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Abstract

We present an isotope of the usual version of the Kac 10-dimensional Jordan superalgebra
K over a general ring of scalars ® (isomorphic to the original version when i, % € @, but not
in characteristic 2), which we take as the “correct” split model for the simple superalgebra in all
characteristics. This J = A@® M has unit the sum of three reduced orthogonal idempotents. We
exhibit a “quaternionic” model J C (H @ HHBH ®f)® H of the bimodule structure for this model
and the original one, as well as an “exterior” model J 2 A%?(M) @ M for both the bimodule
structure and the odd product. We give a reference table for all quadratic and triple products,
and use this to explicitly describe all inner super-derivations. In a subsequent article we will
use this table to investigate the structure of the Grassmann envelope.’

Our version sKj9 = K7 of the Kac 10-dimensional quadratic Jordan superalgebra K;o(®) over a
general ring of scalars ® will be split even further than that of Dan King [2]. The Kac superalgebra
consists of an even Jordan algebra A = Jord(Q,e) B ®f which is the direct sum of a 5-dimensional
algebra Jord(Q, e) of a nondegenerate quadratic form and a 1-dimensional ideal @ f, together with
a 4-dimensional odd bimodule M having odd products into A. The algebra was called “split” in [2]
because the quadratic form has maximal Witt index: in the linear case Jord(Q,e) = ®e ® V where
the form is thought of as residing on V' and is there a direct sum of two hyperbolic planes; in the
quadratic case the form resides on the entire 5-dimensional space including the basepoint e, and
there it is a direct sum of two hyperbolic planes and a 1-dimensional “split” line Q(e) = 1. However,
in characteristic 2 this @ is traceless (hence in the terminology of Loos [4] totally ramified), with the
property that 2 = —Q(x)e for all x, so there are no proper idempotents. In the structure theory
for quadratic Jordan algebras this is considered an aberrant case: the “standard” degree-2 algebra
has unit a sum of two reduced orthogonal idempotents, A = ®e; § Pes & V', and the traceless form
arises as a (non-isomorphic) isotope of this standard form. In Jordan theory there is a hierarchy:
“reduced” means “has enough idempotents”, while “split” means reduced and the coordinate algebra
splits. Thus we will refer to our version J = ®e; @ Peg @ Of & V & M as (intrinsically) split, and
demote the version [2] to (merely) standard (it is extrinsically split if 1 € ®).

Throughout, we consider unital Jordan superalgebras, Zs-graded algebras J = Jo® J; = AP M
over an arbitrary ring of scalars ® (possibly of characteristic 2) with graded bilinear and trilinear
products (z,y) = Vi (y), (z,y,2) = V,,(2) and even products U,z, a® quadratic in a and linear in ,
such that (a,y,b) = Uy py = (Ugt+s — Uy — Up)y is the linearization of the U-operator, and similarly
(a,b) = (a,1,b) = (a+b)? — a® — b? is the linearization of the square. We define Uy, ,n := (m,n, p),
even though there is no odd U-operator U, which gives rise to this.? In the absence of a scalar 1,
the bilinear products are not sufficient to determine the quadratic products, so we will devote much
effort to describing the quadratic products both in the usual and the split version of K7g.

1Research partially supported by the Spanish Ministerio de Educacié y Ciencia MTM2004-06580-C02-01 and
Fondos FEDER.
2Note that this flouts the tradition that Uy,y is symmetric in x,y as the linearization of a quadratic operator Us.



To avoid subscripts (of which we will have more than enough already), we follow the Racine-
Zelmanov convention [7] and distinguish even from odd by using letters a, b, ¢, d, e, f, g (but u,v for
the vector part of Jord(Q@,e) in Kig) to denote even elements of Jy = A, and letters m,n,p to
denote odd elements of J; = M; general homogeneous elements of J of will be denoted by x,y, z
(of degree deg(x) etc.). We denote Jordan bilinear and trilinear products by braces {a,..}, Lie
products by brackets [z, ..], and androgynous superproducts by (z,..). By abuse of notation we will
write (—1)% for (—1)9¢9() (—=1)*¥ for (—1)%9(#)deg() [_1 if both z,y are odd, 41 otherwise], and
(—1)*¥* for (—1)deg(®)deg(y)+deg(y)deg(2)+deg(z)deg() [«“majority rule’: —1 if the majority are odd, 41
if the majority are even].

The super-Jordan axioms are that the Grassmann envelope I'(J) becomes a unital quadratic
Jordan algebra under “natural” quadratic product. The (as yet not fully listed) quadratic super-
identities F(ay,...,a,,my,...,ms) = 0 (homogeneous of degree 1 in each m;) are determined by
Grassmann detour from quadratic Jordan identities F(1® ay,...,1 @ ar,71 @ m1,...,7s @m;) =0
in the Grassmann envelope for independent Grassmann variables v; € I';. For later reference we
recall certain of these basic identities for Jordan superalgebra J: M is a Jordan bimodule for the
quadratic Jordan algebra A and for m,n,p € M,a,b € A, homogeneous z,y,z € J

(0.1.1) Switching Rule (x,y,2)+(—1)"¥(y,x, z) = ((x,y), 2),
SuperSymmetry (z,5) = (—1){y,a), (0,9, 2) = (~1)¥(z,y,2),
(0.1.2) Even Symmetry (a,m) = (m,a), (a,m,b) = (b,m,a), (a,b,m) = (m,b,a),
Odd Alternation (m,m) = (m,n,m) =0, (m,n) = —(n,m), (m,z,n) = —(n,z,m).

If1= Z?:l e; is a supplementary sum of orthogonal idempotents, the Peirce decomposition of J
is J = ®i§j Jij with Peirce projections E;; = U,,, Ey; = Ue,;,ej on J;; = Jj;. In the case of a single
idempotent e, we denote these by J;, E; (Eg = Ue, By = U, 1—¢, Fg = Uj_. (in our unital case 1 —e
exists in J, but in general it exists in the unital hull). They satisfy the standard rules

(0.2.1)  Peirce Orthogonality (J;j;, Jxe) = (Jij, Jre, Jmn) = 0 unless indices can be linked,
(0.2.2)  JZ C Ju, (Jij, Jig) © JT5 C Jutdyg, (Jigy Jjn) © T (k#1),  (Jigs Jjr Jre) S Jie,
(0.2.3)  Ua,;Jis € Jjj Uay,Ji © Jigy UayJee =0 ((K0) # (i,4), (24), (437)),

(0.2.4)  Triple Reduction Formulas  (a,a,m) = (a?,m), (m,m,z) = (m, (m,x)),

If XTi,Yi € Jl(e) (222,0, ]:3—2), Z1,W1 € Jl(e) then <zl,w1,xi> = Eii<21, <’w1, (E1>>,

<.’II7;7 Yiy Zl> = <.’Ei, <yl> Z1>>; <Z1a Yiy ’LU1> = E]J<Zl7 <?Ji7 ’U)1>> = EJJ<<ZI7 y2>7 ’U}1>.
These formulas show that in Jordan superalgebras many of the trilinear products are determined
by bilinear products together with the Peirce decomposition; in the split case we will see that all
trilinear products are so determined.

1 Bases for the Kac superalgebra

The standard version of the quadratic Kac superalgebra K1o(®) = A@M = (BH®f)® M is a free ®-
module of dimension 10 over ® with 6-dimensional even space A the direct sum of B = Jord(Q,e)
(the 5-dimensional Jordan algebra of a quadratic form @ on ®e @& V with basepoint ¢) and a 1-
dimensional ®f, and with 4-dimensional odd space M, which is a Jordan A-bimodule M with
bilinear and trilinear products (-,-) : M x M — A, {-,-,-) : M x M x M — A. The King basis
[2, p.31][3, p.391-2], which was adapted from Kac’s corrected characteristic zero model to work for
arbitrary scalars, consists of 10 elements xq, Yo, Zo, Jo, €, f, 1, Y1, T1,y1 which we shall relabel as
vy, Vg, U3, U4, €, f, m1, ma, mg, my (King used subscripts to denote parity Jy, J;, whereas we will use
A, M for that purpose, leaving subscripts free to label items in a list). Here e, f are orthogonal
idempotents, e the unit of Jord(Q, e), the quadratic form is

(1.1) Q(b) = B> — B1B2 — B3Py, T(b) =28 for b= Pe+ Bivr + Bovz + B3v3 + Bava,

so the commutative circle products on V are {v1,v2} = {vs,v4} = e: the multiplication in the
direct sum A = BH ®f is given by that in the separate sumands, where for b = (e + v in any



B = Jord(Q,e) = ®e ® V we have quadratic products
U = Q.F)-QUF, b =THb—Qb)e (T(H) =26, Q) = F+Q(v), b = T(b)e—b).

For our particular V' with Q(v;) =0, Q(v;,v;) = =04, T; = —v; we get [introducing the convention
that 1’ =2, 2" =1, 3’ =4, 4 = 3 for switching among the “paired” indices 1,2 and 3, 4]

Ub=0b, {eebt={ebe}=2b U,e=v?=0, U,vj=>0dvi, {vi,vi,B}=0,
(1.2) {vi,vj, 06} = i + djpvs — Opirvj,  {vi,vj, e} ={vi,e,v;} = {v;,v;} = djie,
{vi,vir,vi} = 20, {vi, v, v} = v, v, vy, vy =~y (5 #4,7).

The Peirce decomposition (0.2) of J relative to e (equivalently, 1 = e+ f) is J = Ay @ Ay @ M;
for Ao =Pe+V =B, Ay =&f, M; = M. Thus King’s action of A on M is given by

(1.3) Bimodule Product (A, M)

() |z T | () [[ma ma m3 My
Zo 0 Z]l X1 0 (% 0 may mq 0
Yo || T1 0 0 y1| w2 | m3 0 0 M2
.’fo 0 —ffl 0 X V3 0 —ms 0 mq
gol|lvm O -y O vy || My 0 —mg 0

ef T w T g ef|[m1 ma m3 My

Bimodule Structure

From the Peirce rules (0.2) for the bilinear actions of B = Ay and ®f = Ay on M = M; we
immediately get rules for the trilinear actions on M:

(e,m) = <f7m> = <e,m,f> = (e,e,m) = <f>fam> =m, <evb’m> = (b,e,m> = <bamaf> = <b,m>,
(1.4) UM =UgM =UppM =U;M =(f,B,M) = (B, f, M) = (v;,v;, M) =0,
(b,0',m) = (b, (b/,m)), (f,m,b) = (b,e,m) = {e,b,m) = (b,m).

These rules allow us to give us a complete description of J = A @ M as bimodule, equivalently, as
a split null extension (before we introduce a nontrivial product on the odd space). We have general
trilinear actions Vo, v, = Vo, Vo, Viros =0, Vi + Vaoo = Ity Vo, = =V, (5 # 4,7'), and

V'U . .
particular actions: V,, kills ma, mg and sends mq, ms — mg, ma —> mq, my for V,,, ,,; similarly V3
. L. Vo \Z
kills m1, mg and sends ma, my —> —mg, my, which is sent — —my, 0 for V,,, .., and sent —> 0, —mg
. . . . . Ve
for Vi, 44 likewise Vy kills mo, my and sends mq, ms — ma, —mg, which is sent —% 0, —my for

Vu Vu .
Vioy vas sent —2 ma, 0 for Vs va, and sent — my, ms for Vs va- We can summarize these together
with (1.2), (1.4) in the table?

3 Another way to derive the table is to notice that Vu,o = ViV where relative to the ordered basis m1, ma, m3, ma
for M the matrices are Vy,, = Ego + E13, Vi, = E31 + Eo4, Vg = —E32 + E14, Vi, & Eq1 — Eo3 .



(1.5.1) V-Operators V4, Va4
Va, Valz) = {a,z) v Vo V3 U4 e fllm  me ms My
Vior = Vore = Veouu 0 e 0 0 2v;y O 0 my m 0
Vi, = Vige = Ve v, e 0 0 0 2y 0 ms 0 0 mo
Vs = Vig.e = Ve ,vg 0 0 0 e 23 0 0 —ms 0 mi
Vs = Vose = Ve v, 0 0 e 0 200 0 My 0 —Mo 0
Ve ="Vepe 2u1 29 2v3 2v4 2e 0 mi mo ms my
Vf = Vf,f 0 0 0 0 0 2f mq mo ms my
| A 2v1 0 V3 Uy e 0 mi 0 0 my
Viog 1 0 2v9 V3 Uy e 0 0 mo ms 0
Vs, va U1 Vo 2v3 0 e 0 my 0 ms 0
Vv4,U3 U1 V2 0 21}4 e 0 0 mao 0 my
‘/;)1,1)3 = _Vv37v1 0 —V3 0 (%1 0 0 0 —my 0 0
Vs ws = = Vs v, —v3 0 0 Vg 0 0 0 0 0 ms
Virws = Vs 0 —v4 v 0 0 0 0 0 -my 0
Vv2,v4 = *Vv4,v2 —V4 0 V2 0 0 0 meo 0 0 0
Viiw, =ViB=Vpy=0 Vi = VWV on M
(1.5.2) U-Operators Ug, Ua 4

Uy, 0 U1 0 0 0 0

Uy, Vg 0 0 0 0 0

Uy, 0 0 0 vy 0 O

Uy, 0 0 V4 0 0 O

U, U1 Vg V3 Uy e O

Uy 0 0 0 0 0 f

Up, o = Uyy oy 0 0 —v3 —vg4 e 0

le,vg - Uv3,v1 0 V3 0 V1 0 0

Uy, s = Upy 0y 0 V4 vy 0 0 0

vaZ’v3 = Uv3,v2 V3 0 0 V2 0 0

Uvz,v4 = Uv4,v2 Vg 0 V2 0 0 0

U1)37U4 = Um,vg, —U1 —V2 0 0 e 0

a®>=1U,1 0 0 0 0 e f

Upp =20y, Uep = Vi, Usp =0 0n A,

Uip =V, U =Uep =Up =Uppy =0 0on M

Odd Products

King defines [3, p.392] the alternating odd bilinear product on M by a basis-free recipe involving
an alternating bilinear form ¢ on M and an alternating product x from M x M — V by

(1.6)

(m,n) :=o(m,n)g+2m*n

(g :=e—3f),

4
m*n:=y ., o((vi, m),n)v;

/

[where o(my, ma) = o(ms,my) = 1 and v’ denotes the anti-isometric involution o(v', w’) = o(w,v)
on V determined by v, = vy for 1’ = 2,3’ = 4 as in (1.2)] as described by the table

(1.7)  Products * and 0 on M
* mi mo ms my g mq mao ms my
mq 0 0 —v3 (%1 my 0 1 0 0
mo 0 0 —V2 —U4 mao -1 0 0 0
ms (%] Vg 0 0 ms 0 0 0 1
my —U1 V4 0 0 my 0 0 -1 0




Note for future reference that from (1.7), (1.3) and some calculation we see

forj # 1,7 we have (V,(®m; + ®m;)) € ®m; + Pmj/,
o((v,m;),m;) =0,  m;*m; =m; *my = ((m; xm;), m;) =0,
o(mi,my) = (=1)", ((m;*m;),mi) = (—=1)" my,
o(mi,my) =0, ((mi *my),my) + ((mir xm;),m;) = 0.

(1.8)

We can summarize the odd product by the table

(1.9) Odd Product (M, M)

<'>'> T hn T hn <7> my m2 ms My
Ty 0 qg 72@0 2m0 mq 0 g 721)3 2’01
Y1 -9 0 —2yo —2yo | ma —g 0 —2vy 24
T 220 2y0 0 g ms 2v3 209 0 g
Y1 —2mo 2% —g 0 [mg || 201 204 —g 0

The definition of the odd product seems quite mysterious at this point. Notice that odd products
(m;, mj) for j # i’ produces vectors v € V' “orthogonal” to m;, m;:

(1.10) ((miymy),mq) = ((my,mg),my) =0 (j#7).

This will become clearer using the Shestakov basis below and the exterior representation in the next
section.

Comparison with Racine-Zel’manov

The classification paper [7] of Racine and Zel’'manov uses a slightly different basis e, f, u1, uz, us, 4,
Z1,Y1,%2,Yy2 (changing their v; to u; to avoid conflict with our v;) with prescribed dot products.
To describe the products (z,y) in the quadratic case we must double all the dot products z - y in
the RZ-list. We introduce v; = 1u; so that {v;,v;} = Lu; - uj, w; = 2v;, {v1,v2} = {v3,v4} =€

and (v;,m) = u; - m, but (m,m’) = 2m - m/. If we further introduce temporary wy := —x1, wq :=
—Y1, W3 := Y2, Wy := —x2 and n; 1= %wi,‘l then the bilinear action of A on M is given by

4Since we are interested in finding a form of the Kac algebra over an algebraically closed field of characteristic # 2
which will serve as a model for characteristic 2 and all rings of scalars, we have no compunctions about using % here

to get rid of a common factor 2.



(1.11)  RZ-Bimodule Product (A, M) RZ-0Odd Product

: X1 Y1 Z2 Y2 : Z1 Y1 Z2 Y2
U1 0 To 0 —x1 T 0 g Ul Uus
Ug —Y2 0 Y1 0 Y1 —g 0 —1Uyg Ug
us 0 Y1 T 0 To —Uq Uy 0 g
Uy T2 0 0 Y1 Y2 —uz  —U —9g 0

< , > —T1 —U1 Y2 —T2 < ) > —I1 — Y2 —T2
vi=3ug 0 —xy —I 0 x 0 —2g 2us —2uq
Vo=1Us Ya 0 0 —11 Y1 2g 0 AT 2uy
v3=}us 0 ) 0 -1 Y2 2ug3 2uy 0 2g
va=Ltuy || —22 0 Y1 0 To 2uq —2uy —2g 0
<" > w1 w2 w3 W4 <" > w1 w2 w3 Wy
V1 0 Wy w1 0 w1= —T1 0 2g —4ug 4vq
Vo w3 0 0 wWa Wo= —11 —2g 0 —4vy  —4uy
(%] 0 —WwWs3 0 w1 w3=Y2 41}3 4’[}2 0 29
V4 Wy 0 —Woy 0 Wy= —To —4vq 4y —2g 0
(-, ) ny oy n3 Ty (-, ) ny o n3 T4
1 0 Ny ni 0 ni=-Jswi 0 g —2v3 2u1
Vo n3 0 0 N9 No=—J-Ws —g 0 —2v0y  —2uy4
V3 0 —ng 0 ni ng=-_J; w3 2v3 209 0 g
V4 N4 0 —No 0 ng=--wy | —2v; 24 —g 0
e, f ny o n3 T4

which are clearly the same as tables (1.3),(1.9) with m; replaced by n;.
Comparison with Shestakov

The most illuminating basis for K¢, organizing the elements with an easy-to-remember multipication
table which clearly explains which bimodule products are zero, is due to Ivan Shestakov. His
approach was described at the 1996 Oberwolfach Tagung on Jordan Algebras, and was meant to
appear in a definitive book on Jordan superalgebras which regretfully was never written.> The
Shestakov basis uses the 4 odd elements z,y,u,v (our my,ms, m3, my) to parameterize the even

variables: A is spanned by e, f, ux, uy, ve, vy where uy := u -y =: —yu, etc. Thus the alternating
basic odd products m - n are trivial to remember, except that instead of two more basic elements
xy,uv we have g:=e—3f (z-y=—y-x =u-v=—v-u=g). The rules for the even-odd products

are that e, f act identically ({e,m) = (f,m) = m) and uy € A kills its parent elements u,y € M,
while for non-parents there must be a linked pair x,y or u, v (corresponding to m} = ma, mb = my),
in which case the product in order gives (yu) - v = —y, (uy) - ¢ = u [the pair elements cancel each
other out, leaving the remaining element with + if the order is reversed (y,z) and — for the usual
order (u,v)]. Thus the even element uy can only take on values u,y when multiplied by M.

To adjust the products to work in the quadratic case we introduce odd my = Zsz, ma :=
%y, msg = %u, my = %v and even wsy 1= —v13 1= Jux, VUsy 1= —Uag 1= Luy, VU4 = —v1y =
Loz, vg9 1= —vgq = Loy, so that (mi,ms) = (mz,m1) = 2mgz -my; = u-z = ur = 2v3; and
v31, Me) = 2(Lux) - Ly = —Lu = —mg, etc. With this notation the bilinear products become

2 V3 vz
(1.12) for i 7 j, j" (vijymy) = (vig,mi) =0, (vig,my) = (=1)/mi = —a(m;, m;)m;,
' (mi,my) =viy = —vj (v :=0), (my,myr) = (=1)"g.

The complete table of bilinear products is given by

5The lecture also revealed intriguing connections with the Jordan superalgebras D4 (1, —3) and K3, and revealed
that K19 could be generated by a single nonhomogeneous (or two homogeneous) elements, yet was i-exceptional,
destroying all hopes for a Shirshov-Cohn theorem for superalgebras.



(1.13)  S-Bimodule Product (A4, M) S-Odd Product

. T Y U v . T Y u v
ux 0 —U 0 T T 0 g —ux —uT
uy U 0 0 Y Y —g 0 —uy -y
VT 0 —v —T 0 u ux uy 0 g
vy v 0 -y 0 v VT vy —qg 0
(,) ||mi  ma  mg my (,) my mo ms my
V31 0 —ms 0 mq mi 0 —g —2’()31 2’()14
V32 ms 0 0 mo mo g 0 —2’032 —21)42
V41 0 —MmMy —mq O ms 21}31 21}32 O g
V42 my 0 —Mmo 0 my || —2v14  2v49 —g 0
<', > mq mo ms my

V14 0 my mi 0

V32 ms 0 0 mo

V31 0 —ms 0 mq

V42 my 0 ) 0

e,f || m  mo ms my

which are clearly the same as tables (1.3),(1.9) with vy, va, v3,v4 replaced by v14, V32, V31, v42. Note
that the subspaces M := Span(my,v14,v31) = Span(z,vx,ux) = X, Ms = Span(ma, v32,v42) =
Span(y, uy,vy) = Y, Mz := Span(ms, vsz,v31) = Span(u, ux, uy) = U, My := Span(my, via, vs2) =
Span(v, vr,vy) = V all have M? = 0 (explaining all the zero products).

Comparison with Involution Basis
We will later pass to an isotope determined by

(1.14) si=u+ fi=v+vo+ f, s2=1,*:=U, is an involutive automorphism of J with

* * ko * * * * *
e*=e, f*=f v =v9, v =—v3, v =—vg, M = (u,m), mi =mgz, my=my.

In terms of this involution we obtain an involution basis e, f, b := v1, b* := v9, ¢ := v3, d :=
Vg, M1, Mo, M = mg, ms = my. In terms of this basis the bilinear products become

(1.15)  x-Bimodule Products

Grllmi me  mi  m3 | () || M mp mi  mj
b 0 ms mi 0 | m 0 g —2c 2b
b* mj 0 0 ms | Mo —g 0 —2b*  —2d
c 0o -m] 0 my | mj 2c  2b* 0 g
d m3 0 —-ms 0 | mj —2b 2d —g 0

Notice that in terms of the involution basis the third and fourth columns of the table are redundant
(as the subdiagonal of the original odd table is redundant by skew-symmetry), since by the involution
once you know the actions (p, z) of all p on 2 you know all actions (p, z*) = (p*,xz)* on z*.

2 The Quaternion Model

We can model the split null extension structure of J (M as bimodule for A) using quaternions.
We can identify M with a copy of a split quaternion algebra H = My(®) via mq, ma, mg, my N
€11, €22, €21, €12, SO M becomes a regular bimodule for H. Since V is the direct sum of two hy-
perbolic planes, the Clifford algebra of @ on V is the graded tensor product HQH of two split



quaternion algebras, i.e., the product of two split quaternion subalgebras H', H” graded in the nat-
ural diagonal/off-diagonal way where H|, commutes with H” and H{ commutes with H', but H]
anti-commutes with Hy'.

Here H' := Ly = ®[L.,,, Le,,] is isomorphic to H via the left-regular representation. Despite
the twist, H" := ®[SReyr, SRez] for S := Le,,—e,, is also isomorphic to H: H is isomorphic to
right multiplications R}y = Rz under the standard quaterion involution a +— @, and the twist
due to S doesn’t change a split quaternion algebra, since (‘Z Z) — ( 2 "Zib) is an automorphism
of My(®) [indeed, a + m — a + om is an automorphism of any Z,-graded algebra when o2 = 1].
Here the R.,, spanning the even H{/ commute with all of Ly = H’, and the L., spanning the
even Hy commute with all of Rz and S, hence with H”, but the odd Hj anti-commute with
H{ (indeed, with all SRy) since (SR,)Ly, = SLyR, = (SL.S™HSR, = (1)’ Ly(SR,) where
SLe”S L= ezz*enLe” L€22*€11 = (_1)lL8iiLEij(_1)JLejj = (_1)1+]L6ij is the grading automor-
phism on M2 (®). Thus the multiplication algebra Ly Ry of H is the graded tensor product of two
split quaternion subalgebras H', H"; it is generated by operators Vi := Le,,, Vo 1= L¢,, V3 =
SRezr = Leyy—epy Reyy, Vi i= S’Re12 = Len_emR612 with action

€12

(2.1) Regular Quaternion Action A x H

Action of V on: el €929 €21 €12
Vi=Le, 0 e12 e 0
‘/2 = Lem €21 0 0 €22
V3 = L€11*€22R821 0 —€21 0 €11
Vi = L€11*622R612 €12 0 —€22 0
Ve=Vy=1 €11 €22 €21 €12

which is clearly equivalent to our action of V on M in (1.3).

Moreover, the operators V; generate a Jordan subalgebra ®15 @ Zle OV, C LgyR-==>2H®H
isomorphic to B = Jord(Q,e),

(2.2) VE={Vi,V;}=0(j#i), Vo={Vi,Vi} =1p.

Indeed, all V> = 0 since for j # i we have L2 =1L, 2 = =0, R2 = R, 2 = 0,, while {V,Va} =

{L8127 621} {Lem 621} L€11+€22 - 1Ha Slmllal"ly {V37 Vzl} 611 eng{eu} ea1 L€11+622R611+€22 =
1g, and for r = 1,2, s = 3,4 we have {V,,V;} = Lic,; e, —eps} Reyy = 0. Thus J = BB Of & M
imbeds as split null extension in (H® HH®f)® H. However, the excrescence ®f is hard to explain,
and the form the odd product takes on M 2 H — H ® H H ®f is unilluminating.

3 The Exterior Model

A better way to view the bimodule and odd product, suggested by the Shestakov basis, is through
the exterior algebra A(M). Since M = A*(M) is a free ®-module with ordered basis my, ma, ms, my,

the exterior product A%(M) is free of rank 6 with basis A? := my A my, A} := mz A ma, A3 =
maAmy, A3 :=myAma, E = A2 :=mjAmg, F fA6 7m3/\m4, and A3(M) is free of rank 4 with
basis A? := m; AmyAms = —m; AmzAmy (i = 1,2), A =mjAmaAmy = —m;AmiAmy (j = 3,4),

and A*(M) is free of rank 1 with basis A} ;== EAF = A2 A A2 = mq A ma A mz A my. Denote the
subspace of A%2(M) spanned by A?, 1 <i <4 by S, so AZ(M) =S®PE® DF.

We obtain an identification isomorphism ¢(?) : A2(M) = S @ @E OOF — A=Vpdep df
and contraction isomorphisms ¢ : A3(M) — AY(M) = M, ¢ : A*(M) — ®, and a fake copy
~AZ(M) =S ®PE®PF — A2(M) := S @ ®1° C A2(M) & A°(M) defined on these bases via



(3.L1) P (A7) =0 (1 <i<4), oP(AF) = pP(E) := e, 9P (A7) = PN(F) := ,
t.e., myAmg, m3A\mg, m3Amy, mg Amg, M1 A Mg, M3 A\ My e U1, V2, U3, V4, €,
312) 5=s(sef), A2=:A2=:10,
eI (AF) = P (my Amy Amg) :=my (i=1,2), @@ (m; Ama Amy) = mj; (j=3,4),

@

Vpz :=@o Ly2 : M=A"(M

(A}) == W (my Amg Amg Amy) =1 = —p® (mz Amy Amg Amsg),
) AR(M) —

M (1<i<4), Vyz = Lyz=Lio=1pr (k=5,6).

Abbreviating A?, o) by A;, o, we obtain an action table

o Lm1 Amy

0

p(ma A ma Amq)
mq

mi

(3.2) Exterior Bimodule Action (£, m) := o®) (¢ A m)
Vi mi mo m3 my
Va, = p(mi1 Amg Amy) = p(m1 Amg Amz) p(m1 Amg Amg) = p(m1 Amg Amy) =

0

Vi, =

© 0 LmzAms

m3

p(ms Ama Amy) =

0

p(ms Ama Amg) =

p(ms Ama Amg) =

0

p(ms Ama Amy)
p(ma A mg Ams3)
m2

Vas =
© 0 Lmzam,

0

p(ms Ami Amy) =

—ms3

p(ms Ami Amg) =
p(—m3 Ama Amy) =

p(ms Ami Amg) =

0

p(ms Ami Amy)
p(m1 A mag Ams3)
mi

Va, = p(ma Ama Amy) = p(ma Ama Amg) = p(ma Ama Amg) = p(ma Ama Amy) =
@Yo L7rL4/\7n2 LP(—mQ Amg A m3) =
maq 0 —mao 0
Vay, = LT\k
=L,0 (k=5,6) mi ma ms3 my
Clearly this coincides with (1.3), and exhibits the bimodule action of V on M as “contracted”

multiplication of A?(

M) on AY(M

) in the exterior algebra (though with a somewhat artificial re-

placement of exterior multiplication by E = A5, F = Ag € A?(M) representing e, f by multiplication
by 1 € A°(M); our notation E, F indicates that these are only “honorary” members of A?(M)).

We can also represent the odd multiplication in a natural way through the exterior algebra: there
is a natural exterior product of M into A%(M), which we map to S @ ®G =~V @ &g C A via

(3.3) Exterior Odd Product (m,n) = ¢)(m An)
‘ (m,n) my Mo ms my
mq w(m1 A\ ml) =0 ¢(m1 A\ mg) =G w(ml AN mg) = —2A3 w(ml A\ m4) =2M\;
me ¢(m2 A ml) =-G ’(/)(mg AN mg) =0 ¢(m2 N mg) = —2A, ’lp(mg A\ m4) —2/\4
ms ¢(m3 A ml) = 2A3 1/)(m3 A mg) = 2A2 ¢(m3 A m3) =0 w(mg A m4)
may 1/1(m4 A ml) = 72/\1 1,[)(7714 N mg) = 2A4 ¢(m4 A mg) = 7G (m4 A\ m4)
This is just (1.9) in disguise. Tables (3.2-3) are essentially the Shestakov Product Table (1.13).
The exterior viewpoint also allows us to express the symmetric bilinear form Q(v, w) = Q(¢? (s),

0@ (t)) on V = W(Q)(S) as

(3.4) Qe (s), 0@ (1)) = —pW (s At), fors At =t As=o(s,t)m1 Ama Ams Amy

since from (3.1) A; A Aj; = 0 due to repeated wedge factors my, except for the disjoint Ay A Ay =
mi /\m4/\m3/\m2 = —Mmi /\mg/\mg/\m4 and A3/\A4 = mg/\ml/\m4/\m2 = —ma /\mg/\mg/\ﬂ’L4. ‘We
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can also explain the “complementary” vector v; = v; as that corresponding to the complementary
subset of the index set {1,2,3,4},

(3.5) (AD) = A%1,273,4}\1

where we parameterize A? = m; Amy (m; < my in the ordering ms < mq < myg < mg) by the
subset I = {j,k}

4 A Compendium of Triple Products

For quadratic Jordan algebras or superalgebras when 1 ¢ &, the bilinear products do not de-
termine the quadratic and triple products by the usual rules 2U,a’ = {a,{a,a’}} — {a?,a'} and
2w, yj, 2k) = (i y;)s 2k) + (@i, (Yg, 21)) — (=1)THRR g (s 20)). We will see below that in
the Kac superalgebra scheme Kjy the bilinear and Peirce structure determines everything but the
odd triple products, and only four values (m;, m;,my) (1 <i < j < k < 4) need to be determined:
by Odd Alternation and Switching (0.1.1-2) any product with a repeated variable is determined,
(m,n,m) = 0, (m,n,p) = —(p,m,n), (m,m,p) = (m,{m,p)), so (m,n,p) + (n,m,p) = 0 mod-
ulo bilinear products, and in a triple of distinct variables any one order determines the others,
(p,n,m) = —(m,n,p) = +{n,m,p) = —(p,m,n) = +(m,p,n) = —(n,p,m). We will see that in the
split Kac superalgebra scheme sK7g the quadratic structure is completely determined by the bilinear
structure plus the Peirce decomposition (and King showed [2] that the odd product is determined
up to a scalar by the bimodule structure). Thus two forms of sKjy which have the same bilinear
and Peirce structure must have the same quadratic and trilinear structure.

The quadratic operators U, are determined by the Peirce relations, the quadratic form @, and the
bilinear products: U = Unetot8f = OZ2U6+U1;+,62Uf+aﬂUeyf+aUeyv+,6Uf’v where U, = F», Uy =
Ey,Ue,y = E; are the Peirce projections on Ja(e) = ®e +V = Jo(f), Jo(e) = f = Jo(f), Ji(e) =
M = Jy(f), while by Peirce relations (0.2.4) U, f = U,M = 0 with U,b = Q(v,b)v — Q(v)b [as in
(1.2); Uepf =UeyM =0, Ue yb=V,b; and Uy, f =U; ,B =0, Us,m = V,m.

We will compile a complete list of all possible 10 triple products of basis elements m,n, p from
M and a, b, ¢ from A (luckily symmetry and Peirce relations reduce this to a manageable collection).
The trilinear products with no factors from M are just linearizations U, o a’ of the quadratic product
U, on A as above. These are just the familiar ones in the direct sum A = BH ®f, with those in
B = Jord(Q,e) = e+ V being given by (1.2), so we turn to the triple products with a single term
from M.

Remark 4.1 The triple products with only one odd term are completely determined by the Peirce
decomposition and the bilinear products as given in Table (1.5). The outer quadratic products U,m
have UgM = U,,M = 0, so only triple products (B, M, e3) survive, where U, .,m = Vym reduces
to a bilinear product as in (1.5.2). By Even Symmetry (0.1.2) the left multiplications (m,a’,a) =
(a,a’,m) reduce similarly to repeated bilinear products since Vg y = Vy g =0, Vy ym = Vym = m,
and Vppm = VuViym by Peirce Orthogonality (0.2.1) and Triple Reduction (0.2.4), which can be
read off from Table (1.5.1). |

We next consider triple products with two or more factors m,n,p from M and a from A.

Remark 4.2 The triple products with two odd terms are also completely determined by the Perice
decomposition and the bilinear products in Tables (1.3), (1.9), since by Triple Reduction (0.2.4)

(m,aj,n) = Ei((m, (aj,n>)) = Ei((<m,aj>,n>),
(“2.1) (m,m.az) = By((m, (agom))) (a; € 4y(e), j = 02,1 =2 — j).

So far the triple products have all been determined by the bilinear products and the Peirce relations.
This is not quite true of the triple products with all odd entries, though in the next section we will
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see that when the Kac algebra is split further the more refined Peirce decomposition does indeed
determine the triples.

For the time being, the odd triple product is defined in terms of the Peirce relations, and the
alternating bilinear form o of (1.7) according to King’s explicit formula [3, p.393]

(4.3)

<m7 n,p) =

(f[m*n —oa(m,n)e],p) —

and (4.2.1) can also be formulated as

([pxm —oa(p,

m)el,n) +([n+p—o(n,pel,m

(4.3.1) (m,b,n) = —=30((m,b),n)f = —3c(m,(b,n))f (be B), (m,f,n)=oc(m,n)e+2mx*n
?inc)e] Eo(m,n) = —=3c(m,n)f, Ex((m,n)) = o(m,n)e + 2m * n for (m,n) = o(m,n)g+ 2mxn [by
1.6)].
From Alternation (0.1.2) we have general relations (m,n,m) = 0, (m,n,p) = —(p,n, m), and
(letting 1/ = 2,3 = 4,4’ = 3 as in (1.2),(1.6)) we derive specific relations
(my, mg,m;) =0, (mi, mi, mj) + (mj, my, m;) =0,
(4.4) (mr,mi,m;) = (—=1) om;, (mj,mi,m;) =0 (j#1i)
(mir,miymy) = (=1)"my,  (mi,mg,me) = (=1)7'm;  (j #i,1)
since from (4.3), (1.8) )
(marymiymg) = ([0 = (=1)¢],my) = ([0 = (=1)"¢],mq) + ([0 — 0], mir) = 2(=1)"m;
(mj,mi;ma) = ([m; *mg = 0],ms) — ([mixm; —0],my) + ([0 = 0], m;) =0
(mir,mi;my) = ([0 — ( 1)e], m]> <[77}J*mz — 0], m;) + ([m; x m; — 0], my)
= E([ + (=1 + (1) Jmy = (=1)"'m,

(m,», mgj, mi’>

m; xm; — 0], my ) — ([

0— (=1)'el,mj) +

= [(=1)" + (=1)' = (=1)]Jm; = (=1)"'m;.
We quickly arrive at a table of outer odd multiplications, but less quickly at a table of left odd

{[m;

i % mi — 0], m;)

multiplications.
(4.5) Two- or Three Odd Products (M, J, M), (M, M, J)
Unon U1 U2 U3 Uy e f my mo ms my
Uny ms=—Unmy,m1 0 0 0 0 =-3f e —2mq  —2my ms my
Um1,m3:_ mz,m 0 0 0 3f 0 —2u3 0 —ms3 0 mi
Uny ms=—"Umy,m, 0 =-3f 0 0 0 2v1 0 —my —my 0
Unsms=—Ums.ma, 3f 0 0 0 0 —2u9 ma 0 0 ma
Unsma=—"Umy,m., 0 0 3f 0 0 —2u4 my 0 —mg 0
Unmsma=—Umy,ms 0 0 0 0 -3f e ma Mo —2ms3  —2my
‘/m,n Vm,naj = Ejvm‘/naj
Ving,mi=—Vmi,ms=Vo, 0 0 0 e 2v3 0 0 —ms3 0 mi
Vine,ma=—Vma,mi =V, 0 e 0 0 21 0 0 my m 0
Ving,mae=—Vima,ms=Vo, e 0 0 0 2v9 0 ms3 0 0 mso
Vina,ms=—Vims.ma=Vo, 0 0 e 0 204 0 my 0 —my 0
Vinemi = 2Vi, 0s 0 —2v3 0 2u1 0 0 0 —2my 0 0
Vingms = 2Vis 04 —2u4 0 209 0 0 0 2mo 0 0 0
Ving.ms = 2Vig v, 203 0 0 —209 0 0 0 0 0 —2m3
Vinama = 2V, 0 204 —20; 0 0 0 0 0 2my 0
Viny ma 201 0 2u3 0 e =-3f 0 —2mo  —mg3 —1Mmy
Ving,ma 0 —2v9 0 -2y —e 3f 2myq 0 ms my
Ving,ma 0 2v9 2v3 0 e —-3f —mq —Mo 0 —2my
Vina,ms —2u1 0 0 —2uy —e 3f m mo 2ms 0
Umimi =0, R m, (a) := (a,mj,mi) = —(mi, mj,a) = Vinim, (a)
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Proor: The action of the outer multiplications U, ,, on the odd m’s follows from the general
recipes (4.4). For the action on the v’s, (4.2.1) shows that Up,, ., v vanishes if (m;, v) or (v, m;) van-
ishes, therefore Table (1.3) shows that for v1 L mq,my4 only Up,, m,v1 survives [with EgV;,, Vi, v1 =
EoVim,m1 = Ey(—g) = 3f], simlarly for vo L ma, mg only Up,,y m, [With EgVi,, Vi, v2 = EgVi, me =
Eo(g) = —3f], for v3 L mq,mg only Upym, [With EgVy,, Vi, v = EgVp,m1 = 3f again], and for
vg L mo,my only Uy ms [With EoVi, Vinava = —EoVin,ma = —Eo(g) = 3f]. Um.ne = Eo((m,n))
and Uy, nf = E2({m, n)) are read directly from Table (1.9). This completes the table of U-operators.

The left multiplications acting on M can be read from the U-table, Vi, m; (M) = Upn; m,, (M),
or from the general recipes (4.4): Vi, m, sends mi, mir, mj — 0, —(=1)" 2m; = 2(=1)*m;, 0, while
Vingm,, sends m;, my,mj — 0, (=1)my, (—1)*m;, giving immediately the last 8 rows on M.

For the last 8 rows acting on A, reading Table (1.3) by columns and then reading Table (1.9)
by rows shows that the ordered basis vy, v2,vs,v4, €, f for A is sent by V;,,V,, as follows: V,,, sends
v1,V2,V3,V4,€, f — 0,ms,0,m4,m1,m; which is then sent by E;V,,, to 0,—2vs,0,2v,0,0 for
Viny,m,, and sent by F;V,,, to 0, —2vs,0, —2v4, —e,3f for Vi, m, .

Similarly Vi, sends vi,v2,v3,v4, €, f — my,0, —,m3,0, M2, ma which is then sent by F;V,,, to
201,0,2v3,0,e, =3 f for Vi, m,, and by E;V,,, to —2v4,0,2v2,0,0,0 for Vi, m,.

Likewise, Vi, sends v1,v2,v3,v4,€, f — m1,0,0, —ma, ms, m3 which is then sent by E;V,,, to
2v3,0,0,—2v2,0,0 for Vi, g, and by E;Vy,, to —2v1,0,0, —2v4, —e, 3f for Vi, ms-

Finally, V,,,, sends v1, va, v3, V4, €, f — ma, m1, M4, mg which is sent by E;V,,,, to 0, 2v2,2v3,0,e, =3 f
for Vg ma, and by E;Vi,, to 0,204, —2v1,0,0,0 for Vy,, m,.° Comparison of this with (1.5) shows
(for no apparent reason)

(4-6) le,m1 = 2Vv1,v37 sz,Mz = 2Vv2,v47 Vms’ms = 2Vv3,v27 Vm4,m4 = 2Vv4’v1‘

The remaining first 4 rows of left multiplications V,,, ,, reduce to operators V3 which can be read
off from Table (1.5): we claim that Vi, m: = —Vingms = Vs, Vinyoma = —Vinama = Vo Vingms =

~Vinaims = Voss Vinams = —Ving,ma = Vi, as operators on all of J, since by (1.7) mz x my =
V3, M1 * My = V1, M3 * Mo = Vg, M4 * Mo = V4, where in general
(4.7) forj #i,i" we have Vi, m, = Vin,em, € Va.

This holds on M since by (1.8) Viy,um, sends m;, my,mj, mj to 0, (=1)"my, 0, (=1)7m;, while by
(4.4) {ma,my,ma) = 0, {ma,my,mar) = (=1)"my, {ma,my,my) =0, (mi,mj,my) = —(my,my,m;) =
—(=1)"'m; = (~1)7m;. To see it also holds on A, we check that (m;,m;, f) = Eo({(mi,m;)) =
=30 (mi,m;)f =0 = Vium, (f) € Va/f. Similarly (m;, mj,e) = Ey((mi, m;)) = Ea(o(mi, mj)g +
2m; *m;) = 04 2m; x m; = Vi,em, (€). Finally, (m;, mj, vy) = Ea((m;, (mj,vy))) [by Triple Re-
duiction (0.2.4)] = Es(c(m;, (mj,vi))g + 2m; x (mj,vi)) [by (1.6)] = o(my, (m;,ve))e [by (1.8)

m; x (V,mj) € m; x (®Pm; + ®my) = 0], while Vi, m, (V) = —Vin,«m, (vx) [by skewness of x| =
—(Xelo((ve,mg), mi)ve), vk) = =32 0((ve,my), mi)omwe = —o({vk,my),mi) = +0o(mi, (vk,m;))
[by skewness of o]. This establishes the last cases of (4.5). |

Notice that most of the V,, , reduce rather mysteriously to V,;’s. We now turn to the mixed
left multiplications V; 1, Vin e they too reduce surprisingly to Vi, e, Vin, -

(48) Vm,b = ‘/<b,m),ev VE),m = Ve, (bym)> Vm,f = Vve,m» Vf,m = Vm,e

because in the Peirce decomposition relative to e we have by Triple Reduction (0.2.4) that (m, b, f) =
0= ((b,m),e, f), (m,b,c) = ((bym),c) = ({({(b,m),e),c) = ({b,m),e,c),and (m,b,n) = E0(<<b,m>,n>) =

’ 17
6This can also be calculated from the matrices of A <% M <% A of V, relative to the ordered bases
{v1,v2,v3,v4,¢, f} for A and {m1,ma, m3,ma} for M, since V;},| = Es53 —3Ee2 —2E33+2E14, V},,, = —E51+3E61 —

2F93—2F44, ‘/'ﬂ/13 = F54—3FE614+2FE31+2F29, V”;hl =~ —FE53+3E63—2E11+2F42, V»,Zl = F32+Faa+F15—FEie, Vn/riz =
E41 — E33 4 Eas5 + Ea6, Vi, = E11 — Eaa + E3s5 + Ese, V,,, = Faa + E13 + Eus + Ee.
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and (b,m,n) = E3(((b,m),n)) = (e, (b,m),n); by Switching (0.1.1) Viny = Vi, py — Vim =
Vm — Vf,m = Vl,m — Vﬁm = Ve,m, dually Vﬁm = Vm —Vm,f = Vm71_f = Vm7e. Thus

(4.9) Vam +Vaa = Ve +Verr = Vareetraf-

Combining this with (4.8), the 32 odd left multiplications reduce to 8:

le,e = Vmg,vl = Vm4,v3 = Vf,?np Ve,ml = VU1,7n3 = VU3,7n4 = le,f7

(4 10) Vmg,e = 7Vm3,v4 = Vm4,vg = Vf,mg» Ve,mz = 7Vv4,m3 = sz,m4 = Vma,f>
Vmsﬁ = thvz = —Vinavs = Vf}m37 V€7m3 = V'U27m1 = —Vigm, = Vmsyf’

Vina,e = Vinawa = Ving o, = Vf,mu Vema = Voymi = Vormy = Vm4,f'

leading to the following brief table of values of these odd left multiplications.

(4.11) Odd Left Multiplications (M, A, J), (A, M, J)

Via = Ve Vay = Ve
Vina(x) forz = | v ve V3 Vg e f my mo ms My
le,e = Vf,ml 0 ms 0 my ma 0 0 —3f 0 0
Vmg,e = Vf,mQ my 0 —ms 0 meo 0 3f 0 0 0
Ving,e = Vims m; 0 0 —mg m3 0 0 0 0 —3f
Vméhe Vf7m4 0 mo mi 0 may 0 0 0 3f 0
Ve = Vina g 0 0 0 0 0 my 0 e —2u3 210
Vems = Vino, s 0 0 0 0 0 mo —e 0 —2vy —2uy4
‘/;,m3 = Vmgs,f 0 0 0 0 0 ms 2’03 2’[)2 0 e
Veoma = Vina, s 0 0 0 0 0 my || —2v1 2u4 —e 0

PrOOF:  The table for V,,, .a = V,,a can be read off vertically from the rows of (1.3) [note
Vs B = 0,Vy, ¢ f =m] and V;,, on = Uy, na from the f-column of (4.5) [or from (1.9)]. [ |

5 The Split Kac Superalgebra sK,(®)

In this section we introduce the isotope sK1(®) := K1o(®)*'" := K1o(®)®) (5 = vy +vo + f) of
the standard Kac superalgebra scheme which provides 3 reduced idempotents over an arbitrary ring
® of scalars. We find a “split basis” and compute all bilinear and trilinear products in this isotope.
Later we will show that when ¢, J- € ® this isotope is isomorphic to the standard superalgebra.
We call this isotope the “split K1 scheme”. Using «* = Uz as promised in (1.12), its operations

are7

U (2) = UUsa; = Ugar, > :=U,s,, 1) :=s=u+f,

<xi7yj>(s) = (Ti,8,Y5), <Ii7yj72k>(8) = (w, Usyj, 2k) = <Iz‘ay}k72k>-
Here A remains a subalgebra in the isotope, A®) = B B (@ f)) = Jord(—Q,u) B[ [since in
general Jord(Q,e)™ = Jord(Q(u)Q,u") where here Q(u) = —1, 1¢) = 4~' = 4. In particular,
f@s) = Urf = f, b2 = Uyu so e®%) = Uu = u, 111@’8) =U,, (11 +v2) = Uy,vy = v; (1 =
1,2), v§2’s) =0 (j = 3,4), and for the bilinear products we have the following table. For Peirce
reasons which will become clear shortly, we re-order our basis for M as my, mg, ms3, mo (interchanging
the second and fourth members).

7Again we use a Grassmann detour to make sure_isotopy works for quadratic superalgebras; the quadratic
Jordan algebra F(J)(I‘X’S) has operations Ugge = UggaUigs = 8% @ Ugz, (B ® a)? = Usgal = 82 ®
Uas, {0; ®;,0; Qy;} = {6 ®x,1®5,0; ®y;} = 0;0;(xs,s,y;) and analogously {d; ® z;,0; ® y;,0, @ 2z} =
{6 ® i, U105 (05 ® Yj), 0k ® 21} = 6:6;0k (@i, Usyj, 2k).
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(5.1) sKjp Split Bimodule Products

(a,a’) O vo w3y vy e f | {a,m) (s) my ms4 M3 Mo
U1 21}1 0 U3 V4 € 0 (% mq my 0 0
Vo 0 2vy w3 N e 0 Vo 0 0 ms Ms
U3 VU3 VU3 0 —u 0 0 U3 0 —ms 0 mq
o o vy —U 0 0 0 vg || —ma 0 my 0
e e e 0 0 20 0 e ms3 me mip My
f 0 0 0 0 0 2f f mi my ms mo
a5 U1 Vg 0 0 u f

PrROOF: The algebra products with f follow from {f,b}(*) = {f,s,b} = 0, while {b,d'}(®) =
{b,u, b’} can be read directly from Table (1.5) by adding the v;- and vo-columns for the U-operators.
As for the bimodule products, these can be read from the V-operators of Table (1.5) [(f,m)() =
(f,s,m) = (f, fym) =m, (bym)®) = (b,u,m) = Vi, 10, (m)], or easily using (b, u, m) = (b, (u,m)) =
(b, m*) [recall (1.12)] so that the new product of b on my, myg, ms, mso is just the old product of b on
ms,ma, M1, my [hence obtained from transposing the m; and ms columns in Table (1.3)]. [ |

Born Again

In particular, the elements vy, vo, f now become supplementary orthogonal idempotents and vz, vy, €,
my, my span the Peirce 1-space of vy, while vs, v4, e, m3, mo span the Peirce 1-space of vo. We make
the further replacement of vs by —vs, so that (—vs,v,)®) = u in B™ (as {v3,v4} = e in B). To
indicate this Peirce structure we hereby rechristen our basis to indicate their Peirce space J;;. When
we use this new labelling it is clear that we are working in the isotope, so we drop the superscripts
(...)®) for isotope-products and use the usual notation (...), U, for superalgebra products. Dressed
in its new clothes

Old || vy |va | —v3 | vy | € f | votve | my | myg | M3 | mo (...>(S) Ués)
New || e1 | e | ci2 |dia | qu2 | e3 | u my3 | nig | mag | naz | (...) U,

the new quadratic form becomes (compare with (1.1))
(5.2)  Q(b) = p1Ba—PsPs—P3, T(b) =P1+ P2 for b= Prei+Paca+Bscio+Padio+Psq12

and the bimodule structure becomes

(5.3) sKjp Bimodule Product

ofl e1r e ci2 di2 qi2 e3 miz M3 Moz Nag
er |[2e1 0 c2 di2 q2 O miz M3 0 0
€2 0 2 co2 di2 q2 O 0 0  ma3z  ma3
C12 C12 C12 0 u 0 0 0 mos 0 —Mm13
d12 d12 d12 u 0 0 0 —nN23 0 nis 0
qi2 || g2 q2 O 0 2u O Moz N2z M1z Ni3
€3 0 0 0 0 0 263 mi3 ni13 mos To3
a? e es 0 0 es

We can also give a closed-form expression for the action of Bis on M;s:

(5.4) (q12, m43) = mys, (q12,Mi3) = nj3, (c12,my3) = (d12,n3) = 0,

(c12,m3) = (=1)Pmys, (di2,mi3) = (=1)'n;3, (j =3 —1i).

We can translate Table (1.5) directly into a bimodule table for the isotope.
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(5.5) Split Bimodule Structure

V, {a,2) =Vo(x) | e1 e cio  dio q12 es || miz  miz Mo n23
‘/6171112 = ‘/1112,82 0 q12 0 0 261 0 0 0 mi3 n13
‘/:92,!112 = ‘/qm,el q12 0 0 0 2eg 0 mos N23 0 0
‘/;112,012 = _‘/:212,1112 0 0 0 q12 —2c12 0 0 mis 0 —Mo3
Vd12,Q12 = _‘/:112@12 0 0 —q12 0 2dy 0 ni13 0 —N23 0
Varz,arz 2e1 2 2c12 2di2 2qi2 0 mi3 M1z Ma3 n23
Vi=Vys 0 0 0 0 0 2f || miz miz mas N3
‘/512 C12 C12 0 u 0 0 0 mao3 0 —Mmi3
Vd12 d12 d12 u 0 0 0 —MN23 0 ni13 0
Vi qi2 qi2 0 0 2u 0 || mag mna3 Mg 713
Ver = Veren 2e; 0 cr2  di2 q12 0 mi3 M3 0 0
Veo = Vepen 0 2 c2 di2 q12 0 0 0 ma3 n23
Vers,dio e1 ey 2cip 0 q12 0 mis 0 Mas 0
Vira .12 €1 €2 0 2d12 q12 0 0 ni3 0 n93
Ver,ers = Verses 0 C12 0 €1 0 0 0 0 0 —mi3
Ves,ers = Verssen C12 0 0 €2 0 0 0 maos 0 0
Ver,diz = Vi eo 0 dy2 €1 0 0 0 0 0 n13 0
Ves,dio = Vs ,en di2 0 €2 0 0 0 —nN23 0 0 0
a® = Ugu e1 €3 0 0 U f Urp =Vy on M
‘/;1,62 - V€2:€1 =0, ‘/012,012 = Vd127d12 = Vf,B = VB,f =0, %’,b = VyVy» on M
Upp =2Up, Uyp =W, Up=U,=Uppy =00n M

U €1 e Ci2 di2 Q12 €3
Uel €1 0 0 0 0 0
Ue, 0 e 0 0 0 0
Ueys 0 0 0 C12 0 0
Udis 0 0 dy2 0 0 0
Ugro €2 e;  —cig —di2 q12 0
Uy 0 0 0 0 0 f
Ueyen = Uey ey 0 0 C12 dia q12 0
U€17012 - UC1z,e1 C12 0 0 €1 0 0
Ueydis = Udyz,eq di2 0 €1 0 0 0
Uei,q1o = Ugysen q12 0 0 0 2eq 0
U€2;012 = UC12,€2 0 C12 0 €2 0 0
U€27d12 = Ud12762 0 di2 €2 0 0 0
Ues,qi2 = Uguses 0 q12 0 0 2e9 0
Uerydin = Udppern || €2 €1 0 0 —qi2 O
Uqw,clz = U612,<I12 0 0 0 q12 2c12 0
Uga,dia = Udys,q1 0 0 q12 0 2d1o 0

Proor: Beginning with the V-operators Va(j)) = Vo, weset i =1,2,7 =3—-14 k= 3,4

For the first two lines we have Ve(f,zm = Vorer = Ve = Voy = Ve, = Ve = ‘41(182)781.. Then
Vig,e = Ve,us becomes Vfi)lz)qlz = q(lsz),clz and V,,, . = V¢ ,, becomes Vd(f;qlz = ‘61(152),7@2? Ve,e becomes
V) ya Vi remains Vf(f}); Viiw; becomes V425 Vi o, becomes V_(i)127_d12,
Viivs = —Vig0, becomes Ve(ﬁ?;m = _Vfi)12,ej§ Voiwa = — Vo, become Ve(:)—dlz =
negate the row in (1.5)]; Vi, = Vi Vj, becomes V;y(,éz = Vb(,s)Vb(f) [by Peirce relations, not translation].
Vb(s) =Voou = Voo, + Voo, = Vb(Z)Q + V;)(Se)l is obtained by adding the first two columns of V4 in (1.5).

‘/012 I Vd127 V

q12

and dually for V,, ,;
V(S)

~Viise, [so we

are most easily read directly from (5.4) [alternately, Vb(s) =Vou = Vour = V*) is the

b,u
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sum V})(Z)l + V;,(Z in (5.4)].
The U-operators are U 588 (x) = Ugp(z*), so we read their values directly from (1.5) with rows

with ¢ negated (due to ¢;2 = —wv3), columns vy, vy interchanged, column vy negated (but not
column ¢ = —wv3 since it is negated twice), omitting the m; since U](;)M = 0. Here Uéfg ;0 =

Uep,a* = Vy,a* = {v;,a*}, 12,cma = U, p,0* = =V,,a* = —{vsa*}, dually Uqu) 4y = 14,0 }
are read from (1.5).

Odd Products
Turning to the odd products, we introduce the abbreviation
gi :=2v; —3f =2¢; —3es (i=1,2).

Again (m n)(s) = (m s n) can be read off Tables (1.3), (1.9) using (m,s,n) = (m,u+ f,n) =
Eo((m, (u,m))) + Ex({m, (f,n))) = Eo({m,n*)) + Eo({m,n)), or by adding the vy, va, f-columns
of Table ( 5). This leads to (m1,m2)®) = 0+0+e = g2 and (m3,my)®) = 04+0+e =
q12, (m1,m3)®) = 040 —2v3 = 2c12, (m1,my)® = 0—3f +20; = gy and (ma,m3)®) =
3f +0— 21)2 = —4g2, <m2,m4>(5) =0+0- 2’04 = 72d12, thus

(5.6) (mis,nj3) = qu2, (M3, myz) = (—1_)j2012 (j=3—1),
' (miz,niz) = gi,  (niz,ny3) = (—1)72dy2,
(5.7)  Isotope Odd Product Split Odd Product
<.’ .>(8) m My ms mo <~, > mi3 ni3 m23 n23
my 0 g1 —2v3 e | mi3 0 91 2c12 qu2
My -0 0 —e  2v4 | ni3 -0 0 —qi2  2di3
ms 2v3 e 0 g2 | mag || —2c12 q12 0 92
ma —e  —2u4  —go 0 | no3 —qi2  —2d12  —g 0

Following the Shestakov model, we could write these in the more mnemonic form (for i # j € {1,2})

ci2 =t bﬁ’;), dyp =: ng), qi2 = b(m’n) with (my3, ma3) = ng); (13, na3) = QbYQL)v

(s ngs) = b5, (557, muz) = (b15), nis) = 0,

B85 nis) = (=1)7mys, (b3, miz) = (—1)nga, 0™ mus) = mys, 055°™ niz) = nys.

Quaternion Representation

The quaternionic structure for the isotope is still easy to describe in terms of the split basis. Under
the isomorphism ¢ of §2 our newly-ordered basis for M becomes m13, n13, Mao3, Nog = M1, My, M3, Mo
LN €11, €12, €a1, €22 and the action (2.1) takes the form

(5.8)  Split Quaternion Action A x H

Action of V on: e11  ela €91 €99
Ve, = Ley, eln ez 0 0

‘/62 = L€22 0 0 €21 €22
Vero = Leyy—e1n Reay s 0 ear 0 —enn
Vd12 = L€12—€21R612 —€22 0 €12 0

VQ12 = Lejstes €21 €22 €11 €12
Ves = 1m0 €11 €z €1 €

PROOF: In the isotope the actions are Va(s) = Vo, Vb(s) = Vou = WV, where V,, = V¢, 1, =
Leyytes s S0 recalling the actions (2.1) we see
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V) =V, Vi = Lewy Levyien = Leyys V) = Vi,V = Ley, Leyyteny = Loy,
V&) = ViV = Leyy e, Reny Lerpten = Lens—ero Reon

Vi) =V, Vi = Leyy—ens Ress Leryteay = Leys—eny Revss

V) Ve = Vi = Lonpsens V) = Via = Vi = Vy = 1y,

Thus the regular representation of the Va(s) as quaternion multiplications on H is precisely the action

of Table (5.3). [ ]

6 Split Triple Products

We now translate our tables for triple products in the standard K7g into tables for the split sK19. We
will see that all triple products are determined by bilinear products and the Peirce decomposition.
We noted in Remark 4.1 that the triple products with only one odd term are completely determined

by the Peirce decomposition and the bilinear products, of the form Vg, , = Vi Vg or Up = Up p =
Uy =0and Uy y = V4 on M, which can all be read off from Table (5.3). Alternately, &) = U, Us =
U, Va(,sjl = Vo' .U.a = Var o+ can be read off directly from Bimodule Table (5.5). By Remark 4.2,

triple products with two odd terms are outer Uy, na; = E;({((m,a;),n)) = E;({m,(a;,n))) or left
Vm,naj = Ej(<m7 <aj7n>>)'

(6.1) Split Two- or Three-Odd Multiplication Uns s, Var,m

U ,nD, Vin,np for p = el e2 c12 di2 q12 es mig n13 ma3 n23
[Um,np*; Vinn=pl for p* =] | [vg] [v1] [vs]  [—v4] [e] [f] [ms] [ma] [ma] [m4]
Umis,na3=—"Unss,m13 0 0 0 0 —3e3 q12 ma3 —2n923 —2mi3 n13
[(=Unmy,ma *
Umis,ma3=—"Umss,mi3 0 0 0 —3es 0 2c12 0 —ma3 0 mi3
[=Umy,ms *
Umis,n13=—Uny3,m13 —3es 0 0 0 0 2e1 —m13 —n13 0 0
[(=Um i, mq
Unag,mas =—Umagz,nas 0 3e3 0 0 0 —2e2 0 0 ma23 n23
[(=Umy,ms *]
Unss,niz=—Uniz,n03 0 0 3es 0 0 —2d12 —n23 0 nis 0
[(=Umy,my ]
Ung,n13:*Un13,m23 0 0 0 0 *363 qi12 72m23 na3 mi13 72%13
[:Umg,m4 *}
Um,m = 07 Un,m = _Um,ru Vm,nai = EijVnaj
Vimas,mas =Vai2,c12 0 0 0 q12 —2c12 0 0 mi3 0 —ma3
=7 Vmi3z,mi3 = ms,mJ
Vimis,nas=Vai2,e2 0 q12 0 0 2e1 0 0 0 mi3 ni3
=—Vhni13,ma3 [:le,md
Vings,ni1s=Vaiz,e1 q12 0 0 0 2ez 0 ma3 n23 0 0
=—Vhnas,mis [:Vmgymz}
Vnizmiz=—Vaia,dig 0 0 —q12 0 2d12 0 n13 0 —no3 0
— Vnagz,na3 = m4vm2}
Vimis,maz=2Veq ,c12 0 2c12 0 2e1 0 0 0 0 0 —2m13
:thml}
Viasnis=—2Vey dqo —2d12 0 —2e9 0 0 0 2n23 0 0 0
:sz,mﬂ
Vinog,miz=—2Veia,e1 —2c12 0 0 —2e9 0 0 0 —2meo3 0 0
[:VM&MS}
Viis,nas =2V, 5 es 0 2d12 2e 0 0 0 0 0 2n13 0
=Viny,ma]
Vimig,nis [=Vini,m,]|  2e1 0 2c12 0 q12 —3e3 0 —n13 —m23  —2na23
Vinas,mas [=Ving,m4] 0 —2es 0 —2d12 —qi2 3es3 2m13 n13 ma3 0
mas,nas [=Ving,mal 0 2e2 2c12 0 q12 —3e3 —mi3 —2n13 0 —no3
n13,m1s [=Ving,mgl| —2e1 0 0 —2d12 —qu2 3e3 mi3 0 2ma3 n23




18

PROOF:  This can be computed by brute force directly from Tables (5.4), (5.6).% More ele-
gantly, since Uﬁ)n(a) = Upn(a*), (m,p,n)® = (m,Usp,n) = (m,p*,n), and the action of U,Sf,)n
on my,mg, m3, My is just that of Uy, ,, on mj,mj, ms, ms = ms, ma, my, ma, the U-table follows

immediately from Table (4.5) by switching columns vy, vo (from v} = vy) and columns m;j, mg and

negating column vy (from v = —wv; for j = 3,4), and remembering that cj; = (—v3)* = vs.
We can similarly read off the V-operators directly from Table (4.5) via V(é) = Vi n+ [switch-
. . S
ing columns ml,mg, recalling that m} = ms, m 2 = my] so that Vysh)s,mw = Viims = —Vimg,m, =
S
Vm23,m237 Vm13,n23 =Viims = —Vingm, = V’ﬂ13,m237 Vn237m13 = Vinams = —Vimg,ms = —Vimasnas;
(s) =V = -V — (s) V(S) =V . V(S) =V V(S) _
n23,n23 — VYmz,m4 T mg,m2 T 713,113 mi3,Mm23 mi,mi» n23,Mn13 m27m27 ma3,mi13 T
. _ . _ (s) _ . (s)
Vm:s’mz’ Vn137”23 - Vm4,m4a Vm13,n13 - thmzy ‘/nzs,’m% - VM2,m17 Vm237n23 - Vm3,m47 anam’bls -
Vm4,m3- .

Remark 6.2 Because the Peirce spaces M;s are only 2-dimensional, all the odd triple products in the
split Kac superalgebra are completely determined by Peirce orthogonality relations and Reductions
from bilinear products.

Indeed, every triple (z;3, yis, ze3) for ¢,k,¢ = 1,2 will have a repeated index, hence by alternation
(0.1.2) is of the form (z;3,y;3, zi3) or (Xi3, Vi3, 2i3) or £(xi3,Yi3,253) for i = 1,2, j = 3 —i. But
(xi3,Yjs, zi3) = 0 by Peirce Orthogonality (0.2.1), (x;3, zi3, Y;3) = (%3, (zi3,Y;3)), while (z;3, i3, 2i3)
for basis vectors from M;3 must have a repetition since dim(M;3) = 2, where from Reduction (0.2.4)
we have (m,n,m) =0, (m,m,n) = (m, (m,n)) = —(n,m,m). This leads to the following reduction
formulas for all odd triple products:
(M43, miz, n43)
m;3, miSamj3>

= i3, M3, Mi3)
( =
(6.3) (M3, M4z, nj3) <m23,
( =
( =

( = (nis, (n;

<n7,'37 13, nj3> < <

(niz, naz, myz) = (N3, <mg, mj3>>
(nig, miz,mjs) = (ns, ( j
(miz, g3, mj3> =

mi3, N3, 153)

N33, M43, 1j3) 143, <mz37 7133) M3, (i3, Mj3)) u
We can translate Table (4.11) into a table of odd left multiplications for the split algebra, where

the identity e for B becomes u = e; + ea. (4.9) shows again that Va a + Var,a = Vi, outas, where

VMis,u = VMis,ei' Since in the isotope v1, v2, U3, V4, €, fa mi,ma, M3, My > €1,€2,C12, dea q12,€3,M13,

(5) : h *

no3, mag, iz and V ° = Vin, b« with eq, €2, c12, di12, 12, €3, M1z, na3, mag, nag — €2, €1, —C12, —di2,

q12, €3, Ma3, Nag, M13,N13, the 8 odd left multiplications reduce to:

les,qlz = Vinsg,es = Viig,ers = Ves,mass un,m23 = Vermis = —Vern,nas = Vingres
(6 4) Vnzz,thz = Vm23,d12 - Vn13,€1 = Vres’n137 %12,”13 = _Vdm,mla - Vvez’ﬂzs - VTL237637
Vinass,aiz = Vimaz,er = —Viag,ero = Vesmass  Vaiaimas = Veamas = Veramis = Vinag,ess
VTL137(J12 - _Vm137d12 - Vn237€2 = V€37n23’ ‘/1112,’”23 - Vd12,77l23 — Vei,miz — Vn137€3’
leading to the following brief table of values of these odd left multiplications.
8The computation uses the formulas (z;3, e;, yi3) = —30(x43,Yiz)es, (Ti3,e3,Yi3) = 20(x;3, yiz)ei, (Ti3,e€j,Yi3) =
(xi3, A12,¥i3) = 0, (xi3,e4,y53) = (®3,ej,y;3) = 0, (i3,e3,¥;3) = (43,¥53), (Ti3,012,¥53) =

—30({xi3,a12),y;3)es = —30(x;3, (a12,y;3))e3 resulting from Peirce Orthogonality and Triple Reduction.
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(6.5) Odd Left Multiplications (M, A, Jy = (A, M, J)

Vina(z) for z = || e €2 c12 di2 q12 e3 mi3 n13 Mag  No3
Vinas,el mi3 0 0 —MNg3  Ma3 0 0 —3e3 0 0
Vn13,81 nis 0 mas3 0 na23 0 363 0 0 0
Vinas,es 0 mo3 0 n1i3 mis 0 0 0 0 —3es
Vias,en 0 No3  —M13 0 n13 0 0 0 3es 0
Vm13 €3 0 0 0 0 0 mis 0 261 2612 q12
Vn13 e3 0 0 0 0 0 nis —261 0 —q12 2d12
Vm23’e3 0 0 0 0 0 mas —2612 q12 0 262
Vn237€3 0 0 0 0 0 Nao3 —q12 —2d12 —262 0

PROOF:  This is just table (4.11)with the mg,m4 columns and mq, mg rows and mg, my rows
switched, and the vz column negated. Alternately, the values for V,,, c.a = V;,a and V,,, o0 = Uy, na
can be read off (vertically) from (1.3), [note Vas s B = 0, V;, ¢ f = m] and from the f-column of (4.5)
[or from (1.9)]. [ |

7 Inner Super-Derivations

We will compile a table of inner super-derivations D = Dy+D; = alsg+Y Vy, ., with D(1) = 0. An
analysis of all derivations of the Kac and other simple superalgebras has been carried out by Michael
Smith [8] in general, and by G. Benkart and A. Elduque [1] for the Kac algebra in characteristic
# 2. Recall that by Grassmann detour D = Dy + D; is a super-derivation of a unital quadratic
Jordan superalgebra J iff D := 79 ® Dy + 71 ® D; is a derivation of the Grassmann envelope for
all 7; € I';. Intrinsically, the conditions amount to the following conditions for the homogeneous
components D; on homogeneous elements z,y, z € ['(J):

Di(z,y,z) = (Di(x),y, 2) + (=1)"(z, Di(y), 2) + (=1)""*¥(2,y, D;(2)),

D;(Uyx) = (D;(a),x,a) + Uy,D;(x), which imply

(Di,Vay) = Vpiayy + (=) Vu Doy, Dilw, 2) = (Di(x), z) + (=1)" (x, Di(2)),
Di(1) =0, Di(a®) = (Di(a),a).

(7.1)

By a Grassmann detour,” the left multiplications V; = Vi, (i = deg(s) + deg(t)) belong to the
structure Lie superalgebra, satisfying

Vilw,y, 2) = (Vi(),y, 2) = (=1)" (@, V" (), 2) + (=1)"T¥(, 9, Vi(2)),
Vi( ax) (Vi(a), z,a) = (=1)'Ua Vi (z), Vi(a®) = (Vi(a),a) — Uavi,
(
(

7

(7.2) ‘ ‘
Vil{z,2)) = <V2($),Z> — (=", vi, 2) + (=1)" (2, Vi(2)),

Vi(l) = (=D (1) = (s, t) = v (V7 = Vi),

The map Vs is itself a superderivation iff v; = (s,t) = 0, since a general inner structural map
W; = 3 Vi, 1, is a superderivation iff W;(1) = Y (sy,tx) = 0, in which case Wj = —(—1)'W.
Automatically all Dy, ,,. = Vo, 4. — (—1)¥ Vy; . and all Dy, == Vi, p, for odd m are super-derivations
[since (x;,y;) = (—1)" (y;, x;) by supersymmetry (0.1.1) and (m, m) = 0 by odd alternation (0.1.2)],
as are all Smith derivations of the form V, for 2z = 0 (see [8] for more on this phenomenon), in
particular nV, if n € ®y1 = {n|2n = 0}, so in Inder(J) we have the standard inner super-derivations

9Tnner maps which kill 1 are derivations of the superalgebra because their extensions to the Grassmann envelope
remain inner maps which kill 1, hence are derivations of the quadratic Jordan algebra. The superskew condition
W; = —(—1)!W; alone is not enough: together with W; 4 (—=1)*W;* = Viy, 1) it implies Vi (1) = 0,2W (1) = 0, but
in general does not imply W (1) = 0.
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Dr :=Vinm, Dmn = VmntVam, Dap = Vap—Voa, S(a’):= Ve inInder(J)o,

7.3
(7.3) Dpo ' =Vim.a—Vam, Sm :=Vy inlnder(J); (for 2a¢ =2m’'=0).

In general, the odd V,, , do not contribute many new inner derivations, since they are skew-
symmetric by Switching (0.1.1): we have general rules

Dayo=0, Dyy=—(—1)"Dy 5, D1 =0, Voo — Vo € Inder(J) if (m,n)={a,b},
Ifa,b e A have {a,b} =0 then Vo p = —Vp o € Inder(J)o with Dy = 2V,
Vinon = Vam = Vinmy €Va,  2Vian = D + Viny € Dy + Va,

Vap =Voo =0 if a € As(e;), b€ Ap(ei) (50 Daey = Deyep, =0).

(7.4)

using Peirce Orthogonality (0.2.1) and noting that {a,b} = 0 implies V(1) = {a,b} = 0 and
Vi,a = Viapy — Vap [by Switching (0.1.1)] = =V, p, s0 Dap = 2V, .

In the particular case of the split Kac superalgebra J = sKj9(®) the odd standard and even
Smith inner super-derivations reduce to

(75) Dm,eg = _Dm,uv Dm,b = D(m,b),u = A(m,b) for Ay, == Dm,u = Vm,u* (u* =Uu— 63)7

since by (4~8) Dm,b = Vm,b - Vb,m = V{m,b}7u - Vu7<b7m> = D{m7b},u and Dm,eg = Du,m = _Dm,u
with Ay, := Doy = Vinw — Vum = Vinw — Vinyes = Vinu. [for reassurance, note (m,u,, 1) =
(m,u) — (m,e3) =m —m = 0 so this is indeed a superderivation].

With this notation out of the way, we can describe all the inner super-derivations.

Inner Super-Derivation Theorem 7.6 The space Inder(sKig) = Zo ® I; of inner derivations
of sK1g is T = (ospl’g(tb) ® <I>[,u]) @ Do(D2y),
IO =D& D’ © Do((I)QJ_) = 812((1)) ©® sl2(<I>),u © DO(@QL) = (SZQ((D) ® <I>[,u]) ©® DO((I)QJ_)

L =E@E 2 M ® My 2 V()@ V(Q) =V(®) @[] (V(D):=P?)
where u is a scalar in ®[u] with u?> = —1. Here the even inner derivations are built from1°

D:= @i:172,3 ®D; for Dy := ‘/;12,11127 Dy = %12,(112’ D3 := De,,,d1,,
where we have alternate descriptions
D3 = 3(‘/(!12,(11271M)+V617Vm13,n13 = 3(‘/012,d1271M)+V€27Vm23,n23;
(761) D= ®i=1,273 (I)D; for Dy := Deyero=Vei—es,010 D/2 = Deydyy=Ve,—e2,d1s>
DiIS = _D617q12:VQ12,61*62;
Do(®21) consists of all Do(n) 1= Spe, = nVe, (1 € Par)
(so Dy =0 if ® has no 2-torsion).

The odd superderivations are built from

&= ®i=1,2 DA; f07' Ay = Amls = lesyu*a Ay = Anls = ans,uw

(7.6.2) E =@y, ®AL  for A= Apyy = Vi Ab = Ay = Vi

The action of the inner derivations on the split basis is given by the table

10Note the symmetry between D! and D), but the asymmetry between D1 = Veiy,q10 and Do = Vg, 010 =
—Vii2,q12-
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(7.6.3) Even Inner Derivations Zy (k:=e; — e2)
D [ e €2 C12 di2 Q12 es [ miz s mag3 n23
Di=V¢15.q10 0 0 0 —q12 2c12 0 0 —mi3 0 ma3
D=V, dy» 0 0 Q12 0 —2dq2 0 —n13 0 N23 0
D3=D.,, 4, 0 0 2c12 —2dy2 0 0 mi3  —N13 Mo —n23
D/1:Vk7612 —C12 C12 0 k 0 0 0 —Mmas3 0 —mis
DIQZVk’dlz —dlg d12 k 0 0 0 Na3 0 ni3 0
D=V, & G122 —q12 0 0 —2k 0 mM23 no3  —Miz  —Ni3
Do(n)=nVe, 0 0 nNc12 ndi2 Nq12 0 0 0 NMas  NNas
(2n=0)
Odd Inner Super-Derivations Z;  (h; := 2¢; + 3e3)

A=A, mi3 0 0 —Nog Moz —Mi3 0 —h1  —2c12  —q2
Ao=A,, , n13 0 mM23 0 n23 —ni3 hy 0 12 —2dys
A=A, 0 mo3 0 n13 miz  —ma3z || 2ci12  —qi2 0 —ha
Ab=A,,, 0 noz  —M13 0 n13 —M23 C12 2dy9 ho 0

To make the multiplication table of Lie super-brackets [D, E]* = DE — (=1)PPED for the Lie

superalgebra of inner derivations appear more familiar, we introduce E; := A;, E! :== A, EXCEPT
Ey = —Ay (), and obtain
(7.6.4) Lie Superalgebra of Inner Derivations

Dq 0 Dg —2D, 0 D; —2D] 0 0 FEq 0 E]

Dy|| =Dy 0 2Dy | =Dy 0 2D, | 0 E, 0 B 0

Ds || 2D, —2D, 0 oD,  —2D, 0 0 E,  -BE, E  —E

D0 D, —2D]| 0 —D; 2D, | nD] 0 E 0 &

Dy| -py 0 2D, | Ds 0 2D, | 4D, | E, 0 —E 0

Dg 2D/1 —2D/2 0 —2D1 2D2 0 T}Dé Ei —Eé —E1 E2
Do(m) | 0 0 0 nDy  nmDy  nDj 0 0 0  nEy  nkj

E.|] 0 B B | 0 -E, -E | 0 | -2D D; -—2D, Dj

E || B, 0 E, | —E, 0 B 0 Dy 2D, D, 2D}

Ei 0 —Eé —Ei 0 E2 E1 ’I]Ei —2D/1 Dé 2D1 —D3

B, | -E, 0 E, | B 0 -B | nE, | D, 2D, -D; —2D,

The standard

inner derivations reduce to 10 in Dps, 6 in D a, and 4 in Dy 4 which can be written

in terms of the D;, A\; by

(7.6.5)

PROOF:

noting Vp,, u.
= ‘/;1,b12 - %12761

Del,blz
to show that

Dy = =D,y = Dr, Dy,y = =Dp,y = Do,

Dipigmas = 2Dciz,e0 = 2D/17 Drignzs = 2Dy e, = 2D’2,

Dinsgnis = =Dmiginas = Vaiser—es = Déa Dingnis = Dmagings = Deigdis = Dss
De, by = —Deypry = Ver—en by, €D (b12 = c12,d12, q12),

D€1762 = Des»A =0, D0127Q12 =2Dx, an-,dn = 2D, DC12,(112 = Dy,

Amlf} = Ala Anlf} = AQa Amzs = A/la Anzs = A/Qa

Sz/ (S Span(DZ—7 Az) : Sn62 = .D()(77)7 Sneg = Snu = 77D3, 57761 = Snu — S’I’]627

Shers = nD1, Sndiz = nDs, Snars = nDs,  Spy = Apy.

The table (7.6.3) can be read directly from (5.5) for D;, D and from (6.5) for A;, A}
= Vpis.ei—es). That the D] have an alternate description in (7.6.1) comes from
= Verbis — Vesbis = Ver—en,byp fOT b1a = C12,d12, —q12. It is more work
the three expressions for Ds in (7.6.1) agree: from (6.1), (5.5) Ve, — Vinysnis Sends

the ordered basis for sK to (261 — 261, 0— 0, C12 — 2612, d12 — 0, q12 — 412, 0 + 3637 mi3 — O7 nis +
n1s, 0-+maz, 04+2n23) = (0,0, —c12,d12, 0, 3e3, m13, 213, Mag, 2n23), while Ve, — Vi 1,y also sends
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the ordered basis to (0 —0, 2e9 — 2e9, c12 —2¢12, d12 — 0, q12 — q12, 0+ 3es, 0+ mq3, 0+ 21413, Mag —
0, nag + ngg) = (0,07 —012,d12,07363,m1372n13,m23,2n23), while 3V, , 4,, — 31 sends the basis to
3((1 — 1)61, (1 — 1)627 (2 — 1)0127 (0 — 1)d127 (1 — 1)(]12, (0 — 1)63, (1 — 1)’)’)7/137 (O — 1)’)’L13, (1 —
1)mas, (3 — 1)n23) = (070,3012, —3d12,0,—3e3,0, —3n13, 0, —3n23). Adding these shows that the
second and third versions of D3 send (61, €2, C12,d12, q12, €3, M13,N13, M3, n23) to

(7.6.6) (0,0,2c12, —2d12,0,0,m13, —n13, Ma3, —n23),

which is precisely where the first version D3 = Dc,,,d,» = Veis,d1o — Vdiz,c1, Sends it by subtracting
two rows in (5.5).

From this table it is easy to see that the transformations D;, D}, Do(®), A;, Al are independent
over ® [8]: if D = Dy(n) + Z?Zl o;D; + Z?‘:1 oD = 0 then identifying coefficients of ¢12,d12, ¢12
in D(e1) = 0 gives o} = o = of = 0, identifying coefficients of ¢12 in D(c12) = D(d12) = 0 gives
a1 = ag = 0, the coefficient of ny3 in D(ny3) = 0 gives ag = 0, and finally the coefficient of ¢15 in
D(c12) = 0 gives n = 0, so that D vanishes iff all its coefficients vanish. Similarly, since A,,(u) = m
if A = Z?Zl ;A + Z?zl AL =0 then 0 = A(u) = aymis + aeniz + afmas + ahngg implies all
a;, o = 0.

First we check that the D;, A; are actually superderivations. This is clear for the standard
D3, D; by (7.3), for the A; by (7.5), for Do(n) = Sye, by (7.3), and for D, Dy by (7.4) since
{c12, 12} = {d12,q12} = 0.

Next we check that the space £ spanned by these 7 even and 4 odd superderivations span all inner
derivations by giving explicit expressions (7.6.5) for the standard inners. From (7.3) we see there are
10 basic even standard inner derivations D,,, Dy, ,. The 4 basic even D,,,, = V,,. m,. reduce by

(6'1> to Dm13 = _szs = ‘/Clz,thz = _VQ12,012 =Dy, Dclz,qlz = VYC12,Q12 - VQ12,012 = 2V6127Q12 = 2Dy,
analogously Dn23 = _Dn13 = ‘/;11271112 = _lez,qw = Do, DQ127d12 = ‘/:1127d12 - lez,qu = 2‘/;112@12 =

2Dy. For the other 6 basic Dy, m,;, we have by (6.1) that Dy,\smes = Vingsimes + Vinasmis =
2V617012 72‘/612,61 = 2D€1,C12 = 2D/1? Dn137n23 = Vn137n23 +‘/nzs,ﬂls = 2Vd12,€2 72V62,d12 - 2Dd12,62 -
2D/27 and Dy nos = Vinggnas + Visgmas = ‘/:112762 - Vq12,€1 = _‘/;112761762 = _Dé which also equals
—~Virsimas — Vinas.nis = —Dmas,nys- From adding two rows in (6.1) and subtracting two rows in (5.5)
we see that Doy nis = Vinisnis T Vigs,nis 108 @ = 1,2 both mysteriously coincide with D3 as in (7.6.5)
since they all send the ordered basis for sK1g to (0,0, 2c12, —2d12,0,0,m13, —n13, ma3, —na3).

In view of (7.4) there are 6 basic even Dy, o, with a; > a; [in the order e; > ci12 > di2 > qu2,
since D4 ey, = De, e, = 0 by (7.5), while D¢, p,, = —De, b,,], and for these we have D, 3,, € L since
‘/El,blz - %12,61 = ‘/El,blz - %271712 = ‘/;1*62,17127 and by (74) we have D = 2Dy, Ddl2,¢112 =
—2Ds, Deyy.ay, = Ds.

To see (7.6.5) for the even Smith derivations, ' = > aye; + Bic12 + Badia + O3¢12 has 24’ = 0 iff
all n = a;, 3; € ®o1 [by freeness of A as ®-module]; here!!

(767) Snes = Snu =nD3 =04 & nlyy, 5771712 = 17‘/2,12’]@ = nd,blz (/ﬂ =e1 — 62)

C12,412

since (7.6.3) shows nD3 vanishes on A [from 2n = 0] and is 1 on M [from n = —7)], and the same
holds for Sye,, Sy since Ve, = 21,V,, = 0 on ®e3, Vo, = 0,V, =21 on B,and V., =V, =1
on M. Also Sﬂblz = 77%1271 = %12761-"-62 = 77‘/1712,61—62 [by 2n = O] = n%m,]f = _ndth [by
Switching (0.1.1) since {k,bi2} = 0] = +nViy,, [since —n = n]. This yields the formulas (7.6.5)
for Sye,, Sness Snus Sners Sybra (12 = c12,d12, ¢12), so each piece of Sy lies in £. The odd Smith
derivations are absorbed as in (7.6.5) since Spy = Vi = Vir 1 = Vil utes = Vil w4265 = Vil =
A, when 2m’ = 0.

For the odd standard super-derivations, in view of (7.5) Dy 4 and Sy reduce to Ay spanned
by the A;, A}. Thus all standard inner derivations lie in £ C Inder(sK7q) as stated in (7.6.5).

Now we check that space £ contains all inner derivations (not just the standard ones). Setting

12

Vaa :=Vaa+ Plk,, for convenience,"” we first note

11'When ® has characteristic 2 then 1 € ®, .1, and S is the surprising Smith derivation 04 @ 1,7.
12Note that if 1 € @ this latter term is unnecesaary since 15x,, = $V1,1.
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VA,A —+ VM,I\/I g ®Vm137n13 —+ @szs’n23 + ‘7A7A g @D;} + ‘7A7A g E + vA,A?
VA A C (I)Veg + @1 + V€17B12 + CDVC127d12 + L.

Indeed, Table (4.5) shows that all V,,,,, lie in Vi p except for Vi, ns and Vi mis = Vinignis —
Vimiz,nis) = Vimiznis — Vai € Vinisnis — Va, where Vi 0 € VA7A D3 by (7.6.1). All terms of V4 4
fall in £ up to the 4 terms indicated in (7.6.8) because

‘/937 q)veg,eg = ‘I)Ve3, ‘/63 = 21*‘/@1 7‘/627 ‘/;31 = *‘/;32+V(:12,d12+vd12,012
V:fz,A—’_VA,ez = ©V62+‘/€2,312+V312,€2 =V, + VBIQ-,el +V817312’

‘/€17A+VA e = PVe, +Vv€1,B12+VB12761’ V3127€1 = VE1,B12_‘/€1—€2,B12 = ‘/617312—’— Z?:l (I)ng
VB12,312 - @%12 q12 +@Vd127q12+@%12,d12 + (I)Vd121612 = Z?:l @Di+q)‘/;12,d12a

Vmoa+Var CVaru + Vides € At + Ve,

(7.6.8)

Finally, we check that an even inner map D = a1 4+ nV,, + aaVe, c1p + @3Ve, a1, + @aVe, qp +
a5Veys.d,, 18 a derivation iff a; = 0 and 2 = 0: D(1) = ay(e; + ea + e3) + 2nes + azcia + asdiz +
asqiz + as(e; + ez) vanishes iff o = ag = a3 = a4 = a1 + a5 = a1 + 2n + a5 = 0 [identifying
coefficients of es, ¢12,d12, q12, €1, €2], which reduces to all o; =0, 2n =0, i.e. D =nV,, € Do(Py1)
and hence D € L. Similarly, an odd inner map D = V,, ., is a super-derivation, i.e., D(1) = 0, iff
m =0, since D(1) = {m, e3} = m.

The table (7.6.4) of Lie superbrackets results from straightforward calculation using the definition
of the D’s, the action table (7.6.3), and [D;, Vuy]* = Vb, (2),y + (=1)Vy py(y)s [Dis Val® = Vb, (2
from (7.1). For the even products note that

(769) 2‘/0127(112 - Vk:,k = 2‘/012,1112 -V

q12,912

since from k? = ¢® = u we have 2Ved—Vik =2Vea—Vu =2Vea—Vieay = Vea — Ve [by Switching
(0.1.1)] = D¢ g, similarly 2V, 4 — Vy o = D.q. Note also that [D, Do(n)] = nVp(e,) where D(es) =0
for D = D; and D(e2) = b1y for D = D}, where by (7.6.5) nV4,, = nVip,, = nD;.

For the mixed even-odd products, we show that the A,, span a 4-dimensional space Z; naturally
isomorphic to M, with the adjoint action of Zy on Z; isomorphic to the action of Z; as linear
transformations on M:

(7.6.10) (Do, Am] = Apy(m)
since [_DO7 Vmu*] = VDo(m)yu* + VWL,Do(u*) = VDo(m),u* = ADO(m) [by (763) D[)(63) = DO(U) =0 so

Do (uy) = 0]. Thus Z; = M as Zp-modules.
For the odd products, we have

=D

c12,d12

(7.6.11) Afn = _Vm m = —Dm, <Am7 > Dm n
By a Grassmann detour V, oV, .2 = Vi Uanx + (=1)*Up nUp, so by Alternation (0.1.2) and
Uy,m = —m we have A2 z = VT% = —Vm® + (=1)"UnmUu,,, & = =Vinm = —Dp, hence by

1
linearization (A,,, A,) = —D,y, . This, together with (7.6.5) (remembermg that D, , is symmetric
in m, n), shows that

<E17 E1> :2E%7 (El) (A1)2 = A%llg = _Dm13 =—Dy,
(En, Ba) =2E3, (E2)*=(-02)% =A%, =—Dn,, = Dy,
<E1’Ei> ZQ(ED ’ ( )2 = (A3)2 = 37123 = _Dm23 =Dy,
(B3, E3) =2(E5)%, (B3)?= (A1) =A7, = —Dn,, =D,
(7.6.12) <E1, E3> - <A1, 7/A2> - <Am137 7An13> = DM13,n13 = D3, ,
<E17E1> = <A17A1> - <Am137Am23> = _Dm137m23 = _2D17
<E17 Eé> = <A17 A/2> = <Am13’ An23> = —Dmign = Dé’ﬂ
<E2’ Ei> = <_A27 A,1> = <_An13aAm23> = Dnyg,mas = Dé’
<E2’ E§> = <_A27 A/2> = <_An135 An23> = Dn13,7l23 = 2D/27
<E13Eé> - <A/17A/2> - <Am237A 23> = —Dimyynas = —Ds.
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Finally, we turn to the isomorphisms mentioned at the beginning of the Theorem. We have
To=Lo= (X, 8D) @ (X, ®D;)@Dy(®) = DOD' G Do(P21) = sla(P) D sla (D) Do(P21) =
(sl2(<1>) ®<I>[,u]) @ Do(®2 ) for u? = —1 because immediately from the table that [D,C'] = [D’,C] =
[D,CY, [D',C'] = =D, C] and D 2 sly(®) via Dy, Do, D3 — FE1a, Eo1, E11 — E22. In characteristic
# 2 (no 2-torsion) ®o; = 0 and the Lie algebra Zj is free of rank 6. In characteristic 2 it is free of
rank 7 since &y = &.13

The odd bimodule Z; = (Z?Zl PE;) @ (Zle PE]) = €@ &' is isomorphic to V(®) & V(P)u =
V(@) @ ®[u] for V(P) = ®v; & Dug the standard bimodule for sly because (once we carefully replace
Ag by —Aj) we again immediately read off from the table that [D, E'] = [D, E|', [D’,E'| = —[D, E]
and € = V(®) via E1, Ey — vy, vo. Thus as bimodule we have Z = Do(®51) @ (sl2(®) & V(®))[p].
Here V(®) X ®F 3@ PFEa3 = O(E15 — Es3) @ P(Fa3 + E31), s0 sla(P) & V(®P) can be identified with
the set of all 3 x 3 matrices

a [ |e€
vy —a |
6 —€ |0

which is osp; 2(®) (turned upside down). Under this identification the (symmetric) odd Lie super-

products also correspond: The matrix product (e(E13 — E39) 4+ 0(Eas + E31))2 = —€2F15 4+ 6%Fo +
66(E11 — FE33 — Fog + E33) = 6(5(E11 — EQQ) — 62E12 + 52E21. On the other hand, (EEl + 6E2)2 =

AZ (m := em3 — dny3) [beware the minus] = —D,, [by (7.6.11)] = —(¢2Dynyy — €0D 5 nys +
52Dn13) = —62D1 + edD3 — 52(—D2) [by (765)] — —€2E12 + 6(5(E11 — Ezg) + (52E21. Thus
D & € = o0sp1 2(P) as Lie superalgebra. [ ]

Note that this inner derivation superalgebra of sKiy is not the same as that of the ordinary
Kip (found elegantly in [1, 2.8, p. 3213]) where pu? = +1. Here Inder(sKig)o = Inder(B) =
Der(J(Q,u)) = {D € Instrl(J) | D(u) =0, Q(D(b),b) = 0 for all b € B} is the “isotropy subalgebra”
of the inner structure algebra at the point u, while the usual Inder(sK1g)g is the isotropy subalgebra
at the point e. Our split superalgebra is an isotope of the standard one, and while in general isotopes
share the same inner structure algebra V}S} = Vyu,7 = Vj 7, they are sensitive to isotropy: in the
standard Ko the basepoint e lies in the bilinear radical of @ in characteristic 2 (Q(e,J) = 0),
whereas in the split algebra the basepoint u = e; + ea does not (Q(u,e1) = 1).

8 Imbedding the Split in the Standard Kac Superalgebra

Finally, we show how over an algebraically closed field ® of characteristic not 2 the split isotope sK7g
can be imbedded inside the standard Kac superalgebra K. By the usual Grassmann detour, two
isotopes J(@, J®) by even elements a,b € A are isomorphic if the elements a~', b’1~are conjugate
under the inner structure group of J (since (1®7)(1®a~') = 1®b~! then holds in J for structural

1®T), and in our case 7(8) =~ J since s € A has a square root ¢ in A.

Imbedding Theorem 8.1 If ® contains T with * = —i then ¢’ := U; : K19 «+—— sKig is an
isomorphism of Jordan superalgebras (in both directions) for

(8.1.1) t:=v+f, v:=r1(e+iu), v? = u = v + g (i := —2712).

In this case ® also contains \ such that
1—14 1+14
L

2 2

1
227 =1, X =——.
1 ; 1

(8.1.2) A= i?=-1

)

13Then sly(®) is nilpotent, and Inder(sK1¢)o is solvable but not nilpotent: I(()1> =|D,Zo] = ®D1 + ®D2 + ®D3 +
oDy, 78 = ®Dy, (P = 0, but [Do(1), Dy + ® D2 + ®D}] = ®D; + Dy + D},
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PROOF: By choice of 7 the element i := —272 has i®> = 47* = —1 and 272 = —i> = 1. Then
v2=72%(e+2iu—e) =27%u =u. Thus U;(171) =t? =v? + f =u+ f = s = s~! and at the same
time Ups™ = Uy(t?) = (t?)? = s> = 1 = 17!, and ¢’ is an isomorphism of superalgebras in both
directions. [While ¢’ is not an involution, ¢'? = U, = * is an involution on .J.] If we define A := 1%
then ‘A = %, A2 = % = —%, 202 = -2 =1\ = é = —i and A\ is another fourth-root of
—i with the same i.

The isomorphism ¢’ must take the split basis {e1, ea, 12, d12, q12, €3, M13, N13, Mag, nag} = {v1, v,
—v3, V4, €, f, M1, My, M3, ma} to a split basis inside Kq¢. Here ¢’ = U,y reduces on B = Aq14124922
to U, = N(Ue + iUey — Uy) = N(1p — % +iV,,), while on ®e3 = ®f it is just Uy, and on
M = Mz + My it is Uy ym = Vom = (v,m) = A((e,m) + i{u,m)) = A(m + m*). If we set
k:=wv1 —v2 (asin (7 6.2)) we get a split basis

e @' (v1) = N (v1—va+ie) = §(e—ik), es =¢(f)=Usf =,
ey = go’(vg = )\2(02 —v1+ie) = L(e+ik), mis = ¢’ (m1) = Mmi+img),
(8.1.3) cly = @' (—v3) = A2 (—v3—v3+i0) = ivg, nis = ¢’ (mg) = A(mg+ima),
o = @' (v4) = N2 (v4+v4+i0) = —ivg, mhs = ¢'(mg) = A(mg+imq),
dis = ¢'(e) = N2 (e—e+i2u) = u, nhs = @' (ma2) = A(ma+imy)
inside K1p. |

Remark 8.2 In characteristic not 2 this means the two algebras sK1o(®) and K1o(®) are isomorphic
as Jordan superalgebras over ®, and the split scheme sK1q is a Z-form of the standard scheme K.
But the split and standard algebras in characteristic 2 do not become isomorphic under any scalar
extension (they are not forms of each other): the condition b* = T(b)b — Q(b)1 = —Q(b)1 € ®1
satisfied by the standard Ko in characteristic 2 (due to the traceless nature of Q) will persist
in all scalar extensions, and Kig will never be able to grow 3 reduced supplementary orthogonal
idempotents. [ |

Another imbedding (another Kac basis) creates the splitting idempotents eq, e; more naturally
from the element u = vy + vq: if L € ® then Jord(Q,e) is a degree 2 Jordan algebra whose identity
can be decomposed as a sum of two orthogonal idempotents

(8.3) el i=1(etu), e i=Lle—u), ey :==f, u:i=uv+vy, u’=e=e +es.

Then e, ef, e} are Supplementary reduced orthogonal idempotents in Ko(®) and A is a degree 3
Jordan algebra with unit 1 = e + e} + €4; the Peirce decomposition of Kjo(®) is

Kio(®) (@Z 1 A @Alg) ) (M13 @ M23), where for w := v — vg
B = Jord(Q,e) =A11 D Aoy ® A1a, Ay = @e;’, Aig = dw ® Pvz O Doy,
(84)  Q(a") =ei1eat+a’—azay, T(d")=e1+e2 forad’ = e1el+erel+aw+aszvs+agvy,

w? =—e, {w,v;}=0, ’UJ2» =0, {vs,v4}=e€ (j=3,4)
v =wg, vi=wy, ef*=¢l, viy=—via (for v=w,vs,v4).

The original basis {v1,ve, vy, v4, €, f,m1, Mo, m3,my} for Klo(E) is not adapted to these new
idempotents. Over an algebraically closed field of characteristic # 2 (where we are seeking the
“true” split superalgebra; all we need are i = /—1 and \/5) we obtain another split Z-basis for

K10(®) (cf. (5.2)):

e = 4(e+vr+u) = 3(e+0) ¢s =1,

ef =ie—vi—v)=1ie—0),  mly = L(mitms),
(8.5) cly =g, iy = gy (matma),

= i, mifs = 5 (mi—ms),

¢y = i(v1—v2) = iw, ngs = Z(ma—ma).
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One can check that the multiplication table for the basis (8.4) is the analogue of (5.4), (5.7) directly
from Tables (1.3), (1.9), (1.12); more conceptually, this holds because there is an inner automorphism
of J with ¢(z’) = 2 for each element of the split basis.
Theorem 8.6 Ifi =+/—1, V2 € ® we can define A1,y € ® related to \ := % of (8.1.2) by
AL = 1\;51 =2, A= 1—\;%” =i\2, which will then satisfy

Mla=1, M =—i, ANM=i I\=

(8.6.1) i X
7@, )\AQ = E

If we set v := Ajv1 + Aove + f, then the map ¢ = UsUyy s is an inner automorphism of K1o(®)
sending the split basis (8.1.3) to the split basis (8.5).

PRrROOF:  The formulas (8.6.1) follow by standard calculations with . Already *' := U,y
for v := A\v1 + A2 is an involutory inner automorphism since v? = AAz{vy,v2} = e implies
(v+ f)? = e+ f = 1. Composition with the involution * = U, then yields an inner automorphism
of superalgebras . To see that ¢ does transform z’ to z”, note that «' = U, + U, 5 + Uy for
U, = \2U,, + \2U,, + M AUy, vy = —tUy, + iU, + Uy, 4,, so that on B 1) sends

e—— —0+0+{v,m}=c—>e,

v; — —0+1ve + 0 = vy — 207,

*' . . * .
vy — —iv; + 0+ 0 = —tvy — —ivg,

*! *
v3 — —0+0—v3 = —v3 — v3,

*/ *
’U4—>-O‘|‘O—’U4:—U4—>’U47

k=wv1 — vy — iv; — (—ivg) = i(v1 + v2) = il
u=v1 + vy — w1 + (—ivy) = i(vy — v2) = iw,

(note that with respect to €/, €} the element k = v —wvy is “diagonal” and u = v+ is “off-diagonal”,
while with respect to e, e} the element w = v; — vs is “off-diagonal” and £ = vy + vs is “diagonal,”
hence their new names), and hence ¥ sends €| = (e — ik) 2, e+ 0) =€, ey = 1(e+ik) v,
Lle—10) = e, iy = ivs 2, ivg = ¢y, diy = —ivyg 2, —ivg = dYy, ¢1s = u 2w = qly as
claimed. On ®f we have ' = « = U = Uy sending

f> =7
as claimed. Finally, on M the involution %" becomes U, ¢y =V, = MV, + A2V, so ¥ sends
my “Lo+ Aoz —— Aomy,
mo = Aimg+0 = A1ma,

*! *
m3z — Aymq +0 — A\ymg,

*, *
my — 0+ Aamg — Aamy,

and hence sends mi; = A(my +im3) — AMamy +idimz = L (my +m3) = my3, njz = A(ma +

imQ) — AMamyg + IAA\ My = %(m4 + mg) = 77,/1/3, m’23 = )\(mg + iml) — AA\1m3 + iAamy =
< (m1 —m3) = mas, nhy = A(mz + ima) — Aima + idamy = —£(ma — my4) = ny; as claimed.
|

The quaternion action (5.7) of sK10(®) on M can be duplicated in Kjo(®) using the above
basis. The element ¢ = H ,11] has /2 = 1 and determines an involutive isomorphism  of
H = My(®) with ¢(e;;) =: fi; another family of supplementary matrix units for H, with f1; =
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%H %]7 fa2 = 3 [—11 711], fiz2 =3 H :H ;o fa=% [—11 —11] so that ejo—eg; = § [_013)] =
faa—fi2, enn—exn =1 [§ %] = fietfor, entean =1[18] = futfiz, en—en=1[40] =
footfor,  2e11 = futfiotfotfo, enten = 1[J1] = fui—fi2, exn—en = %[8711] =
fao—fa1,  2e22 = fri—fia—far+fa2, eratear = 1[0 = fii—fa2,  2e12 = fii—fiz + fa1—fo2,

2e91 = fi11+f12—f21—f22. In these terms the regular quaternion action (2.1) of A” on M is Ver =
%(1 + Wi+ ‘/2) = %L(€11+€22)+612+621 = %L(611+621)+(622+€12) = %L(f11+f12)+(f11*f12) = Lf117 ‘/;é" =
11—V - ‘/2) = %L(.611+€22)*€12f621 - %L(€11*621)+(622*_€12) = %L(f22+f21)+(f22*f21) = Ly, 'Wlth
more complicated actions ‘/c’l’2 =1V3 = iley—eps Reyy = 51Lf1 o4 for Bfyi 4 fro— far— fazs Vd’1’2 =—iVy =
7ZL611—622RG12 = 7%2Lf12+f21Rfu—f12+f21—f22a %1’2 = ’L(Vl - VQ) = Z(L€12—G21) = 71Lf12—f217
Vi = Vi = 1o,

Under the isomorphism M — H via my,mo, m3, my LN €11, €22, €21, €12 the new basis for M is
(up to the scalar ) my +ms, ma +ma, i(my —ms), —i(ma —ma) > fir + fra, fi1 — fr2, i(far +
f22), —i(faz — fa1) = i(f21 — fa2), and after a routine calculation the action of Table (2.1) takes the
split form

(8.7)  Quaternion Action A” x H

Action of V' on: fu1 + fi2 fir — fio i(far + foo)  i(for — fo2)
Veyr = Ly, Jin+ fiz Ji1 = fi2 0 0

Vey =Ly, 0 0 i(for + f22)  i(far — fa2)
Vo, = iLifor—f1o i(for + f22)  ilfor — fo2) S+ Sz Ji1— fi2
VvC'{g = iLf12+f21R€21 0 i(f21 + f22) 0 _<f11 + f12)
Vay, = —iLfyyt for Reyy || —i(fo1 — fo2) 0 Ji1 = fi2 0

Ver =V =1 f11 + fi2 Jir — fiz i(far + fo2)  i(for — fa2)
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