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Abstract

We present an isotope of the usual version of the Kac 10-dimensional Jordan superalgebra
K10 over a general ring of scalars Φ (isomorphic to the original version when i, 1√

2
∈ Φ, but not

in characteristic 2), which we take as the “correct” split model for the simple superalgebra in all
characteristics. This J = A⊕M has unit the sum of three reduced orthogonal idempotents. We
exhibit a “quaternionic” model J ⊆ (H⊗H �Φf)⊕H of the bimodule structure for this model
and the original one, as well as an “exterior” model J ∼= Λ2(M) ⊕M for both the bimodule
structure and the odd product. We give a reference table for all quadratic and triple products,
and use this to explicitly describe all inner super-derivations. In a subsequent article we will
use this table to investigate the structure of the Grassmann envelope.1

Our version sK10 = Ks
10 of the Kac 10-dimensional quadratic Jordan superalgebra K10(Φ) over a

general ring of scalars Φ will be split even further than that of Dan King [2]. The Kac superalgebra
consists of an even Jordan algebra A = Jord(Q, e) � Φf which is the direct sum of a 5-dimensional
algebra Jord(Q, e) of a nondegenerate quadratic form and a 1-dimensional ideal Φf , together with
a 4-dimensional odd bimodule M having odd products into A. The algebra was called “split” in [2]
because the quadratic form has maximal Witt index: in the linear case Jord(Q, e) = Φe⊕ V where
the form is thought of as residing on V and is there a direct sum of two hyperbolic planes; in the
quadratic case the form resides on the entire 5-dimensional space including the basepoint e, and
there it is a direct sum of two hyperbolic planes and a 1-dimensional “split” line Q(e) = 1. However,
in characteristic 2 this Q is traceless (hence in the terminology of Loos [4] totally ramified), with the
property that x2 = −Q(x)e for all x, so there are no proper idempotents. In the structure theory
for quadratic Jordan algebras this is considered an aberrant case: the “standard” degree-2 algebra
has unit a sum of two reduced orthogonal idempotents, A = Φe1 ⊕Φe2 ⊕ V , and the traceless form
arises as a (non-isomorphic) isotope of this standard form. In Jordan theory there is a hierarchy:
“reduced” means “has enough idempotents”, while “split” means reduced and the coordinate algebra
splits. Thus we will refer to our version J = Φe1 ⊕ Φe2 ⊕ Φf ⊕ V ⊕M as (intrinsically) split, and
demote the version [2] to (merely) standard (it is extrinsically split if 1

2 ∈ Φ).
Throughout, we consider unital Jordan superalgebras, Z2-graded algebras J = J0⊕ J1 = A⊕M

over an arbitrary ring of scalars Φ (possibly of characteristic 2) with graded bilinear and trilinear
products 〈x, y〉 = Vx(y), 〈x, y, z〉 = Vx,y(z) and even products Uax, a2 quadratic in a and linear in x,
such that 〈a, y, b〉 = Ua,by = (Ua+b − Ua − Ub)y is the linearization of the U -operator, and similarly
〈a, b〉 = 〈a, 1, b〉 = (a+ b)2 − a2 − b2 is the linearization of the square. We define Um,pn := 〈m,n, p〉,
even though there is no odd U -operator Um which gives rise to this.2 In the absence of a scalar 1

2 ,
the bilinear products are not sufficient to determine the quadratic products, so we will devote much
effort to describing the quadratic products both in the usual and the split version of K10.

1Research partially supported by the Spanish Ministerio de Educació y Ciencia MTM2004-06580-C02-01 and
Fondos FEDER.

2Note that this flouts the tradition that Ux,y is symmetric in x, y as the linearization of a quadratic operator Ux.
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To avoid subscripts (of which we will have more than enough already), we follow the Racine-
Zelmanov convention [7] and distinguish even from odd by using letters a, b, c, d, e, f, g (but u, v for
the vector part of Jord(Q, e) in K10) to denote even elements of J0 = A, and letters m,n, p to
denote odd elements of J1 = M ; general homogeneous elements of J of will be denoted by x, y, z
(of degree deg(x) etc.). We denote Jordan bilinear and trilinear products by braces {a, ..}, Lie
products by brackets [x, ..], and androgynous superproducts by 〈x, ..〉. By abuse of notation we will
write (−1)x for (−1)deg(x), (−1)xy for (−1)deg(x)deg(y) [−1 if both x, y are odd, +1 otherwise], and
(−1)xyz for (−1)deg(x)deg(y)+deg(y)deg(z)+deg(z)deg(x) [“majority rule’: −1 if the majority are odd, +1
if the majority are even].

The super-Jordan axioms are that the Grassmann envelope Γ(J) becomes a unital quadratic
Jordan algebra under “natural” quadratic product. The (as yet not fully listed) quadratic super-
identities F (a1, . . . , ar,m1, . . . ,ms) = 0 (homogeneous of degree 1 in each mi) are determined by
Grassmann detour from quadratic Jordan identities F (1⊗ a1, . . . , 1⊗ ar, γ1 ⊗m1, . . . , γs ⊗mr) = 0
in the Grassmann envelope for independent Grassmann variables γi ∈ Γ1. For later reference we
recall certain of these basic identities for Jordan superalgebra J : M is a Jordan bimodule for the
quadratic Jordan algebra A and for m,n, p ∈M,a, b ∈ A, homogeneous x, y, z ∈ J

(0.1.1) Switching Rule 〈x, y, z〉+(−1)xy〈y, x, z〉 = 〈〈x, y〉, z〉,
SuperSymmetry 〈x, y〉 = (−1)xy〈y, x〉, 〈x, y, z〉 = (−1)xyz〈z, y, x〉,

(0.1.2) Even Symmetry 〈a,m〉 = 〈m,a〉, 〈a,m, b〉 = 〈b,m, a〉, 〈a, b,m〉 = 〈m, b, a〉,
Odd Alternation 〈m,m〉 = 〈m,n,m〉 = 0, 〈m,n〉 = −〈n,m〉, 〈m,x, n〉 = −〈n, x,m〉.

If 1 =
∑n
i=1 ei is a supplementary sum of orthogonal idempotents, the Peirce decomposition of J

is J =
⊕

i≤j Jij with Peirce projections Eii = Uei
, Eij = Uei,ej

on Jij = Jji. In the case of a single
idempotent e, we denote these by Ji, Ei (E2 = Ue, E1 = Ue,1−e, E0 = U1−e (in our unital case 1− e
exists in J , but in general it exists in the unital hull). They satisfy the standard rules

(0.2.1) Peirce Orthogonality 〈Jij , Jk`〉 = 〈Jij , Jk`, Jmn〉 = 0 unless indices can be linked,
(0.2.2) J2

ii ⊆ Jii, 〈Jij , Jij〉 ⊆ J2
ij ⊆ Jii+Jjj , 〈Jij , Jjk〉 ⊆ Jik (k 6= i), 〈Jij , Jjk, Jk`〉 ⊆ Ji`,

(0.2.3) UAij
Jii ⊆ Jjj , UAij

Jij ⊆ Jij , UAij
Jk` = 0 ((k`) 6= (i, i), (ij), (jj)),

(0.2.4) Triple Reduction Formulas 〈a, a,m〉 = 〈a2,m〉, 〈m,m, x〉 = 〈m, 〈m,x〉〉,
If xi, yi ∈ Ji(e) (i=2, 0, j=3-i), z1, w1 ∈ J1(e) then 〈z1, w1, xi〉 = Eii〈z1, 〈w1, xi〉〉,
〈xi, yi, z1〉 = 〈xi, 〈yi, z1〉〉, 〈z1, yi, w1〉 = Ejj〈z1, 〈yi, w1〉〉 = Ejj〈〈z1, yi〉, w1〉.

These formulas show that in Jordan superalgebras many of the trilinear products are determined
by bilinear products together with the Peirce decomposition; in the split case we will see that all
trilinear products are so determined.

1 Bases for the Kac superalgebra

The standard version of the quadratic Kac superalgebra K10(Φ) = A⊕M = (B�Φf)⊕M is a free Φ-
module of dimension 10 over Φ with 6-dimensional even space A the direct sum of B = Jord(Q, e)
(the 5-dimensional Jordan algebra of a quadratic form Q on Φe ⊕ V with basepoint e) and a 1-
dimensional Φf , and with 4-dimensional odd space M, which is a Jordan A-bimodule M with
bilinear and trilinear products 〈·, ·〉 : M ×M → A, 〈·, ·, ·〉 : M ×M ×M → A. The King basis
[2, p.31][3, p.391-2], which was adapted from Kac’s corrected characteristic zero model to work for
arbitrary scalars, consists of 10 elements x0, y0, x̃0, ỹ0, e, f, x1, y1, x̃1, ỹ1 which we shall relabel as
v1, v2, v3, v4, e, f,m1,m2,m3,m4 (King used subscripts to denote parity J0, J1, whereas we will use
A,M for that purpose, leaving subscripts free to label items in a list). Here e, f are orthogonal
idempotents, e the unit of Jord(Q, e), the quadratic form is

(1.1) Q(b) = β2 − β1β2 − β3β4, T (b) = 2β for b = βe+ β1v1 + β2v2 + β3v3 + β4v4,

so the commutative circle products on V are {v1, v2} = {v3, v4} = e: the multiplication in the
direct sum A = B � Φf is given by that in the separate sumands, where for b = βe + v in any
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B = Jord(Q, e) = Φe⊕ V we have quadratic products

Ubb
′ = Q(b, b′)b−Q(b)b′, b2 = T (b)b−Q(b)e (T (b) = 2β, Q(b) = β2+Q(v), b = T (b)e−b).

For our particular V with Q(vi) = 0, Q(vi, vj) = −δji′ , vi = −vi we get [introducing the convention
that 1′ = 2, 2′ = 1, 3′ = 4, 4′ = 3 for switching among the “paired” indices 1, 2 and 3, 4]

(1.2)
Ueb = b, {e, e, b} = {e, b, e} = 2b, Uvi

e = v2
i = 0, Uvi

vj = δji′vi, {vi, vi, B} = 0,
{vi, vj , vk} = δji′vk + δjk′vi − δki′vj , {vi, vj , e} = {vi, e, vj} = {vi, vj} = δji′e,

{vi, vi′ , vi} = 2vi, {vi, vi′ , vj} = vj , {vi, vj , vi′} = −vj (j 6= i, i′).

The Peirce decomposition (0.2) of J relative to e (equivalently, 1 = e+ f) is J = A2 ⊕A0 ⊕M1

for A2 = Φe+ V = B, A0 = Φf, M1 = M. Thus King’s action of A on M is given by

(1.3) Bimodule Product 〈A,M〉
〈 , 〉 x1 y1 x̃1 ỹ1 〈 , 〉 m1 m2 m3 m4

x0 0 ỹ1 x1 0 v1 0 m4 m1 0
y0 x̃1 0 0 y1 v2 m3 0 0 m2

x̃0 0 −x̃1 0 x1 v3 0 −m3 0 m1

ỹ0 ỹ1 0 −y1 0 v4 m4 0 −m2 0
e, f x1 y1 x̃1 ỹ1 e, f m1 m2 m3 m4

Bimodule Structure

From the Peirce rules (0.2) for the bilinear actions of B = A2 and Φf = A0 on M = M1 we
immediately get rules for the trilinear actions on M :

(1.4)
〈e,m〉 = 〈f,m〉 = 〈e,m, f〉 = 〈e, e,m〉 = 〈f, f,m〉 = m, 〈e, b,m〉 = 〈b, e,m〉 = 〈b,m, f〉 = 〈b,m〉,

UeM = UBM = UB,BM = UfM = 〈f,B,M〉 = 〈B, f,M〉 = 〈vi, vi,M〉 = 0,
〈b, b′,m〉 = 〈b, 〈b′,m〉〉, 〈f,m, b〉 = 〈b, e,m〉 = 〈e, b,m〉 = 〈b,m〉.

These rules allow us to give us a complete description of J = A ⊕M as bimodule, equivalently, as
a split null extension (before we introduce a nontrivial product on the odd space). We have general
trilinear actions Vvi,vk

= VviVvk
, Vvi,vi = 0, Vvi,vi′ + Vvi′ ,vi = 1M , Vvi,vj = −Vvj ,vi (j 6= i, i′), and

particular actions: Vv2 kills m2,m3 and sends m1,m4 −→ m3,m2

Vv1−→ m1,m4 for Vv1,v2 ; similarly V3

killsm1,m3 and sendsm2,m4 −→ −m3,m1, which is sent
Vv1−→ −m1, 0 for Vv1,v3 , and sent

Vv2−→ 0,−m3

for Vv2,v3 ; likewise V4 kills m2,m4 and sends m1,m3 −→ m4,−m2, which is sent
Vv1−→ 0,−m4 for

Vv1,v4 , sent
Vv2−→ m2, 0 for Vv2,v4 , and sent

Vv3−→ m1,m3 for Vv3,v4 . We can summarize these together
with (1.2), (1.4) in the table3

3Another way to derive the table is to notice that Vu,v = VuVv where relative to the ordered basis m1, m2, m3, m4

for M the matrices are Vv1
∼= E42 + E13, Vv2

∼= E31 + E24, Vv3
∼= −E32 + E14, Vv4

∼= E41 − E23 .
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(1.5.1) V -Operators VA, VA,A
Va, Va(x) = 〈a, x〉 v1 v2 v3 v4 e f m1 m2 m3 m4

Vv1 = Vv1,e = Ve,v1 0 e 0 0 2v1 0 0 m4 m1 0
Vv2 = Vv2,e = Ve,v2 e 0 0 0 2v2 0 m3 0 0 m2

Vv3 = Vv3,e = Ve,v3 0 0 0 e 2v3 0 0 −m3 0 m1

Vv4 = Vv4,e = Ve,v4 0 0 e 0 2v4 0 m4 0 −m2 0
Ve = Ve,e 2v1 2v2 2v3 2v4 2e 0 m1 m2 m3 m4

Vf = Vf,f 0 0 0 0 0 2f m1 m2 m3 m4

Vv1,v2 2v1 0 v3 v4 e 0 m1 0 0 m4

Vv2,v1 0 2v2 v3 v4 e 0 0 m2 m3 0
Vv3,v4 v1 v2 2v3 0 e 0 m1 0 m3 0
Vv4,v3 v1 v2 0 2v4 e 0 0 m2 0 m4

Vv1,v3 = −Vv3,v1 0 −v3 0 v1 0 0 0 −m1 0 0
Vv2,v3 = −Vv3,v2 −v3 0 0 v2 0 0 0 0 0 m3

Vv1,v4 = −Vv4,v1 0 −v4 v1 0 0 0 0 0 −m4 0
Vv2,v4 = −Vv4,v2 −v4 0 v2 0 0 0 m2 0 0 0

Vvi,vi
= Vf,B = VB,f = 0 Vb,b′ = VbVb′ on M

(1.5.2) U -Operators UA, UA,A
Uv1 0 v1 0 0 0 0
Uv2 v2 0 0 0 0 0
Uv3 0 0 0 v3 0 0
Uv4 0 0 v4 0 0 0
Ue v1 v2 v3 v4 e 0
Uf 0 0 0 0 0 f
Uv1,v2 = Uv2,v1 0 0 −v3 −v4 e 0
Uv1,v3 = Uv3,v1 0 v3 0 v1 0 0
Uv1,v4 = Uv4,v1 0 v4 v1 0 0 0
Uv2,v3 = Uv3,v2 v3 0 0 v2 0 0
Uv2,v4 = Uv4,v2 v4 0 v2 0 0 0
Uv3,v4 = Uv4,v3 −v1 −v2 0 0 e 0
a2 = Ua1 0 0 0 0 e f

Ub,b = 2Ub, Ue,b = Vb, Uf,b = 0 on A,
Uf,b = Vb, Uf = Ue,b = Ub = Ub,b′ = 0 on M

Odd Products

King defines [3, p.392] the alternating odd bilinear product on M by a basis-free recipe involving
an alternating bilinear form σ on M and an alternating product ? from M ×M → V by

(1.6) 〈m,n〉 := σ(m,n)g + 2m ? n (g := e− 3f), m ? n :=
∑4
i=1 σ(〈vi,m〉, n)v′i

[where σ(m1,m2) = σ(m3,m4) = 1 and v′ denotes the anti-isometric involution σ(v′, w′) = σ(w, v)
on V determined by v′i = vi′ for 1′ = 2, 3′ = 4 as in (1.2)] as described by the table

(1.7) Products ? and σ on M
? m1 m2 m3 m4 σ m1 m2 m3 m4

m1 0 0 −v3 v1 m1 0 1 0 0
m2 0 0 −v2 −v4 m2 −1 0 0 0
m3 v3 v2 0 0 m3 0 0 0 1
m4 −v1 v4 0 0 m4 0 0 −1 0
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Note for future reference that from (1.7), (1.3) and some calculation we see

(1.8)

for j 6= i, i′ we have 〈V, (Φmi + Φmi′)〉 ⊆ Φmj + Φmj′ ,
σ(〈v,mi〉,mi) = 0, mi ? mi = mi ? mi′ = 〈(mi ? mj),mi〉 = 0,
σ(mi,mi′) = (−1)i

′
, 〈(mi ? mj),mi′〉 = (−1)i

′
mj ,

σ(mi,mj) = 0, 〈(mi ? mj),mi′〉+ 〈(mi′ ? mj),mi〉 = 0.

We can summarize the odd product by the table

(1.9) Odd Product 〈M,M〉
〈·, ·〉 x1 y1 x̃1 ỹ1 〈·, ·〉 m1 m2 m3 m4

x1 0 g −2x̃0 2m0 m1 0 g −2v3 2v1
y1 −g 0 −2y0 −2ỹ0 m2 −g 0 −2v2 −2v4
x̃1 2x̃0 2y0 0 g m3 2v3 2v2 0 g
ỹ1 −2m0 2ỹ0 −g 0 m4 −2v1 2v4 −g 0

The definition of the odd product seems quite mysterious at this point. Notice that odd products
〈mi,mj〉 for j 6= i′ produces vectors v ∈ V “orthogonal” to mi,mj :

(1.10) 〈〈mi,mj〉,mi〉 = 〈〈mi,mj〉,mj〉 = 0 (j 6= i′).

This will become clearer using the Shestakov basis below and the exterior representation in the next
section.

Comparison with Racine-Zel’manov

The classification paper [7] of Racine and Zel’manov uses a slightly different basis e, f, u1, u2, u3, u4,
x1, y1, x2, y2 (changing their vi to ui to avoid conflict with our vi) with prescribed dot products.
To describe the products 〈x, y〉 in the quadratic case we must double all the dot products x · y in
the RZ-list. We introduce vi = 1

2ui so that {vi, vj} = 1
2ui · uj , ui = 2vi, {v1, v2} = {v3, v4} = e

and 〈vi,m〉 = ui ·m, but 〈m,m′〉 = 2m ·m′. If we further introduce temporary w1 := −x1, w2 :=
−y1, w3 := y2, w4 := −x2 and ni := 1√

2
wi,

4 then the bilinear action of A on M is given by

4Since we are interested in finding a form of the Kac algebra over an algebraically closed field of characteristic 6= 2
which will serve as a model for characteristic 2 and all rings of scalars, we have no compunctions about using 1√

2
here

to get rid of a common factor 2.
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(1.11) RZ-Bimodule Product 〈A,M〉 RZ-Odd Product
· x1 y1 x2 y2 · x1 y1 x2 y2
u1 0 x2 0 −x1 x1 0 g u1 u3

u2 −y2 0 y1 0 y1 −g 0 −u4 u2

u3 0 y1 x1 0 x2 −u1 u4 0 g
u4 x2 0 0 y1 y2 −u3 −u2 −g 0
〈 , 〉 −x1 −y1 y2 −x2 〈 , 〉 −x1 −y1 y2 −x2

v1= 1
2u1 0 −x2 −x1 0 x1 0 −2g 2u3 −2u1

v2= 1
2u2 y2 0 0 −y1 y1 2g 0 2u2 2u4

v3= 1
2u3 0 −y2 0 −x1 y2 2u3 2u2 0 2g

v4= 1
2u4 −x2 0 y1 0 x2 2u1 −2u4 −2g 0

〈·, ·〉 w1 w2 w3 w4 〈·, ·〉 w1 w2 w3 w4

v1 0 w4 w1 0 w1= −x1 0 2g −4v3 4v1
v2 w3 0 0 w2 w2= −y1 −2g 0 −4v2 −4v4
v3 0 −w3 0 w1 w3=y2 4v3 4v2 0 2g
v4 w4 0 −w2 0 w4= −x2 −4v1 4v4 −2g 0
〈·, ·〉 n1 n2 n3 n4 〈·, ·〉 n1 n2 n3 n4

v1 0 n4 n1 0 n1= 1√
2
w1 0 g −2v3 2v1

v2 n3 0 0 n2 n2= 1√
2
w2 −g 0 −2v2 −2v4

v3 0 −n3 0 n1 n3= 1√
2
w3 2v3 2v2 0 g

v4 n4 0 −n2 0 n4= 1√
2
w4 −2v1 2v4 −g 0

e, f n1 n2 n3 n4

which are clearly the same as tables (1.3),(1.9) with mi replaced by ni.

Comparison with Shestakov

The most illuminating basis forK10, organizing the elements with an easy-to-remember multipication
table which clearly explains which bimodule products are zero, is due to Ivan Shestakov. His
approach was described at the 1996 Oberwolfach Tagung on Jordan Algebras, and was meant to
appear in a definitive book on Jordan superalgebras which regretfully was never written.5 The
Shestakov basis uses the 4 odd elements x, y, u, v (our m1,m2,m3,m4) to parameterize the even
variables: A is spanned by e, f, ux, uy, vx, vy where uy := u · y =: −yu, etc. Thus the alternating
basic odd products m · n are trivial to remember, except that instead of two more basic elements
xy, uv we have g := e− 3f (x · y = −y · x = u · v = −v · u = g). The rules for the even-odd products
are that e, f act identically (〈e,m〉 = 〈f,m〉 = m) and uy ∈ A kills its parent elements u, y ∈ M ,
while for non-parents there must be a linked pair x, y or u, v (corresponding to m′

1 = m2,m
′
3 = m4),

in which case the product in order gives (yu) · v = −y, (uy) · x = u [the pair elements cancel each
other out, leaving the remaining element with + if the order is reversed (y, x) and − for the usual
order (u, v)]. Thus the even element uy can only take on values u, y when multiplied by M .

To adjust the products to work in the quadratic case we introduce odd m1 := 1√
2
x, m2 :=

1√
2
y, m3 := 1√

2
u, m4 := 1√

2
v and even v31 := −v13 := 1

2ux, v32 := −v23 := 1
2uy, v41 := −v14 :=

1
2vx, v42 := −v24 := 1

2vy, so that 〈m1,m2〉 = 〈m3,m1〉 = 2m3 · m1 = u · x = ux = 2v31 and
〈v31,m2〉 = 2( 1

2ux) · 1√
2
y = − 1√

2
u = −m3, etc. With this notation the bilinear products become

(1.12)
for i 6= j, j′ 〈vij ,mj〉 = 〈vij ,mi〉 = 0, 〈vij ,mj′〉 = (−1)jmi = −σ(mj ,mj′)mi,

〈mi,mj〉 = vij = −vji (vii := 0), 〈mi,mi′〉 = (−1)i
′
g.

The complete table of bilinear products is given by

5The lecture also revealed intriguing connections with the Jordan superalgebras D4(1,−3) and K3, and revealed
that K10 could be generated by a single nonhomogeneous (or two homogeneous) elements, yet was i-exceptional,
destroying all hopes for a Shirshov-Cohn theorem for superalgebras.
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(1.13) S-Bimodule Product 〈A,M〉 S-Odd Product
· x y u v · x y u v
ux 0 −u 0 x x 0 g −ux −vx
uy u 0 0 y y −g 0 −uy −vy
vx 0 −v −x 0 u ux uy 0 g
vy v 0 −y 0 v vx vy −g 0
〈 , 〉 m1 m2 m3 m4 〈 , 〉 m1 m2 m3 m4

v31 0 −m3 0 m1 m1 0 −g −2v31 2v14
v32 m3 0 0 m2 m2 g 0 −2v32 −2v42
v41 0 −m4 −m1 0 m3 2v31 2v32 0 g
v42 m4 0 −m2 0 m4 −2v14 2v42 −g 0
〈·, ·〉 m1 m2 m3 m4

v14 0 m4 m1 0
v32 m3 0 0 m2

v31 0 −m3 0 m1

v42 m4 0 −m2 0
e, f m1 m2 m3 m4

which are clearly the same as tables (1.3),(1.9) with v1, v2, v3, v4 replaced by v14, v32, v31, v42. Note
that the subspaces M1 := Span(m1, v14, v31) = Span(x, vx, ux) = X , M2 := Span(m2, v32, v42) =
Span(y, uy, vy) = Y, M3 := Span(m3, v32, v31) = Span(u, ux, uy) = U , M4 := Span(m4, v14, v42) =
Span(v, vx, vy) = V all have M2

i = 0 (explaining all the zero products).

Comparison with Involution Basis

We will later pass to an isotope determined by

(1.14)
s := u+ f := v1 + v2 + f, s2 = 1, ∗ := Us is an involutive automorphism of J with

e∗ = e, f∗ = f, v∗1 = v2, v
∗
3 = −v3, v∗4 = −v4, m∗ = 〈u,m〉, m∗

1 = m3, m
∗
2 = m4.

In terms of this involution we obtain an involution basis e, f, b := v1, b
∗ := v2, c := v3, d :=

v4, m1,m2, m
∗
1 := m3, m

∗
2 := m4. In terms of this basis the bilinear products become

(1.15) ∗-Bimodule Products
〈 , 〉 m1 m2 m∗

1 m∗
2 〈·, ·〉 m1 m2 m∗

1 m∗
2

b 0 m∗
2 m1 0 m1 0 g −2c 2b

b∗ m∗
1 0 0 m2 m2 −g 0 −2b∗ −2d

c 0 −m∗
1 0 m1 m∗

1 2c 2b∗ 0 g
d m∗

2 0 −m2 0 m∗
2 −2b 2d −g 0

Notice that in terms of the involution basis the third and fourth columns of the table are redundant
(as the subdiagonal of the original odd table is redundant by skew-symmetry), since by the involution
once you know the actions 〈p, x〉 of all p on x you know all actions 〈p, x∗〉 = 〈p∗, x〉∗ on x∗.

2 The Quaternion Model

We can model the split null extension structure of J (M as bimodule for A) using quaternions.
We can identify M with a copy of a split quaternion algebra H = M2(Φ) via m1,m2,m3,m4

ϕ−→
e11, e22, e21, e12, so M becomes a regular bimodule for H. Since V is the direct sum of two hy-
perbolic planes, the Clifford algebra of Q on V is the graded tensor product H⊗̂H of two split
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quaternion algebras, i.e., the product of two split quaternion subalgebras H ′,H ′′ graded in the nat-
ural diagonal/off-diagonal way where H ′

0 commutes with H ′′ and H ′′
0 commutes with H ′, but H ′

1

anti-commutes with H ′′
1 .

Here H ′ := LH = Φ[Le12 , Le21 ] is isomorphic to H via the left-regular representation. Despite
the twist, H ′′ := Φ[SRe21 , SRe12 ] for S := Le22−e11 is also isomorphic to H: H is isomorphic to
right multiplications RopH ∼= RH under the standard quaterion involution a 7→ ā, and the twist
due to S doesn’t change a split quaternion algebra, since

(
a b
c d

)
−→

(
a σb
σc d

)
is an automorphism

of M2(Φ) [indeed, a + m → a + σm is an automorphism of any Z2-graded algebra when σ2 = 1].
Here the Reii

spanning the even H ′′
0 commute with all of LH = H ′, and the Leii

spanning the
even H ′

0 commute with all of RH and S, hence with H ′′, but the odd H ′
1 anti-commute with

H ′′
1 (indeed, with all SRH) since (SRa)Lb = SLbRa = (SLaS−1)SRa = (−1)bLb(SRa) where

SLeij
S−1 = Le22−e11Leij

Le22−e11 = (−1)iLeii
Leij

(−1)jLejj
= (−1)i+jLeij

is the grading automor-
phism on M2(Φ). Thus the multiplication algebra LHRH of H is the graded tensor product of two
split quaternion subalgebras H ′,H ′′; it is generated by operators V1 := Le21 , V2 := Le12 , V3 :=
SRe21 = Le11−e22Re21 , V4 := SRe12 = Le11−e22Re12 with action

(2.1) Regular Quaternion Action A×H
Action of V on: e11 e22 e21 e12
V1 = Le12 0 e12 e11 0
V2 = Le21 e21 0 0 e22
V3 = Le11−e22Re21 0 −e21 0 e11
V4 = Le11−e22Re12 e12 0 −e22 0
Ve = Vf = I e11 e22 e21 e12

which is clearly equivalent to our action of V on M in (1.3).
Moreover, the operators Vi generate a Jordan subalgebra Φ1H ⊕

∑4
i=1 ΦVi ⊆ LHRH

∼= H ⊗H
isomorphic to B = Jord(Q, e),

(2.2) V 2
i = {Vi, Vj} = 0 (j 6= i′), Ve = {Vi, Vi′} = 1H .

Indeed, all V 2
i = 0 since for j 6= i we have L2

eij
= Le2ij

= 0, R2
eij

= Re2ij
= 0,, while {V1, V2} =

{Le12 , Le21} = {Le12,e21} = Le11+e22 = 1H , similarly {V3, V4} = L2
e11−e22R{e12},e21 = Le11+e22Re11+e22 =

1H , and for r = 1, 2, s = 3, 4 we have {Vr, Vj} = L{eij ,e11−e22}Rekl
= 0. Thus J = B � Φf ⊕M

imbeds as split null extension in (H⊗H�Φf)⊕H. However, the excrescence Φf is hard to explain,
and the form the odd product takes on M ∼= H −→ H ⊗H � Φf is unilluminating.

3 The Exterior Model

A better way to view the bimodule and odd product, suggested by the Shestakov basis, is through
the exterior algebra Λ(M). Since M = Λ1(M) is a free Φ-module with ordered basis m1,m2,m3,m4,
the exterior product Λ2(M) is free of rank 6 with basis Λ2

1 := m1 ∧ m4, Λ2
2 := m3 ∧ m2, Λ2

3 :=
m3∧m1, Λ2

4 := m4∧m2, E := Λ2
5 := m1∧m2, F := Λ2

6 := m3∧m4, and Λ3(M) is free of rank 4 with
basis Λ3

i := mi∧m4∧m3 = −mi∧m3∧m4 (i = 1, 2), Λ3
j := mj∧m2∧m1 = −mj∧m1∧m2 (j = 3, 4),

and Λ4(M) is free of rank 1 with basis Λ4
1 := E ∧ F = Λ2

5 ∧ Λ2
6 = m1 ∧m2 ∧m3 ∧m4. Denote the

subspace of Λ2(M) spanned by Λ2
i , 1 ≤ i ≤ 4 by S, so Λ2(M) = S ⊕ ΦE ⊕ ΦF .

We obtain an identification isomorphism ϕ(2) : Λ2(M) = S ⊕ ΦE ⊕ ΦF −→ A = V ⊕ Φe ⊕ Φf
and contraction isomorphisms ϕ(3) : Λ3(M) −→ Λ1(M) = M, ϕ(4) : Λ4(M) −→ Φ, and a fake copy
∼: Λ2(M) = S ⊕ ΦE ⊕ ΦF −→ Λ̃2(M) := S ⊕ Φ10 ⊆ Λ2(M)⊕ Λ0(M) defined on these bases via
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(3.1.1) ϕ(2)(Λ2
i ) := vi (1 ≤ i ≤ 4), ϕ(2)(Λ2

5) = ϕ(2)(E) := e, ϕ(2)(Λ2
6) = ϕ(2)(F ) := f,

i.e., m1 ∧m4, m3 ∧m2, m3 ∧m1, m4 ∧m2, m1 ∧m2, m3 ∧m4
ϕ(2)

−→ v1, v2, v3, v4, e, f,

(3.1.2) s̃ = s (s ∈ S), Λ̃2
5 =: Λ̃2

6 =: 10,

(3.1.3) ϕ(3)(Λ3
i ) := ϕ(3)(mi ∧m4 ∧m3) := mi (i=1, 2), ϕ(3)(mj ∧m2 ∧m1) := mj (j=3, 4),

(3.1.4) ϕ(4)(Λ4
1) := ϕ(4)(m1 ∧m2 ∧m3 ∧m4) := 1 = −ϕ(4)(m3 ∧m1 ∧m4 ∧m2),

(3.1.5) VΛ2
i

:= ϕ ◦ LΛ2
i

: M=Λ1(M)→ Λ3(M)→M (1 ≤ i ≤ 4), VΛ2
k

:= L
eΛ2

k
=L10=1M (k=5, 6).

Abbreviating Λ2
i , ϕ

(3) by Λi, ϕ, we obtain an action table

(3.2) Exterior Bimodule Action 〈`,m〉 := ϕ(3)(˜̀∧m)
V` m1 m2 m3 m4

VΛ1 = ϕ(m1 ∧m4 ∧m1) = ϕ(m1 ∧m4 ∧m2) = ϕ(m1 ∧m4 ∧m3) = ϕ(m1 ∧m4 ∧m4) =
ϕ ◦ Lm1∧m4 ϕ(m4 ∧m2 ∧m1) =

0 m4 m1 0
VΛ2 = ϕ(m3 ∧m2 ∧m1) = ϕ(m3 ∧m2 ∧m2) = ϕ(m3 ∧m2 ∧m3) = ϕ(m3 ∧m2 ∧m4) =

ϕ ◦ Lm3∧m2 ϕ(m2 ∧m4 ∧m3) =
m3 0 0 m2

VΛ3 = ϕ(m3 ∧m1 ∧m1) = ϕ(m3 ∧m1 ∧m2) = ϕ(m3 ∧m1 ∧m3) = ϕ(m3 ∧m1 ∧m4) =
ϕ ◦ Lm3∧m1 ϕ(−m3 ∧m2 ∧m1) = ϕ(m1 ∧m4 ∧m3) =

0 −m3 0 m1

VΛ4 = ϕ(m4 ∧m2 ∧m1) = ϕ(m4 ∧m2 ∧m2) = ϕ(m4 ∧m2 ∧m3) = ϕ(m4 ∧m2 ∧m4) =
ϕ ◦ Lm4∧m2 ϕ(−m2 ∧m4 ∧m3) =

m4 0 −m2 0
VΛk

= L
eΛk

=L10 (k=5, 6) m1 m2 m3 m4

Clearly this coincides with (1.3), and exhibits the bimodule action of V on M as “contracted”
multiplication of Λ2(M) on Λ1(M) in the exterior algebra (though with a somewhat artificial re-
placement of exterior multiplication by E = Λ5, F = Λ6 ∈ Λ2(M) representing e, f by multiplication
by 1 ∈ Λ0(M); our notation E,F indicates that these are only “honorary” members of Λ2(M)).

We can also represent the odd multiplication in a natural way through the exterior algebra: there
is a natural exterior product of M into Λ2(M), which we map to S ⊕ ΦG ≈ V ⊕ Φg ⊂ A via

ψ(Λi) := 2Λi (1 ≤ i ≤ 4), ψ(Λ5) := ψ(Λ6) := G = E − 3F.

(3.3) Exterior Odd Product 〈m,n〉 = ψ(m ∧ n)
〈m,n〉 m1 m2 m3 m4

m1 ψ(m1 ∧m1) = 0 ψ(m1 ∧m2) = G ψ(m1 ∧m3) = −2Λ3 ψ(m1 ∧m4) = 2Λ1

m2 ψ(m2 ∧m1) = −G ψ(m2 ∧m2) = 0 ψ(m2 ∧m3) = −2Λ2 ψ(m2 ∧m4) = −2Λ4

m3 ψ(m3 ∧m1) = 2Λ3 ψ(m3 ∧m2) = 2Λ2 ψ(m3 ∧m3) = 0 ψ(m3 ∧m4) = G
m4 ψ(m4 ∧m1) = −2Λ1 ψ(m4 ∧m2) = 2Λ4 ψ(m4 ∧m3) = −G ψ(m4 ∧m4) = 0

This is just (1.9) in disguise. Tables (3.2-3) are essentially the Shestakov Product Table (1.13).
The exterior viewpoint also allows us to express the symmetric bilinear form Q(v, w) = Q(ϕ(2)(s),

ϕ(2)(t)) on V = ϕ(2)(S) as

(3.4) Q(ϕ(2)(s), ϕ(2)(t)) = −ϕ(4)(s ∧ t), for s ∧ t = t ∧ s = σ(s, t)m1 ∧m2 ∧m3 ∧m4

since from (3.1) Λi ∧ Λj = 0 due to repeated wedge factors mk except for the disjoint Λ1 ∧ Λ2 =
m1∧m4∧m3∧m2 = −m1∧m2∧m3∧m4 and Λ3∧Λ4 = m3∧m1∧m4∧m2 = −m1∧m2∧m3∧m4. We
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can also explain the “complementary” vector v′i = vi′ as that corresponding to the complementary
subset of the index set {1, 2, 3, 4},

(3.5) (Λ2
I)
′ = Λ2

{1,2,3,4}\I

where we parameterize Λ2
i = mj ∧ mk (mj < mk in the ordering m3 < m1 < m4 < m2) by the

subset I = {j, k}

4 A Compendium of Triple Products

For quadratic Jordan algebras or superalgebras when 1
2 /∈ Φ, the bilinear products do not de-

termine the quadratic and triple products by the usual rules 2Uaa′ = {a, {a, a′}} − {a2, a′} and
2〈xi, yj , zk〉 = 〈〈xi, yj〉, zk〉 + 〈xi, 〈yj , zk〉〉 − (−1)ij+jk+ki〈yj , 〈xi, zjk〉〉. We will see below that in
the Kac superalgebra scheme K10 the bilinear and Peirce structure determines everything but the
odd triple products, and only four values 〈mi,mj ,mk〉 (1 ≤ i < j < k ≤ 4) need to be determined:
by Odd Alternation and Switching (0.1.1-2) any product with a repeated variable is determined,
〈m,n,m〉 = 0, 〈m,n, p〉 = −〈p,m, n〉, 〈m,m, p〉 = 〈m, 〈m, p〉〉, so 〈m,n, p〉 + 〈n,m, p〉 ≡ 0 mod-
ulo bilinear products, and in a triple of distinct variables any one order determines the others,
〈p, n,m〉 = −〈m,n, p〉 ≡ +〈n,m, p〉 = −〈p,m, n〉 ≡ +〈m, p, n〉 = −〈n, p,m〉. We will see that in the
split Kac superalgebra scheme sK10 the quadratic structure is completely determined by the bilinear
structure plus the Peirce decomposition (and King showed [2] that the odd product is determined
up to a scalar by the bimodule structure). Thus two forms of sK10 which have the same bilinear
and Peirce structure must have the same quadratic and trilinear structure.

The quadratic operators Ua are determined by the Peirce relations, the quadratic form Q, and the
bilinear products: Ua = Uαe+v+βf = α2Ue+Uv+β2Uf+αβUe,f+αUe,v+βUf,v where Ue = E2, Uf =
E0, Ue,f = E1 are the Peirce projections on J2(e) = Φe + V = J0(f), J0(e) = Φf = J2(f), J1(e) =
M = J1(f), while by Peirce relations (0.2.4) Uvf = UvM = 0 with Uvb = Q(v, b̄)v − Q(v)b̄ [as in
(1.2)]; Ue,vf = Ue,vM = 0, Ue,vb = Vvb; and Uf,vf = Uf,vB = 0, Uf,vm = Vvm.

We will compile a complete list of all possible 103 triple products of basis elements m,n, p from
M and a, b, c from A (luckily symmetry and Peirce relations reduce this to a manageable collection).
The trilinear products with no factors fromM are just linearizations Ua,a′a′′ of the quadratic product
Ua on A as above. These are just the familiar ones in the direct sum A = B � Φf, with those in
B = Jord(Q, e) = Φe+ V being given by (1.2), so we turn to the triple products with a single term
from M .

Remark 4.1 The triple products with only one odd term are completely determined by the Peirce
decomposition and the bilinear products as given in Table (1.5). The outer quadratic products Uam
have UBM = Ue3M = 0, so only triple products 〈B,M, e3〉 survive, where Ub,e3m = Vbm reduces
to a bilinear product as in (1.5.2). By Even Symmetry (0.1.2) the left multiplications 〈m,a′, a〉 =
〈a, a′,m〉 reduce similarly to repeated bilinear products since VB,f = Vf,B = 0, Vf,fm = Vfm = m,
and Vb,b′m = VbVb′m by Peirce Orthogonality (0.2.1) and Triple Reduction (0.2.4), which can be
read off from Table (1.5.1). �

We next consider triple products with two or more factors m,n, p from M and a from A.

Remark 4.2 The triple products with two odd terms are also completely determined by the Perice
decomposition and the bilinear products in Tables (1.3), (1.9), since by Triple Reduction (0.2.4)

(4.2.1) 〈m,aj , n〉 = Ei
(
〈m, 〈aj , n〉〉

)
= Ei

(
〈〈m,aj〉, n〉

)
,

〈m,n, aj〉 = Ej(〈m, 〈aj , n〉〉) (aj ∈ Aj(e), j = 0, 2, i = 2− j).

So far the triple products have all been determined by the bilinear products and the Peirce relations.
This is not quite true of the triple products with all odd entries, though in the next section we will
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see that when the Kac algebra is split further the more refined Peirce decomposition does indeed
determine the triples. �

For the time being, the odd triple product is defined in terms of the Peirce relations, and the
alternating bilinear form σ of (1.7) according to King’s explicit formula [3, p.393]

(4.3) 〈m,n, p〉 = 〈[m ? n− σ(m,n)e], p〉 − 〈[p ? m− σ(p,m)e], n〉+ 〈[n ? p− σ(n, p)e],m〉,

and (4.2.1) can also be formulated as

(4.3.1) 〈m, b, n〉 = −3σ(〈m, b〉, n)f = −3σ(m, 〈b, n〉)f (b ∈ B), 〈m, f, n〉 = σ(m,n)e+ 2m ? n

since E0〈m,n〉 = −3σ(m,n)f, E2(〈m,n〉) = σ(m,n)e + 2m ? n for 〈m,n〉 = σ(m,n)g + 2m ? n [by
(1.6)].

From Alternation (0.1.2) we have general relations 〈m,n,m〉 = 0, 〈m,n, p〉 = −〈p, n,m〉, and
(letting 1′ = 2, 3′ = 4, 4′ = 3 as in (1.2),(1.6)) we derive specific relations

(4.4)
〈mi,mk,mi〉 = 0, 〈mi,mk,mj〉+ 〈mj ,mk,mi〉 = 0,

〈mi′ ,mi,mi〉 = (−1)i
′
2mi, 〈mj ,mi,mi〉 = 0 (j 6= i′)

〈mi′ ,mi,mj〉 = (−1)i
′
mj , 〈mi,mj ,mi′〉 = (−1)i

′
mj (j 6= i, i′)

since from (4.3), (1.8)
〈mi′ ,mi,mi〉 = 〈[0− (−1)ie],mi〉 − 〈[0− (−1)i

′
e],mi〉+ 〈[0− 0],mi′〉 = 2(−1)i

′
mi

〈mj ,mi,mi〉 = 〈[mj ? mi − 0],mi〉 − 〈[mi ? mj − 0],mi〉+ 〈[0− 0],mj〉 = 0
〈mi′ ,mi,mj〉 = 〈[0− (−1)ie],mj〉 − 〈[mj ? mi′ − 0],mi〉+ 〈[mi ? mj − 0],mi′〉

= [(−1)i
′
+ (−1)i + (−1)i

′
]mj = (−1)i

′
mj

〈mi,mj ,mi′〉 = 〈[mi ? mj − 0],mi′〉 − 〈[0− (−1)ie],mj〉+ 〈[mj ? mi′ − 0],mi〉
= [(−1)i

′
+ (−1)i − (−1)i]mj = (−1)i

′
mj .

We quickly arrive at a table of outer odd multiplications, but less quickly at a table of left odd
multiplications.

(4.5) Two- or Three Odd Products 〈M,J,M〉, 〈M,M, J〉
Um,n v1 v2 v3 v4 e f m1 m2 m3 m4

Um1,m2=−Um2,m1 0 0 0 0 −3f e −2m1 −2m2 m3 m4

Um1,m3=−Um3,m1 0 0 0 3f 0 −2v3 0 −m3 0 m1

Um1,m4=−Um4,m1 0 −3f 0 0 0 2v1 0 −m4 −m1 0
Um2,m3=−Um3,m2 3f 0 0 0 0 −2v2 m3 0 0 m2

Um2,m4=−Um4,m2 0 0 3f 0 0 −2v4 m4 0 −m2 0
Um3,m4=−Um4,m3 0 0 0 0 −3f e m1 m2 −2m3 −2m4

Vm,n Vm,naj = EjVmVnaj
Vm3,m1=−Vm1,m3=Vv3 0 0 0 e 2v3 0 0 −m3 0 m1

Vm1,m4=−Vm4,m1=Vv1 0 e 0 0 2v1 0 0 m4 m1 0
Vm3,m2=−Vm2,m3=Vv2 e 0 0 0 2v2 0 m3 0 0 m2

Vm4,m2=−Vm2,m4=Vv4 0 0 e 0 2v4 0 m4 0 −m2 0
Vm1,m1 = 2Vv1,v3 0 −2v3 0 2v1 0 0 0 −2m1 0 0
Vm2,m2 = 2Vv2,v4 −2v4 0 2v2 0 0 0 2m2 0 0 0
Vm3,m3 = 2Vv3,v2 2v3 0 0 −2v2 0 0 0 0 0 −2m3

Vm4,m4 = 2Vv4,v1 0 2v4 −2v1 0 0 0 0 0 2m4 0
Vm1,m2 2v1 0 2v3 0 e −3f 0 −2m2 −m3 −m4

Vm2,m1 0 −2v2 0 −2v4 −e 3f 2m1 0 m3 m4

Vm3,m4 0 2v2 2v3 0 e −3f −m1 −m2 0 −2m4

Vm4,m3 −2v1 0 0 −2v4 −e 3f m1 m2 2m3 0
Umi,mi = 0, Rmj ,mi(a) := 〈a,mj ,mi〉 = −〈mi,mj , a〉 = −Vmi,mj (a)
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Proof: The action of the outer multiplications Um,n on the odd m’s follows from the general
recipes (4.4). For the action on the v’s, (4.2.1) shows that Umi,mj

v vanishes if 〈mi, v〉 or 〈v,mj〉 van-
ishes, therefore Table (1.3) shows that for v1 ⊥ m1,m4 only Um2,m3v1 survives [with E0Vm2Vm3v1 =
E0Vm2m1 = E0(−g) = 3f ], simlarly for v2 ⊥ m2,m3 only Um1,m4 [with E0Vm1Vm4v2 = E0Vm1m2 =
E0(g) = −3f ], for v3 ⊥ m1,m3 only Um2,m4 [with E0Vm2Vm4v3 = E0Vm2m1 = 3f again], and for
v4 ⊥ m2,m4 only Um1,m3 [with E0Vm1Vm3v4 = −E0Vm1m2 = −E0(g) = 3f ]. Um,ne = E0(〈m,n〉)
and Um,nf = E2(〈m,n〉) are read directly from Table (1.9). This completes the table of U -operators.

The left multiplications acting on M can be read from the U -table, Vmi,mj
(mk) = Umi,mk

(mj),
or from the general recipes (4.4): Vmi,mi

sends mi,mi′ ,mj −→ 0,−(−1)i
′
2mi = 2(−1)imi, 0, while

Vmi,mi′ sends mi,mi′ ,mj −→ 0, (−1)imi′ , (−1)imj , giving immediately the last 8 rows on M .
For the last 8 rows acting on A, reading Table (1.3) by columns and then reading Table (1.9)

by rows shows that the ordered basis v1, v2, v3, v4, e, f for A is sent by VmVn as follows: Vm1 sends
v1, v2, v3, v4, e, f −→ 0,m3, 0,m4,m1,m1 which is then sent by EjVm1 to 0,−2v3, 0, 2v1, 0, 0 for
Vm1,m1 , and sent by EjVm2 to 0,−2v2, 0,−2v4,−e, 3f for Vm2,m1 .

Similarly Vm2 sends v1, v2, v3, v4, e, f −→ m4, 0,−,m3, 0,m2,m2 which is then sent by EjVm1 to
2v1, 0, 2v3, 0, e,−3f for Vm1,m2 , and by EjVm2 to −2v4, 0, 2v2, 0, 0, 0 for Vm2,m2 .

Likewise, Vm3 sends v1, v2, v3, v4, e, f −→ m1, 0, 0,−m2,m3,m3 which is then sent by EjVm3 to
2v3, 0, 0,−2v2, 0, 0 for Vm3,m3 , and by EjVm4 to −2v1, 0, 0,−2v4,−e, 3f for Vm4,m3 .

Finally, Vm4 sends v1, v2, v3, v4, e, f −→ m2,m1,m4,m4 which is sent by EjVm3 to 0, 2v2, 2v3, 0, e,−3f
for Vm3,m4 , and by EjVm4 to 0, 2v4,−2v1, 0, 0, 0 for Vm4,m4 .

6 Comparison of this with (1.5) shows
(for no apparent reason)

(4.6) Vm1,m1 = 2Vv1,v3 , Vm2,m2 = 2Vv2,v4 , Vm3,m3 = 2Vv3,v2 , Vm4,m4 = 2Vv4,v1 .

The remaining first 4 rows of left multiplications Vm,n reduce to operators Vb which can be read
off from Table (1.5): we claim that Vm3,m1 = −Vm1,m3 = Vv3 , Vm1,m4 = −Vm4,m1 = Vv1 , Vm3,m2 =
−Vm2,m3 = Vv2 , Vm4,m2 = −Vm2,m4 = Vv4 as operators on all of J , since by (1.7) m3 ? m1 =
v3, m1 ? m4 = v1, m3 ? m2 = v2, m4 ? m2 = v4, where in general

(4.7) for j 6= i, i′ we have Vmi,mj = Vmi?mj ∈ VB .

This holds on M since by (1.8) Vmi?mj sends mi,mi′ ,mj ,mj′ to 0, (−1)i
′
mj , 0, (−1)jmi, while by

(4.4) 〈mi,mj ,mi〉 = 0, 〈mi,mj ,mi′〉 = (−1)i
′
mj , 〈mi,mj ,mj〉 = 0, 〈mi,mj ,mj′〉 = −〈mj′ ,mj ,mi〉 =

−(−1)j
′
mi = (−1)jmi. To see it also holds on A, we check that 〈mi,mj , f〉 = E0

(
〈mi,mj〉

)
=

−3σ(mi,mj)f = 0 = Vmi?mj
(f) ∈ VBf. Similarly 〈mi,mj , e〉 = E2

(
〈mi,mj〉

)
= E2

(
σ(mi,mj)g +

2mi ? mj

)
= 0 + 2mi ? mj = Vmi?mj

(e). Finally, 〈mi,mj , vk〉 = E2

(
〈mi, 〈mj , vk〉〉

)
[by Triple Re-

duiction (0.2.4)] = E2

(
σ(mi, 〈mj , vk〉)g + 2mi ? 〈mj , vk〉

)
[by (1.6)] = σ(mi, 〈mj , vk〉)e [by (1.8)

mi ? 〈V,mj〉 ∈ mi ? (Φmi + Φmi′) = 0], while Vmi?mj
(vk) = −Vmj?mi

(vk) [by skewness of ?] =
−

( ∑
`〈σ(〈v`,mj〉,mi)v`′

)
, vk〉 = −

∑
` σ(〈v`,mj〉,mi)δ`ke = −σ(〈vk,mj〉,mi) = +σ(mi, 〈vk,mj〉)

[by skewness of σ]. This establishes the last cases of (4.5). �

Notice that most of the Vm,n reduce rather mysteriously to Va,b’s. We now turn to the mixed
left multiplications Va,m, Vm,a; they too reduce surprisingly to Vm,e, Vm,f :

(4.8) Vm,b = V〈b,m〉,e, Vb,m = Ve,〈b,m〉, Vm,f = Ve,m, Vf,m = Vm,e

because in the Peirce decomposition relative to e we have by Triple Reduction (0.2.4) that 〈m, b, f〉 =
0 = 〈〈b,m〉, e, f〉, 〈m, b, c〉 = 〈〈b,m〉, c〉 = 〈〈〈b,m〉, e〉, c〉 = 〈〈b,m〉, e, c〉, and 〈m, b, n〉 = E0

(
〈〈b,m〉, n〉

)
=

6This can also be calculated from the matrices of A
V ′x←− M

V ′′x←− A of Vx relative to the ordered bases
{v1, v2, v3, v4, e, f} for A and {m1, m2, m3, m4} for M , since V ′

m1
∼= E52−3E62−2E33 +2E14, V ′

m2
∼= −E51 +3E61−

2E23−2E44, V ′
m3
∼= E54−3E61+2E31+2E22, V ′

m4
∼= −E53+3E63−2E11+2E42, V ′′

m1
∼= E32+E44+E15−E16, V ′′

m2
∼=

E41 − E33 + E25 + E26, V ′′
m2
∼= E11 − E24 + E35 + E36, V ′′

m4
∼= E22 + E13 + E45 + E46.
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〈〈b,m〉, e, n〉; similarly 〈b,m, f〉 = 〈〈b,m〉, f〉 = 〈b,m〉 = 〈e, 〈b,m〉, f〉, 〈b,m, c〉 = 0 = 〈e, 〈b,m〉, c〉,
and 〈b,m, n〉 = E2

(
〈〈b,m〉, n〉

)
= 〈e, 〈b,m〉, n〉; by Switching (0.1.1) Vm,f = V〈m,f〉 − Vf,m =

Vm − Vf,m = V1,m − Vf,m = Ve,m, dually Vf,m = Vm − Vm,f = Vm,1−f = Vm,e. Thus

(4.9) VA,M + VM,A = VM,e + Ve,M = VM,Φe+Φf .

Combining this with (4.8), the 32 odd left multiplications reduce to 8:

(4.10)

Vm1,e = Vm3,v1 = Vm4,v3 = Vf,m1 , Ve,m1 = Vv1,m3 = Vv3,m4 = Vm1,f ,
Vm2,e = −Vm3,v4 = Vm4,v2 = Vf,m2 , Ve,m2 = −Vv4,m3 = Vv2,m4 = Vm2,f ,
Vm3,e = Vm1,v2 = −Vm2,v3 = Vf,m3 , Ve,m3 = Vv2,m1 = −Vv3,m2 = Vm3,f ,
Vm4,e = Vm1,v4 = Vm2,v1 = Vf,m4 , Ve,m4 = Vv4,m1 = Vv1,m2 = Vm4,f .

leading to the following brief table of values of these odd left multiplications.

(4.11) Odd Left Multiplications 〈M,A, J〉, 〈A,M, J〉
VM,A = VM,e VA,M = Ve,M

Vm,a(x) for x = v1 v2 v3 v4 e f m1 m2 m3 m4

Vm1,e = Vf,m1 0 m3 0 m4 m1 0 0 −3f 0 0
Vm2,e = Vf,m2 m4 0 −m3 0 m2 0 3f 0 0 0
Vm3,e = Vf,m3 m1 0 0 −m2 m3 0 0 0 0 −3f
Vm4,e = Vf,m4 0 m2 m1 0 m4 0 0 0 3f 0
Ve,m1 = Vm1,f 0 0 0 0 0 m1 0 e −2v3 2v1
Ve,m2 = Vm2,f 0 0 0 0 0 m2 −e 0 −2v2 −2v4
Ve,m3 = Vm3,f 0 0 0 0 0 m3 2v3 2v2 0 e
Ve,m4 = Vm4,f 0 0 0 0 0 m4 −2v1 2v4 −e 0

Proof: The table for Vm,ea = Vma can be read off vertically from the rows of (1.3) [note
VM,fB = 0, Vm,ff = m] and Vm,an = Um,na from the f -column of (4.5) [or from (1.9)]. �

5 The Split Kac Superalgebra sK10(Φ)

In this section we introduce the isotope sK10(Φ) := K10(Φ)split := K10(Φ)(s) (s = v1 + v2 + f) of
the standard Kac superalgebra scheme which provides 3 reduced idempotents over an arbitrary ring
Φ of scalars. We find a “split basis” and compute all bilinear and trilinear products in this isotope.
Later we will show that when i, 1√

2
∈ Φ this isotope is isomorphic to the standard superalgebra.

We call this isotope the “split K10 scheme”. Using x∗ = Usx as promised in (1.12), its operations
are7

U
(s)
a (xi) := UaUsxi = Uax

∗
i , a(2,s) := Uas, , 1(s) := s = u+ f,

〈xi, yj〉(s) := 〈xi, s, yj〉, 〈xi, yj , zk〉(s) := 〈xi, Usyj , zk〉 = 〈xi, y∗j , zk〉.
Here A remains a subalgebra in the isotope, A(s) = B(u) � (Φf)(f) = Jord(−Q, u) � Φf [since in
general Jord(Q, e)(u) = Jord(Q(u)Q, u−1) where here Q(u) = −1, 1(s) = u−1 = u. In particular,
f (2,s) = Uff = f, b(2,s) = Ubu so e(2,s) = Ueu = u, v

(2,s)
i = Uvi

(v1 + v2) = Uvi
vi′ = vi (i =

1, 2), v(2,s)
j = 0 (j = 3, 4), and for the bilinear products we have the following table. For Peirce

reasons which will become clear shortly, we re-order our basis forM asm1,m4,m3,m2 (interchanging
the second and fourth members).

7Again we use a Grassmann detour to make sure isotopy works for quadratic superalgebras; the quadratic
Jordan algebra Γ(J)(1⊗s) has operations eUβ⊗a = eUβ⊗a

eU1⊗s = β2 ⊗ Uax, (β ⊗ a)2 = eUβ⊗a1̃ = β2 ⊗
Uas, {δi ⊗ xi, δj ⊗ yj} = {δi ⊗ xi, 1⊗ s, δj ⊗ yj} = δiδj〈xi, s, yj〉 and analogously {δi ⊗ xi, δj ⊗ yj , δk ⊗ zk} =

{δi ⊗ xi, eU1⊗s(δj ⊗ yj), δk ⊗ zk} = δiδjδk〈xi, Usyj , zk〉.
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(5.1) sK10 Split Bimodule Products
〈a, a′〉(s) v1 v2 v3 v4 e f 〈a,m〉(s) m1 m4 m3 m2

v1 2v1 0 v3 v4 e 0 v1 m1 m4 0 0
v2 0 2v2 v3 v4 e 0 v2 0 0 m3 m2

v3 v3 v3 0 −u 0 0 v3 0 −m3 0 m1

v4 v4 v4 −u 0 0 0 v4 −m2 0 m4 0
e e e 0 0 2u 0 e m3 m2 m1 m4

f 0 0 0 0 0 2f f m1 m4 m3 m2

a(2,s) v1 v2 0 0 u f

Proof: The algebra products with f follow from {f, b}(s) = {f, s, b} = 0, while {b, b′}(s) =
{b, u, b′} can be read directly from Table (1.5) by adding the v1- and v2-columns for the U -operators.

As for the bimodule products, these can be read from the V -operators of Table (1.5) [〈f,m〉(s) =
〈f, s,m〉 = 〈f, f,m〉 = m, 〈b,m〉(s) = 〈b, u,m〉 = Vb,v1+v2(m)], or easily using 〈b, u,m〉 = 〈b, 〈u,m〉〉 =
〈b,m∗〉 [recall (1.12)] so that the new product of b on m1,m4,m3,m2 is just the old product of b on
m3,m2,m1,m4 [hence obtained from transposing the m1 and m3 columns in Table (1.3)]. �

Born Again

In particular, the elements v1, v2, f now become supplementary orthogonal idempotents and v3, v4, e,
m1,m4 span the Peirce 1-space of v1, while v3, v4, e,m3,m2 span the Peirce 1-space of v2. We make
the further replacement of v3 by −v3, so that 〈−v3, v4〉(s) = u in B(u) (as {v3, v4} = e in B). To
indicate this Peirce structure we hereby rechristen our basis to indicate their Peirce space Jij . When
we use this new labelling it is clear that we are working in the isotope, so we drop the superscripts
〈. . .〉(s) for isotope-products and use the usual notation 〈. . .〉, Ua for superalgebra products. Dressed
in its new clothes

Old v1 v2 −v3 v4 e f v2+v2 m1 m4 m3 m2 〈. . .〉(s) U
(s)
a

New e1 e2 c12 d12 q12 e3 u m13 n13 m23 n23 〈. . .〉 Ua

the new quadratic form becomes (compare with (1.1))

(5.2) Q(b) = β1β2−β3β4−β2
5 , T (b) = β1 + β2 for b = β1e1+β2e2+β3c12+β4d12+β5q12

and the bimodule structure becomes

(5.3) sK10 Bimodule Product
◦ e1 e2 c12 d12 q12 e3 m13 n13 m23 n23

e1 2e1 0 c12 d12 q12 0 m13 n13 0 0
e2 0 2e2 c12 d12 q12 0 0 0 m23 n23

c12 c12 c12 0 u 0 0 0 m23 0 −m13

d12 d12 d12 u 0 0 0 −n23 0 n13 0
q12 q12 q12 0 0 2u 0 m23 n23 m13 n13

e3 0 0 0 0 0 2e3 m13 n13 m23 n23

a2 e1 e2 0 0 u e3

We can also give a closed-form expression for the action of B12 on Mi3:

(5.4)
〈q12,mi3〉 = mj3, 〈q12, ni3〉 = nj3, 〈c12,mi3〉 = 〈d12, ni3〉 = 0,

〈c12, ni3〉 = (−1)jmj3, 〈d12,mi3〉 = (−1)inj3, (j = 3− i).

We can translate Table (1.5) directly into a bimodule table for the isotope.
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(5.5) Split Bimodule Structure
V, 〈a, x〉 = Va(x) e1 e2 c12 d12 q12 e3 m13 n13 m23 n23

Ve1,q12 = Vq12,e2 0 q12 0 0 2e1 0 0 0 m13 n13

Ve2,q12 = Vq12,e1 q12 0 0 0 2e2 0 m23 n23 0 0
Vq12,c12 = −Vc12,q12 0 0 0 q12 −2c12 0 0 m13 0 −m23

Vd12,q12 = −Vq12,d12 0 0 −q12 0 2d12 0 n13 0 −n23 0
Vq12,q12 2e1 2e2 2c12 2d12 2q12 0 m13 n13 m23 n23

Vf = Vf,f 0 0 0 0 0 2f m13 n13 m23 n23

Vc12 c12 c12 0 u 0 0 0 m23 0 −m13

Vd12 d12 d12 u 0 0 0 −n23 0 n13 0
Vq12 q12 q12 0 0 2u 0 m23 n23 m13 n13

Ve1 = Ve1,e1 2e1 0 c12 d12 q12 0 m13 n13 0 0
Ve2 = Ve2,e2 0 2e2 c12 d12 q12 0 0 0 m23 n23

Vc12,d12 e1 e2 2c12 0 q12 0 m13 0 m23 0
Vd12,c12 e1 e2 0 2d12 q12 0 0 n13 0 n23

Ve1,c12 = Vc12,e2 0 c12 0 e1 0 0 0 0 0 −m13

Ve2,c12 = Vc12,e1 c12 0 0 e2 0 0 0 m23 0 0
Ve1,d12 = Vd12,e2 0 d12 e1 0 0 0 0 0 n13 0
Ve2,d12 = Vd12,e1 d12 0 e2 0 0 0 −n23 0 0 0
a2 = Uau e1 e2 0 0 u f Uf,b = Vb on M
Ve1,e2 = Ve2,e1 = 0, Vc12,c12 = Vd12,d12 = Vf,B = VB,f = 0, Vb′,b = Vb′Vb∗ on M

Ub,b = 2Ub, Uu,b = Vb, Uf = Ub = Ub,b′ = 0 on M

U e1 e2 c12 d12 q12 e3
Ue1 e1 0 0 0 0 0
Ue2 0 e2 0 0 0 0
Uc12 0 0 0 c12 0 0
Ud12 0 0 d12 0 0 0
Uq12 e2 e1 −c12 −d12 q12 0
Uf 0 0 0 0 0 f
Ue1,e2 = Ue2,e1 0 0 c12 d12 q12 0
Ue1,c12 = Uc12,e1 c12 0 0 e1 0 0
Ue1,d12 = Ud12,e1 d12 0 e1 0 0 0
Ue1,q12 = Uq12,e1 q12 0 0 0 2e1 0
Ue2,c12 = Uc12,e2 0 c12 0 e2 0 0
Ue2,d12 = Ud12,e2 0 d12 e2 0 0 0
Ue2,q12 = Uq12,e2 0 q12 0 0 2e2 0
Uc12,d12 = Ud12,c12 e2 e1 0 0 −q12 0
Uq12,c12 = Uc12,q12 0 0 0 q12 2c12 0
Uq12,d12 = Ud12,q12 0 0 q12 0 2d12 0

Proof: Beginning with the V -operators V (s)
a,b = Va,b∗ , we set i = 1, 2, j = 3 − i, k = 3, 4.

For the first two lines we have V
(s)
ei,q12 = Vvi,e∗ = Vvi,e = Vvi

= Ve,vi
= Ve,v∗j = V

(s)
q12,ej . Then

Vv3,e = Ve,v3 becomes V (s)
−c12,q12 = V

(s)
q12,c12 and Vv4,e = Ve,v4 becomes V (s)

d12,q12
= V

(s)
q12,−d12 ; Ve,e becomes

V
(s)
q12,q12 , Vf,f remains V (s)

f,f ; Vvi,vj becomes V (s)
ei,ei ; Vv3,v4 becomes V (s)

−c12,−d12 , and dually for Vv4,v3 ;

Vvi,v3 = −Vv3,vi becomes V (s)
ei,c12 = −V (s)

−c12,ej
; Vvi,v4 = −Vv4,vi become V (s)

ei,−d12 = −V (s)
d12,ej

[so we

negate the row in (1.5)]; Vb′,b = Vb′Vb becomes V (s)
b′,b∗ = V

(s)
b′ V

(s)
b∗ [by Peirce relations, not translation].

V
(s)
b = Vb,u = Vb,v1 + Vb,v2 = V

(s)
b,e2

+ V
(s)
b,e1

is obtained by adding the first two columns of Vb in (1.5).

Vc12 , Vd12 , Vq12 are most easily read directly from (5.4) [alternately, V (s)
b = Vb,u = Vb,u∗ = V

(s)
b,u is the
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sum V
(s)
b,e1

+ V
(s)
b,e2

in (5.4)].

The U -operators are U (s)
a,b (x) = Ua,b(x∗), so we read their values directly from (1.5) with rows

with c12 negated (due to c12 = −v3), columns v1, v2 interchanged, column v4 negated (but not
column c12 = −v3 since it is negated twice), omitting the mi since U (s)

B M = 0. Here U (s)
q12,eia =

Ue,via
∗ = Vvia

∗ = {vi, a∗}, U
(s)
q12,c12a = −Ue,v3a∗ = −Vv3a∗ = −{v3a∗}, dually U

(s)
q12,d12

= {v4, a∗}
are read from (1.5). �

Odd Products

Turning to the odd products, we introduce the abbreviation

gi := 2vi − 3f = 2ei − 3e3 (i = 1, 2).

Again 〈m,n〉(s) = 〈m, s, n〉 can be read off Tables (1.3), (1.9) using 〈m, s, n〉 = 〈m,u+ f, n〉 =
E0

(
〈m, 〈u,m〉〉

)
+ E2

(
〈m, 〈f, n〉〉

)
= E0

(
〈m,n∗〉

)
+ E0

(
〈m,n〉

)
, or by adding the v1, v2, f -columns

of Table (4.5). This leads to 〈m1,m2〉(s) = 0 + 0 + e = q12 and 〈m3,m4〉(s) = 0 + 0 + e =
q12, 〈m1,m3〉(s) = 0 + 0 − 2v3 = 2c12, 〈m1,m4〉(s) = 0 − 3f + 2v1 = g1 and 〈m2,m3〉(s) =
3f + 0− 2v2 = −g2, 〈m2,m4〉(s) = 0 + 0− 2v4 = −2d12, thus

(5.6)
〈mi3, nj3〉 = q12, 〈mi3,mj3〉 = (−1)j2c12 (j=3−i),
〈mi3, ni3〉 = gi, 〈ni3, nj3〉 = (−1)j2d12,

(5.7) Isotope Odd Product Split Odd Product
〈·, ·〉(s) m1 m4 m3 m2 〈·, ·〉 m13 n13 m23 n23

m1 0 g1 −2v3 e m13 0 g1 2c12 q12
m4 −g1 0 −e 2v4 n13 −g1 0 −q12 2d12

m3 2v3 e 0 g2 m23 −2c12 q12 0 g2
m2 −e −2v4 −g2 0 n23 −q12 −2d12 −g2 0

Following the Shestakov model, we could write these in the more mnemonic form (for i 6= j ∈ {1, 2})

c12 =: b(m)
12 , d12 =: b(n)

12 , q12 =: b(m,n)
12 with 〈m13,m23〉 = 2b(m)

12 , 〈n13, n23〉 = 2b(n)
12 ,

〈mi3, nj3〉 = b
(m,n)
12 , 〈b(m)

12 ,mi3〉 = 〈b(n)
12 , ni3〉 = 0,

〈b(m)
12 , ni3〉 = (−1)jmj3, 〈b(n)

12 ,mi3〉 = (−1)inj3, 〈b(m,n)
12 ,mi3〉 = mj3, 〈b(m,n)

12 , ni3〉 = nj3.

Quaternion Representation

The quaternionic structure for the isotope is still easy to describe in terms of the split basis. Under
the isomorphism ϕ of §2 our newly-ordered basis for M becomes m13, n13,m23, n23 = m1,m4,m3,m2
ϕ−→ e11, e12, e21, e22 and the action (2.1) takes the form

(5.8) Split Quaternion Action A×H
Action of V on: e11 e12 e21 e22
Ve1 = Le11 e11 e12 0 0
Ve2 = Le22 0 0 e21 e22
Vc12 = Le21−e12Re21 , 0 e21 0 −e11
Vd12 = Le12−e21Re12 −e22 0 e12 0
Vq12 = Le12+e21 e21 e22 e11 e12
Ve3 = 1M e11 e12 e21 e22

Proof: In the isotope the actions are V (s)
a = Va,s, V

(s)
b = Vb,u = VbVu where Vu = Ve1+e2 =

Le12+e21 , so recalling the actions (2.1) we see
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V
(s)
e1 = Vv1Vu = Le12Le12+e21 = Le11 , V

(s)
e2 = Vv2Vu = Le21Le12+e21 = Le22 ,

V
(s)
c12 = −Vv3Vu = Le22−e11Re21Le12+e21 = Le21−e12Re21 ,

V
(s)
d12

= Vv4Vu = Le11−e22Re12Le12+e21 = Le12−e21Re12 ,

V
(s)
q12 = VeVu = Vu = Le12+e21 , V

(s)
e3 = Vf,s = Vf,f = Vf = 1M .

Thus the regular representation of the V (s)
a as quaternion multiplications on H is precisely the action

of Table (5.3). �

6 Split Triple Products

We now translate our tables for triple products in the standard K10 into tables for the split sK10. We
will see that all triple products are determined by bilinear products and the Peirce decomposition.
We noted in Remark 4.1 that the triple products with only one odd term are completely determined
by the Peirce decomposition and the bilinear products, of the form Va′,a = Va′Va or Ub = Ub′,b =
Uf = 0 and Ub,f = Vb on M , which can all be read off from Table (5.3). Alternately, U (s)

a = UaUs =
Us∗, V (s)

a′,a = Va′,Usa = Va′,a∗ can be read off directly from Bimodule Table (5.5). By Remark 4.2,
triple products with two odd terms are outer Um,naj = Ei

(
〈〈m,aj〉, n〉

)
= Ei

(
〈m, 〈aj , n〉〉

)
or left

Vm,naj = Ej
(
〈m, 〈aj , n〉〉

)
.

(6.1) Split Two- or Three-Odd Multiplication UM,M , VM,M
Um,np, Vm,np for p = e1 e2 c12 d12 q12 e3 m13 n13 m23 n23

[Um,np∗, Vm,n∗p] for p∗ =] [v2] [v1] [v3] [−v4] [e] [f ] [m3] [m2] [m1] [m4]
Um13,n23=−Un23,m13 0 0 0 0 −3e3 q12 m23 −2n23 −2m13 n13

[=Um1,m2 ∗]
Um13,m23=−Um23,m13 0 0 0 −3e3 0 2c12 0 −m23 0 m13

[=Um1,m3 ∗]
Um13,n13=−Un13,m13 −3e3 0 0 0 0 2e1 −m13 −n13 0 0

[=Um1,m4 ∗]
Un23,m23=−Um23,n23 0 3e3 0 0 0 −2e2 0 0 m23 n23

[=Um2,m3 ∗]
Un23,n13=−Un13,n23 0 0 3e3 0 0 −2d12 −n23 0 n13 0

[=Um2,m4 ∗]
Um23,n13=−Un13,m23 0 0 0 0 −3e3 q12 −2m23 n23 m13 −2n13

[=Um3,m4 ∗]
Um,m = 0, Un,m = −Um,n, Vm,nai = EjVmVnaj

Vm23,m23=Vq12,c12 0 0 0 q12 −2c12 0 0 m13 0 −m23

=−Vm13,m13 [=Vm3,m1 ]
Vm13,n23=Vq12,e2 0 q12 0 0 2e1 0 0 0 m13 n13

=−Vn13,m23 [=Vm1,m4 ]
Vm23,n13=Vq12,e1 q12 0 0 0 2e2 0 m23 n23 0 0
=−Vn23,m13 [=Vm3,m2 ]

Vn13,n13=−Vq12,d12 0 0 −q12 0 2d12 0 n13 0 −n23 0
=−Vn23,n23 [=Vm4,m2 ]

Vm13,m23=2Ve1,c12 0 2c12 0 2e1 0 0 0 0 0 −2m13

[=Vm1,m1 ]
Vn23,n13=−2Ve2,d12 −2d12 0 −2e2 0 0 0 2n23 0 0 0

[=Vm2,m2 ]
Vm23,m13=−2Vc12,e1 −2c12 0 0 −2e2 0 0 0 −2m23 0 0

[=Vm3,m3 ]
Vn13,n23=2Vd12,e2 0 2d12 2e1 0 0 0 0 0 2n13 0

[=Vm4,m4 ]
Vm13,n13 [=Vm1,m2 ] 2e1 0 2c12 0 q12 −3e3 0 −n13 −m23 −2n23

Vn23,m23 [=Vm2,m1 ] 0 −2e2 0 −2d12 −q12 3e3 2m13 n13 m23 0
Vm23,n23 [=Vm3,m4 ] 0 2e2 2c12 0 q12 −3e3 −m13 −2n13 0 −n23

Vn13,m13 [=Vm4,m3 ] −2e1 0 0 −2d12 −q12 3e3 m13 0 2m23 n23



18

Proof: This can be computed by brute force directly from Tables (5.4), (5.6).8 More ele-
gantly, since U (s)

m,n(a) = Um,n(a∗), 〈m, p, n〉(s) = 〈m,Usp, n〉 = 〈m, p∗, n〉, and the action of U (s)
m,n

on m1,m4,m3,m2 is just that of Um,n on m∗
1,m

∗
4,m

∗
3,m

∗
2 = m3,m2,m1,m4, the U -table follows

immediately from Table (4.5) by switching columns v1, v2 (from v∗1 = v2) and columns m1,m3 and
negating column v4 (from v∗j = −vj for j = 3, 4), and remembering that c∗12 = (−v3)∗ = v3.

We can similarly read off the V -operators directly from Table (4.5) via V (s)
m,n = Vm,n∗ [switch-

ing columns m1,m3, recalling that m∗
1 = m3,m

∗
2 = m4] so that V (s)

m13,m13 = Vm1,m3 = −Vm3,m1 =
−V (s)

m23,m23 ; V
(s)
m13,n23 = Vm1,m4 = −Vm4,m1 = −V (s)

n13,m23 ; V
(s)
n23,m13 = Vm2,m3 = −Vm3,m2 = −V (s)

m23,n13 ;
V

(s)
n23,n23 = Vm2,m4 = −Vm4,m2 = −V (s)

n13,n13 ; V
(s)
m13,m23 = Vm1,m1 ; V

(s)
n23,n13 = Vm2,m2 ; V

(s)
m23,m13 =

Vm3,m3 ; V
(s)
n13,n23 = Vm4,m4 ; V

(s)
m13,n13 = Vm1,m2 ; V

(s)
n23,m23 = Vm2,m1 ; V

(s)
m23,n23 = Vm3,m4 ; V

(s)
n13,m13 =

Vm4,m3 . �

Remark 6.2 Because the Peirce spaces Mi3 are only 2-dimensional, all the odd triple products in the
split Kac superalgebra are completely determined by Peirce orthogonality relations and Reductions
from bilinear products.
Indeed, every triple 〈xi3, yk3, z`3〉 for i, k, ` = 1, 2 will have a repeated index, hence by alternation
(0.1.2) is of the form 〈xi3, yj3, zi3〉 or 〈xi3, yi3, zi3〉 or ±〈xi3, yi3, zj3〉 for i = 1, 2, j = 3 − i. But
〈xi3, yj3, zi3〉 = 0 by Peirce Orthogonality (0.2.1), 〈xi3, zi3, yj3〉 = 〈xi3, 〈zi3, yj3〉〉, while 〈xi3, yi3, zi3〉
for basis vectors from Mi3 must have a repetition since dim(Mi3) = 2, where from Reduction (0.2.4)
we have 〈m,n,m〉 = 0, 〈m,m, n〉 = 〈m, 〈m,n〉〉 = −〈n,m,m〉. This leads to the following reduction
formulas for all odd triple products:

(6.3)

〈mi3,mi3, ni3〉 = 〈mi3, 〈mi3, ni3〉〉 〈ni3, ni3,mi3〉 = 〈ni3, 〈ni3,mi3〉〉
〈mi3,mi3,mj3〉 = 〈mi3, 〈mi3,mj3〉〉 〈ni3, ni3, nj3〉 = 〈ni3, 〈ni3, nj3〉〉
〈mi3,mi3, nj3〉 = 〈mi3, 〈mi3, nj3〉〉 〈ni3, ni3,mj3〉 = 〈ni3, 〈ni3,mj3〉〉
〈mi3, ni3, nj3〉 = 〈mi3, 〈ni3, nj3〉〉 〈ni3,mi3,mj3〉 = 〈ni3, 〈mi3,mj3〉〉
〈ni3,mi3, nj3〉 = 〈ni3, 〈mi3, nj3〉〉 〈mi3, ni3,mj3〉 = 〈mi3, 〈ni3,mj3〉〉 �

We can translate Table (4.11) into a table of odd left multiplications for the split algebra, where
the identity e for B becomes u = e1 + e2. (4.9) shows again that VA,M + VM,A = VM,Φu+Φf , where
VMi3,u = VMi3,ei

. Since in the isotope v1, v2, v3, v4, e, f,m1,m2,m3,m4 −→ e1, e2, c12, d12, q12, e3,m13,

n23,m23, n13 and V (s)
mi,b

= Vmi,b∗ with e1, e2, c12, d12, q12, e3,m13, n13,m23, n23
∗−→ e2, e1,−c12,−d12,

q12, e3,m23, n23,m13, n13, the 8 odd left multiplications reduce to:

(6.4)

Vm13,q12 = Vm23,e2 = Vn13,c12 = Ve3,m23 , Vq12,m23 = Ve1,m13 = −Vc12,n23 = Vm13,e3 ,
Vn23,q12 = Vm23,d12 = Vn13,e1 = Ve3,n13 , Vq12,n13 = −Vd12,m13 = Ve2,n23 = Vn23,e3 ,
Vm23,q12 = Vm13,e1 = −Vn23,c12 = Ve3,m13 , Vq12,m13 = Ve2,m23 = Vc12,n13 = Vm23,e3 ,
Vn13,q12 = −Vm13,d12 = Vn23,e2 = Ve3,n23 , Vq12,n23 = Vd12,m23 = Ve1,n13 = Vn13,e3 ,

leading to the following brief table of values of these odd left multiplications.
8The computation uses the formulas 〈xi3, ei, yi3〉 = −3σ(xi3, yi3)e3, 〈xi3, e3, yi3〉 = 2σ(xi3, yi3)ei, 〈xi3, ej , yi3〉 =

〈xi3, A12, yi3〉 = 0, 〈xi3, ei, yj3〉 = 〈xi3, ej , yj3〉 = 0, 〈xi3, e3, yj3〉 = 〈xi3, yj3〉, 〈xi3, a12, yj3〉 =
−3σ(〈xi3, a12〉, yj3)e3 = −3σ(xi3, 〈a12, yj3〉)e3 resulting from Peirce Orthogonality and Triple Reduction.
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(6.5) Odd Left Multiplications 〈M,A, J〉 = 〈A,M, J〉
Vm,a(x) for x = e1 e2 c12 d12 q12 e3 m13 n13 m23 n23

Vm13,e1 m13 0 0 −n23 m23 0 0 −3e3 0 0
Vn13,e1 n13 0 m23 0 n23 0 3e3 0 0 0
Vm23,e2 0 m23 0 n13 m13 0 0 0 0 −3e3
Vn23,e2 0 n23 −m13 0 n13 0 0 0 3e3 0
Vm13,e3 0 0 0 0 0 m13 0 2e1 2c12 q12
Vn13,e3 0 0 0 0 0 n13 −2e1 0 −q12 2d12

Vm23,e3 0 0 0 0 0 m23 −2c12 q12 0 2e2
Vn23,e3 0 0 0 0 0 n23 −q12 −2d12 −2e2 0

Proof: This is just table (4.11)with the m2,m4 columns and m1,m3 rows and m2,m4 rows
switched, and the v3 column negated. Alternately, the values for Vm,ea = Vma and Vm,an = Um,na
can be read off (vertically) from (1.3), [note VM,fB = 0, Vm,ff = m] and from the f -column of (4.5)
[or from (1.9)]. �

7 Inner Super-Derivations

We will compile a table of inner super-derivations D = D0+D1 = α1sK+
∑
Vxi,yi

withD(1) = 0. An
analysis of all derivations of the Kac and other simple superalgebras has been carried out by Michael
Smith [8] in general, and by G. Benkart and A. Elduque [1] for the Kac algebra in characteristic
6= 2. Recall that by Grassmann detour D = D0 + D1 is a super-derivation of a unital quadratic
Jordan superalgebra J iff D̃ := γ0 ⊗ D0 + γ1 ⊗ D1 is a derivation of the Grassmann envelope for
all γi ∈ Γi. Intrinsically, the conditions amount to the following conditions for the homogeneous
components Di on homogeneous elements x, y, z ∈ Γ(J):

(7.1)

Di〈x, y, z〉 = 〈Di(x), y, z〉+ (−1)ix〈x,Di(y), z〉+ (−1)ix+iy〈x, y,Di(z)〉,

Di(Uax) = 〈Di(a), x, a〉+ UaDi(x), which imply

〈Di, Vx,y〉 = VDi(x),y + (−1)ixVx,Di(y), Di〈x, z〉 = 〈Di(x), z〉+ (−1)ix〈x,Di(z)〉,

Di(1̂) = 0, Di(a2) = 〈Di(a), a〉.

By a Grassmann detour,9 the left multiplications Vi = Vs,t (i = deg(s) + deg(t)) belong to the
structure Lie superalgebra, satisfying

(7.2)

Vi〈x, y, z〉 = 〈Vi(x), y, z〉 − (−1)ix〈x, V ∗
i (y), z〉+ (−1)ix+iy〈x, y, Vi(z)〉,

Vi(Uax) = 〈Vi(a), x, a〉 − (−1)iUaV ∗
i (x), Vi(a2) = 〈Vi(a), a〉 − Uavi,

Vi(〈x, z〉) = 〈Vi(x), z〉 − (−1)ix〈x, vi, z〉+ (−1)ix〈x, Vi(z)〉,

Vi(1) = (−1)stV ∗
i (1) = 〈s, t〉 =: vi (V ∗

i = Vt,s).

The map Vs,t is itself a superderivation iff vi = 〈s, t〉 = 0, since a general inner structural map
Wi =

∑
Vsk,tk is a superderivation iff Wi(1̂) =

∑
〈sk, tk〉 = 0, in which case W ∗

i = −(−1)iW.
Automatically all Dxi,yj := Vxi,yj−(−1)ijVyj ,xi and all Dm := Vm,m for odd m are super-derivations
[since 〈xi, yj〉 = (−1)ij〈yj , xi〉 by supersymmetry (0.1.1) and 〈m,m〉 = 0 by odd alternation (0.1.2)],
as are all Smith derivations of the form Vx for 2x = 0 (see [8] for more on this phenomenon), in
particular ηVx if η ∈ Φ2⊥ = {η|2η = 0}, so in Inder(J) we have the standard inner super-derivations

9Inner maps which kill 1 are derivations of the superalgebra because their extensions to the Grassmann envelope
remain inner maps which kill 1, hence are derivations of the quadratic Jordan algebra. The superskew condition
W ∗

i = −(−1)iWi alone is not enough: together with Wi + (−1)iW ∗
i = VWi(1)

it implies VW (1) = 0, 2W (1) = 0, but
in general does not imply W (1) = 0.
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(7.3)
Dm := Vm,m, Dm,n := Vm,n+Vn,m, Da,b := Va,b−Vb,a, S(a′) := Va′ in Inder(J)0,

Dm,a := Vm,a − Va,m, Sm′ := Vm′ in Inder(J)1 (for 2a′ = 2m′ = 0).

In general, the odd Vm,n do not contribute many new inner derivations, since they are skew-
symmetric by Switching (0.1.1): we have general rules

(7.4)

Da,a = 0, Dx,y = −(−1)xyDy,x, Dx,1 = 0, Vm,n − Va,b ∈ Inder(J) if 〈m,n〉 = {a, b},

If a, b ∈ A have {a, b} = 0 then Va,b = −Vb,a ∈ Inder(J)0 with Da,b = 2Va,b,

Vm,n − Vn,m = V〈n,m〉 ∈ VA, 2Vm,n = Dm,n + V〈m,n〉 ∈ DM,M + VA,

Va,b = Vb,a = 0 if a ∈ A2(ei), b ∈ A0(ei) ( so DA,e3 = De1,e2 = 0).

using Peirce Orthogonality (0.2.1) and noting that {a, b} = 0 implies Va,b(1) = {a, b} = 0 and
Vb,a = V{a,b} − Va,b [by Switching (0.1.1)] = −Va,b, so Da,b = 2Va,b.

In the particular case of the split Kac superalgebra J = sK10(Φ) the odd standard and even
Smith inner super-derivations reduce to

(7.5) Dm,e3 = −Dm,u, Dm,b = D〈m,b〉,u = ∆〈m,b〉 for ∆m := Dm,u = Vm,u∗ (u∗ := u− e3),

since by (4.8) Dm,b = Vm,b − Vb,m = V{m,b},u − Vu,〈b,m〉 = D{m,b},u and Dm,e3 = Du,m = −Dm,u

with ∆m := Dm,u = Vm,u − Vu,m = Vm,u − Vm,e3 = Vm,u∗ [for reassurance, note 〈m,u∗, 1〉 =
〈m,u〉 − 〈m, e3〉 = m−m = 0 so this is indeed a superderivation].

With this notation out of the way, we can describe all the inner super-derivations.

Inner Super-Derivation Theorem 7.6 The space Inder(sK10) = I0 ⊕ I1 of inner derivations
of sK10 is I ∼=

(
osp1,2(Φ)⊗ Φ[µ]

)
⊕D0(Φ2⊥),

I0 = D ⊕D′ ⊕D0(Φ2⊥) ∼= sl2(Φ)⊕ sl2(Φ)µ⊕D0(Φ2⊥) =
(
sl2(Φ)⊗ Φ[µ]

)
⊕D0(Φ2⊥)

I1 := E ⊕ E ′ ∼= M13 ⊕M23
∼= V (Φ)⊕ V (Φ) = V (Φ)⊗ Φ[µ] (V (Φ) := Φ2)

where µ is a scalar in Φ[µ] with µ2 = −1. Here the even inner derivations are built from10

(7.6.1)

D :=
⊕

i=1,2,3 ΦDi for D1 := Vc12,q12 , D2 := Vq12,d12 , D3 := Dc12,d12 ,

where we have alternate descriptions
D3 = 3

(
Vc12,d12−1M

)
+Ve1−Vm13,n13 = 3

(
Vc12,d12−1M

)
+Ve2−Vm23,n23 ;

D′ :=
⊕

i=1,2,3 ΦD′
i for D′

1 := De1,c12=Ve1−e2,c12 , D′
2 := De1,d12=Ve1−e2,d12 ,

D′
3 := −De1,q12=Vq12,e1−e2 ;

D0(Φ2⊥) consists of all D0(η) := Sηe2 = ηVe2 (η ∈ Φ2⊥)
(so D0 = 0 if Φ has no 2-torsion).

The odd superderivations are built from

(7.6.2)
E =

⊕
i=1,2 Φ∆i for ∆1 = ∆m13 = Vm13,u∗ , ∆2 = ∆n13 = Vn13,u∗ ,

E ′ =
⊕

i=1,2 Φ∆′
i for ∆′

1 = ∆m23 = Vm23,u∗ , ∆′
2 = ∆n23 = Vn23,u∗ .

The action of the inner derivations on the split basis is given by the table
10Note the symmetry between D′

1 and D′
2, but the asymmetry between D1 = Vc12,q12 and D2 = Vq12,d12 =

−Vd12,q12 .
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(7.6.3) Even Inner Derivations I0 (k := e1 − e2)
D e1 e2 c12 d12 q12 e3 m13 n13 m23 n23

D1=Vc12,q12 0 0 0 −q12 2c12 0 0 −m13 0 m23

D2=Vq12,d12 0 0 q12 0 −2d12 0 −n13 0 n23 0
D3=Dc12,d12 0 0 2c12 −2d12 0 0 m13 −n13 m23 −n23

D′
1=Vk,c12 −c12 c12 0 k 0 0 0 −m23 0 −m13

D′
2=Vk,d12 −d12 d12 k 0 0 0 n23 0 n13 0

D′
3=Vq12,k q12 −q12 0 0 −2k 0 m23 n23 −m13 −n13

D0(η)=ηVe2
(2η = 0)

0 0 ηc12 ηd12 ηq12 0 0 0 ηm23 ηn23

Odd Inner Super-Derivations I1 (hi := 2ei + 3e3)
∆1=∆m13 m13 0 0 −n23 m23 −m13 0 −h1 −2c12 −q12
∆2=∆n13 n13 0 m23 0 n23 −n13 h1 0 q12 −2d12

∆′
1=∆m23 0 m23 0 n13 m13 −m23 2c12 −q12 0 −h2

∆′
2=∆n23 0 n23 −m13 0 n13 −n23 c12 2d12 h2 0

To make the multiplication table of Lie super-brackets [D,E]s = DE − (−1)DEED for the Lie
superalgebra of inner derivations appear more familiar, we introduce Ei := ∆i, E

′
i := ∆′

i EXCEPT
E2 = −∆2 (!!), and obtain

(7.6.4) Lie Superalgebra of Inner Derivations
D D1 D2 D3 D′

1 D′
2 D′

3 D0(η) E1 E2 E′
1 E′

2

D1 0 D3 −2D1 0 D′
3 −2D′

1 0 0 E1 0 E′
1

D2 −D3 0 2D2 −D′
3 0 2D′

2 0 E2 0 E′
2 0

D3 2D1 −2D2 0 2D′
1 −2D′

2 0 0 E1 −E2 E′
1 −E′

2

D′
1 0 D′

3 −2D′
1 0 −D3 2D1 ηD′

1 0 E′
1 0 −E1

D′
2 −D′

3 0 2D′
2 D3 0 −2D2 ηD′

2 E′
2 0 −E2 0

D′
3 2D′

1 −2D′
2 0 −2D1 2D2 0 ηD′

3 E′
1 −E′

2 −E1 E2

D0(η) 0 0 0 ηD′
1 ηD′

2 ηD′
3 0 0 0 ηE′

1 ηE′
2

E1 0 −E2 −E1 0 −E′
2 −E′

1 0 −2D1 D3 −2D′
1 D′

3

E2 −E1 0 E2 −E′
1 0 E′

2 0 D3 2D2 D′
3 2D′

2

E′
1 0 −E′

2 −E′
1 0 E2 E1 ηE′

1 −2D′
1 D′

3 2D1 −D3

E′
2 −E′

1 0 E′
2 E1 0 −E2 ηE′

2 D′
3 2D′

2 −D3 −2D2

The standard inner derivations reduce to 10 in DM , 6 in DA,A, and 4 in DM,A which can be written
in terms of the Di,∆i by

(7.6.5)

Dm13 = −Dm23 = D1, Dn23 = −Dn13 = D2,
Dm13,m23 = 2Dc12,e2 = 2D′

1, Dn13,n23 = 2Dd12,e2 = 2D′
2,

Dm23,n13 = −Dm13,n23 = Vq12,e1−e2 = D′
3, Dm13,n13 = Dm23,n23 = Dc12,d12 = D3,

De1,b12 = −De2,b12 = Ve1−e2,b12 ∈ D (b12 = c12, d12, q12),
De1,e2 = De3,A = 0, Dc12,q12 = 2D1, Dq12,d12 = 2D2, Dc12,d12 = D3,
∆m13 = ∆1, ∆n13 = ∆2, ∆m23 = ∆′

1, ∆n23 = ∆′
2,

Sx′ ∈ Span(Di,∆i) : Sηe2 = D0(η), Sηe3 = Sηu = ηD3, Sηe1 = Sηu − Sηe2 ,
Sηc12 = ηD′

1, Sηd12 = ηD′
2, Sηq12 = ηD′

3, Sm′ = ∆m′ .

Proof: The table (7.6.3) can be read directly from (5.5) for Di, D
′
i and from (6.5) for ∆i,∆′

i

[noting Vpi3,u∗ = Vpi3,ei−e3 ]. That the D′
i have an alternate description in (7.6.1) comes from

De1,b12 = Ve1,b12 − Vb12,e1 = Ve1,b12 − Ve2,b12 = Ve1−e2,b12 for b12 = c12, d12,−q12. It is more work
to show that the three expressions for D3 in (7.6.1) agree: from (6.1), (5.5) Ve1 − Vm13,n13 sends
the ordered basis for sK to

(
2e1 − 2e1, 0− 0, c12 − 2c12, d12 − 0, q12 − q12, 0 + 3e3, m13 − 0, n13 +

n13, 0+m23, 0+2n23

)
=

(
0, 0,−c12, d12, 0, 3e3,m13, 2n13,m23, 2n23

)
, while Ve2−Vm23,n23 also sends
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the ordered basis to
(
0−0, 2e2−2e2, c12−2c12, d12−0, q12− q12, 0+3e3, 0+m13, 0+2n13, m23−

0, n23 + n23

)
=

(
0, 0,−c12, d12, 0, 3e3,m13, 2n13,m23, 2n23

)
, while 3Vc12,d12 − 31 sends the basis to

3
(
(1 − 1)e1, (1 − 1)e2, (2 − 1)c12, (0 − 1)d12, (1 − 1)q12, (0 − 1)e3, (1 − 1)m13, (0 − 1)n13, (1 −

1)m23, (3 − 1)n23

)
=

(
0, 0, 3c12,−3d12, 0,−3e3, 0,−3n13, 0,−3n23

)
. Adding these shows that the

second and third versions of D3 send
(
e1, e2, c12, d12, q12, e3,m13, n13,m23, n23

)
to

(7.6.6)
(
0, 0, 2c12,−2d12, 0, 0,m13,−n13,m23,−n23

)
,

which is precisely where the first version D3 = Dc12,d12 = Vc12,d12 − Vd12,c12 sends it by subtracting
two rows in (5.5).

From this table it is easy to see that the transformations Di, D
′
i, D0(Φ),∆i,∆′

i are independent
over Φ [8]: if D = D0(η) +

∑3
i=1 αiDi +

∑3
j=1 α

′
iD

′
i = 0 then identifying coefficients of c12, d12, q12

in D(e1) = 0 gives α′1 = α′2 = α′3 = 0, identifying coefficients of q12 in D(c12) = D(d12) = 0 gives
α1 = α2 = 0, the coefficient of n13 in D(n13) = 0 gives α3 = 0, and finally the coefficient of c12 in
D(c12) = 0 gives η = 0, so that D vanishes iff all its coefficients vanish. Similarly, since ∆m(u) = m

if ∆ =
∑2
i=1 αi∆i +

∑2
j=1 ∆′

i = 0 then 0 = ∆(u) = α1m13 + α2n13 + α′1m23 + α′2n23 implies all
αi, α

′
i = 0.

First we check that the Di,∆i are actually superderivations. This is clear for the standard
D3, D

′
i by (7.3), for the ∆i by (7.5), for D0(η) = Sηe2 by (7.3), and for D1, D2 by (7.4) since

{c12, q12} = {d12, q12} = 0.
Next we check that the space L spanned by these 7 even and 4 odd superderivations span all inner

derivations by giving explicit expressions (7.6.5) for the standard inners. From (7.3) we see there are
10 basic even standard inner derivations Dm, Dm,n. The 4 basic even Dmi∗ = Vmi∗,mi∗ reduce by
(6.1) to Dm13 = −Dm23 = Vc12,q12 = −Vq12,c12 = D1, Dc12,q12 = Vc12,q12 − Vq12,c12 = 2Vc12,q12 = 2D1,
analogously Dn23 = −Dn13 = Vq12,d12 = −Vd12,q12 = D2, Dq12,d12 = Vq12,d12 − Vd12,q12 = 2Vq12,d12 =
2D2. For the other 6 basic Dmi∗,mj∗ we have by (6.1) that Dm13,m23 = Vm13,m23 + Vm23,m13 =
2Ve1,c12−2Vc12,e1 = 2De1,c12 = 2D′

1, Dn13,n23 = Vn13,n23 +Vn23,n13 = 2Vd12,e2−2Ve2,d12 = 2Dd12,e2 =
2D′

2, and Dm13,n23 = Vm13,n23 + Vn23,m13 = Vq12,e2 − Vq12,e1 = −Vq12,e1−e2 = −D′
3 which also equals

−Vn13,m23 −Vm23,n13 = −Dm23,n13 . From adding two rows in (6.1) and subtracting two rows in (5.5)
we see that Dmi3,ni3 = Vmi3,ni3 +Vni3,ni3 for i = 1, 2 both mysteriously coincide with D3 as in (7.6.5)
since they all send the ordered basis for sK10 to

(
0, 0, 2c12,−2d12, 0, 0,m13,−n13,m23,−n23

)
.

In view of (7.4) there are 6 basic even Dai,aj
with ai > aj [in the order e1 > c12 > d12 > q12,

since DA,e3 = De1,e2 = 0 by (7.5), while De2,b12 = −De1,b12 ], and for these we have De1,b12 ∈ L since
Ve1,b12 − Vb12,e1 = Ve1,b12 − Ve2,b12 = Ve1−e2,b12 , and by (7.4) we have Dc12,q12 = 2D1, Dd12,q12 =
−2D2, Dc12,d12 = D3.

To see (7.6.5) for the even Smith derivations, a′ =
∑
αiei + β1c12 + β2d12 + β3q12 has 2a′ = 0 iff

all η = αi, βi ∈ Φ2⊥ [by freeness of A as Φ-module]; here11

(7.6.7) Sηe3 = Sηu = ηD3 = 0A ⊕ η1M , Sηb12 = ηVb12,k = ηVk,b12 (k := e1 − e2)

since (7.6.3) shows ηD3 vanishes on A [from 2η = 0] and is η1 on M [from η = −η], and the same
holds for Sηe3 , Sηu since Ve3 = 21, Vu = 0 on Φe3, Ve3 = 0, Vu = 21 on B, and Ve3 = Vu = 1
on M . Also Sηb12 = ηVb12,1 = Vb12,e1+e2 = ηVb12,e1−e2 [by 2η = 0] = ηVb12,k = −ηVk,b12 [by
Switching (0.1.1) since {k, b12} = 0] = +ηVk,b12 [since −η = η]. This yields the formulas (7.6.5)
for Sηe2 , Sηe3 , Sηu, Sηe1 , Sηb12 (b12 = c12, d12, q12), so each piece of Sa′ lies in L. The odd Smith
derivations are absorbed as in (7.6.5) since Sm′ = Vm′ = Vm′,1 = Vm′,u+e3 = Vm′,u∗+2e3 = Vm′,u∗ =
∆m′ when 2m′ = 0.

For the odd standard super-derivations, in view of (7.5) DM,A and SM ′ reduce to ∆M spanned
by the ∆i,∆′

i. Thus all standard inner derivations lie in L ⊆ Inder(sK10) as stated in (7.6.5).
Now we check that space L contains all inner derivations (not just the standard ones). Setting

V̂A,A := VA,A + Φ1sK10 for convenience,12 we first note
11When Φ has characteristic 2 then 1 ∈ Φ2⊥ , and S1 is the surprising Smith derivation 0A ⊕ 1M .
12Note that if 1

2 ∈ Φ this latter term is unnecesaary since 1sK10 = 1
2V1,1.
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(7.6.8)
V̂A,A + VM,M ⊆ ΦVm13,n13 + ΦVm23,n23 + V̂A,A ⊆ ΦD3 + V̂A,A ⊆ L+ V̂A,A,

V̂A,A ⊆ ΦVe2 + Φ1 + Ve1,B12 + ΦVc12,d12 + L.

Indeed, Table (4.5) shows that all Vm,n lie in VB,B except for Vmi3,ni3 and Vni3,mi3 = Vmi3,ni3 −
V〈mi3,ni3〉 = Vmi3,ni3 −Vgi

∈ Vmi3,ni3 −VA, where Vmi3,ni3 ∈ V̂A,A−D3 by (7.6.1). All terms of V̂A,A
fall in L up to the 4 terms indicated in (7.6.8) because

Ve3,A = ΦVe3,e3 = ΦVe3 , Ve3 = 21−Ve1−Ve2 , Ve1 = −Ve2+Vc12,d12+Vd12,c12
Ve2,A+VA,e2 = ΦVe2+Ve2,B12+VB12,e2 = ΦVe2 + VB12,e1+Ve1,B12 ,

Ve1,A+VA,e1 = ΦVe1+Ve1,B12+VB12,e1 , VB12,e1 = Ve1,B12−Ve1−e2,B12 = Ve1,B12+
∑3
i=1 ΦD′

i,

VB12,B12 ⊆ ΦVc12,q12+ΦVd12,q12+ΦVc12,d12 + ΦVd12,c12 =
∑3
i=1 ΦDi+ΦVc12,d12 ,

VM,A + VA,M ⊆ VM,u + VM,e3 ⊆ ∆M + VM,e3 .

Finally, we check that an even inner map D = α11 + ηVv2 + α2Ve1,c12 + α3Ve1,d12 + α4Ve1,q12 +
α5Vc12,d12 is a derivation iff αi = 0 and 2η = 0: D(1) = α1(e1 + e2 + e3) + 2ηe2 + α2c12 + α3d12 +
α4q12 + α5(e1 + e2) vanishes iff α1 = α2 = α3 = α4 = α1 + α5 = α1 + 2η + α5 = 0 [identifying
coefficients of e3, c12, d12, q12, e1, e2], which reduces to all αi = 0, 2η = 0, i.e. D = ηVe2 ∈ D0(Φ2⊥)
and hence D ∈ L. Similarly, an odd inner map D = Vm,e3 is a super-derivation, i.e., D(1) = 0, iff
m = 0, since D(1) = {m, e3} = m.

The table (7.6.4) of Lie superbrackets results from straightforward calculation using the definition
of the D’s, the action table (7.6.3), and [Di, Vx,y]s = VDi(x),y + (−1)ixVx,Di(y), [Di, Vx]s = VDi(x),
from (7.1). For the even products note that

(7.6.9) 2Vc12,d12 − Vk,k = 2Vc12,d12 − Vq12,q12 = Dc12,d12

since from k2 = q2 = u we have 2Vc,d−Vk,k = 2Vc,d−Vu = 2Vc,d−V〈c,d〉 = Vc,d−Vd,c [by Switching
(0.1.1)] = Dc,d, similarly 2Vc,d − Vq,q = Dc,d. Note also that [D,D0(η)] = ηVD(e2) where D(e2) = 0
for D = Di and D(e2) = b12 for D = D′

i, where by (7.6.5) ηVb12 = ηVk,b12 = ηD′
i.

For the mixed even-odd products, we show that the ∆m span a 4-dimensional space I1 naturally
isomorphic to M , with the adjoint action of I0 on I1 isomorphic to the action of I0 as linear
transformations on M :

(7.6.10) [D0,∆m] = ∆D0(m)

since [D0, Vm,u∗ ] = VD0(m),u∗ + Vm,D0(u∗) = VD0(m),u∗ = ∆D0(m) [by (7.6.3) D0(e3) = D0(u) = 0 so
D0(u∗) = 0]. Thus I1 ∼= M as I0-modules.

For the odd products, we have
(7.6.11) ∆2

m = −Vm,m = −Dm, 〈∆m,∆n〉 = −Dm,n

By a Grassmann detour Vm,aVn,ax = Vm,Uanx + (−1)xUm,nUax, so by Alternation (0.1.2) and
Uu∗m = −m we have ∆2

mx = V 2
m,u∗x = −Vm,mx + (−1)xUm,mUuastx = −Vm,m = −Dm, hence by

linearization 〈∆m,∆n〉 = −Dm,n. This, together with (7.6.5) (remembering that Dm,n is symmetric
in m,n), shows that

(7.6.12)

〈E1, E1〉 =2E2
1 , (E1)2 = (∆1)2 = ∆2

m13
= −Dm13 = −D1,

〈E2, E2〉 =2E2
2 , (E2)2 = (−∆2)2 = ∆2

n13
= −Dn13 = D2,

〈E′
1, E

′
1〉 =2(E′

1)
2, (E′

1)
2 = (∆3)2 = ∆2

m23
= −Dm23 = D1,

〈E′
2, E

′
2〉 =2(E′

2)
2, (E′

2)
2 = (∆4)2 = ∆2

n23
= −Dn23 = −D2,

〈E1, E2〉 = 〈∆1,−∆2〉 = 〈∆m13 ,−∆n13〉 = Dm13,n13 = D3,
〈E1, E

′
1〉 = 〈∆1,∆′

1〉 = 〈∆m13 ,∆m23〉 = −Dm13,m23 = −2D′
1,

〈E1, E
′
2〉 = 〈∆1,∆′

2〉 = 〈∆m13 ,∆n23〉 = −Dm13,n23 = D′
3,

〈E2, E
′
1〉 = 〈−∆2,∆′

1〉 = 〈−∆n13 ,∆m23〉 = Dn13,m23 = D′
3,

〈E2, E
′
2〉 = 〈−∆2,∆′

2〉 = 〈−∆n13 ,∆n23〉 = Dn13,n23 = 2D′
2,

〈E′
1, E

′
2〉 = 〈∆′

1,∆
′
2〉 = 〈∆m23 ,∆n23〉 = −Dm23,n23 = −D3.
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Finally, we turn to the isomorphisms mentioned at the beginning of the Theorem. We have
I0 = L0 =

( ∑3
i=1 ΦDi

)
⊕

( ∑3
i=1 ΦD′

i

)
⊕D0(Φ) = D⊕D′⊕D0(Φ2⊥) ∼= sl2(Φ)⊕sl2(Φ)µ⊕D0(Φ2⊥) =(

sl2(Φ)⊗Φ[µ]
)
⊕D0(Φ2⊥) for µ2 = −1 because immediately from the table that [D,C ′] = [D′, C] =

[D,C]′, [D′, C ′] = −[D,C] and D ∼= sl2(Φ) via D1, D2, D3 −→ E12, E21, E11−E22. In characteristic
6= 2 (no 2-torsion) Φ2⊥ = 0 and the Lie algebra I0 is free of rank 6. In characteristic 2 it is free of
rank 7 since Φ2⊥ = Φ.13

The odd bimodule I1 =
( ∑2

i=1 ΦEi
)
⊕

( ∑2
i=1 ΦE′

i

)
= E ⊕ E ′ is isomorphic to V (Φ)⊕ V (Φ)µ =

V (Φ)⊗Φ[µ] for V (Φ) = Φv1⊕Φv2 the standard bimodule for sl2 because (once we carefully replace
∆2 by −∆2) we again immediately read off from the table that [D,E′] = [D,E]′, [D′, E′] = −[D,E]
and E ∼= V (Φ) via E1, E2 −→ v1, v2. Thus as bimodule we have I ∼= D0(Φ2⊥)⊕

(
sl2(Φ)⊕ V (Φ)

)
[µ].

Here V (Φ) ∼= ΦE13⊕ΦE23
∼= Φ(E13−E32)⊕Φ(E23 +E31), so sl2(Φ)⊕V (Φ) can be identified with

the set of all 3× 3 matrices
α β ε
γ −α δ
δ −ε 0

which is osp1,2(Φ) (turned upside down). Under this identification the (symmetric) odd Lie super-
products also correspond: The matrix product

(
ε(E13 −E32) + δ(E23 +E31)

)2 = −ε2E12 + δ2E21 +
εδ(E11 − E33 − E22 + E33) = εδ(E11 − E22) − ε2E12 + δ2E21. On the other hand, (εE1 + δE2)2 =
∆2
m (m := εm13 − δn13) [beware the minus] = −Dm [by (7.6.11)] = −

(
ε2Dm13 − εδDm13,n13 +

δ2Dn13

)
= −ε2D1 + εδD3 − δ2(−D2) [by (7.6.5)] −→ −ε2E12 + εδ(E11 − E22) + δ2E21. Thus

D ⊕ E ∼= osp1,2(Φ) as Lie superalgebra. �

Note that this inner derivation superalgebra of sK10 is not the same as that of the ordinary
K10 (found elegantly in [1, 2.8, p. 3213]) where µ2 = +1. Here Inder(sK10)0 ∼= Inder(B) =
Der(J(Q, u)) = {D ∈ Instrl(J) | D(u) = 0, Q(D(b), b) = 0 for all b ∈ B} is the “isotropy subalgebra”
of the inner structure algebra at the point u, while the usual Inder(sK10)0 is the isotropy subalgebra
at the point e. Our split superalgebra is an isotope of the standard one, and while in general isotopes
share the same inner structure algebra V (s)

J,J = VJ,UsJ = VJ,J , they are sensitive to isotropy: in the
standard K10 the basepoint e lies in the bilinear radical of Q in characteristic 2 (Q(e, J) = 0),
whereas in the split algebra the basepoint u = e1 + e2 does not (Q(u, e1) = 1).

8 Imbedding the Split in the Standard Kac Superalgebra

Finally, we show how over an algebraically closed field Φ of characteristic not 2 the split isotope sK10

can be imbedded inside the standard Kac superalgebra K10. By the usual Grassmann detour, two
isotopes J (a), J (b) by even elements a, b ∈ A are isomorphic if the elements a−1, b−1 are conjugate
under the inner structure group of J (since (1⊗T )(1⊗a−1) = 1⊗ b−1 then holds in J̃ for structural
1⊗ T ), and in our case J

(s) ∼= J since s ∈ A has a square root t in A.

Imbedding Theorem 8.1 If Φ contains τ with τ4 = − 1
4 then ϕ′ := Ut : K10 ←→ sK10 is an

isomorphism of Jordan superalgebras (in both directions) for

(8.1.1) t := v + f, v := τ(e+ iu), v2 = u := v1 + v2 (i := −2τ2).

In this case Φ also contains λ such that

(8.1.2) λ =
1− i

2
, iλ =

1 + i

2
, i2 = −1, 2λ2i = 1, λ4 = −1

4
.

13Then sl2(Φ) is nilpotent, and Inder(sK10)0 is solvable but not nilpotent: I(1)0 = [D, I0] = ΦD1 + ΦD2 + ΦD3 +

ΦD′
3, I(2)0 = ΦD3, I(3)0 = 0, but [D0(1), ΦD1 + ΦD2 + ΦD′

3] = ΦD1 + ΦD2 + ΦD′
3.
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Proof: By choice of τ the element i := −2τ2 has i2 = 4τ4 = −1 and 2τ2i = −i2 = 1. Then
v2 = τ2(e+ 2iu− e) = 2τ2iu = u. Thus Ut(1−1) = t2 = v2 + f = u+ f = s = s−1 and at the same
time Uts−1 = Ut(t2) = (t2)2 = s2 = 1 = 1−1, and ϕ′ is an isomorphism of superalgebras in both
directions. [While ϕ′ is not an involution, ϕ′ 2 = Us = ∗ is an involution on J .] If we define λ := 1−i

2

then iλ = i+1
2 , λ2 = 1−2i+i2

4 = − i
2 , 2iλ2 = −i2 = 1, λ4 = i2

4 = − 1
4 and λ is another fourth-root of

− 1
4 with the same i.
The isomorphism ϕ′ must take the split basis {e1, e2, c12, d12, q12, e3,m13, n13,m23, n23} = {v1, v2,

−v3, v4, e, f,m1,m4,m3,m2} to a split basis inside K10. Here ϕ′ = Uv+f reduces on B = A11+12+22

to Uv = λ2(Ue + iUe,u − Uu) = λ2(1B − ∗ + iVu), while on Φe3 = Φf it is just Uf , and on
M = M13 + M23 it is Uv,fm = Vvm = 〈v,m〉 = λ(〈e,m〉 + i〈u,m〉) = λ(m + m∗). If we set
k := v1 − v2 (as in (7.6.2)) we get a split basis

(8.1.3)

e′1 := ϕ′(v1) = λ2(v1−v2+ie) = 1
2 (e−ik), e′3 := ϕ′(f) = Uff = f,

e′2 := ϕ′(v2) = λ2(v2−v1+ie) = 1
2 (e+ik), m′

13 := ϕ′(m1) = λ(m1+im3),
c′12 := ϕ′(−v3) = λ2(−v3−v3+i0) = iv3, n′13 := ϕ′(m4) = λ(m4+im2),
d′12 := ϕ′(v4) = λ2(v4+v4+i0) = −iv4, m′

23 := ϕ′(m3) = λ(m3+im1),
q′12 := ϕ′(e) = λ2(e−e+i2u) = u, n′23 := ϕ′(m2) = λ(m2+im4).

inside K10. �

Remark 8.2 In characteristic not 2 this means the two algebras sK10(Φ) and K10(Φ) are isomorphic
as Jordan superalgebras over Φ, and the split scheme sK10 is a Z-form of the standard scheme K10.
But the split and standard algebras in characteristic 2 do not become isomorphic under any scalar
extension (they are not forms of each other): the condition b2 = T (b)b − Q(b)1 = −Q(b)1 ∈ Φ1
satisfied by the standard K10 in characteristic 2 (due to the traceless nature of Q) will persist
in all scalar extensions, and K10 will never be able to grow 3 reduced supplementary orthogonal
idempotents. �

Another imbedding (another Kac basis) creates the splitting idempotents e1, e2 more naturally
from the element u = v1 + v2: if 1

2 ∈ Φ then Jord(Q, e) is a degree 2 Jordan algebra whose identity
can be decomposed as a sum of two orthogonal idempotents

(8.3) e′′1 := 1
2 (e+ u), e′′2 := 1

2 (e− u), e′′3 := f, u := v1 + v2, u2 = e = e1 + e2.

Then e′′1 , e
′′
2 , e

′′
3 are supplementary reduced orthogonal idempotents in K10(Φ) and A is a degree 3

Jordan algebra with unit 1 = e′′1 + e′′2 + e′′3 ; the Peirce decomposition of K10(Φ) is

(8.4)

K10(Φ) =
( ⊕3

i=1Aii
⊕
A12

) ⊕ (
M13 ⊕M23

)
, where for w := v1 − v2

B = Jord(Q, e) = A11 ⊕A22 ⊕A12, Aii = Φe′′i , A12 = Φw ⊕ Φv3 ⊕ Φv4,

Q(a′′) = ε1ε2+α2−α3α4, T (a′′) = ε1+ε2 for a′′ = ε1e
′′
1+ε2e′′2+αw+α3v3+α4v4,

w2 = −e, {w, vj} = 0, v2
j = 0, {v3, v4} = e (j = 3, 4)

v∗1 = v2, v∗2 = v1, e′′i
∗ = e′′i , v∗12 = −v12 (for v = w, v3, v4).

The original basis {v1, v2, v4, v4, e, f,m1,m2,m3,m4} for K10(Φ) is not adapted to these new
idempotents. Over an algebraically closed field of characteristic 6= 2 (where we are seeking the
“true” split superalgebra; all we need are i =

√
−1 and

√
2) we obtain another split Z-basis for

K10(Φ) (cf. (5.2)):

(8.5)

e′′1 := 1
2 (e+ v1 + v2) = 1

2 (e+ `), e′′3 := f,
e′′2 := 1

2 (e− v1 − v2) = 1
2 (e− `), m′′

13 := 1√
2
(m1+m3),

c′′12 := iv3, n′′13 := 1√
2
(m2+m4),

d′′12 := −iv4, m′′
23 := i√

2
(m1−m3),

q′′12 := i(v1−v2) = iw, n′′23 := −i√
2
(m2−m4).
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One can check that the multiplication table for the basis (8.4) is the analogue of (5.4), (5.7) directly
from Tables (1.3), (1.9), (1.12); more conceptually, this holds because there is an inner automorphism
of J with ψ(x′) = x′′ for each element of the split basis.

Theorem 8.6 If i =
√
−1,
√

2 ∈ Φ we can define λ1, λ2 ∈ Φ related to λ := 1−i
2 of (8.1.2) by

(8.6.1)
λ1 := 1−i√

2
= λ
√

2, λ2 := 1+i√
2

= iλ
√

2, which will then satisfy

λ1λ2 = 1, λ2
1 = −i, λ2

2 = i, λλ1 = − i√
2
, λλ2 = 1√

2
.

If we set v := λ1v1 + λ2v2 + f, then the map ϕ′′ := UsUv+f is an inner automorphism of K10(Φ)
sending the split basis (8.1.3) to the split basis (8.5).

Proof: The formulas (8.6.1) follow by standard calculations with i. Already ∗′ := Uv+f
for v := λ1v1 + λ2 v2 is an involutory inner automorphism since v2 = λ1λ2{v1, v2} = e implies
(v + f)2 = e + f = 1. Composition with the involution ∗ = Us then yields an inner automorphism
of superalgebras ψ. To see that ψ does transform x′ to x′′, note that ∗′ = Uv + Uv,f + Uf for
Uv = λ2

1Uv1 + λ2
2Uv2 + λ1λ2Uv1,v2 = −iUv1 + iUv2 + Uv1,v2 , so that on B ψ sends

e
∗′−→ −0 + 0 + {v1, v2} = e

∗−→ e,

v1
∗′−→ −0 + iv2 + 0 = iv2

∗−→ iv1,

v2
∗′−→ −iv1 + 0 + 0 = −iv1

∗−→ −iv2,
v3

∗′−→ −0 + 0− v3 = −v3
∗−→ v3,

v4
∗′−→ −0 + 0− v4 = −v4

∗−→ v4,
k = v1 − v2 −→ iv1 − (−iv2) = i(v1 + v2) = i`,
u = v1 + v2 −→ iv1 + (−iv2) = i(v1 − v2) = iw,

(note that with respect to e′1, e
′
2 the element k = v1−v2 is “diagonal” and u = v1+v2 is “off-diagonal”,

while with respect to e′′1 , e
′′
2 the element w = v1 − v2 is “off-diagonal” and ` = v1 + v2 is “diagonal,”

hence their new names), and hence ψ sends e′1 = 1
2 (e − ik)

ψ−→ 1
2 (e + `) = e′′1 , e

′
2 = 1

2 (e + ik)
ψ−→

1
2 (e − `) = e′′2 , c

′
12 = iv3

ψ−→ iv3 = c′′12, d
′
12 = −iv4

ψ−→ −iv4 = d′′12, q
′
12 = u

ψ−→ iw = q′′12 as
claimed. On Φf we have ∗′ = ∗ = Ψ = Uf sending

f
∗′−→ f

∗−→ f

as claimed. Finally, on M the involution ∗′ becomes Uv,f = Vv = λ1Vv1 + λ2Vv2 , so ψ sends

m1
∗′−→ 0 + λ2m3

∗−→ λ2m1,

m2
∗′−→ λ1m4 + 0 ∗−→ λ1m2,

m3
∗′−→ λ1m1 + 0 ∗−→ λ1m3,

m4
∗′−→ 0 + λ2m2

∗−→ λ2m4,

and hence sends m′
13 = λ(m1 + im3) −→ λλ2m1 + iλλ1m3 = 1√

2
(m1 +m3) = m′′

13, n
′
13 = λ(m4 +

im2) −→ λλ2m4 + iλλ1m2 = 1√
2
(m4 + m2) = n′′13, m

′
23 = λ(m3 + im1) −→ λλ1m3 + iλλ2m1 =

i√
2
(m1 −m3) = m′′

23, n
′
23 = λ(m2 + im4) −→ λλ1m2 + iλλ2m4 = −i√

2
(m2 −m4) = n′′23 as claimed.

�

The quaternion action (5.7) of sK10(Φ) on M can be duplicated in K10(Φ) using the above
basis. The element ` = 1√

2

[
1 1
1 −1

]
has `2 = 1 and determines an involutive isomorphism ψ of

H = M2(Φ) with ψ(eij) =: fij another family of supplementary matrix units for H, with f11 =
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1
2 [ 1 1

1 1 ] , f22 = 1
2

[
1 −1
−1 1

]
, f12 = 1

2

[
1 −1
1 −1

]
, f21 = 1

2

[
1 1
−1 −1

]
so that e12−e21 = 1

2

[
0 1
−1 0

]
=

f21−f12, e11−e22 = 1
2

[
1 0
0 −1

]
= f12+f21, e11+e21 = 1

2 [ 1 0
1 0 ] = f11+f12, e11−e21 = 1

2

[
1 0
−1 0

]
=

f22+f21, 2e11 = f11+f12+f21+f22, e22+e12 = 1
2 [ 0 1

0 1 ] = f11−f12, e22−e12 = 1
2

[
0 −1
0 1

]
=

f22−f21, 2e22 = f11−f12−f21+f22, e12+e21 = 1
2 [ 0 1

1 0 ] = f11−f22, 2e12 = f11−f12 + f21−f22,
2e21 = f11+f12−f21−f22. In these terms the regular quaternion action (2.1) of A′′ on M is Ve′′1 =
1
2 (1 + V1 + V2) = 1

2L(e11+e22)+e12+e21 = 1
2L(e11+e21)+(e22+e12) = 1

2L(f11+f12)+(f11−f12) = Lf11 , Ve′′2 =
1
2 (1 − V1 − V2) = 1

2L(e11+e22)−e12−e21 = 1
2L(e11−e21)+(e22−e12) = 1

2L(f22+f21)+(f22−f21) = Lf22 , with
more complicated actions Vc′′12 = iV3 = iLe11−e22Re21 = 1

2 iLf12+f21Rf11+f12−f21−f22 , Vd′′12 = −iV4 =
−iLe11−e22Re12 = − 1

2 iLf12+f21Rf11−f12+f21−f22 , Vq′′12 = i(V1 − V2) = i(Le12−e21) = −iLf12−f21 ,
Ve′′ = Ve′′3 = 1M .

Under the isomorphism M −→ H via m1,m2,m3,m4
ϕ−→ e11, e22, e21, e12 the new basis for M is

(up to the scalar 1√
2
) m1 +m3, m2 +m4, i(m1−m3), −i(m2−m4)

ϕ−→ f11 + f12, f11− f12, i(f21 +
f22), −i(f22 − f21) = i(f21 − f22), and after a routine calculation the action of Table (2.1) takes the
split form

(8.7) Quaternion Action A′′ ×H
Action of V on: f11 + f12 f11 − f12 i(f21 + f22) i(f21 − f22)
Ve′′1 = Lf11 f11 + f12 f11 − f12 0 0
Ve′′2 = Lf22 0 0 i(f21 + f22) i(f21 − f22)
Vq′′12 = iLf21−f12 i(f21 + f22) i(f21 − f22) f11 + f12 f11 − f12
Vc′′12 = iLf12+f21Re21 0 i(f21 + f22) 0 −(f11 + f12)
Vd′′12 = −iLf12+f21Re12 −i(f21 − f22) 0 f11 − f12 0
Ve′′ = Ve′′3 = I f11 + f12 f11 − f12 i(f21 + f22) i(f21 − f22)
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