1}-e_{2}\right)$

D	e_{1}	e_{2}	c_{12}	d_{12}	q_{12}	e_{3}	m_{13}	n_{13}	m_{23}	n_{23}
$D_{1}=V_{c_{12}, q_{12}}$	0	0	0	$-q_{12}$	$2 c_{12}$	0	0	$-m_{13}$	0	m_{23}
$D_{2}=V_{q_{12}, d_{12}}$	0	0	q_{12}	0	$-2 d_{12}$	0	$-n_{13}$	0	n_{23}	0
$D_{3}=D_{c_{12}, d_{12}}$	0	0	$2 c_{12}$	$-2 d_{12}$	0	0	m_{13}	$-n_{13}$	m_{23}	$-n_{23}$
$D_{1}^{\prime}=V_{k, c_{12}}$	$-c_{12}$	c_{12}	0	k	0	0	0	$-m_{23}$	0	$-m_{13}$
$D_{2}^{\prime}=V_{k, d_{12}}$	$-d_{12}$	d_{12}	k	0	0	0	n_{23}	0	n_{13}	0
$D_{3}^{\prime}=V_{q_{12}, k}$	q_{12}	$-q_{12}$	0	0	$-2 k$	0	m_{23}	n_{23}	$-m_{13}$	$-n_{13}$
$D_{0}(\eta)=\eta V_{e_{2}}$	0	0	ηc_{12}	ηd_{12}	ηq_{12}	0	0	0	ηm_{23}	ηn_{23}
$(2 \eta=0)$										

| | | | | | | | | | | |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\Delta_{1}=\Delta_{m_{13}}$ | m_{13} | 0 | 0 | $-n_{23}$ | m_{23} | $-m_{13}$ | 0 | $-h_{1}$ | $-2 c_{12}$ | $-q_{12}$ |
| $\Delta_{2}=\Delta_{n_{13}}$ | n_{13} | 0 | m_{23} | 0 | n_{23} | $-n_{13}$ | h_{1} | 0 | q_{12} | $-2 d_{12}$ |
| $\Delta_{1}^{\prime}=\Delta_{m_{23}}$ | 0 | m_{23} | 0 | n_{13} | m_{13} | $-m_{23}$ | $2 c_{12}$ | $-q_{12}$ | 0 | $-h_{2}$ |
| $\Delta_{2}^{\prime}=\Delta_{n_{23}}$ | 0 | n_{23} | $-m_{13}$ | 0 | n_{13} | $-n_{23}$ | c_{12} | $2 d_{12}$ | h_{2} | 0 |

To make the multiplication table of Lie super-brackets $[D, E]^{s}=D E-(-1)^{D E} E D$ for the Lie superalgebra of inner derivations appear more familiar, we introduce $E_{i}:=\Delta_{i}, E_{i}^{\prime}:=\Delta_{i}^{\prime} E X C E P T$ $E_{2}=-\Delta_{2}(!!)$, and obtain
(7.6.4) Lie Superalgebra of Inner Derivations

D	D_{1}	D_{2}	D_{3}	D_{1}^{\prime}	D_{2}^{\prime}	D_{3}^{\prime}	$D_{0}(\eta)$	E_{1}	E_{2}	E_{1}^{\prime}	E_{2}^{\prime}
D_{1}	0	D_{3}	$-2 D_{1}$	0	D_{3}^{\prime}	$-2 D_{1}^{\prime}$	0	0	E_{1}	0	E_{1}^{\prime}
D_{2}	$-D_{3}$	0	$2 D_{2}$	$-D_{3}^{\prime}$	0	$2 D_{2}^{\prime}$	0	E_{2}	0	E_{2}^{\prime}	0
D_{3}	$2 D_{1}$	$-2 D_{2}$	0	$2 D_{1}^{\prime}$	$-2 D_{2}^{\prime}$	0	0	E_{1}	$-E_{2}$	E_{1}^{\prime}	$-E_{2}^{\prime}$
D_{1}^{\prime}	0	D_{3}^{\prime}	$-2 D_{1}^{\prime}$	0	$-D_{3}$	$2 D_{1}$	ηD_{1}^{\prime}	0	E_{1}^{\prime}	0	$-E_{1}$
D_{2}^{\prime}	$-D_{3}^{\prime}$	0	$2 D_{2}^{\prime}$	D_{3}	0	$-2 D_{2}$	ηD_{2}^{\prime}	E_{2}^{\prime}	0	$-E_{2}$	0
D_{3}^{\prime}	$2 D_{1}^{\prime}$	$-2 D_{2}^{\prime}$	0	$-2 D_{1}$	$2 D_{2}$	0	ηD_{3}^{\prime}	E_{1}^{\prime}	$-E_{2}^{\prime}$	$-E_{1}$	E_{2}
$D_{0}(\eta)$	0	0	0	ηD_{1}^{\prime}	ηD_{2}^{\prime}	ηD_{3}^{\prime}	0	0	0	ηE_{1}^{\prime}	ηE_{2}^{\prime}
E_{1}	0	$-E_{2}$	$-E_{1}$	0	$-E_{2}^{\prime}$	$-E_{1}^{\prime}$	0	$-2 D_{1}$	D_{3}	$-2 D_{1}^{\prime}$	D_{3}^{\prime}
E_{2}	$-E_{1}$	0	E_{2}	$-E_{1}^{\prime}$	0	E_{2}^{\prime}	0	D_{3}	$2 D_{2}$	D_{3}^{\prime}	$2 D_{2}^{\prime}$
E_{1}^{\prime}	0	$-E_{2}^{\prime}$	$-E_{1}^{\prime}$	0	E_{2}	E_{1}	ηE_{1}^{\prime}	$-2 D_{1}^{\prime}$	D_{3}^{\prime}	$2 D_{1}$	$-D_{3}$
E_{2}^{\prime}	$-E_{1}^{\prime}$	0	E_{2}^{\prime}	E_{1}	0	$-E_{2}$	ηE_{2}^{\prime}	D_{3}^{\prime}	$2 D_{2}^{\prime}$	$-D_{3}$	$-2 D_{2}$

The standard inner derivations reduce to 10 in $D_{M}, 6$ in $D_{A, A}$, and 4 in $D_{M, A}$ which can be written in terms of the D_{i}, Δ_{i} by

$$
\begin{aligned}
& D_{m_{13}}=-D_{m_{23}}=D_{1}, \quad D_{n_{23}}=-D_{n_{13}}=D_{2}, \\
& D_{m_{13}, m_{23}}=2 D_{c_{12}, e_{2}}=2 D_{1}^{\prime}, \quad D_{n_{13}, n_{23}}=2 D_{d_{12}, e_{2}}=2 D_{2}^{\prime}, \\
& D_{m_{23}, n_{13}}=-D_{m_{13}, n_{23}}=V_{q_{12}, e_{1}-e_{2}}=D_{3}^{\prime}, \quad D_{m_{13}, n_{13}}=D_{m_{23}, n_{23}}=D_{c_{12}, d_{12}}=D_{3}, \\
& D_{e_{1}, b_{12}}=-D_{e_{2}, b_{12}}=V_{e_{1}-e_{2}, b_{12}} \in \mathcal{D} \quad\left(b_{12}=c_{12}, d_{12}, q_{12}\right), \\
& D_{e_{1}, e_{2}}=D_{e_{3}, A}, 0, \quad D_{c_{12}, q_{12}}=2 D_{1}, \quad D_{q_{12}, d_{12}}=2 D_{2}, \quad D_{c_{12}, d_{12}}=D_{3}, \\
& \Delta_{m_{13}}=\Delta_{1}, \quad \Delta_{n_{13}}=\Delta_{2}, \quad \Delta_{m_{23}}=\Delta_{1}^{\prime}, \quad \Delta_{n_{23}}=\Delta_{2}^{\prime}, \\
& S_{x^{\prime}} \in \operatorname{Span}\left(D_{i}, \Delta_{i}\right): S_{\eta e_{2}}=D_{0}(\eta), S_{\eta e_{3}}=S_{\eta u}=\eta D_{3}, S_{\eta e_{1}}=S_{\eta u}-S_{\eta e_{2}}, \\
& S_{\eta c_{12}}=\eta D_{1}^{\prime}, S_{\eta d_{12}}=\eta D_{2}^{\prime}, S_{\eta q_{12}}=\eta D_{3}^{\prime}, \quad S_{m^{\prime}}=\Delta_{m^{\prime}} .
\end{aligned}
$$

Proof: The table (7.6.3) can be read directly from (5.5) for D_{i}, D_{i}^{\prime} and from (6.5) for $\Delta_{i}, \Delta_{i}^{\prime}$ [noting $V_{p_{i 3}, u_{*}}=V_{p_{i 3}, e_{i}-e_{3}}$]. That the D_{i}^{\prime} have an alternate description in (7.6.1) comes from $D_{e_{1}, b_{12}}=V_{e_{1}, b_{12}}-V_{b_{12}, e_{1}}=V_{e_{1}, b_{12}}-V_{e_{2}, b_{12}}=V_{e_{1}-e_{2}, b_{12}}$ for $b_{12}=c_{12}, d_{12},-q_{12}$. It is more work to show that the three expressions for D_{3} in (7.6.1) agree: from (6.1), (5.5) $V_{e_{1}}-V_{m_{13}, n_{13}}$ sends the ordered basis for $s K$ to $\left(2 e_{1}-2 e_{1}, 0-0, c_{12}-2 c_{12}, d_{12}-0, q_{12}-q_{12}, 0+3 e_{3}, m_{13}-0, n_{13}+\right.$ $\left.n_{13}, 0+m_{23}, 0+2 n_{23}\right)=\left(0,0,-c_{12}, d_{12}, 0,3 e_{3}, m_{13}, 2 n_{13}, m_{23}, 2 n_{23}\right)$, while $V_{e_{2}}-V_{m_{23}, n_{23}}$ also sends
the ordered basis to $\left(0-0,2 e_{2}-2 e_{2}, c_{12}-2 c_{12}, d_{12}-0, q_{12}-q_{12}, 0+3 e_{3}, 0+m_{13}, 0+2 n_{13}, m_{23}-\right.$ $\left.0, n_{23}+n_{23}\right)=\left(0,0,-c_{12}, d_{12}, 0,3 e_{3}, m_{13}, 2 n_{13}, m_{23}, 2 n_{23}\right)$, while $3 V_{c_{12}, d_{12}}-31$ sends the basis to $3\left((1-1) e_{1},(1-1) e_{2},(2-1) c_{12},(0-1) d_{12},(1-1) q_{12},(0-1) e_{3},(1-1) m_{13},(0-1) n_{13},(1-\right.$ 1) $\left.m_{23},(3-1) n_{23}\right)=\left(0,0,3 c_{12},-3 d_{12}, 0,-3 e_{3}, 0,-3 n_{13}, 0,-3 n_{23}\right)$. Adding these shows that the second and third versions of D_{3} send $\left(e_{1}, e_{2}, c_{12}, d_{12}, q_{12}, e_{3}, m_{13}, n_{13}, m_{23}, n_{23}\right)$ to

$$
\begin{equation*}
\left(0,0,2 c_{12},-2 d_{12}, 0,0, m_{13},-n_{13}, m_{23},-n_{23}\right) \tag{7.6.6}
\end{equation*}
$$

which is precisely where the first version $D_{3}=D_{c_{12}, d_{12}}=V_{c_{12}, d_{12}}-V_{d_{12}, c_{12}}$ sends it by subtracting two rows in (5.5).

From this table it is easy to see that the transformations $D_{i}, D_{i}^{\prime}, D_{0}(\Phi), \Delta_{i}, \Delta_{i}^{\prime}$ are independent over Φ [8]: if $D=D_{0}(\eta)+\sum_{i=1}^{3} \alpha_{i} D_{i}+\sum_{j=1}^{3} \alpha_{i}^{\prime} D_{i}^{\prime}=0$ then identifying coefficients of c_{12}, d_{12}, q_{12} in $D\left(e_{1}\right)=0$ gives $\alpha_{1}^{\prime}=\alpha_{2}^{\prime}=\alpha_{3}^{\prime}=0$, identifying coefficients of q_{12} in $D\left(c_{12}\right)=D\left(d_{12}\right)=0$ gives $\alpha_{1}=\alpha_{2}=0$, the coefficient of n_{13} in $D\left(n_{13}\right)=0$ gives $\alpha_{3}=0$, and finally the coefficient of c_{12} in $D\left(c_{12}\right)=0$ gives $\eta=0$, so that D vanishes iff all its coefficients vanish. Similarly, since $\Delta_{m}(u)=m$ if $\Delta=\sum_{i=1}^{2} \alpha_{i} \Delta_{i}+\sum_{j=1}^{2} \Delta_{i}^{\prime}=0$ then $0=\Delta(u)=\alpha_{1} m_{13}+\alpha_{2} n_{13}+\alpha_{1}^{\prime} m_{23}+\alpha_{2}^{\prime} n_{23}$ implies all $\alpha_{i}, \alpha_{i}^{\prime}=0$.

First we check that the D_{i}, Δ_{i} are actually superderivations. This is clear for the standard D_{3}, D_{i}^{\prime} by (7.3), for the Δ_{i} by (7.5), for $D_{0}(\eta)=S_{\eta e_{2}}$ by (7.3), and for D_{1}, D_{2} by (7.4) since $\left\{c_{12}, q_{12}\right\}=\left\{d_{12}, q_{12}\right\}=0$.

Next we check that the space \mathcal{L} spanned by these 7 even and 4 odd superderivations span all inner derivations by giving explicit expressions (7.6.5) for the standard inners. From (7.3) we see there are 10 basic even standard inner derivations $D_{m}, D_{m, n}$. The 4 basic even $D_{m_{i *}}=V_{m_{i *}, m_{i *}}$ reduce by (6.1) to $D_{m_{13}}=-D_{m_{23}}=V_{c_{12}, q_{12}}=-V_{q_{12}, c_{12}}=D_{1}, D_{c_{12}, q_{12}}=V_{c_{12}, q_{12}}-V_{q_{12}, c_{12}}=2 V_{c_{12}, q_{12}}=2 D_{1}$, analogously $D_{n_{23}}=-D_{n_{13}}=V_{q_{12}, d_{12}}=-V_{d_{12}, q_{12}}=D_{2}, D_{q_{12}, d_{12}}=V_{q_{12}, d_{12}}-V_{d_{12}, q_{12}}=2 V_{q_{12}, d_{12}}=$ $2 D_{2}$. For the other 6 basic $D_{m_{i *}, m_{j *}}$ we have by (6.1) that $D_{m_{13}, m_{23}}=V_{m_{13}, m_{23}}+V_{m_{23}, m_{13}}=$ $2 V_{e_{1}, c_{12}}-2 V_{c_{12}, e_{1}}=2 D_{e_{1}, c_{12}}=2 D_{1}^{\prime}, D_{n_{13}, n_{23}}=V_{n_{13}, n_{23}}+V_{n_{23}, n_{13}}=2 V_{d_{12}, e_{2}}-2 V_{e_{2}, d_{12}}=2 D_{d_{12}, e_{2}}=$ $2 D_{2}^{\prime}$, and $D_{m_{13}, n_{23}}=V_{m_{13}, n_{23}}+V_{n_{23}, m_{13}}=V_{q_{12}, e_{2}}-V_{q_{12}, e_{1}}=-V_{q_{12}, e_{1}-e_{2}}=-D_{3}^{\prime}$ which also equals $-V_{n_{13}, m_{23}}-V_{m_{23}, n_{13}}=-D_{m_{23}, n_{13}}$. From adding two rows in (6.1) and subtracting two rows in (5.5) we see that $D_{m_{i 3}, n_{i 3}}=V_{m_{i 3}, n_{i 3}}+V_{n_{i 3}, n_{i 3}}$ for $i=1,2$ both mysteriously coincide with D_{3} as in (7.6.5) since they all send the ordered basis for $s K_{10}$ to $\left(0,0,2 c_{12},-2 d_{12}, 0,0, m_{13},-n_{13}, m_{23},-n_{23}\right)$.

In view of (7.4) there are 6 basic even $D_{a_{i}, a_{j}}$ with $a_{i}>a_{j}$ [in the order $e_{1}>c_{12}>d_{12}>q_{12}$, since $D_{A, e_{3}}=D_{e_{1}, e_{2}}=0$ by (7.5), while $\left.D_{e_{2}, b_{12}}=-D_{e_{1}, b_{12}}\right]$, and for these we have $D_{e_{1}, b_{12}} \in \mathcal{L}$ since $V_{e_{1}, b_{12}}-V_{b_{12}, e_{1}}=V_{e_{1}, b_{12}}-V_{e_{2}, b_{12}}=V_{e_{1}-e_{2}, b_{12}}$, and by (7.4) we have $D_{c_{12}, q_{12}}=2 D_{1}, D_{d_{12}, q_{12}}=$ $-2 D_{2}, D_{c_{12}, d_{12}}=D_{3}$.

To see (7.6.5) for the even Smith derivations, $a^{\prime}=\sum \alpha_{i} e_{i}+\beta_{1} c_{12}+\beta_{2} d_{12}+\beta_{3} q_{12}$ has $2 a^{\prime}=0$ iff all $\eta=\alpha_{i}, \beta_{i} \in \Phi_{2^{\perp}}$ [by freeness of A as Φ-module]; here ${ }^{11}$

$$
\begin{equation*}
S_{\eta e_{3}}=S_{\eta u}=\eta D_{3}=\mathbf{0}_{A} \oplus \eta \mathbf{1}_{M}, \quad S_{\eta b_{12}}=\eta V_{b_{12}, k}=\eta V_{k, b_{12}} \quad\left(k:=e_{1}-e_{2}\right) \tag{7.6.7}
\end{equation*}
$$

since (7.6.3) shows ηD_{3} vanishes on A [from $2 \eta=0$] and is $\eta \mathbf{1}$ on M [from $\eta=-\eta$], and the same holds for $S_{\eta e_{3}}, S_{\eta u}$ since $V_{e_{3}}=21, V_{u}=0$ on $\Phi e_{3}, V_{e_{3}}=0, V_{u}=21$ on B, and $V_{e_{3}}=V_{u}=1$ on M. Also $S_{\eta b_{12}}=\eta V_{b_{12}, 1}=V_{b_{12}, e_{1}+e_{2}}=\eta V_{b_{12}, e_{1}-e_{2}}[$ by $2 \eta=0]=\eta V_{b_{12}, k}=-\eta V_{k, b_{12}}$ [by Switching (0.1.1) since $\left.\left\{k, b_{12}\right\}=0\right]=+\eta V_{k, b_{12}}$ [since $\left.-\eta=\eta\right]$. This yields the formulas (7.6.5) for $S_{\eta e_{2}}, S_{\eta e_{3}}, S_{\eta u}, S_{\eta e_{1}}, S_{\eta b_{12}}\left(b_{12}=c_{12}, d_{12}, q_{12}\right)$, so each piece of $S_{a^{\prime}}$ lies in \mathcal{L}. The odd Smith derivations are absorbed as in (7.6.5) since $S_{m^{\prime}}=V_{m^{\prime}}=V_{m^{\prime}, 1}=V_{m^{\prime}, u+e_{3}}=V_{m^{\prime}, u_{*}+2 e_{3}}=V_{m^{\prime}, u_{*}}=$ $\Delta_{m^{\prime}}$ when $2 m^{\prime}=0$.

For the odd standard super-derivations, in view of (7.5) $D_{M, A}$ and $S_{M^{\prime}}$ reduce to Δ_{M} spanned by the $\Delta_{i}, \Delta_{i}^{\prime}$. Thus all standard inner derivations lie in $\mathcal{L} \subseteq \operatorname{Inder}\left(s K_{10}\right)$ as stated in (7.6.5).

Now we check that space \mathcal{L} contains all inner derivations (not just the standard ones). Setting $\widehat{V}_{A, A}:=V_{A, A}+\Phi \mathbf{1}_{s K_{10}}$ for convenience, ${ }^{12}$ we first note

[^9]\[

$$
\begin{align*}
& \widehat{V}_{A, A}+V_{M, M} \subseteq \Phi V_{m_{13}, n_{13}}+\Phi V_{m_{23}, n_{23}}+\widehat{V}_{A, A} \subseteq \Phi D_{3}+\widehat{V}_{A, A} \subseteq \mathcal{L}+\widehat{V}_{A, A}, \\
& \widehat{V}_{A, A} \subseteq \Phi V_{e_{2}}+\Phi \mathbf{1}+V_{e_{1}, B_{12}}+\Phi V_{c_{12}, d_{12}}+\mathcal{L} . \tag{7.6.8}
\end{align*}
$$
\]

Indeed, Table (4.5) shows that all $V_{m, n}$ lie in $V_{B, B}$ except for $V_{m_{i 3}, n_{i 3}}$ and $V_{n_{i 3}, m_{i 3}}=V_{m_{i 3}, n_{i 3}}-$ $V_{\left\langle m_{i 3}, n_{i 3}\right\rangle}=V_{m_{i 3}, n_{i 3}}-V_{g_{i}} \in V_{m_{i 3}, n_{i 3}}-V_{A}$, where $V_{m_{i 3}, n_{i 3}} \in \widehat{V}_{A, A}-D_{3}$ by (7.6.1). All terms of $\widehat{V}_{A, A}$ fall in \mathcal{L} up to the 4 terms indicated in (7.6.8) because

$$
\begin{aligned}
& V_{e_{3}, A}=\Phi V_{e_{3}, e_{3}}=\Phi V_{e_{3}}, V_{e_{3}}=21-V_{e_{1}}-V_{e_{2}}, \quad V_{e_{1}}=-V_{e_{2}}+V_{c_{12}, d_{12}}+V_{d_{12}, c_{12}} \\
& V_{e_{2}, A}+V_{A, e_{2}}=\Phi V_{e_{2}}+V_{e_{2}, B_{12}}+V_{B_{12}, e_{2}}=\Phi V_{e_{2}}+V_{B_{12}, e_{1}}+V_{e_{1}, B_{12}}, \\
& V_{e_{1}, A}+V_{A, e_{1}}=\Phi V_{e_{1}}+V_{e_{1}, B_{12}}+V_{B_{12}, e_{1}}, V_{B_{12}, e_{1}}=V_{e_{1}, B_{12}}-V_{e_{1}-e_{2}, B_{12}}=V_{e_{1}, B_{12}}+\sum_{i=1}^{3} \Phi D_{i}^{\prime}, \\
& V_{B_{12}, B_{12}} \subseteq \Phi V_{c_{12}, q_{12}}+\Phi V_{d_{12}, q_{12}}+\Phi V_{c_{12}, d_{12}}+\Phi V_{d_{12}, c_{12}}=\sum_{i=1}^{3} \Phi D_{i}+\Phi V_{c_{12}, d_{12}}, \\
& V_{M, A}+V_{A, M} \subseteq V_{M, u}+V_{M, e_{3}} \subseteq \Delta_{M}+V_{M, e_{3}} .
\end{aligned}
$$

Finally, we check that an even inner map $D=\alpha_{1} \mathbf{1}+\eta V_{v_{2}}+\alpha_{2} V_{e_{1}, c_{12}}+\alpha_{3} V_{e_{1}, d_{12}}+\alpha_{4} V_{e_{1}, q_{12}}+$ $\alpha_{5} V_{c_{12}, d_{12}}$ is a derivation iff $\alpha_{i}=0$ and $2 \eta=0: D(1)=\alpha_{1}\left(e_{1}+e_{2}+e_{3}\right)+2 \eta e_{2}+\alpha_{2} c_{12}+\alpha_{3} d_{12}+$ $\alpha_{4} q_{12}+\alpha_{5}\left(e_{1}+e_{2}\right)$ vanishes iff $\alpha_{1}=\alpha_{2}=\alpha_{3}=\alpha_{4}=\alpha_{1}+\alpha_{5}=\alpha_{1}+2 \eta+\alpha_{5}=0$ [identifying coefficients of $e_{3}, c_{12}, d_{12}, q_{12}, e_{1}, e_{2}$], which reduces to all $\alpha_{i}=0$, $2 \eta=0$, i.e. $D=\eta V_{e_{2}} \in D_{0}\left(\Phi_{2^{\perp}}\right)$ and hence $D \in \mathcal{L}$. Similarly, an odd inner map $D=V_{m, e_{3}}$ is a super-derivation, i.e., $D(1)=0$, iff $m=0$, since $D(1)=\left\{m, e_{3}\right\}=m$.

The table (7.6.4) of Lie superbrackets results from straightforward calculation using the definition of the D 's, the action table (7.6.3), and $\left[D_{i}, V_{x, y}\right]^{s}=V_{D_{i}(x), y}+(-1)^{i x} V_{x, D_{i}(y)},\left[D_{i}, V_{x}\right]^{s}=V_{D_{i}(x)}$, from (7.1). For the even products note that

$$
\begin{equation*}
2 V_{c_{12}, d_{12}}-V_{k, k}=2 V_{c_{12}, d_{12}}-V_{q_{12}, q_{12}}=D_{c_{12}, d_{12}} \tag{7.6.9}
\end{equation*}
$$

since from $k^{2}=q^{2}=u$ we have $2 V_{c, d}-V_{k, k}=2 V_{c, d}-V_{u}=2 V_{c, d}-V_{\langle c, d\rangle}=V_{c, d}-V_{d, c}$ [by Switching (0.1.1)] $=D_{c, d}$, similarly $2 V_{c, d}-V_{q, q}=D_{c, d}$. Note also that $\left[D, D_{0}(\eta)\right]=\eta V_{D\left(e_{2}\right)}$ where $D\left(e_{2}\right)=0$ for $D=D_{i}$ and $D\left(e_{2}\right)=b_{12}$ for $D=D_{i}^{\prime}$, where by (7.6.5) $\eta V_{b_{12}}=\eta V_{k, b_{12}}=\eta D_{i}^{\prime}$.

For the mixed even-odd products, we show that the Δ_{m} span a 4-dimensional space \mathcal{I}_{1} naturally isomorphic to M, with the adjoint action of \mathcal{I}_{0} on \mathcal{I}_{1} isomorphic to the action of \mathcal{I}_{0} as linear transformations on M :

$$
\begin{equation*}
\left[D_{0}, \Delta_{m}\right]=\Delta_{D_{0}(m)} \tag{7.6.10}
\end{equation*}
$$

since $\left[D_{0}, V_{m, u_{*}}\right]=V_{D_{0}(m), u_{*}}+V_{m, D_{0}\left(u_{*}\right)}=V_{D_{0}(m), u_{*}}=\Delta_{D_{0}(m)}\left[\right.$ by (7.6.3) $D_{0}\left(e_{3}\right)=D_{0}(u)=0$ so $\left.D_{0}\left(u_{*}\right)=0\right]$. Thus $\mathcal{I}_{1} \cong M$ as \mathcal{I}_{0}-modules.

For the odd products, we have

$$
\begin{equation*}
\Delta_{m}^{2}=-V_{m, m}=-D_{m},\left\langle\Delta_{m}, \Delta_{n}\right\rangle=-D_{m, n} \tag{7.6.11}
\end{equation*}
$$

By a Grassmann detour $V_{m, a} V_{n, a} x=V_{m, U_{a} n} x+(-1)^{x} U_{m, n} U_{a} x$, so by Alternation (0.1.2) and $U_{u_{*}} m=-m$ we have $\Delta_{m}^{2} x=V_{m, u_{*}}^{2} x=-V_{m, m} x+(-1)^{x} U_{m, m} U_{u_{\text {ast }}} x=-V_{m, m}=-D_{m}$, hence by linearization $\left\langle\Delta_{m}, \Delta_{n}\right\rangle=-D_{m, n}$. This, together with (7.6.5) (remembering that $D_{m, n}$ is symmetric in m, n), shows that

Finally, we turn to the isomorphisms mentioned at the beginning of the Theorem. We have $\mathcal{I}_{0}=\mathcal{L}_{0}=\left(\sum_{i=1}^{3} \Phi D_{i}\right) \oplus\left(\sum_{i=1}^{3} \Phi D_{i}^{\prime}\right) \oplus D_{0}(\Phi)=\mathcal{D} \oplus \mathcal{D}^{\prime} \oplus D_{0}\left(\Phi_{2 \perp}\right) \cong s l_{2}(\Phi) \oplus s l_{2}(\Phi) \mu \oplus D_{0}\left(\Phi_{2 \perp}\right)=$ $\left(s l_{2}(\Phi) \otimes \Phi[\mu]\right) \oplus D_{0}\left(\Phi_{2 \perp}\right)$ for $\mu^{2}=-1$ because immediately from the table that $\left[D, C^{\prime}\right]=\left[D^{\prime}, C\right]=$ $[D, C]^{\prime},\left[D^{\prime}, C^{\prime}\right]=-[D, C]$ and $\mathcal{D} \cong l_{2}(\Phi)$ via $D_{1}, D_{2}, D_{3} \longrightarrow E_{12}, E_{21}, E_{11}-E_{22}$. In characteristic $\neq 2$ (no 2 -torsion) $\Phi_{2 \perp}=0$ and the Lie algebra \mathcal{I}_{0} is free of rank 6 . In characteristic 2 it is free of rank 7 since $\Phi_{2 \perp}=\Phi .{ }^{13}$

The odd bimodule $\mathcal{I}_{1}=\left(\sum_{i=1}^{2} \Phi E_{i}\right) \oplus\left(\sum_{i=1}^{2} \Phi E_{i}^{\prime}\right)=\mathcal{E} \oplus \mathcal{E}^{\prime}$ is isomorphic to $V(\Phi) \oplus V(\Phi) \mu=$ $V(\Phi) \otimes \Phi[\mu]$ for $V(\Phi)=\Phi v_{1} \oplus \Phi v_{2}$ the standard bimodule for $s l_{2}$ because (once we carefully replace Δ_{2} by $-\Delta_{2}$) we again immediately read off from the table that $\left[D, E^{\prime}\right]=[D, E]^{\prime},\left[D^{\prime}, E^{\prime}\right]=-[D, E]$ and $\mathcal{E} \cong V(\Phi)$ via $E_{1}, E_{2} \longrightarrow v_{1}, v_{2}$. Thus as bimodule we have $\mathcal{I} \cong D_{0}\left(\Phi_{2 \perp}\right) \oplus\left(s l_{2}(\Phi) \oplus V(\Phi)\right)[\mu]$. Here $V(\Phi) \cong \Phi E_{13} \oplus \Phi E_{23} \cong \Phi\left(E_{13}-E_{32}\right) \oplus \Phi\left(E_{23}+E_{31}\right)$, so $s l_{2}(\Phi) \oplus V(\Phi)$ can be identified with the set of all 3×3 matrices

α	β	ϵ
γ	$-\alpha$	δ
δ	$-\epsilon$	0

which is $\operatorname{osp}_{1,2}(\Phi)$ (turned upside down). Under this identification the (symmetric) odd Lie superproducts also correspond: The matrix product $\left(\epsilon\left(E_{13}-E_{32}\right)+\delta\left(E_{23}+E_{31}\right)\right)^{2}=-\epsilon^{2} E_{12}+\delta^{2} E_{21}+$ $\epsilon \delta\left(E_{11}-E_{33}-E_{22}+E_{33}\right)=\epsilon \delta\left(E_{11}-E_{22}\right)-\epsilon^{2} E_{12}+\delta^{2} E_{21}$. On the other hand, $\left(\epsilon E_{1}+\delta E_{2}\right)^{2}=$ $\Delta_{m}^{2}\left(m:=\epsilon m_{13}-\delta n_{13}\right)[$ beware the minus $]=-D_{m}[$ by $(7.6 .11)]=-\left(\epsilon^{2} D_{m_{13}}-\epsilon \delta D_{m_{13}, n_{13}}+\right.$ $\left.\delta^{2} D_{n_{13}}\right)=-\epsilon^{2} D_{1}+\epsilon \delta D_{3}-\delta^{2}\left(-D_{2}\right)[$ by $(7.6 .5)] \longrightarrow-\epsilon^{2} E_{12}+\epsilon \delta\left(E_{11}-E_{22}\right)+\delta^{2} E_{21}$. Thus $\mathcal{D} \oplus \mathcal{E} \cong \operatorname{osp}_{1,2}(\Phi)$ as Lie superalgebra.

Note that this inner derivation superalgebra of $s K_{10}$ is not the same as that of the ordinary K_{10} (found elegantly in [1, 2.8, p. 3213]) where $\mu^{2}=+1$. Here $\operatorname{Inder}\left(s K_{10}\right)_{0} \cong \operatorname{Inder}(B)=$ $\operatorname{Der}(J(Q, u))=\{D \in \operatorname{Instrl}(J) \mid D(u)=0, Q(D(b), b)=0$ for all $b \in B\}$ is the "isotropy subalgebra" of the inner structure algebra at the point u, while the usual $\operatorname{Inder}\left(s K_{10}\right)_{0}$ is the isotropy subalgebra at the point e. Our split superalgebra is an isotope of the standard one, and while in general isotopes share the same inner structure algebra $V_{J, J}^{(s)}=V_{J, U_{s} J}=V_{J, J}$, they are sensitive to isotropy: in the standard K_{10} the basepoint e lies in the bilinear radical of Q in characteristic $2(Q(e, J)=0)$, whereas in the split algebra the basepoint $u=e_{1}+e_{2}$ does not $\left(Q\left(u, e_{1}\right)=1\right)$.

8 Imbedding the Split in the Standard Kac Superalgebra

Finally, we show how over an algebraically closed field $\bar{\Phi}$ of characteristic not 2 the split isotope $s K_{10}$ can be imbedded inside the standard Kac superalgebra \bar{K}_{10}. By the usual Grassmann detour, two isotopes $J^{(a)}, J^{(b)}$ by even elements $a, b \in A$ are isomorphic if the elements a^{-1}, b^{-1} are conjugate under the inner structure group of J (since $(1 \otimes T)\left(1 \otimes a^{-1}\right)=1 \otimes b^{-1}$ then holds in \widetilde{J} for structural $1 \otimes T)$, and in our case $\bar{J}^{(s)} \cong \bar{J}$ since $s \in A$ has a square root t in \bar{A}.
Imbedding Theorem 8.1 If Φ contains τ with $\tau^{4}=-\frac{1}{4}$ then $\varphi^{\prime}:=U_{t}: K_{10} \longleftrightarrow s K_{10}$ is an isomorphism of Jordan superalgebras (in both directions) for

$$
\begin{equation*}
t:=v+f, \quad v:=\tau(e+i u), \quad v^{2}=u:=v_{1}+v_{2} \quad\left(i:=-2 \tau^{2}\right) \tag{8.1.1}
\end{equation*}
$$

In this case Φ also contains λ such that

$$
\begin{equation*}
\lambda=\frac{1-i}{2}, \quad i \lambda=\frac{1+i}{2}, \quad i^{2}=-1, \quad 2 \lambda^{2} i=1, \quad \lambda^{4}=-\frac{1}{4} . \tag{8.1.2}
\end{equation*}
$$

[^10]Proof: By choice of τ the element $i:=-2 \tau^{2}$ has $i^{2}=4 \tau^{4}=-1$ and $2 \tau^{2} i=-i^{2}=1$. Then $v^{2}=\tau^{2}(e+2 i u-e)=2 \tau^{2} i u=u$. Thus $U_{t}\left(1^{-1}\right)=t^{2}=v^{2}+f=u+f=s=s^{-1}$ and at the same time $U_{t} s^{-1}=U_{t}\left(t^{2}\right)=\left(t^{2}\right)^{2}=s^{2}=1=1^{-1}$, and φ^{\prime} is an isomorphism of superalgebras in both directions. [While φ^{\prime} is not an involution, $\varphi^{\prime 2}=U_{s}=*$ is an involution on J.] If we define $\lambda:=\frac{1-i}{2}$ then $i \lambda=\frac{i+1}{2}, \lambda^{2}=\frac{1-2 i+i^{2}}{4}=-\frac{i}{2}, 2 i \lambda^{2}=-i^{2}=1, \lambda^{4}=\frac{i^{2}}{4}=-\frac{1}{4}$ and λ is another fourth-root of $-\frac{1}{4}$ with the same i.

The isomorphism φ^{\prime} must take the split basis $\left\{e_{1}, e_{2}, c_{12}, d_{12}, q_{12}, e_{3}, m_{13}, n_{13}, m_{23}, n_{23}\right\}=\left\{v_{1}, v_{2}\right.$, $\left.-v_{3}, v_{4}, e, f, m_{1}, m_{4}, m_{3}, m_{2}\right\}$ to a split basis inside K_{10}. Here $\varphi^{\prime}=U_{v+f}$ reduces on $B=A_{11+12+22}$ to $U_{v}=\lambda^{2}\left(U_{e}+i U_{e, u}-U_{u}\right)=\lambda^{2}\left(\mathbf{1}_{B}-*+i V_{u}\right)$, while on $\Phi e_{3}=\Phi f$ it is just U_{f}, and on $M=M_{13}+M_{23}$ it is $U_{v, f} m=V_{v} m=\langle v, m\rangle=\lambda(\langle e, m\rangle+i\langle u, m\rangle)=\lambda\left(m+m^{*}\right)$. If we set $k:=v_{1}-v_{2}($ as in (7.6.2)) we get a split basis

$$
\begin{align*}
e_{1}^{\prime} & :=\varphi^{\prime}\left(v_{1}\right)=\lambda^{2}\left(v_{1}-v_{2}+i e\right)=\frac{1}{2}(e-i k), & e_{3}^{\prime} & :=\varphi^{\prime}(f)=U_{f} f=f \\
e_{2}^{\prime} & :=\varphi^{\prime}\left(v_{2}\right)=\lambda^{2}\left(v_{2}-v_{1}+i e\right)=\frac{1}{2}(e+i k), & m_{13}^{\prime} & :=\varphi^{\prime}\left(m_{1}\right)=\lambda\left(m_{1}+i m_{3}\right) \\
c_{12}^{\prime} & :=\varphi^{\prime}\left(-v_{3}\right)=\lambda^{2}\left(-v_{3}-v_{3}+i 0\right)=i v_{3}, & n_{13}^{\prime} & :=\varphi^{\prime}\left(m_{4}\right)=\lambda\left(m_{4}+i m_{2}\right) \tag{8.1.3}\\
d_{12}^{\prime} & :=\varphi^{\prime}\left(v_{4}\right)=\lambda^{2}\left(v_{4}+v_{4}+i 0\right)=-i v_{4}, & m_{23}^{\prime} & :=\varphi^{\prime}\left(m_{3}\right)=\lambda\left(m_{3}+i m_{1}\right) \\
q_{12}^{\prime} & :=\varphi^{\prime}(e)=\lambda^{2}(e-e+i 2 u)=u, & n_{23}^{\prime} & :=\varphi^{\prime}\left(m_{2}\right)=\lambda\left(m_{2}+i m_{4}\right)
\end{align*}
$$

inside \bar{K}_{10}.
Remark 8.2 In characteristic not 2 this means the two algebras $s K_{10}(\bar{\Phi})$ and $K_{10}(\bar{\Phi})$ are isomorphic as Jordan superalgebras over $\bar{\Phi}$, and the split scheme sK K_{10} is a \mathbb{Z}-form of the standard scheme K_{10}. But the split and standard algebras in characteristic 2 do not become isomorphic under any scalar extension (they are not forms of each other): the condition $b^{2}=T(b) b-Q(b) 1=-Q(b) 1 \in \Phi 1$ satisfied by the standard K_{10} in characteristic 2 (due to the traceless nature of Q) will persist in all scalar extensions, and K_{10} will never be able to grow 3 reduced supplementary orthogonal idempotents.

Another imbedding (another Kac basis) creates the splitting idempotents e_{1}, e_{2} more naturally from the element $u=v_{1}+v_{2}$: if $\frac{1}{2} \in \Phi$ then $\operatorname{Jor} d(Q, e)$ is a degree 2 Jordan algebra whose identity can be decomposed as a sum of two orthogonal idempotents

$$
\begin{equation*}
e_{1}^{\prime \prime}:=\frac{1}{2}(e+u), e_{2}^{\prime \prime}:=\frac{1}{2}(e-u), e_{3}^{\prime \prime}:=f, \quad u:=v_{1}+v_{2}, \quad u^{2}=e=e_{1}+e_{2} . \tag{8.3}
\end{equation*}
$$

Then $e_{1}^{\prime \prime}, e_{2}^{\prime \prime}, e_{3}^{\prime \prime}$ are supplementary reduced orthogonal idempotents in $K_{10}(\bar{\Phi})$ and A is a degree 3 Jordan algebra with unit $1=e_{1}^{\prime \prime}+e_{2}^{\prime \prime}+e_{3}^{\prime \prime}$; the Peirce decomposition of $K_{10}(\bar{\Phi})$ is

$$
\begin{gathered}
K_{10}(\bar{\Phi})=\left(\bigoplus_{i=1}^{3} A_{i i} \oplus A_{12}\right) \oplus\left(M_{13} \oplus M_{23}\right), \quad \text { where for } w:=v_{1}-v_{2} \\
B=\operatorname{Jord}(Q, e)=A_{11} \oplus A_{22} \oplus A_{12}, \quad A_{i i}=\Phi e_{i}^{\prime \prime}, A_{12}=\Phi w \oplus \Phi v_{3} \oplus \Phi v_{4}, \\
Q\left(a^{\prime \prime}\right)=\varepsilon_{1} \varepsilon_{2}+\alpha^{2}-\alpha_{3} \alpha_{4}, \quad T\left(a^{\prime \prime}\right)=\varepsilon_{1}+\varepsilon_{2} \quad \text { for } a^{\prime \prime}=\varepsilon_{1} e_{1}^{\prime \prime}+\varepsilon_{2} e_{2}^{\prime \prime}+\alpha w+\alpha_{3} v_{3}+\alpha_{4} v_{4}, \\
w^{2}=-e, \quad\left\{w, v_{j}\right\}=0, \quad v_{j}^{2}=0, \quad\left\{v_{3}, v_{4}\right\}=e \quad(j=3,4) \\
v_{1}^{*}=v_{2}, \quad v_{2}^{*}=v_{1}, \quad e_{i}^{\prime \prime *}=e_{i}^{\prime \prime}, \quad v_{12}^{*}=-v_{12}\left(\text { for } \quad v=w, v_{3}, v_{4}\right) .
\end{gathered}
$$

The original basis $\left\{v_{1}, v_{2}, v_{4}, v_{4}, e, f, m_{1}, m_{2}, m_{3}, m_{4}\right\}$ for $K_{10}(\bar{\Phi})$ is not adapted to these new idempotents. Over an algebraically closed field of characteristic $\neq 2$ (where we are seeking the "true" split superalgebra; all we need are $i=\sqrt{-1}$ and $\sqrt{2}$) we obtain another split \mathbb{Z}-basis for $K_{10}(\bar{\Phi})($ cf. (5.2)):

$$
\begin{align*}
e_{1}^{\prime \prime} & :=\frac{1}{2}\left(e+v_{1}+v_{2}\right)=\frac{1}{2}(e+\ell), & e_{3}^{\prime \prime} & :=f, \\
e_{2}^{\prime \prime} & :=\frac{1}{2}\left(e-v_{1}-v_{2}\right)=\frac{1}{2}(e-\ell), & m_{13}^{\prime \prime} & :=\frac{1}{\sqrt{2}}\left(m_{1}+m_{3}\right), \\
c_{12}^{\prime \prime} & :=i v_{3}, & n_{13}^{\prime \prime} & :=\frac{1}{\sqrt{2}}\left(m_{2}+m_{4}\right), \tag{8.5}\\
d_{12}^{\prime \prime} & :=-i v_{4}, & m_{23}^{\prime \prime} & :=\frac{i}{\sqrt{2}}\left(m_{1}-m_{3}\right), \\
q_{12}^{\prime \prime} & :=i\left(v_{1}-v_{2}\right)=i w, & n_{23}^{\prime \prime} & :=\frac{-i}{\sqrt{2}}\left(m_{2}-m_{4}\right) .
\end{align*}
$$

One can check that the multiplication table for the basis (8.4) is the analogue of (5.4), (5.7) directly from Tables (1.3), (1.9), (1.12); more conceptually, this holds because there is an inner automorphism of \bar{J} with $\psi\left(x^{\prime}\right)=x^{\prime \prime}$ for each element of the split basis.

Theorem 8.6 If $i=\sqrt{-1}, \sqrt{2} \in \Phi$ we can define $\lambda_{1}, \lambda_{2} \in \Phi$ related to $\lambda:=\frac{1-i}{2}$ of (8.1.2) by

$$
\begin{gather*}
\lambda_{1}:=\frac{1-i}{\sqrt{2}}=\lambda \sqrt{2}, \quad \lambda_{2}:=\frac{1+i}{\sqrt{2}}=i \lambda \sqrt{2}, \quad \text { which will then satisfy } \\
\lambda_{1} \lambda_{2}=1, \quad \lambda_{1}^{2}=-i, \quad \lambda_{2}^{2}=i, \quad \lambda \lambda_{1}=-\frac{i}{\sqrt{2}}, \quad \lambda \lambda_{2}=\frac{1}{\sqrt{2}} . \tag{8.6.1}
\end{gather*}
$$

If we set $v:=\lambda_{1} v_{1}+\lambda_{2} v_{2}+f$, then the map $\varphi^{\prime \prime}:=U_{s} U_{v+f}$ is an inner automorphism of $K_{10}(\Phi)$ sending the split basis (8.1.3) to the split basis (8.5).

Proof: The formulas (8.6.1) follow by standard calculations with i. Already $*^{\prime}:=U_{v+f}$ for $v:=\lambda_{1} v_{1}+\lambda_{2} v_{2}$ is an involutory inner automorphism since $v^{2}=\lambda_{1} \lambda_{2}\left\{v_{1}, v_{2}\right\}=e$ implies $(v+f)^{2}=e+f=1$. Composition with the involution $*=U_{s}$ then yields an inner automorphism of superalgebras ψ. To see that ψ does transform x^{\prime} to $x^{\prime \prime}$, note that $*^{\prime}=U_{v}+U_{v, f}+U_{f}$ for $U_{v}=\lambda_{1}^{2} U_{v_{1}}+\lambda_{2}^{2} U_{v_{2}}+\lambda_{1} \lambda_{2} U_{v_{1}, v_{2}}=-i U_{v_{1}}+i U_{v_{2}}+U_{v_{1}, v_{2}}$, so that on $B \psi$ sends

$$
\begin{aligned}
& e \xrightarrow{*^{\prime}}-0+0+\left\{v_{1}, v_{2}\right\}=e \xrightarrow{*} e, \\
& v_{1} \xrightarrow{*^{\prime}}-0+i v_{2}+0=i v_{2} \xrightarrow{*} i v_{1}, \\
& v_{2} \xrightarrow{*^{\prime}}-i v_{1}+0+0=-i v_{1} \xrightarrow{*}-i v_{2}, \\
& v_{3} \xrightarrow[*^{\prime}]{\longrightarrow}-0+0-v_{3}=-v_{3} \xrightarrow{*} v_{3}, \\
& v_{4} \xrightarrow{*^{\prime}}-0+0-v_{4}=-v_{4} \xrightarrow{*} v_{4}, \\
& k=v_{1}-v_{2} \longrightarrow i v_{1}-\left(-i v_{2}\right)=i\left(v_{1}+v_{2}\right)=i \ell, \\
& u=v_{1}+v_{2} \longrightarrow i v_{1}+\left(-i v_{2}\right)=i\left(v_{1}-v_{2}\right)=i w,
\end{aligned}
$$

(note that with respect to $e_{1}^{\prime}, e_{2}^{\prime}$ the element $k=v_{1}-v_{2}$ is "diagonal" and $u=v_{1}+v_{2}$ is "off-diagonal", while with respect to $e_{1}^{\prime \prime}, e_{2}^{\prime \prime}$ the element $w=v_{1}-v_{2}$ is "off-diagonal" and $\ell=v_{1}+v_{2}$ is "diagonal," hence their new names), and hence ψ sends $e_{1}^{\prime}=\frac{1}{2}(e-i k) \xrightarrow{\psi} \frac{1}{2}(e+\ell)=e_{1}^{\prime \prime}, e_{2}^{\prime}=\frac{1}{2}(e+i k) \xrightarrow{\psi}$ $\frac{1}{2}(e-\ell)=e_{2}^{\prime \prime}, c_{12}^{\prime}=i v_{3} \xrightarrow{\psi} i v_{3}=c_{12}^{\prime \prime}, d_{12}^{\prime}=-i v_{4} \xrightarrow{\psi}-i v_{4}=d_{12}^{\prime \prime}, q_{12}^{\prime}=u \xrightarrow{\psi} i w=q_{12}^{\prime \prime}$ as claimed. On Φf we have $*^{\prime}=*=\Psi=U_{f}$ sending

$$
f \xrightarrow{*^{\prime}} f \xrightarrow{*} f
$$

as claimed. Finally, on M the involution $*^{\prime}$ becomes $U_{v, f}=V_{v}=\lambda_{1} V_{v_{1}}+\lambda_{2} V_{v_{2}}$, so ψ sends

$$
\begin{aligned}
& m_{1} \xrightarrow{*^{\prime}} 0+\lambda_{2} m_{3} \xrightarrow{*} \lambda_{2} m_{1}, \\
& m_{2} \xrightarrow{*^{\prime}} \lambda_{1} m_{4}+0 \xrightarrow{*} \lambda_{1} m_{2}, \\
& m_{3} \xrightarrow{*^{\prime}} \lambda_{1} m_{1}+0 \xrightarrow{*} \lambda_{1} m_{3}, \\
& m_{4} \xrightarrow{*^{\prime}} 0+\lambda_{2} m_{2} \xrightarrow{*} \lambda_{2} m_{4},
\end{aligned}
$$

and hence sends $m_{13}^{\prime}=\lambda\left(m_{1}+i m_{3}\right) \longrightarrow \lambda \lambda_{2} m_{1}+i \lambda \lambda_{1} m_{3}=\frac{1}{\sqrt{2}}\left(m_{1}+m_{3}\right)=m_{13}^{\prime \prime}, n_{13}^{\prime}=\lambda\left(m_{4}+\right.$ $\left.i m_{2}\right) \longrightarrow \lambda \lambda_{2} m_{4}+i \lambda \lambda_{1} m_{2}=\frac{1}{\sqrt{2}}\left(m_{4}+m_{2}\right)=n_{13}^{\prime \prime}, m_{23}^{\prime}=\lambda\left(m_{3}+i m_{1}\right) \longrightarrow \lambda \lambda_{1} m_{3}+i \lambda \lambda_{2} m_{1}=$ $\frac{i}{\sqrt{2}}\left(m_{1}-m_{3}\right)=m_{23}^{\prime \prime}, n_{23}^{\prime}=\lambda\left(m_{2}+i m_{4}\right) \longrightarrow \lambda \lambda_{1} m_{2}+i \lambda \lambda_{2} m_{4}=\frac{-i}{\sqrt{2}}\left(m_{2}-m_{4}\right)=n_{23}^{\prime \prime}$ as claimed.

The quaternion action (5.7) of $s K_{10}(\Phi)$ on M can be duplicated in $K_{10}(\Phi)$ using the above basis. The element $\ell=\frac{1}{\sqrt{2}}\left[\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right]$ has $\ell^{2}=1$ and determines an involutive isomorphism ψ of $H=M_{2}(\Phi)$ with $\psi\left(e_{i j}\right)=: f_{i j}$ another family of supplementary matrix units for H, with $f_{11}=$
$\frac{1}{2}\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right], \quad f_{22}=\frac{1}{2}\left[\begin{array}{cc}1 & -1 \\ -1 & 1\end{array}\right], \quad f_{12}=\frac{1}{2}\left[\begin{array}{cc}1 & -1 \\ 1 & -1\end{array}\right], \quad f_{21}=\frac{1}{2}\left[\begin{array}{cc}1 & 1 \\ -1 & -1\end{array}\right]$ so that $e_{12}-e_{21}=\frac{1}{2}\left[\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right]=$ $f_{21}-f_{12}, \quad e_{11}-e_{22}=\frac{1}{2}\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]=f_{12}+f_{21}, \quad e_{11}+e_{21}=\frac{1}{2}\left[\begin{array}{cc}1 & 0 \\ 1 & 0\end{array}\right]=f_{11}+f_{12}, \quad e_{11}-e_{21}=\frac{1}{2}\left[\begin{array}{cc}1 & 0 \\ -1 & 0\end{array}\right]=$ $f_{22}+f_{21}, \quad 2 e_{11}=f_{11}+f_{12}+f_{21}+f_{22}, \quad e_{22}+e_{12}=\frac{1}{2}\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]=f_{11}-f_{12}, \quad e_{22}-e_{12}=\frac{1}{2}\left[\begin{array}{cc}0 & -1 \\ 0 & 1\end{array}\right]=$ $f_{22}-f_{21}, \quad 2 e_{22}=f_{11}-f_{12}-f_{21}+f_{22}, \quad e_{12}+e_{21}=\frac{1}{2}\left[\begin{array}{c}0 \\ 0 \\ 1 \\ 0\end{array}\right]=f_{11}-f_{22}, \quad 2 e_{12}=f_{11}-f_{12}+f_{21}-f_{22}$, $2 e_{21}=f_{11}+f_{12}-f_{21}-f_{22}$. In these terms the regular quaternion action (2.1) of $A^{\prime \prime}$ on M is $V_{e_{1}^{\prime \prime}}=$ $\frac{1}{2}\left(\mathbf{1}+V_{1}+V_{2}\right)=\frac{1}{2} L_{\left(e_{11}+e_{22}\right)+e_{12}+e_{21}}=\frac{1}{2} L_{\left(e_{11}+e_{21}\right)+\left(e_{22}+e_{12}\right)}=\frac{1}{2} L_{\left(f_{11}+f_{12}\right)+\left(f_{11}-f_{12}\right)}=L_{f_{11}}, \quad V_{e_{2}^{\prime \prime}}=$ $\frac{1}{2}\left(\mathbf{1}-V_{1}-V_{2}\right)=\frac{1}{2} L_{\left(e_{11}+e_{22}\right)-e_{12}-e_{21}}=\frac{1}{2} L_{\left(e_{11}-e_{21}\right)+\left(e_{22}-e_{12}\right)}=\frac{1}{2} L_{\left(f_{22}+f_{21}\right)+\left(f_{22}-f_{21}\right)}=L_{f_{22}}$, with more complicated actions $V_{c_{12}^{\prime \prime}}=i V_{3}=i L_{e_{11}-e_{22}} R_{e_{21}}=\frac{1}{2} i L_{f_{12}+f_{21}} R_{f_{11}+f_{12}-f_{21}-f_{22}}, V_{d_{12}^{\prime \prime}}=-i V_{4}=$ $-i L_{e_{11}-e_{22}} R_{e_{12}}=-\frac{1}{2} i L_{f_{12}+f_{21}} R_{f_{11}-f_{12}+f_{21}-f_{22}}, \quad V_{q_{12}^{\prime \prime}}=i\left(V_{1}-V_{2}\right)=i\left(L_{e_{12}-e_{21}}\right)=-i L_{f_{12}-f_{21}}$, $V_{e^{\prime \prime}}=V_{e_{3}^{\prime \prime}}=\mathbf{1}_{M}$.

Under the isomorphism $M \longrightarrow H$ via $m_{1}, m_{2}, m_{3}, m_{4} \xrightarrow{\varphi} e_{11}, e_{22}, e_{21}, e_{12}$ the new basis for M is (up to the scalar $\left.\frac{1}{\sqrt{2}}\right) m_{1}+m_{3}, m_{2}+m_{4}, i\left(m_{1}-m_{3}\right),-i\left(m_{2}-m_{4}\right) \xrightarrow{\varphi} f_{11}+f_{12}, f_{11}-f_{12}, i\left(f_{21}+\right.$ $\left.f_{22}\right),-i\left(f_{22}-f_{21}\right)=i\left(f_{21}-f_{22}\right)$, and after a routine calculation the action of Table (2.1) takes the split form

(8.7)						Quaternion Action $A^{\prime \prime} \times H$
Action of V on: $f_{11}+f_{12}$ $f_{11}-f_{12}$ $i\left(f_{21}+f_{22}\right)$ $i\left(f_{21}-f_{22}\right)$ $V_{e_{12}^{\prime \prime}}=L_{f_{11}}$ $f_{11}+f_{12}$ $f_{11}-f_{12}$ 0 0 $V_{e_{2}^{\prime \prime}}=L_{f_{22}}$ 0 $0\left(f_{21}+f_{22}\right)$ $i\left(f_{21}-f_{22}\right)$ $V_{q_{12}^{\prime \prime}}=i L_{f_{21}-f_{12}}$ $i\left(f_{21}+f_{22}\right)$ $i\left(f_{21}-f_{22}\right)$ $f_{11}+f_{12}$ $f_{11}-f_{12}$ $V_{c_{12}^{\prime \prime}}=i L_{f_{12}+f_{21}} e_{e_{21}}$ 0 $i\left(f_{21}+f_{22}\right)$ 0 $-\left(f_{11}+f_{12}\right)$ $V_{d_{12}^{\prime \prime}}=-i L_{f_{12}+f_{21}} R_{e_{12}}$ $-i\left(f_{21}-f_{22}\right)$ 0 $f_{11}-f_{12}$ 0 $V_{e^{\prime \prime}}=V_{e_{3}^{\prime \prime}}=I$ $f_{11}+f_{12}$ $f_{11}-f_{12}$ $i\left(f_{21}+f_{22}\right)$ $i\left(f_{21}-f_{22}\right)$						

References

[1] G. Benkart, A. Elduque, A new construction of the Kac Jordan superalgebra, Proc. AMer. Math. Soc. 130 (11), 3209-3217, 2002.
[2] D. King, The split Kac superalgebra K_{10}, Comm. Algebra 22(1) (1994), 29-40.
[3] D. King, Quadratic Jordan superalgebras, Comm. in Algebra 29(1) (2001), 375-401.
[4] O. Loos, Generically algebraic......, to appear.
[5] K. McCrimmon, A Taste of Jordan Algebras, Universitext, Springer Verlag, Berlin, 2004.
[6] K. McCrimmon, The Grassmann envelope of the Kac Superalgebra K_{10}, to appear.
[7] M. Racine, E. Zel'manov, Simple Jordan superalgebras with semisimple even part, J. Alg. 270 (2003), 374-444.
[8] M. Smith, Derivations of simple superalgebras, dissertation, University of Virginia, 2006.

[^0]: ${ }^{1}$ Research partially supported by the Spanish Ministerio de Educació y Ciencia MTM2004-06580-C02-01 and Fondos FEDER.
 ${ }^{2}$ Note that this flouts the tradition that $U_{x, y}$ is symmetric in x, y as the linearization of a quadratic operator U_{x}.

[^1]: ${ }^{3}$ Another way to derive the table is to notice that $V_{u, v}=V_{u} V_{v}$ where relative to the ordered basis $m_{1}, m_{2}, m_{3}, m_{4}$ for M the matrices are $V_{v_{1}} \cong E_{42}+E_{13}, V_{v_{2}} \cong E_{31}+E_{24}, V_{v_{3}} \cong-E_{32}+E_{14}, V_{v_{4}} \cong E_{41}-E_{23}$.

[^2]: ${ }^{4}$ Since we are interested in finding a form of the Kac algebra over an algebraically closed field of characteristic $\neq 2$ which will serve as a model for characteristic 2 and all rings of scalars, we have no compunctions about using $\frac{1}{\sqrt{2}}$ here to get rid of a common factor 2 .

[^3]: ${ }^{5}$ The lecture also revealed intriguing connections with the Jordan superalgebras $D_{4}(1,-3)$ and K_{3}, and revealed that K_{10} could be generated by a single nonhomogeneous (or two homogeneous) elements, yet was i-exceptional, destroying all hopes for a Shirshov-Cohn theorem for superalgebras.

[^4]: ${ }^{6}$ This can also be calculated from the matrices of $A \stackrel{V_{x}^{\prime}}{\leftrightarrows} M \stackrel{V_{x}^{\prime \prime}}{\stackrel{~}{\leftrightarrows}} A$ of V_{x} relative to the ordered bases $\left\{v_{1}, v_{2}, v_{3}, v_{4}, e, f\right\}$ for A and $\left\{m_{1}, m_{2}, m_{3}, m_{4}\right\}$ for M, since $V_{m_{1}}^{\prime} \cong E_{52}-3 E_{62}-2 E_{33}+2 E_{14}, V_{m_{2}}^{\prime} \cong-E_{51}+3 E_{61}-$ $2 E_{23}-2 E_{44}, V_{m_{3}}^{\prime} \cong E_{54}-3 E_{61}+2 E_{31}+2 E_{22}, V_{m_{4}}^{\prime} \cong-E_{53}+3 E_{63}-2 E_{11}+2 E_{42}, V_{m_{1}}^{\prime \prime} \cong E_{32}+E_{44}+E_{15}-E_{16}, V_{m_{2}}^{\prime \prime} \cong$ $E_{41}-E_{33}+E_{25}+E_{26}, V_{m_{2}}^{\prime \prime} \cong E_{11}-E_{24}+E_{35}+E_{36}, V_{m_{4}}^{\prime \prime} \cong E_{22}+E_{13}+E_{45}+E_{46}$.

[^5]: ${ }^{7}$ Again we use a Grassmann detour to make sure isotopy works for quadratic superalgebras; the quadratic Jordan algebra $\Gamma(J)^{(1 \otimes s)}$ has operations $\widetilde{U}_{\beta \otimes a}=\widetilde{U}_{\beta \otimes a} U_{1 \otimes s}=\beta^{2} \otimes U_{a} x, \quad(\beta \otimes a)^{2}=\widetilde{U}_{\beta \otimes a} \tilde{1}=\beta^{2} \otimes$ $U_{a} s, \quad\left\{\delta_{i} \otimes x_{i}, \delta_{j} \otimes y_{j}\right\}=\left\{\delta_{i} \otimes x_{i}, 1 \otimes s, \delta_{j} \otimes y_{j}\right\}=\delta_{i} \delta_{j}\left\langle x_{i}, s, y_{j}\right\rangle$ and analogously $\left\{\delta_{i} \otimes x_{i}, \delta_{j} \otimes y_{j}, \delta_{k} \otimes z_{k}\right\}=$ $\left\{\delta_{i} \otimes x_{i}, \widetilde{U}_{1 \otimes s}\left(\delta_{j} \otimes y_{j}\right), \delta_{k} \otimes z_{k}\right\}=\delta_{i} \delta_{j} \delta_{k}\left\langle x_{i}, U_{s} y_{j}, z_{k}\right\rangle$.

[^6]: ${ }^{8}$ The computation uses the formulas $\left\langle x_{i 3}, e_{i}, y_{i 3}\right\rangle=-3 \sigma\left(x_{i 3}, y_{i 3}\right) e_{3},\left\langle x_{i 3}, e_{3}, y_{i 3}\right\rangle=2 \sigma\left(x_{i 3}, y_{i 3}\right) e_{i},\left\langle x_{i 3}, e_{j}, y_{i 3}\right\rangle=$ $\left\langle x_{i 3}, A_{12}, y_{i 3}\right\rangle=0,\left\langle x_{i 3}, e_{i}, y_{j 3}\right\rangle=\left\langle x_{i 3}, e_{j}, y_{j 3}\right\rangle=0,\left\langle x_{i 3}, e_{3}, y_{j 3}\right\rangle=\left\langle x_{i 3}, y_{j 3}\right\rangle,\left\langle x_{i 3}, a_{12}, y_{j 3}\right\rangle=$ $-3 \sigma\left(\left\langle x_{i 3}, a_{12}\right\rangle, y_{j 3}\right) e_{3}=-3 \sigma\left(x_{i 3},\left\langle a_{12}, y_{j 3}\right\rangle\right) e_{3}$ resulting from Peirce Orthogonality and Triple Reduction.

[^7]: ${ }^{9}$ Inner maps which kill 1 are derivations of the superalgebra because their extensions to the Grassmann envelope remain inner maps which kill 1, hence are derivations of the quadratic Jordan algebra. The superskew condition $W_{i}^{*}=-(-1)^{i} W_{i}$ alone is not enough: together with $W_{i}+(-1)^{i} W_{i}^{*}=V_{W_{i}(1)}$ it implies $V_{W(1)}=0,2 W(1)=0$, but in general does not imply $W(1)=0$.

[^8]: ${ }^{10}$ Note the symmetry between D_{1}^{\prime} and D_{2}^{\prime}, but the asymmetry between $D_{1}=V_{c_{12}, q_{12}}$ and $D_{2}=V_{q_{12}, d_{12}}=$ $-V_{d_{12}, q_{12}}$.

[^9]: ${ }^{11}$ When Φ has characteristic 2 then $1 \in \Phi_{2^{\perp}}$, and S_{1} is the surprising Smith derivation $0_{A} \oplus \mathbf{1}_{M}$.
 ${ }^{12}$ Note that if $\frac{1}{2} \in \Phi$ this latter term is unnecesaary since $\mathbf{1}_{s K_{10}}=\frac{1}{2} V_{1,1}$.

[^10]: ${ }^{13}$ Then $s l_{2}(\Phi)$ is nilpotent, and $\operatorname{Inder}\left(s K_{10}\right)_{0}$ is solvable but not nilpotent: $\mathcal{I}_{0}^{(1)}=\left[\mathcal{D}, \mathcal{I}_{0}\right]=\Phi D_{1}+\Phi D_{2}+\Phi D_{3}+$ $\Phi D_{3}^{\prime}, \mathcal{I}_{0}^{(2)}=\Phi D_{3}, \mathcal{I}_{0}^{(3)}=0$, but $\left[D_{0}(1), \Phi D_{1}+\Phi D_{2}+\Phi D_{3}^{\prime}\right]=\Phi D_{1}+\Phi D_{2}+\Phi D_{3}^{\prime}$.

