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Abstract. We define Jordan quadruple systems by the polynomial identities of
degrees 4 and 7 satisfied by the Jordan tetrad {a, b, c, d} = abcd + dcba as a quadri-
linear operation on associative algebras. We find further identities in degree 10
which are not consequences of the defining identities. We introduce four infinite
families of finite dimensional Jordan quadruple systems, and construct the univer-
sal associative envelope for a small system in each family. We obtain analogous
results for the anti-tetrad [a, b, c, d] = abcd − dcba. Our methods rely on computer
algebra, especially linear algebra on large matrices, the LLL algorithm for lattice
basis reduction, representation theory of the symmetric group, noncommutative
Gröbner bases, and Wedderburn decompositions of associative algebras.

1. Introduction

In this paper we study the quadrilinear operations {a, b, c, d} = abcd + dcba and
[a, b, c, d] = abcd − dcba in associative algebras. The first is the Jordan tetrad which
plays an important role in the structure theory of Jordan algebras [28, 31]. The
second is the anti-tetrad, which seems not to have been studied until now.

1.1. Motivation. In an associative algebra for n ≥ 2 we define the n-tad to be this
n-ary multilinear operation: {a1, . . . , an} = a1 · · · an + an · · · a1. For n = 2 we obtain
the Jordan product {a, b} = ab+ba satisfying commutativity and the Jordan identity:

{a, b} ≡ {b, a}, {{{a, a}, b}, a} ≡ {{a, a}, {b, a}}.

There are further “special” identities satisfied by the Jordan product in every
associative algebra which do not follow from the defining identities; the simplest
occur in degrees 8 and 9 and are called the Glennie identities [17, 18]. A Jordan
algebra is “special” if it can be represented as a subspace of an associative algebra
closed under the Jordan product; otherwise, it is “exceptional”. If a special Jordan
algebra is finite dimensional then its universal associative enveloping algebra is
also finite dimensional. A survey of the role of identities in Jordan theory has been
given by McCrimmon [26]. For the structure and representation theory of finite
dimensional Jordan algebras, see Jacobson [21]. For the modern theory including
infinite dimensional algebras, see McCrimmon [27].
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For n = 3 we obtain the Jordan triple product abc + cba; in every associative
algebra, this operation satisfies identities which define Jordan triple systems (JTS):

{a, b, c} ≡ {c, b, a}, {{a, b, c}, d, e} ≡ {{a, d, e}, b, c} − {a, {b, e, d}, c} + {a, b, {c, d, e}}.

In contrast to the Jordan identity these identities are multilinear. There are special
identities in higher degree: identities satisfied by the Jordan triple product in every
associative algebra but which do not follow from the defining identities [24, 25].
For the classification of finite dimensional JTS, see [22, 29, 30] and for their universal
associative envelopes, see [23].

Closely related to Jordan triple systems are the anti-Jordan triple systems (AJTS),
see [16]. Finite dimensional simple AJTS have been classified [1]. These systems
are defined by identities satisfied by the anti-Jordan triple product abc−cba in every
associative algebra:

{a, b, c} + {c, b, a} ≡ 0, {{a, b, c}, d, e} ≡ {{a, d, e}, b, c} + {a, {b, e, d}, c} + {a, b, {c, d, e}}.

Universal associative envelopes for one infinite family of simple AJTS have been
constructed [15].

At the next step n = 4 we obtain the Jordan tetrad abcd + dcba, which arises
in the study of symmetric elements of associative algebras. Let An be the free
unital associative algebra on generators x1, . . . , xn over a field F. The involution
∗ : An → An defined on monomials by (xi1 · · · xid )∗ = xid · · · xi1 satisfies (ab)∗ = b∗a∗

and (a∗)∗ = a. The subspace Hn = { a ∈ An | a∗ = a } of symmetric elements is a
Jordan algebra under the Jordan product. Let SJn be the free special Jordan algebra:
the Jordan subalgebra of Hn generated by x1, . . . , xn. Cohn [12, 13] has shown that
SJn = Hn for n ≤ 3; but for n ≥ 4, SJn , Hn and Hn is generated as a Jordan algebra
by x1, . . . , xn and the tetrads xi1 xi2 xi3 xi4 + xi4 xi3 xi2 xi1 for 1 ≤ i1 < i2 < i3 < i4 ≤ n.
Since An is unital, Hn is generated by x1, . . . , xn using the tetrad as a quadrilinear
operation. From the tetrad we recover the Jordan product by setting two arguments
to 1, and so this operation provides the natural algebraic structure on Hn for n ≥ 4.

Definition 1.1. The tetrad and anti-tetrad are respectively these quadrilinear op-
erations on associative algebras:

{a, b, c, d} = abcd + dcba, [a, b, c, d] = abcd − dcba.

1.2. Outline. In §2 we recall basic results from the representation theory of the
symmetric group, emphasizing a computational point of view, with a focus on
applications to polynomial identities. In §3 we use computer algebra to determine
a complete set of generators for the multilinear polynomial identities of degrees 4
and 7 satisfied by the tetrad in every associative algebra. These identities define
Jordan quadruple systems (JQS). In §4 we use representation theory to show that
there are further “special” identities in degree 10 satisfied by the tetrad in every
associative algebra which do not follow from the defining identities for JQS. We use
the LLL algorithm for lattice basis reduction to obtain five explicit nonlinear special
identities. In §5 we introduce four infinite families of finite dimensional JQS. For
one system in each family, we use noncommutative Gröbner bases to construct
its universal associative envelope; in each case the envelope is finite dimensional,
and we use the Wedderburn decomposition of an associative algebra to classify
the finite dimensional irreducible representations. In §§6–8 we describe analogous
results for the anti-tetrad. Throughout the paper we suggest a number of open
problems as possible directions for further research.
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1.3. Conventions. Unless otherwise indicated, all computations are performed
with the computer algebra system Maple using arithmetic over either the ring Z
of integers or the field Q of rational numbers. To save computer memory, we
often use arithmetic over the finite field Fp for some prime p, followed by rational
reconstruction to recover results over Z. We use the symbol ≡ to indicate that an
equation holds for all values of the arguments.

2. Computational methods for polynomial identities

In this section we review rather informally the structure theory of the group
algebra QSn from an algorithmic point of view, with a focus on applications to
polynomial identities. For a more detailed exposition, see [9, §5].

2.1. Representation matrices. If F is a field of characteristic 0 or p > n, then the
group algebra FSn is semisimple, and decomposes as the direct sum of simple
two-sided ideals, each isomorphic to a full matrix algebra:

R : FSn
≈

−−−−−→

⊕
λ

Mdλ (F)

The sum is over all partitions λ of n, and we write Rλ : FSn → Mdλ (F) for the
projection onto component λ. The dimension dλ of the irreducible representation
[λ] can be computed from the Young diagram of λ using the hook formula. Given
any permutation σ ∈ Sn, the dλ × dλ representation matrix Rλ(σ) in the natural
representation has entries in {0, 1,−1} and can be efficiently computed using the
methods of [11] and [9, Figure 1].

We study multilinear polynomial identities for nonassociative quadrilinear op-
erations. Monomials in such an operation have degrees n ≡ 1 (mod 3). By
an association type in degree n we mean a placement of operation symbols in
a sequence of n arguments (without specifying the arguments). By the identity
monomial for an association type in degree n we mean the monomial with the
identity permutation a1 · · · an of the arguments. In general, a monomial in degree n
consists of an association type applied to a permutation of the arguments. If there
are t = t(n) distinct association types in degree n, totally ordered in some way, then
any multilinear polynomial I of degree n can be written as a sum of t components
I1 + · · · + It; in each component, the terms differ only by the permutation of the
arguments. We can therefore regard I as an element of the direct sum of t copies of
the group algebra, (FSn)t, on which Sn acts by left multiplication. For each parti-
tion λ, we apply the projection Rλ to each component I1, . . . , It to obtain a sequence
of t matrices of size dλ × dλ which we combine horizontally into a matrix of size
dλ × tdλ. This is the representation matrix for the component of I in partition λ.
The row canonical form (RCF) of this matrix is the normal form of I for partition λ.
(We assume that zero rows have been removed from the RCF, so that a matrix in
RCF always has full rank.) Each row of the RCF generates a submodule of (FSn)t

isomorphic to [λ]. Hence the rank of this matrix is the multiplicity of [λ] in the
submodule of (FSn)t generated by I.

More generally, we consider a sequence I(1), . . . , I(s) of s multilinear identities in
degree n and the sdλ × tdλ matrix in which the (i, j) block is the image under Rλ
of the terms of the i-th identity in the j-th association type. The rows of the RCF
of this matrix provide a canonical set of generators for the isotypic component of
type [λ] generated by I(1), . . . , I(s) in (FSn)t.
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2.2. Polynomial identities. The process of finding a complete set of generators
for the Sn-module of multilinear identities in degree n satisfied by the tetrad
{a1, a2, a3, a4} consists of three steps. (For the anti-tetrad, the process is similar,
but we must also keep track of sign changes resulting from reversal.) These com-
putations take place in the multilinear subspaces Quad(n) of degree n in the free
quaternary algebra with one operation satisfying {a1, a2, a3, a4} − {a4, a3, a2, a1} ≡ 0.
Since Quad(n) is also a left Sn-module (permutations act on the subscripts), we
can regard it as the degree n component of the symmetric operad Quad generated
by one quaternary operation for which the action of S4 is given by the symmetry
in degree 4; that is, the generating space Quad(4) is the quotient of the regular
S4-module QS4 by the left ideal generated by a1a2a3a4 − a4a3a2a1.

Step 1. We distinguish two types of identities satisfied by the tetrad in degree n
which are consequences of known identities in lower degrees.
• Type 1: Symmetries. Since the tetrad satisfies symmetry in degree 4, we use this
to reduce the number of association types in degrees n > 4. For example, in degree
7 we reduce the number of association types from 4 to 2 as follows:

{a1, a2, {a3, a4, a5, a6}, a7} −→ {a7, {a3, a4, a5, a6}, a2, a1},

{a1, a2, a3, {a4, a5, a6, a7}} −→ {{a4, a5, a6, a7}, a3, a2, a1}.

This does not eliminate all the identities in degree n which follow from symmetry in
degree 4, since for each association type there remain identities of the form ι−τ ≡ 0
where ι is the identity monomial and τ is a monomial in the same association type
obtained from ι by a single application of symmetry. For example, for one of the
association types in degree 10 we have these identities:

{{a1, a2, a3, a4}, a5, a6, {a7, a8, a9, a10}} − {{a4, a3, a2, a1}, a5, a6, {a7, a8, a9, a10}} ≡ 0,
{{a1, a2, a3, a4}, a5, a6, {a7, a8, a9, a10}} − {{a1, a2, a3, a4}, a5, a6, {a10, a9, a8, a7}} ≡ 0,
{{a1, a2, a3, a4}, a5, a6, {a7, a8, a9, a10}} − {{a7, a8, a9, a10}, a6, a5, {a1, a2, a3, a4}} ≡ 0.

Symmetries of the association types generate a submodule Symm(n) ⊂ Quad(n).
• Type 2: Liftings. We assume by induction that we have already determined a
set of Sn−3-module generators for the multilinear identities of degree n−3 satisfied
by the tetrad. (We do not include the symmetry in degree 4 in this process, so
n− 3 > 4.) Let I(a1, . . . , an−3) ≡ 0 be such an identity. We consider n−3 substitutions
of a tetrad for an argument of I, and two embeddings of I into a tetrad:

I({a1, an−2, an−1, an}, a2, . . . , an−3), . . . , I(a1, . . . , {ai, an−2, an−1, an}, . . . , an−3), . . . ,

I(a1, a2, . . . , {an−3, an−2, an−1, an}),
{I(a1, a2, . . . , an−3), an−2, an−1, an}, {an−2, I(a1, a2, . . . , an−3), an−1, an}.

These multilinear polynomials clearly vanish, and form a set of Sn-module gen-
erators for the multilinear identities in degree n which are consequences of I. We
repeat this process for every generator in degree n−3. Iteration of this process
produces a set of generators for the Sn-module of identities for the tetrad in degree
n which are consequences of the known identities of lower degree. The liftings of
the identities of lower degree generate a submodule Lift(n) ⊂ Quad(n).

Definition 2.1. The submodule Old(n) = Symm(n) + Lift(n) ⊂ Quad(n) consists of
identities in degree n which are consequences of known identities of lower degree.
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We use the methods of §2.1 to find canonical generators for Old(n). For each λ,
we obtain the matrix RCFλ(Old(n)) whose rows are a set of independent generators
for the simple summands [λ] in the isotypic component of type λ in Old(n).

Step 2. We determine all the multilinear identities satisfied by the tetrad in degree
n. By §2.1, these identities are elements of Quad(n) = (FSn)t, where t = t(n) is
the number of association types in degree n. Each monomial in degree n can be
expanded by applying the definition {a, b, c, d} = abcd + dcba to each occurrence of
the operation symbol; the result is a multilinear associative polynomial of degree n:
an element of FSn. This process extends linearly to Quad(n), giving the expansion
map En : Quad(n)→ FSn, which is an Sn-module morphism. The kernel of En is the
submodule of Quad(n) consisting of those multilinear polynomials which vanish
after expansion into the free associative algebra.

Definition 2.2. The submodule All(n) ⊂ Quad(n) is the kernel of En : Quad(n) →
FSn: all the multilinear identities in degree n satisfied by the tetrad.

We use the methods of §2.1 to find canonical generators for All(n). For each
λ, we calculate the matrix RCFλ(All(n)) whose rows are a set of independent
generators for distinct simple summands of type [λ] in All(n). We restrict En to
the corresponding isotypic component of its domain and codomain, obtaining the
map Eλn : Mdλ (F)t

→ Mdλ (F). The matrix representing Eλn has size dλ × tdλ, and the
i-th block consists of the representation matrix of the expansion of the i-th identity
monomial. We compute a canonical basis for the nullspace of Eλn as follows:

• we calculate RCF(Eλn), its rank q, and its nullity tdλ − q;
• we set the free variables (columns without leading 1s) to the standard basis

vectors in Ftdλ−q and solve for the leading variables;
• we put the resulting basis vectors into a matrix of size (tdλ − q) × tdλ;
• we compute the RCF of this matrix, which is RCFλ(All(n)).

Step 3. We compare the results of Steps 1 and 2 to determine whether there exist
new multilinear identities satisfied by the tetrad in degree n.

Definition 2.3. The quotient module New(n) = All(n)/Old(n) consists of the new
identities for the tetrad in degree n: a complete set of representatives for the
equivalence classes of all identities modulo old identities.

To obtain a canonical set of generators for New(n), for each λ we compare the
matrices RCFλ(Old(n)) and RCFλ(All(n)). If these two matrices have the same
rank, they must be equal; this indicates that every identity in the isotypic com-
ponent λ follows from identities of lower degree. If the ranks are not equal, then
oldrank(λ), the rank of RCFλ(Old(n)), must be strictly less than allrank(λ), the
rank of RCFλ(All(n)); moreover, the row space of RCFλ(Old(n)) must be a sub-
space of the row space of RCFλ(All(n)). The difference allrank(λ) − oldrank(λ)
is the multiplicity of [λ] in New(n). To find Sn-module generators for the isotypic
componentλ in New(n), we identify the positions (i1, j1), . . . , (ioldrank, joldrank) of the
leading 1s in RCFλ(Old(n)), and the analogous positions (i′1, j′1), . . . , (i′

allrank
, j′
allrank

)
in RCFλ(All(n)). Comparing these two sets of positions, we obtain

J =
{
j1, . . . , joldrank

}
(

{
j′1, . . . , j′allrank

}
= J ′, J ′ \ J =

{
j′k1
, . . . , j′kallrank−oldrank

}
.

Rows i′k1
, . . . , i′kallrank−oldrank of RCFλ(All(n)) are the canonical generators of New(n).
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2.3. Linear algebra overQ, Fp andZ. In general, we prefer to do all computations
over the field Q of rational numbers. However, it is well known that, even if the
original matrix is very sparse and its entries belong to {0,±1}, standard algorithms
for computing the RCF produce exponential increases in the matrix entries. Even
if enough computer memory is available to store the intermediate results, the
calculations can take far too much time. It is therefore often convenient to use
modular arithmetic, so that each matrix entry uses a fixed small amount of memory.
This leads to the problem of rational reconstruction: recovering the correct results
over Q or Z from the known results over Fp.

In general, rational reconstruction is extremely ill-defined: we want to compute
an inverse for a partially-defined infinity-to-one map. Therefore it is only effective
when we have a good theoretical understanding of the arithmetical nature of the
expected results. In our computations, we may assume that the correct rational
coefficients have a common highly composite denominator. The reason is that
the vector spaces we study are all modules over the symmetric group Sn, and
in the Wedderburn decomposition of the group algebra QSn into a direct sum
of full matrix algebras, the matrix units are linear combinations of permutations
in which the coefficients have n! as their common denominator. Moreover, FSn
is semisimple whenever F has characteristic 0 or p > n, so formulas giving the
Wedderburn decomposition in rational arithmetic also apply to modular arithmetic
with a prime larger than the degree of the multilinear polynomial identities. For a
more precise statement of this fact, see [8, Lemma 8].

If we use a large enough prime, say p > n! rather than p > n, then we can recog-
nize the common denominator d of the rational coefficients from the distribution
of the congruence classes modulo p: the modular coefficients are clustered near
the congruence classes representing i/d for 1 ≤ i ≤ d − 1. This allows us to recover
the rational coefficients; we then multiply by the LCM of the denominators to get
integer coefficients, and finally divide by the GCD of the coefficients to get the
integer vector with least Euclidean length which is a scalar multiple of the original
coefficient vector. Once we have a realistic conjecture for the correct integer coef-
ficients, we can perform a much simpler computation using rational arithmetic to
verify the results.

Most of our computations involve finding a basis of integer vectors for the
nullspace of a matrix with integer entries. In some cases, the modular methods
described in the previous paragraphs give good results, meaning that the basis
vectors have small Euclidean lengths. In other cases, we obtain much better
results using the Hermite normal form (HNF) of an integer matrix (the analogue
over Z of the RCF) together with the LLL algorithm for lattice basis reduction. If
A is an s× t matrix overZ then computing the HNF of the transpose produces two
matrices over Z: a t × s matrix H and a t × t matrix U with det(U) = ±1 such that
UAt = H. If rank(A) = r then the bottom t − r rows of U form a lattice basis for
the left integer nullspace of At, which is the right integer nullspace of A. We then
apply the LLL algorithm with increasing values of the parameter to this basis in
order to obtain shorter basis vectors. We define a precise measure of the size of a
lattice basis consisting of integer vectors v1, . . . , vk by the number of decimal digits
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in the product of the Euclidean lengths of the vectors:

(1)
k∑

i=1

log10 ‖vi‖.

For a more detailed discussion of the application of HNF and LLL to polynomial
identities, including algorithms in pseudocode, see [6, §3] and the monograph [3].

3. Defining identities for Jordan quadruple systems

In this section we determine a complete set of Sn-module generators for the
multilinear polynomial identities satisfied by the tetrad in degrees 4 and 7.

Lemma 3.1. Every multilinear identity in degree 4 satisfied by the tetrad in every asso-
ciative algebra is a consequence of the symmetry {a, b, c, d} − {d, c, b, a} ≡ 0.

Proof. Consider two copies of the group algebra QS4; the first, denoted Q, is the
multilinear subspace of degree 4 in the free quaternary algebra with one operation
{−,−,−,−}; the second, denoted A, is the multilinear subspace of degree 4 in the
free associative algebra. Bases of Q and A are the sets { {aσ, bσ, cσ, dσ} | σ ∈ S4} and
{ aσbσcσdσ | σ ∈ S4}, ordered lexicographically. We initialize the 24 × 24 expansion
matrix E in which the (i, j) entry is the coefficient of the i-th associative monomial
in the expansion of the j-th quaternary monomial, and compute its RCF, which has
rank 12, and hence nullity 12. We obtain a basis for the nullspace by setting the
free variables equal to the standard basis vectors inQ12 and solving for the leading
variables. We put these basis vectors into a 12 × 24 matrix and compute its RCF;
every row represents a permutation of the stated symmetry. �

Theorem 3.2. Every multilinear identity in degree 7 satisfied by the tetrad in every
associative algebra is a consequence of the symmetry and these three identities in degree 7:

{{a,b,c,d},e, f ,g} + {{a,b, f ,e},d,c,g} + {{d,c, f ,e},a,b,g} − {g,{b,a,d,c}, f ,e}
− {g,{b,a,e, f },c,d} − {g,{c,d,e, f },b,a} ≡ 0,

{{a,b,c,d},e, f ,g} − {{a,b,g, f },e,c,d} + {{a,b,d,c},e,g, f } − {{a,b, f ,g},e,d,c}
+ {{a,e,c,d},b,g, f } − {{a,e,g, f },b,d,c} + {{a,e,d,c},b, f ,g} − {{a,e, f ,g},b,c,d}
− {a,{b,c,d,e}, f ,g} + {a,{b,g, f ,e},c,d} − {a,{b,d,c,e},g, f } + {a,{b, f ,g,e},d,c} ≡ 0,

{{a,b,c,d},e, f ,g} − {{a, f ,g,c},b,e,d} + {{c,b,a,d},e,g, f } + {{ f ,b,c,e},g,a,d}
− {{ f ,g,a,e},c,b,d} − {{ f ,g,a,d},b,c,e} − {{ f ,g,e,d},a,b,c} + {{g,b,a,e}, f ,c,d}
− {{g, f ,c,e},a,b,d} − {{g, f ,c,d},b,a,e} − {{g, f ,e,d},c,b,a} + {{e,a,b,d},c, f ,g}
+ {{e,c,b,d},a,g, f } + {a,{b,c,g, f },e,d} + {c,{b,a, f ,g},e,d} − { f ,{b,c,e,g},a,d}
− {g,{b,a,e, f },c,d} + {e,{a,g, f ,c},b,d} ≡ 0.

Proof. By symmetry, we need to consider only two association types in degree 7,

{{−,−,−,−},−,−,−}, {−, {−,−,−,−},−,−},

each having 7!/2 = 2520 distinct multilinear monomials, for a total of 5040. A basis
of Quad(7) consists of these monomials ordered by association type and then by
lex order of the permutation. A basis of the group algebra QS7, the multilinear
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subspace in the free associative algebra, consists of the permutations in lex order.
We record the expansion of the identity monomial in each association type:

{{a, b, c, d}, e, f , g} = abcde f g + dcbae f g + g f eabcd + g f edcba,
{a, {b, c, d, e}, f , g} = abcde f g + aedcb f g + g f bcdea + g f edcba.

The other expansions are obtained by permutation of the arguments, since the
expansion map E : Quad(7)→ QS7 is an S7-module homomorphism.

Using modular arithmetic (p = 101) we initialize a 5040 × 5040 matrix in which
the (i, j) entry is the coefficient of the i-th associative monomial in the expansion
of the j-th quaternary monomial. We compute the RCF and find that the rank is
2520, and hence the nullity is 2520. As in the proof of Lemma 3.1, we find a basis of
the nullspace; every coefficient belongs to {0, 1, 2, 50, 51, 99, 100}. For each vector,
we multiply by 2 if 50 or 51 is a coefficient, and do nothing otherwise. Since the
rows are coefficient vectors of polynomial identities, we can multiply by nonzero
scalars to obtain equivalent identities with simpler coefficients. Reducing modulo
p using symmetric representatives, the coefficients belong to {−4,−2,−1, 0, 1, 2, 4}.
We regard these as integers, and sort the vectors by increasing Euclidean length.

The next step is to extract from the linear basis of 2520 vectors a much smaller
set of generators for the nullspace as an S7-module. Using modular arithmetic, we
initialize a zero matrix consisting of upper and lower 5040× 5040 blocks. For each
vector, regarded as the coefficients of a polynomial identity, we:

• check to see if the identity belongs to the row space of the matrix;
• if not, apply all permutations of the arguments to the identity, and store

the results in the rows of the lower block;
• compute the RCF of the matrix; if the rank increases, record the identity as

a generator (at this point, the lower block is again zero).
Only four identities increase the rank, and one belongs to the submodule generated
by the others, which are independent (none is a consequence of the other two).
These are the three identities in the statement of this theorem. �

Remark 3.3. The identities of Theorem 3.2 can be checked by hand. For example,
the expansion of the first identity into the free associative algebra produces

abcde f g + g f eabcd + dcbae f g + g f edcba + ab f edcg + gcdab f e
+ e f badcg + gcde f ba + dc f eabg + gbadc f e + e f cdabg + gbae f cd
− gbadc f e − e f badcg − gcdab f e − e f cdabg − gbae f cd − dcbae f g
− g f eabcd − dc f eabg − gcde f ba − abcde f g − g f edcba − ab f edcg = 0.

We need computer algebra to prove that these identities are a complete set of
S7-module generators for the tetrad identities in degree 7.

Definition 3.4. A Jordan quadruple system (or JQS) is a vector space Q over a
field F of characteristic 0 or p > 7 with a quadrilinear map {−,−,−,−} : Q4

→ Q
satisfying the symmetry of Lemma 3.1 and the identities of Theorem 3.2.

Lemma 3.5. Over a field of characteristic 0 or p > 7, column “new” of Table 1 gives the
multiplicity of the S7-module [λ] in the kernel of the expansion map for each partition λ.

Proof. Table 1 was computed using the methods of §2.1. Columns 1 and 2 give the
partitions λ and the dimensions dλ. In degree 7 we consider only the symmetries
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symmetries expansions

λ dλ rows cols symm rows cols rank null new

7 1 3 2 0 2 1 1 1 1
61 6 18 12 4 12 6 3 9 5
52 14 42 28 12 28 14 8 20 8
512 15 45 30 16 30 15 6 24 8
43 14 42 28 12 28 14 7 21 9
421 35 105 70 36 70 35 18 52 16
413 20 60 40 24 40 20 10 30 6
321 21 63 42 20 42 21 9 33 13
322 21 63 42 20 42 21 12 30 10
3212 35 105 70 36 70 35 17 53 17
314 15 45 30 16 30 15 9 21 5
231 14 42 28 12 28 14 7 21 9
2213 14 42 28 12 28 14 6 22 10
215 6 18 12 4 12 6 3 9 5
17 1 3 2 0 2 1 0 2 2

Table 1. S7-module multiplicities for the tetrad in degree 7

of the association types, since there are no liftings of identities from lower degrees.
There are two association types each with one symmetry:

{{a1, a2, a3, a4}, a5, a6, a7} − {{a4, a3, a2, a1}, a5, a6, a7} ≡ 0,
{a1, {a2, a3, a4, a5}, a6, a7} − {a1, {a5, a4, a3, a2}, a6, a7} ≡ 0.

Under “symmetries”, columns 3 and 4 (rows, cols) give the size of the represen-
tation matrix for the symmetries, and column 5 (symm) gives its rank. Under
“expansions”, columns 6 and 7 give the size of the expansion matrix, column 8
gives its rank, and column 9 gives the nullity of its transpose. (For an explanation
of using the transpose, see [5, pp. 446-447].) Column “new” is the multiplicity of
the module [λ] (null minus symm) in the kernel of the expansion map. �

Remark 3.6. The data in Table 1 show that there is no point in searching for possibly
simpler nonlinear identities whose linearizations are equivalent to the identities of
Theorem 3.2. If I ≡ 0 is a nonlinear identity of degree 7, then every monomial of I
contains k ≥ 2 occurrences of some variable, say a. In L(I), the linearization of I, the
variable a is replaced by k distinct variables a1, . . . , ak and L(I) is invariant under all
permutations of these variables. To obtain the consequences of L(I) in partition 17,
we evaluate the alternating sum over all permutations of the variables in L(I), but
this is clearly 0, contradicting the multiplicity 2 for the module [17].

4. Special identities in degree 10 for the tetrad

In this section we show that there are identities for the tetrad which do not
follow from the defining identities for JQS. (We have not included these identities
in Definition 3.4, so that the operad for JQS is quadratic and admits a Koszul dual.)

Definition 4.1. Let A be an associative algebra and let JQS(A) be the underlying
vector space of A with the tetrad as the operation. If Q is a JQS, we call Q special if
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there is an embedding Q ↪→ JQS(A) for some A; otherwise we call Q exceptional.
If I ≡ 0 is a polynomial identity which is satisfied by the tetrad in every associative
algebra but which does not follow from the defining identities for JQS, then we
call I a special identity for the tetrad.

Open Problem 4.2. Do there exist exceptional JQS?

Theorem 4.3. For the tetrad, and for each partitionλ of 10, columns “symm”, “symmlift”,
“null” and “new” in the corresponding row of Table 2 contain respectively the multiplicity
of [λ] in the modules Symm(10), Old(10), All(10) and New(10).

Proof. The symmetry in degree 4 implies that every association type for a quadri-
linear operation in degree 10 is equivalent to one of the following:

(2)


{{{−,−,−,−},−,−,−},−,−,−}, {{−, {−,−,−,−},−,−},−,−,−},

{−, {{−,−,−,−},−,−,−},−,−}, {−, {−, {−,−,−,−},−,−},−,−},

{{−,−,−,−}, {−,−,−,−},−,−}, {{−,−,−,−},−, {−,−,−,−},−},

{{−,−,−,−},−,−, {−,−,−,−}}, {−, {−,−,−,−}, {−,−,−,−},−}.

These 8 types have respectively 1, 1, 1, 1, 2, 2, 3, 3 symmetries ι − τ ≡ 0 where ι is
the identity monomial and τ is a monomial with a permutation of order 2 of the
variables. We list the corresponding monomials τ for each type:

{{{dcba}e f g}hij}, {{a{edcb} f g}hij}, {a{{edcb} f gh}i j}, {a{b{ f edc}gh}i j},
{{dcba}{e f gh}i j}, {{abcd}{hg f e}i j}, {{dcba}e{ f ghi} j}, {{abcd}e{ihg f } j},
{{dcba}e f {ghij}}, {{abcd}e f { jihg}}, {{ghij} f e{abcd}}, {a{edcb}{ f ghi} j},
{a{bcde}{ihg f } j}, { j{ f ghi}{bcde}a}.

For each association type, each symmetry reduces the number of multilinear mono-
mials by a factor of 2, so the total number of monomials is

10!
(

1
2 + 1

2 + 1
2 + 1

2 + 1
4 + 1

4 + 1
8 + 1

8

)
= 9979200.

This number is so large that we must decompose the computation into smaller
pieces using the representation theory of S10. (To do the following computation
without representation theory would require a 3628800 × 9979200 matrix.)

The symmetry implies that each identity I(a, b, c, d, e, f , g) from Theorem 3.2
produces 9 liftings in degree 10:

I({a,h,i, j},b,c,d,e, f ,g), I(a,{b,h,i, j},c,d,e, f ,g), . . . , I(a,b,c,d,e, f ,{g,h,i, j}),
{I(a,b,c,d,e, f ,g),h,i, j}, {h, I(a,b,c,d,e, f ,g),i, j}.

For each partition λ with module [λ] of dimension dλ, we construct a matrix M of
size 9dλ × 8dλ (“rows” and “cols” under “symmetries and liftings”) consisting of
dλ × dλ blocks. To process an identity, we compute the representation matrices of
its terms in each association type [9], store these matrices in the last row of blocks,
and compute the RCF of M, so the last row of blocks becomes zero. In this way,
we process the symmetries of the association types and compute the rank of M
(column “symm”). We retain these results in M and process the liftings; the rank
of M increases (column “symmlift”) to reach the multiplicity of [λ] in the module
Old(10). When we are done, the rows of RCF(M) form a canonical set of generators
for the isotypic component of [λ] in Old(10).
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symmetries and liftings expansions

# λ dλ rows cols symm symmlift rows cols rank null new

1 10 1 9 8 0 7 8 1 1 7 ·

2 91 9 81 72 30 68 72 9 4 68 ·

3 82 35 315 280 140 260 280 35 20 260 ·

4 812 36 324 288 166 272 288 36 16 272 ·

5 73 75 675 600 342 565 600 75 35 565 ·

6 721 160 1440 1280 784 1200 1280 160 80 1200 ·

7 713 84 756 672 442 628 672 84 44 628 ·

8 64 90 810 720 416 670 720 90 50 670 ·

9 631 315 2835 2520 1594 2365 2520 315 155 2365 ·

10 622 225 2025 1800 1150 1680 1800 225 120 1680 ·

11 6212 350 3150 2800 1878 2630 2800 350 170 2630 ·

12 614 126 1134 1008 704 941 1008 126 66 942 1
13 52 42 378 336 204 320 336 42 16 320 ·

14 541 288 2592 2304 1456 2160 2304 288 144 2160 ·

15 532 450 4050 3600 2330 3380 3600 450 220 3380 ·

16 5312 567 5103 4536 3008 4244 4536 567 291 4245 1
17 5221 525 4725 4200 2808 3939 4200 525 260 3940 1
18 5213 448 4032 3584 2464 3357 3584 448 224 3360 3
19 515 126 1134 1008 708 945 1008 126 60 948 3
20 422 252 2268 2016 1282 1880 2016 252 136 1880 ·

21 4212 300 2700 2400 1582 2260 2400 300 140 2260 ·

22 432 210 1890 1680 1092 1580 1680 210 100 1580 ·

23 4321 768 6912 6144 4032 5760 6144 768 384 5760 ·

24 4313 525 4725 4200 2802 3933 4200 525 265 3935 2
25 423 300 2700 2400 1562 2239 2400 300 160 2240 1
26 42212 567 5103 4536 3022 4260 4536 567 276 4260 ·

27 4214 350 3150 2800 1870 2616 2800 350 180 2620 4
28 416 84 756 672 446 631 672 84 40 632 1
29 331 210 1890 1680 1080 1569 1680 210 110 1570 1
30 3222 252 2268 2016 1302 1900 2016 252 116 1900 ·

31 32212 450 4050 3600 2322 3368 3600 450 230 3370 2
32 3214 225 2025 1800 1164 1693 1800 225 105 1695 2
33 3231 288 2592 2304 1456 2159 2304 288 144 2160 1
34 32213 315 2835 2520 1588 2358 2520 315 160 2360 2
35 3215 160 1440 1280 784 1198 1280 160 80 1200 2
36 317 36 324 288 162 268 288 36 20 268 ·

37 25 42 378 336 192 309 336 42 26 310 1
38 2412 90 810 720 428 680 720 90 40 680 ·

39 2314 75 675 600 336 559 600 75 40 560 1
40 2216 35 315 280 146 265 280 35 15 265 ·

41 218 9 81 72 28 67 72 9 5 67 ·

42 110 1 9 8 2 8 8 1 0 8 ·

Table 2. S10-module multiplicities for the tetrad in degree 10
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For each partition λ, we construct a matrix X of size 8dλ × dλ (“rows” and
“cols” under “expansions”) consisting of dλ × dλ blocks; the i-th block contains the
representation matrix for the terms of the expansion of the identity monomial in
the i-th association type. We compute the RCF of the transpose Xt and find its
rank (column “rank”) and nullity (column “null); we then extract a basis for the
nullspace by setting the free variables to the standard basis vectors and solving for
the leading variables. We put the nullspace basis into the rows of a matrix N and
compute the RCF. The rows of RCF(N) form a canonical set of generators for the
isotypic component of [λ] in All(10).

If the multiplicity of [λ] in Old(10) coincides with its multiplicity in All(10), then
there are no new identities for partition λ. (In this case, we check the consistency of
the computations by verifying that the two submodules are equal, which amounts
to verifying that the two matrices in RCF are equal.) Otherwise, there are new
identities in degree 10 for the tetrad corresponding to partition λ. �

Open Problem 4.4. Determine a minimal set of multilinear identities in degree 10
for the tetrad which generate New(10) as an S10-module.

In the rest of this section we present some nonlinear special identities in degree
10 for the tetrad. These identities correspond to the partitions λ = s1t (s + t = 10)
for which column “new” in Table 2 is nonzero, namely λ = 614, 515, 416. The
corresponding Young diagrams have a long first row and a long tail. For these λ,
the structure theory of QS10 allows us to assume that the identity is a symmetric
function of the variables in the first row and an alternating function of the variables
in the tail, and this reduces the computational problem to a manageable size. We
first recall the notion of linearization matrices, called operators in [7, §2].

Definition 4.5. Let n = n1 + · · · + nk (n ≥ n1 ≥ · · · ≥ nk ≥ 1) be a partition
and µ = µ(an1

1 , . . . , a
nk
k ) a quaternary monomial of multidegree (n1, . . . ,nk). For

i = 1, . . . , k set Ni = {n1 + · · · + ni−1 + 1, . . . ,n1 + · · · + ni} so that N1 ∪ N2 ∪ · · · ∪ Nk
is a set partition of {1, . . . ,n} with |Ni| = ni. The basic linearization of µ is the
multilinear monomial `(µ) obtained from µ by first replacing ai by a′i for i = 1, . . . , k
and then replacing the ni occurrences of a′i by a j for j ∈ Ni with j increasing from
left to right. The symmetric and alternating linearizations of µ are

L+(µ) =
∑
σ1∈P1

· · ·

∑
σk∈Pk

σ1 · · · σk`(µ),

L−(µ) =
∑
σ1∈P1

· · ·

∑
σk∈Pk

εi(σ1) · · · εk(σk)σ1 · · · σk`(µ),

where Pi is the symmetric group on Ni and εi : Pi → {±1} is the sign.

Remark 4.6. Over a field of characteristic 0 or p > n, the identity I holds if and
only if L+(I) holds; the same is not true for L−(I).

Definition 4.7. Let λ be another partition of n and let Rλ : QSn → Md(Q) be the
corresponding irreducible representation of Sn of dimension dλ. The symmetric
and alternating linearization matrices for partitions n1, . . .nk and λ are

L+
n1,...,nk;λ =

∑
σ∈P1×···×Pk

Rλ(σ), L−n1,...,nk ;λ =
∑

σ∈P1×···×Pk

ε(σ)Rλ(σ).
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Linearization matrices make it much easier to compute the representation matrix
for the linearization of a nonlinear monomial µ: we can use the basic linearization
`(µ) of the nonlinear monomial instead of using all the terms in L+(µ).

Lemma 4.8. For all partitions n1, . . . ,nk and λ and all monomials µ, we have

Rλ(L+(µ)) = L+
n1,...,nk;λ · Rλ(`(µ)), Rλ(L−(µ)) = L−n1,...,nk;λ · Rλ(`(µ)).

Proof. These equations follow directly from the definitions, the linearity of the
maps, and the homomorphism property of a representation. �

Theorem 4.9. The multihomogeneous identities in Figure 1 are satisfied by the tetrad in
every associative algebra but are not consequences of the defining identities for JQS. The
sums are over all permutations σ of the non-repeated variables and ε(σ) is the sign.

Proof. The Young tableaux for partitions λ = 614, 515, 416 are

For each λ, the primitive idempotents in the Young basis of the two-sided ideal in
the group algebra correspond to standard tableaux; each idempotent is the product
of the symmetric sum over row permutations and the alternating sum over column
permutations. Hence an identity corresponding to a partition λ with first row of
size s and tail of size t is symmetric in the first s variables and alternating in the
last t variables. This allows us to reduce the number of monomials by considering
only those in which the non-repeated variables appear in increasing order, and
identifying these monomials with the corresponding alternating sums. We write
in detail the proof for λ = 614; the others are similar.

Let J be the multihomogeneous subspace with variables a6bcde in the free quater-
nary algebra with one operation {−,−,−,−} satisfying symmetry in degree 4. For
the eight association types (2) we have respectively 134, 134, 134, 134, 86, 86, 49,
52 monomials, and so dim J = 809 (recall that the non-repeated variables appear
in increasing order). Let A be the corresponding multihomogeneous subspace in
the free associative algebra; we have dim A = 5040. We construct the 809 × 5040
expansion matrix E in which the (i, j) entry is the (integer) coefficient of the j-th
associative monomial in the expansion of the i-th quaternary monomial. Using
modular arithmetic, we compute RCF(E) and obtain rank 110 and nullity 699; the
entries of the RCF are 0, ±1, ±2, ±4. We identify the columns which contain lead-
ing 1s; these columns j1, . . . , j110 form a basis of the column space. Using integer
arithmetic, we combine these columns of E into a much smaller 809×110 matrix E′.
We compute H = HNF(E′) and confirm that the rank and nullity have not changed
in characteristic 0; this computation also provides an 809× 809 unimodular matrix
U such that UE′ = H. The last 699 rows of U form a lattice basis for the integer
nullspace of E′; they have already been reduced using the LLL algorithm, and the
entries are 0, ±1, ±2. Using formula (1), this basis has size ≈ 607. To get identities
as simple as possible, we apply the LLL algorithm again, with standard parameter
3/4; this new basis has size ≈ 537. We sort these 699 vectors by increasing length.
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∑
σ∈S4

ε(σ)
(
{{{a, a, a, bσ}, a, a, cσ}, dσ, a, eσ} − {{{a, a, a, bσ}, a, a, cσ}, dσ, eσ, a}

+ {{{a, a, bσ, a}, cσ, a, a}, dσ, eσ, a} + {{{a, a, bσ, a}, cσ, a, dσ}, a, eσ, a}

+ {{{a, bσ, a, cσ}, a, dσ, a}, a, a, eσ} − {{{a, bσ, a, cσ}, a, dσ, a}, a, eσ, a}

− {{a, {a, a, bσ, a}, a, cσ}, dσ, a, eσ} − {{a, {a, bσ, a, cσ}, a, dσ}, a, eσ, a}

+ {a, {{a, a, bσ, a}, a, cσ, dσ}, a, eσ} − {a, {{a, a, bσ, cσ}, dσ, a, a}, a, eσ}

+ {a, {{a, a, bσ, cσ}, dσ, a, a}, eσ, a} + {a, {{a, bσ, a, cσ}, a, dσ, a}, eσ, a}
)
≡ 0∑

σ∈S5

ε(σ)
(
{{{a, a, bσ, cσ}, a, dσ, a}, a, eσ, f σ} − {{{a, a, bσ, cσ}, a, dσ, a}, eσ, a, f σ}

− {{{a, a, bσ, cσ}, dσ, a, a}, a, eσ, f σ} + {{{a, a, bσ, cσ}, dσ, a, a}, eσ, a, f σ}

− {{{a, bσ, a, cσ}, a, dσ, a}, a, eσ, f σ} + {{{a, bσ, a, cσ}, a, dσ, a}, eσ, a, f σ}

+ {{{a, bσ, a, cσ}, dσ, a, a}, a, eσ, f σ} − {{{a, bσ, a, cσ}, dσ, a, a}, eσ, a, f σ}

− {{{bσ, a, cσ, dσ}, a, eσ, a}, a, f σ, a} − {{{bσ, a, cσ, dσ}, eσ, a, a}, f σ, a, a}

− {{{bσ, cσ, a, dσ}, a, eσ, a}, f σ, a, a} − {{{bσ, cσ, a, dσ}, eσ, a, a}, a, f σ, a}
)
≡ 0∑

σ∈S5

ε(σ)
(
{{{a, a, a, bσ}, cσ, dσ, a}, eσ, a, f σ} − {{{a, a, a, bσ}, cσ, dσ, a}, eσ, f σ, a}

+ {{{a, bσ, a, cσ}, dσ, eσ, a}, a, a, f σ} − {{{a, bσ, a, cσ}, dσ, eσ, a}, a, f σ, a}

− {{a, {a, a, bσ, cσ}, a, dσ}, eσ, f σ, a} − {{a, {a, a, bσ, cσ}, dσ, a}, eσ, a, f σ}

+ {{a, {a, a, bσ, cσ}, dσ, a}, eσ, f σ, a} + {{a, {a, bσ, a, cσ}, a, dσ}, eσ, f σ, a}

− {{a, {bσ, a, cσ, dσ}, eσ, a}, a, a, f σ} − {{a, {bσ, cσ, a, dσ}, eσ, a}, a, f σ, a}

+ {a, {{a, a, bσ, cσ}, a, dσ, eσ}, f σ, a} − {a, {{a, bσ, a, cσ}, a, dσ, eσ}, f σ, a}
)
≡ 0∑

σ∈S5

ε(σ)
(
{{{a, a, bσ, a}, cσ, a, dσ}, eσ, f σ, a} − {{{a, bσ, a, cσ}, a, a, dσ}, eσ, f σ, a}

− {{{a, bσ, a, cσ}, a, dσ, a}, eσ, f σ, a} + {{{a, bσ, a, cσ}, dσ, a, eσ}, a, a, f σ}

+ {{{a, bσ, a, cσ}, dσ, eσ, a}, a, a, f σ} + {{a, {a, a, bσ, cσ}, dσ, a}, eσ, a, f σ}

+ {{a, {a, bσ, a, cσ}, a, dσ}, eσ, a, f σ} + {{a, {a, bσ, a, cσ}, dσ, a}, eσ, f σ, a}

− {{a, {bσ, a, cσ, dσ}, a, eσ}, a, a, f σ} − {{a, {bσ, cσ, a, dσ}, a, eσ}, a, f σ, a}

+ {{bσ, {a, a, cσ, a}, dσ, a}, eσ, a, f σ} − {a, {{a, a, bσ, cσ}, dσ, a, eσ}, a, f σ}

− {a, {{a, bσ, a, cσ}, a, dσ, eσ}, a, f σ} − {a, {{a, bσ, a, cσ}, a, dσ, eσ}, f σ, a}

− {a, {{a, bσ, a, cσ}, dσ, a, eσ}, f σ, a}
)
≡ 0∑

σ∈S6

ε(σ)
(
{{{bσ, a, cσ, dσ}, a, a, eσ}, a, f σ, gσ} − {{{bσ, a, cσ, dσ}, a, a, eσ}, f σ, a, gσ}

+ {{{bσ, a, cσ, dσ}, eσ, a, f σ}, a, a, gσ} − {{{bσ, cσ, a, dσ}, a, a, eσ}, a, f σ, gσ}

+ {{{bσ, cσ, a, dσ}, a, a, eσ}, f σ, a, gσ} + {{{bσ, cσ, a, dσ}, a, eσ, f σ}, a, a, gσ}
)
≡ 0

Figure 1. Some special identities for the tetrad in degree 10
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We proceed as in the proof of Theorem 4.3 using modular arithmetic (p = 101)
but considering only partition λ = 614. The matrix has size 1134 × 1008. We
first compute the rank of the symmetries (704) and the symmetries with the liftings
(941). The usual next step would be to process the linearizations of the 699 nonlinear
identities obtained in the previous paragraph; this however produces multilinear
identities with very large numbers of terms. In order to reduce the size of the
computation, we use the equations of Lemma 4.8. We require a combination of
symmetric linearization over the first 6 variables (in the first row of the Young
diagram) with alternating linearization over the last 4 variables (in the tail). This
involves a slight modification of the linearization matrices in Definition 4.7. Our
combined linearization matrix is the sum of 6!4! = 17280 terms, but it factors
as the product of two partial linearization matrices with respectively 6! terms
(permutations σ ∈ S6 acting on {1, . . . , 6}) and 4! terms (permutations τ ∈ S4 acting
on {7, . . . , 10}), for a total of only 6! + 4! = 744 terms:∑

σ∈S6,τ∈S4

ε(τ)Rλ(στ) =
∑

σ∈S6,τ∈S4

ε(τ)Rλ(σ)Rλ(τ) =
∑
σ∈S6

Rλ(σ) ·
∑
τ∈S4

ε(τ)Rλ(τ).

This 126 × 126 matrix is surprisingly simple: it has rank 1 and 21 nonzero entries.
Since the rank of all identities for λ = 614 is 942, we expect exactly one new identity.
After processing the 699 nonlinear identities, we find that only one increases the
rank. This is the identity in the statement of the theorem. �

5. Four families of finite dimensional Jordan quadruple systems;
examples of universal associative envelopes

In this section we consider some small examples of special JQS, and determine
the structure of their universal associative envelopes. We first define four infinite
families An, Bn, Cpqr, Dpqq of finite dimensional JQS which are subspaces of matrix
algebras which are closed under the tetrad.

• An consists of all n × n matrices; the dimension is n2.
• Bn consists of all n × n symmetric matrices; the dimension is 1

2 n(n+1).
For the remaining systems, we recall the classification [10] of simple associative
n-ary algebras in the case n = 4. We choose integers p, q, r ≥ 1 and consider block
matrices of size p + q + r, where Mpq is a matrix of size p × q:

(3)

 0 0 Mpr
Mqp 0 0

0 Mrq 0


This space is closed under the associative quadruple product of matrices.

• Cpqr (p ≥ q, r) consists of all matrices (3); the dimension is pq + qr + rp.
• Dpq consists of all matrices (3) with q = r where Mpq = Mt

qp and Mqq is
symmetric; the dimension is pq + 1

2 q(q+1).
We consider the smallest non-trivial system J in each family: A2, B2, C111, D11 with
dimensions 4, 3, 3, 2 respectively. To construct the universal associative envelope
U(J), we use noncommutative Gröbner bases in free associative algebras [4]: U(J)
is the quotient F〈B〉/I(G) of the free associative algebra F〈B〉 on a basis B of J by the
ideal I(G) generated by the following set of relations:

G =
{

abcd + dcba − {a,b,c,d} | a, b, c, d ∈ B
}
.
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We find a Gröbner basis of I(G) and identify the monomials in F〈B〉 which do not
have the leading monomial of any Gröbner basis element as a subword. The cosets
of these monomials form a basis for U(J). If U(J) is finite dimensional, then we
can determine its structure using the Wedderburn decomposition of associative
algebras [2]. We consider the four smallest systems by increasing dimension.

Proposition 5.1. We have U(D11) � Q ⊕M3(Q), and hence up to isomorphism, D11 has
only two finite dimensional irreducible representations, the 1-dimensional trivial represen-
tation and the 3-dimensional natural representation.

Proof. In the natural representation by 3 × 3 matrices, D11 has this basis:

a =

0 0 1
1 0 0
0 0 0

 , b =

0 0 0
0 0 0
0 1 0

 .
The only nonzero quadruple products are {a, b, a, a} = a and {b, a, a, b} = b. Hence
U(D11) = F〈a, b〉/I(G) where I(G) is generated by the following self-reduced set
{g1, . . . , g10} in lex order of leading monomials with a ≺ b:

a4, aba2 + a2ba − a, ab2a, ba3 + a3b, ba2b − b,

baba + abab, b2a2 + a2b2, b2ab + bab2, b3a + ab3, b4.

We make the Gröbner basis algorithm deterministic by considering the pairs (gi, g j)
in lex order of the subscripts (i, j); whenever their composition is reducible, we re-
duce the highest term in deglex order using the generator whose leading monomial
is lowest in deglex order. For example, (g2, g1) produces this composition:

g2a2
− abg1 = (aba2 + a2ba − a)a2

− aba4 = aba4 + a2ba3
− a3
− aba4 = a2ba3

− a3.

We reduce this composition in three steps using g2, g2, g1 as follows:

a2ba3
− a3
− ag2a = a2ba3

− a3
− a(aba2 + a2ba − a)a = −a3ba2,

−a3ba2 + a2g2 = −a3ba2 + a2(aba2 + a2ba − a) = a4ba − a3,

a4ba − a3
− g1ba = a4ba − a3

− a4ba = −a3.

We cannot reduce further, so we record a3 as a (monic) composition. This process
gives the following set {h1, . . . , h24} of distinct nonzero reduced compositions:

a3, ab2, bab, b2a, b3, a3b, a2b2, abab, ab3, bab2, a3ba,

a3b2, a2bab, a2b3 + b2, abab2, bab3, a3bab, a2bab2
− a3b3

− ab2,

a2bab2
− bab, a2bab2, abab3, a3bab2

− 2a2b2, a2bab3, a2bab3
− ab3.

We sort {g1, . . . , g10, h1, . . . , h24} by deglex order of leading monomials, and compute
the normal form of each element with respect to the preceding elements. Many
normal forms are 0, showing that I(G) is generated by these five elements:

b2, a3, bab, aba2 + a2ba − a, ba2b − b.

All compositions of these elements reduce to 0, so we have a Gröbner basis for I(G).
Only d = 10 monomials in F〈a, b〉 are not divisible any of the leading monomials:

1, a, b, a2, ab, ba, a2b, aba, ba2, a2ba.
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The cosets of these monomials modulo I(G) form a basis for U(D11). We calculate
the structure constants for U(D11) by computing the normal forms of the products
of these monomials with respect to the Gröbner basis; see Table 3.

1 a b a2 ab ba a2b aba ba2 a2ba

1 1 a b a2 ab ba a2b aba ba2 a2ba
a a a2 ab 0 a2b aba 0 a2ba −a2ba+a 0
b b ba 0 ba2 0 0 b 0 0 ba
a2 a2 0 a2b 0 0 a2ba 0 0 a2 0
ab ab aba 0 −a2ba+a 0 0 ab 0 0 aba
ba ba ba2 0 0 b 0 0 ba 0 0
a2b a2b a2ba 0 a2 0 0 a2b 0 0 a2ba
aba aba −a2ba+a 0 0 ab 0 0 aba 0 0
ba2 ba2 0 b 0 0 ba 0 0 ba2 0
a2ba a2ba a2 0 0 a2b 0 0 a2ba 0 0

Table 3. Structure constants for U(D11)

The radical of U(D11) is the nullspace of the Dickson matrix [4, Corollary 12]:
the d × d matrix ∆ defined in terms of the structure constants ck

i j for U(D11):

∆ =



10 · · · · · 3 3 3 ·

· · · · 3 3 · · · ·

· · · 3 · · · · · ·

· · 3 · · · · · · ·

· 3 · · · · · · · 3
· 3 · · · · · · · ·

3 · · · · · 3 · · ·

3 · · · · · · 3 · ·

3 · · · · · · · 3 ·

· · · · 3 · · · · ·



∆i j =

d∑
k=1

d∑
`=1

ck
jic
`
k`



This matrix has full rank, so U(D11) is semisimple. The center Z(U(D11)) is the
nullspace of the d2

× d matrix from [4, Corollary 15]; the RCF of this matrix is

· 1 · · · · · · · ·

· · 1 · · · · · · ·

· · · 1 · · · · · ·

· · · · 1 · · · · ·

· · · · · 1 · · · ·

· · · · · · 1 · −1 ·

· · · · · · · 1 −1 ·

· · · · · · · · · 1


Hence a basis for Z(U(D11)) consists of (the cosets of) 1 and c = a2b + aba + ba2.
We calculate c2 = c, so x(x − 1) is the minimal polynomial of c. Hence a basis for
Z(U(D11)) consisting of orthogonal primitive idempotents is {c, 1 − c}.

We compute the two-sided ideals in U(D11) generated by c and 1 − c. We find
that dim〈1 − c〉 = 1 so that 〈1 − c〉 � Fwith basis 1 = 1 − a2b − aba − ba2. Moreover,
dim〈c〉 = 9, so we expect that 〈c〉 � M3(F). To obtain an isomorphism, we compute
a basis for 〈c〉, and find that it consists of the leading monomials of the Gröbner basis
(excluding 1). The coset of b generates a 3-dimensional left ideal in 〈c〉 with basis
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e1 = b, e2 = ab, e3 = a2b. We identify these with the standard basis vectors in F3 and
determine the elements of 〈c〉 corresponding to the matrix units Ei j (1 ≤ i, j ≤ 3).
For each i, j we determine c1, . . . , c9 ∈ Q so that the coset of the generic element,

E = c1a + c2b + c3a2 + c4ab + c5ba + c6a2b + c7aba + c8ba2 + c9a2ba,

acts like the matrix unit Ei j; that is, Ei jek = δ jkei. From Table 3 we obtain:

Eb = c8b + c1ab + c3a2b, Eab = c5b + c7ab + (c1+c9)a2b, Ea2b = c2b + c4ab + c6a2b.

From this we obtain linear systems which determine c1, . . . , c9 for each Ei j, and
solving these systems gives this isomorphism 〈c〉 � M3(F):[

E11,E12,E13,E21,E22,E23,E31,E32,E33

]
←→

[
ba2, ba, b, a−a2ba, aba, ab, a2, a2ba, a2b

]
.

The set {1, Ei j | 1 ≤ i, j ≤ 3 } is a basis for U(D11) which reflects the decomposition
into simple two-sided ideals, and proves the proposition. �

Open Problem 5.2. Determine the structure of U(Dpq) for all p, q. In particular, do
we always have the isomorphism U(Dpq) � Q ⊕Mn(Q) where n = pq + 1

2 q(q+1)?

Proposition 5.3. We have U(C111) � Q ⊕ 2 M3(Q), and hence up to isomorphism,
C111 has only three finite dimensional irreducible representations: 1-dimensional trivial,
3-dimensional natural, and another 3-dimensional.

Proof. Our basis for C111 consists of matrices defining the natural representation:

a =

0 0 0
1 0 0
0 0 0

 , b =

0 0 0
0 0 0
0 1 0

 , c =

0 0 1
0 0 0
0 0 0

 .
The nonzero quadrilinear products are: {a, c, b, a} = a, {b, c, a, b} = b, {c, b, a, c} = c.
The original generating set for I(G) contains 45 elements and is already self-reduced.
We obtain 290 distinct nontrivial compositions; the resulting set of 335 generators
collapses to a self-reduced set of only 13 elements, which is a Gröbner basis:

a2, b2, c2, aba, aca, bab, bcb, cac, cbc,
acba + abca − a, bcab + bacb − b, cbac + cabc − c, cabca − ca.

Only 19 monomials in F〈a, b, c〉 do not have a leading monomial of a Gröbner basis
element as a subword:

1, a, b, c, ab, ac, ba, bc, ca, cb, abc, acb, bac, bca, cab, cba, abca, bacb, cabc.

Hence U(C111) has dimension 19; as in the proof of Proposition 5.1 we find that
U(C111) is semisimple, and its center has dimension 3. The cosets of these elements
form a basis of the center consisting of orthogonal primitive idempotents:

1 − abc − acb − bac − bca − cab − cba, abc + bca + cab, acb + bac + cba.

These elements generate simple two-sided ideals of dimensions 1, 9, 9 respectively.
We omit the isomorphisms of each simple ideal with a full matrix algebra. �

Open Problem 5.4. Determine the structure of the universal associative envelope
of Cpqr for all p, q, r. Do we always have the isomorphism U(Cpqr) � Q ⊕ 2 Mn(Q)
where n = pq + qr + rp?
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Proposition 5.5. We have U(B2)⊗QK � K⊕3 M2(K) whereK = Q(β) with β = 1+
√
−3.

Hence over this quadratic extension field, B2 has only four finite dimensional irreducible
representations up to isomorphism: 1-dimensional trivial, 2-dimensional natural, and
another two 2-dimensional.

Proof. Our basis for B2 consists of matrices defining the natural representation:

a =

[
1 0
0 0

]
, b =

[
0 0
0 1

]
, c =

[
0 1
1 0

]
.

There are 19 nonzero quadrilinear products of these generators (which we omit).
The original generating set for I(G) contains 45 elements and is already self-reduced.
We obtain 533 distinct nontrivial compositions; the resulting set of 578 generators
collapses to a self-reduced set of only 8 elements, which is a Gröbner basis:

ab, ba, ca − bc, cb − ac, c2
− b2
− a2, a4

− a, b4
− b, b3c + a3c − c.

Only 13 monomials in F〈a, b, c〉 do not have a leading monomial of a Gröbner basis
element as a subword:

1, a, b, c, a2, ac, b2, bc, a3, a2c, b3, b2c, a3c.

Hence U(B2) has dimension 13; as before, we find that U(B2) is semisimple. The
center has dimension 4 and the following basis: 1, a + b, a2 + b2, a3 + b3. These
elements are not orthogonal primitive idempotents; unlike the previous two cases,
to split the center we must extend the base field.

• First splitting: set e = 1 and x = a + b. The minimal polynomial of x is
t4
− t = t(t3

− 1), so we set y = x and z = x3
− e. Then y generates a

3-dimensional central ideal with identity element a3 + b3, and ζ1 = −z is a
primitive idempotent.

• Second splitting: set e = a3 + b3 and x = a + b. The minimal polynomial of
x is t3

− 1 = (t − 1)(t2 + t + 1), so we set y = x − e and z = x2 + x + e. Then
y generates a 2-dimensional central ideal with identity element − 1

3 (a + b)−
1
3 (a2 + b2) + 2

3 (a3 + b3), and ζ2 = 1
3 z is a primitive idempotent.

• Third splitting: set e = − 1
3 (a+b)− 1

3 (a2+b2)+ 2
3 (a3+b3) and x = (a+b)−(a3+b3).

The minimal polynomial of x is t2 + 3t + 3 = (t − α)(t − ᾱ) where α =
1
2 (−3+

√
−3). We set y = x−αe and z = x−ᾱe; each generates a 1-dimensional

central ideal. We get the idempotents ζ3 = −1
√
−3

y and ζ4 = 1
√
−3

z.

Using the fact that ab = ba = 0 in U(B2) since these monomials are in the Gröbner
basis, we obtain the central basis of orthogonal primitive idempotents:

ζ1 = 1 − a3
− b3, ζ2 = 1

3 (a + b + a2 + b2 + a3 + b3),

ζ3 = − 1
6

(
β(a + b) + β̄(a2 + b2) − 2(a3 + b3)

)
,

ζ4 = − 1
6

(
β̄(a + b) + β(a2 + b2) − 2(a3 + b3)

)
,

where β = 1 +
√
−3. These four elements generate simple two-sided ideals of

dimensions 1, 4, 4, 4 respectively. We omit the calculation of the isomorphisms of
each simple ideal with a full matrix algebra. �

Open Problem 5.6. Determine the structure of the universal associative envelope
of Bn for all n. In particular, after a quadratic extensionK ofQ, do we always have
the isomorphism U(Bn) ⊗Q K � K ⊕ 3 Mn(K)?
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Proposition 5.7. We have U(A2) ⊗Q K � K ⊕ 6 M2(K) whereK = Q(β), β = 1 +
√
−3.

Hence over this quadratic extension, A2 has exactly seven finite dimensional irreducible
representations up to isomorphism: 1-dimensional trivial, 2-dimensional natural, and
another five 2-dimensional.

Proof. Our basis for A2 consists of these matrices in the natural representation:

a =

[
1 0
0 0

]
, b =

[
0 1
0 0

]
, c =

[
0 0
1 0

]
, d =

[
0 0
0 1

]
.

There are 31 nonzero quadrilinear products of these generators (which we omit).
The original generating set of I(G) contains 136 elements and is already self-
reduced. We obtain 2769 distinct nontrivial compositions; the resulting 2905 gen-
erators collapses to a self-reduced set of 25 elements, which is a Gröbner basis:

ad, b2, bd − ab, c2, cd − ac, da, db − ba, dc − ca, d2
− cb − bc + a2,

aba, aca, acb + abc − a3, bab, bca − abc, bcb − ba2
− a2b, cac,

cba + abc − a3, cbc − ca2
− a2c, a4

− a, ba3 + a3b − b, ba2b, ca3 + a3c − c,

ca2b + ba2c − d, ca2c, cabc + a3c − c.

Only 25 monomials in F〈a, b, c, d〉 do not have a leading monomial of a Gröbner
basis element as a subword:

1, a, b, c, d, a2, ab, ac, ba, bc, ca, cb, a3, a2b,

a2c, abc, ba2, bac, ca2, cab, a3b, a3c, a2bc, ba2c, a3bc.

Hence U(A2) has dimension 25; as before, we find that U(A2) is semisimple. The
center has dimension 7 and the following basis:

1, a + d, bc + cb, a3
− abc + bac, abc + cab, a− a2bc + ba2c, − 1

2 (a2 + bc) + a3bc.

These elements are not orthogonal primitive idempotents; as in the previous case,
to split the center we must extend the base field. We obtain the following central
basis consisting of orthogonal primitive idempotents:

1 − a3
− bac − cab,

1
3

(
d − a2 + cb + abc + cab + a2bc − ba2c + 2a3bc

)
,

1
3

(
a + a2 + bc + a3

− abc + bac − a2bc + ba2c − 2a3bc
)
,

−
1
6

(
βa + β̄a2 + β̄bc − 2a3 + 2abc − 2bac − βa2bc + βba2c − 2β̄a3bc

)
,

−
1
6

(
βd − β̄a2 + β̄cb − 2abc − 2cab + βa2bc − βba2c + 2β̄a3bc

)
,

−
1
6

(
β̄a + βa2 + βbc − 2a3 + 2abc − 2bac − β̄a2bc + β̄ba2c − 2βa3bc

)
,

−
1
6

(
β̄d − βa2 + βcb − 2abc − 2cab + β̄a2bc − β̄ba2c + 2βa3bc

)
,

where β = 1 +
√
−3. These seven elements generate simple two-sided ideals of di-

mensions 1, 4, 4, 4, 4, 4, 4 respectively. We omit the calculation of the isomorphisms
of each simple ideal with a full matrix algebra. �

Open Problem 5.8. Determine the structure of the universal associative envelope
for An for all n. In particular, after making a quadratic extension K of Q, do we
always have the isomorphism U(An) ⊗Q K � K ⊕ 6 Mn(K)?
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6. Defining identities for anti-Jordan quadruple systems

In this and the next two sections we present analogous results for the anti-tetrad
[a, b, c, d] = abcd − dcba. Since the methods are very similar, we omit most details.

Lemma 6.1. Every multilinear identity in degree 4 satisfied by the anti-tetrad is a conse-
quence of the skew-symmetry [a, b, c, d] + [d, c, b, a] ≡ 0.

Theorem 6.2. Every multilinear identity in degree 7 satisfied by the anti-tetrad is a
consequence of skew-symmetry in degree 4 and these two identities in degree 7:

[[a, b, c, d], e, f , g] − [[a, b, f , e], d, c, g] + [[d, c, f , e], a, b, g] + [g, [b, a, d, c], f , e]

− [g, [b, a, e, f ], c, d] + [g, [c, d, e, f ], b, a] ≡ 0,

[[a, b, c, d], e, f , g] − [[a, f , g, c], b, e, d] + [[c, a, b, d], g, e, f ] − [[c, b, a, f ], g, e, d]

− [[c, g, d, b], a, e, f ] − [[c, g, e, f ], a, b, d] + [[c, g, e, d], b, a, f ] − [[b, a, c, f ], e, d, g]

− [[b, c, f , g], a, e, d] + [[b, e, d, g], a, c, f ] − [[g, f , e, d], c, b, a] + [[g, d, e, f ], c, a, b]

− [[ f , a, b, d], e, g, c] − [[ f , c, e, d], g, a, b] − [a, [b, c, g, f ], e, d] − [c, [a, b, d, g], e, f ]

+ [c, [b, a, f , g], e, d] + [b, [a, c, g, d], e, f ] − [b, [a, g, f , c], e, d] + [b, [a, g, d, e], c, f ]

+ [d, [c, b, a, e], f , g] ≡ 0.

Proof. For the anti-tetrad the rank is 2519 and the nullity is 2521. �

Definition 6.3. An anti-Jordan quadruple system (AJQS) is a vector space Q over
a field F of characteristic 0 or p > 7 with a quadrilinear map [−,−,−,−] : Q4

→ Q
satisfying the skew-symmetry of Lemma 6.1 and the identities of Theorem 6.2.

symmetries expansions

λ dλ rows cols sym rows cols rank null new

7 1 3 2 2 2 1 0 2 0
61 6 18 12 8 12 6 3 9 1
52 14 42 28 16 28 14 8 20 4
512 15 45 30 14 30 15 6 24 10
43 14 42 28 16 28 14 7 21 5
421 35 105 70 34 70 35 18 52 18
413 20 60 40 16 40 20 10 30 14
321 21 63 42 22 42 21 9 33 11
322 21 63 42 22 42 21 12 30 8
3212 35 105 70 34 70 35 17 53 19
314 15 45 30 14 30 15 9 21 7
231 14 42 28 16 28 14 7 21 5
2213 14 42 28 16 28 14 6 22 6
215 6 18 12 8 12 6 3 9 1
17 1 3 2 2 2 1 0 2 0

Table 4. S7-module multiplicities for the anti-tetrad in degree 7

Lemma 6.4. Over a field of characteristic 0 or p > 7, for each partition λ column “new” of
Table 4 gives the multiplicity of [λ] in the kernel of the expansion map for the anti-tetrad.



22 MURRAY BREMNER AND SARA MADARIAGA

7. Special identities in degree 10 for the anti-tetrad

The notions of special and exceptional for AJQS, and special identities for the
anti-tetrad, are the obvious analogues of Definition 4.1.

Open Problem 7.1. Do there exist exceptional AJQS?

Theorem 7.2. For the anti-tetrad, and for each partition λ of 10, columns “symm”,
“symmlift”, “null” and “new” in the corresponding row of Table 5 contain respectively
the multiplicity of [λ] in the modules Symm(10), Old(10), All(10) and New(10).

Open Problem 7.3. Determine a minimal set of multilinear identities in degree 10
for the anti-tetrad which generate New(10) as an S10-module.

In the rest of this section we present some nonlinear special identities in degree
10 for the anti-tetrad. These identities correspond to the partitions λ = st (s +
t = 10) for which column “new” in Table 5 is nonzero, namely λ = 82, 73, 64, 52.
The corresponding Young diagrams have only two rows of lengths s and t. For
these λ, the structure theory of QS10 allows us to assume that the identity is a
symmetric function of two disjoint sets of variables, so we may reduce the size
of the computations by working with nonlinear monomials which have only two
variables a and b occurring respectively s and t times.

Theorem 7.4. The multihomogeneous identities in Figure 2 are satisfied by the anti-tetrad
in every associative algebra but are not consequences of the defining identities for AJQS.

Remark 7.5. For the anti-tetrad, we obtained better results using the LLL algorithm
with a higher value of the reduction parameter. We illustrate with λ = 64; the
underlying variables are a6b4 which produce 210 associative monomials. The
eight association types produce respectively 82, 82, 82, 82, 32, 32, 14, 14 nonlinear
quaternary monomials for a total of 420. The 210 × 420 expansion matrix has rank
99 and nullity 321. Computing the HNF with an initial application of LLL produces
a lattice basis of the nullspace with size ≈ 421 using equation (1); the coefficients
belong to {0,±1,±2,−3}. Applying LLL with parameter 3/4 reduces the basis size
to ≈ 389 with coefficients {0,±1,±2}. Applying LLL again with parameter 99/100
reduces the basis size to ≈ 337 with coefficients {0,±1,−2}. We obtain three special
nonlinear identities for this partition.

8. Four families of finite dimensional anti-Jordan quadruple systems;
examples of universal associative envelopes

We define four families of finite dimensional AJQS, denoted A−n , B−n , C−pqr, D−pq;
these are subspaces of matrix algebras which are closed under the anti-tetrad.

• A−n consists of all n × n matrices; the dimension is n2.
• B−n consists of all n×n skew-symmetric matrices; the dimension is 1

2 n(n−1).
For the remaining systems, we choose integers p, q, r ≥ 1 and consider block matri-
ces of size p + q + r as in equation (3).

• C−pqr (p ≥ q, r) consists of all matrices (3); the dimension is pq + qr + rp.
• D−pq consists of all matrices (3) with q = r where Mpq = −Mt

qp and Mqq is
skew-symmetric; the dimension is pq + 1

2 q(q−1).
The smallest non-trivial systems in each family are A−2 , B−3 , C−111, D−21 with dimen-
sions 4, 3, 3, 2 respectively. We consider these systems by increasing dimension.
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symmetries and liftings expansions

# λ dλ rows cols sym lift rows cols rank null new

1 10 1 9 8 8 8 8 1 0 8 ·

2 91 9 81 72 64 68 72 9 4 68 ·

3 82 35 315 280 222 264 280 35 15 265 1
4 812 36 324 288 218 269 288 36 19 269 ·

5 73 75 675 600 442 555 600 75 40 560 5
6 721 160 1440 1280 896 1197 1280 160 80 1200 3
7 713 84 756 672 446 632 672 84 40 632 ·

8 64 90 810 720 524 677 720 90 40 680 3
9 631 315 2835 2520 1722 2352 2520 315 160 2360 8

10 622 225 2025 1800 1200 1693 1800 225 105 1695 2
11 6212 350 3150 2800 1798 2619 2800 350 180 2620 1
12 614 126 1134 1008 612 948 1008 126 60 948 ·

13 52 42 378 336 236 309 336 42 26 310 1
14 541 288 2592 2304 1568 2155 2304 288 144 2160 5
15 532 450 4050 3600 2390 3365 3600 450 230 3370 5
16 5312 567 5103 4536 2960 4258 4536 567 276 4260 2
17 5221 525 4725 4200 2698 3935 4200 525 265 3935 ·

18 5213 448 4032 3584 2240 3360 3584 448 224 3360 ·

19 515 126 1134 1008 604 942 1008 126 66 942 ·

20 422 252 2268 2016 1358 1899 2016 252 116 1900 1
21 4212 300 2700 2400 1562 2239 2400 300 160 2240 1
22 432 210 1890 1680 1124 1568 1680 210 110 1570 2
23 4321 768 6912 6144 4032 5760 6144 768 384 5760 ·

24 4313 525 4725 4200 2702 3940 4200 525 260 3940 ·

25 423 300 2700 2400 1582 2260 2400 300 140 2260 ·

26 42212 567 5103 4536 2944 4245 4536 567 291 4245 ·

27 4214 350 3150 2800 1810 2630 2800 350 170 2630 ·

28 416 84 756 672 442 627 672 84 44 628 1
29 331 210 1890 1680 1132 1580 1680 210 100 1580 ·

30 3222 252 2268 2016 1338 1880 2016 252 136 1880 ·

31 32212 450 4050 3600 2402 3380 3600 450 220 3380 ·

32 3214 225 2025 1800 1184 1680 1800 225 120 1680 ·

33 3231 288 2592 2304 1568 2160 2304 288 144 2160 ·

34 32213 315 2835 2520 1726 2365 2520 315 155 2365 ·

35 3215 160 1440 1280 896 1200 1280 160 80 1200 ·

36 317 36 324 288 222 271 288 36 16 272 1
37 25 42 378 336 244 320 336 42 16 320 ·

38 2412 90 810 720 516 670 720 90 50 670 ·

39 2314 75 675 600 446 565 600 75 35 565 ·

40 2216 35 315 280 218 260 280 35 20 260 ·

41 218 9 81 72 64 68 72 9 4 68 ·

42 10 1 9 8 8 8 8 1 0 8 ·

Table 5. S10-module multiplicities for the anti-tetrad in degree 10
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[[[a, a, b, a], a, b, a], a, a, a] − [a, [[a, a, a, b], a, b, a], a, a] − [a, [a, [a, a, b, a], a, a], b, a]

+ [a, [a, [a, a, b, a], b, a], a, a] ≡ 0,

[[[a, a, b, a], a, b, a], b, a, a] + [[a, [a, b, a, b], a, a], b, a, a] − [a, [[a, a, b, a], b, a, a], b, a]

− [a, [[a, b, a, b], a, a, b], a, a] − [a, [[a, b, a, b], a, b, a], a, a] − [[a, a, b, a], [a, b, a, b], a, a] ≡ 0,

[[[a, a, b, a], b, b, a], a, a, a] − [a, [[a, a, a, b], a, b, b], a, a] + [a, [[a, a, b, a], a, b, b], a, a]

− [a, [[a, a, b, a], b, b, a], a, a] + [a, [[a, a, b, b], a, a, b], a, a] − [a, [[a, a, b, b], a, b, a], a, a] ≡ 0,

[[[a, a, b, a], a, b, a], a, a, b] − [a, [[a, a, a, b], a, b, a], a, b] + [a, [[a, a, b, a], a, a, b], a, b]

− [b, [[a, a, b, a], a, b, a], a, a] − [a, [a, [a, a, b, a], a, b], a, b] + [a, [a, [a, a, b, a], b, a], a, b] ≡ 0,

[[a, [a, a, b, a], a, a], b, b, a] − [[a, [a, a, b, a], a, b], a, a, b] + [[a, [a, a, b, a], a, b], b, a, a]

+ [[a, [a, a, b, b], a, a], b, a, a] − [a, [[a, a, b, a], a, b, b], a, a] − [a, [[a, a, b, b], a, b, a], a, a]

+ [[a, a, a, b], [a, a, b, a], a, b] − [[a, a, a, b], b, [a, a, b, a], a] ≡ 0,

[[[a, a, a, b], a, a, a], b, b, a] − [[[a, a, a, b], a, b, b], a, a, a] + [[a, [a, a, a, b], a, b], b, a, a]

− [[a, [a, a, b, a], a, a], b, b, a] + [[a, [a, a, b, b], a, a], a, a, b] − [[a, [a, a, b, b], b, a], a, a, a]

+ [a, [[a, a, b, a], b, b, a], a, a] − [a, [[a, a, b, b], a, a, b], a, a] + [b, [a, [a, a, a, b], a, b], a, a]

− [[a, a, a, b], [a, a, b, b], a, a] ≡ 0,

[[b, [a, a, a, b], a, b], a, a, b] + [[b, [a, a, b, a], a, b], a, a, b] − [b, [[a, a, a, b], b, a, a], a, b]

− [b, [[a, a, b, a], a, a, b], a, b] ≡ 0,

[[[a, a, b, a], b, b, a], b, a, a] − [[a, [a, b, a, b], a, a], b, b, a] − [[a, [a, b, a, b], b, a], a, b, a]

− [a, [[a, a, b, a], b, a, b], b, a] + [a, [[a, b, a, b], a, a, b], b, a] ≡ 0,

[[[a, a, b, a], b, b, a], b, a, a] − [a, [[a, a, b, a], b, b, a], b, a] − [a, [[a, b, a, b], a, b, b], a, a]

+ [a, [[b, a, b, b], a, a, b], a, a] − [a, [[b, a, b, b], a, b, a], a, a] ≡ 0,

[[[a, a, b, a], b, b, a], b, a, b] − [a, [[a, b, a, b], a, b, b], a, b] + [a, [[b, a, b, b], a, a, b], a, b]

− [a, [[b, a, b, b], a, b, a], a, b] − [b, [[a, a, b, a], b, b, a], b, a] ≡ 0.

Figure 2. Some special identities for the anti-tetrad in degree 10

Proposition 8.1. The universal associative envelope U(D−21) is Z-graded by degree and
infinite dimensional; in degrees n ≥ 6 it is linearly isomorphic to the (commutative)
polynomial algebra F[a, b].

Proof. This is the basis for D−21 which defines the natural representation:

a =


0 0 0 −1
0 0 0 0
1 0 0 0
0 0 0 0

 , b =


0 0 0 0
0 0 0 −1
0 1 0 0
0 0 0 0

 .
Every quadrilinear product in these generators is 0, so the original 6 ideal genera-
tors have no terms of degree 1; it follows that U(D−21) is graded by degree:

aba2
− a2ba, ba3

− a3b, baba − abab, b2a2
− a2b2, b2ab − bab2, b3a − ab3.
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These generators produce 12 distinct non-trivial compositions:

a3ba − a4b, a2b2a − a3b2, ba2ba − a2bab, ba2b2
− a2b3,

bab2a − abab2, bab3
− ab4, a2bab2

− a3b3, ba2bab − abab2a,

a4bab − a5b2, a3bab2
− a4b3, abab4

− a2b5, ba2bab2
− a3b4.

After self-reduction, the 18 generators become a Gröbner basis of 13 elements:

aba2
−a2ba, ba3

−a3b, baba−abab, b2a2
−a2b2, b2ab−bab2, b3a−ab3, a3ba−a4b,

a2b2a−a3b2, ba2ba−a2bab, ba2b2
−a2b3, bab2a−abab2, bab3

−ab4, a2bab2
−a3b3.

There is an infinite set of monomials in F〈a, b〉which are not divisible by the leading
monomial of any element of the Gröbner basis, and U(D−21) is infinite dimensional.
Here are the basis monomials for U(D−21) in degrees ≤ 5:

1, a, b, a2, ab, ba, b2, a3, a2b, aba, ab2, ba2, bab, b2a, b3,

a4, a3b, a2ba, a2b2, abab, ab2a, ab3, ba2b, bab2, b4,

a5, a4b, a3b2, a2bab, a2b3, abab2, ab4, b5.

In degree n ≥ 6 a basis consists of the monomials an−ibi for i = 0, . . . ,n. To see this,
note that every element of the Gröbner basis has the form m1 − m2, and replacing
m1 by m2 moves a to the left and b to the right; now use induction on n. Thus
in degrees n ≥ 6, U(D−21) is isomorphic to the (commutative) polynomial algebra
Q[a, b], but there is some noncommutativity in degrees n ≤ 5. �

Remark 8.2. We did similar computations for D−31. The original set of 36 ho-
mogeneous generators produced 278 distinct non-trivial compositions; after self-
reduction the 314 generators became a Gröbner basis of 94 elements. It follows
that U(D−31) is Z-graded and infinite dimensional, and that for degree n ≥ 6, the
dimension of the homogeneous subspace is

(n+2
2
)
.

Conjecture 8.3. For all p ≥ 2, the universal associative envelope U(D−p1) isZ-graded and
infinite dimensional, and for degree n ≥ 6, the dimension of the homogeneous component
is

(n+p−1
p−1

)
, equal to that of the (commutative) polynomial algebra in p variables.

Open Problem 8.4. Study the representation theory of the anti-Jordan triple sys-
tems D−p1 and their universal associative envelopes U(D−p1). Comparing our results
with [14] suggests that U(D−p1) is likely to be a (generalized) down-up algebra.

Remark 8.5. We did similar computations for D−12. The original set of 36 non-
homogeneous generators produced 341 distinct non-trivial compositions; after
self-reduction the 377 generators became 19 elements. This set produced one more
non-trivial composition, resulting in a Gröbner basis of 20 elements:

c2, a3, a2b, aba, ab2, aca, ba2, bab, b2a, b3,

bca + acb, bcb, cac, cbc, acba + a2cb − a, bacb + acb2
− b,

cbac − cabc − c, a2cb2
− ab, acb2c − bc, ca2cb − ca.

From this it follows that U(D−12) has dimension 26.

Open Problem 8.6. Study the representation theory of the anti-Jordan triple sys-
tems D−pq for q ≥ 2. In particular, do we always have U(D−pq) � Q ⊕Mp+2q(Q)?
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Proposition 8.7. We have U(C−111) � Q ⊕ 2 M3(Q), and hence up to isomorphism,
C−111 has only three finite dimensional irreducible representations: 1-dimensional trivial,
3-dimensional natural, and another 3-dimensional.

Proof. Our standard basis for C−111 is the same as that for C111; see the proof of
Proposition 5.3. Only three quadrilinear products are nonzero:

[a, c, b, a] = a, [b, c, a, b] = −b, [c, b, a, c] = c.

The original set G of generators for the ideal I(G) contains 36 elements and is already
self-reduced. We obtain 333 distinct nontrivial compositions of these generators;
the resulting set of 369 generators collapses to a self-reduced set of only 13 elements,
which is a Gröbner basis:

a2, b2, c2, aba, aca, bab, bcb, cac, cbc,
acba − abca − a, bcab − bacb + b, cbac − cabc − c, cabca + ca.

The leading monomials of these elements are the same as those of the Gröbner
basis in the proof of Proposition 5.3. Hence U(C−111) has dimension 19, and a basis
consists of the same monomials as for U(C111) in the proof of Proposition 5.3. We
find that U(C−111) is semisimple, and its center has dimension 3. The cosets of these
elements form a central basis of orthogonal primitive idempotents:

1 + abc − acb − bac + bca + cab − cba, −abc − bca − cab, acb + bac + cba.

These elements generate simple two-sided ideals of dimensions 1, 9, 9 respectively.
We omit the isomorphisms of each simple ideal with a full matrix algebra. �

Open Problem 8.8. Study the representation theory of the anti-Jordan triple sys-
tems C−pqr. In particular, do we always have U(C−pqr) � Q ⊕ 2 Mp+q+r(Q)?

Proposition 8.9. We have U(B−3 ) ⊗Q K � K ⊕ 3 M3(K) whereK = Q(β), β = 1 +
√
−3.

Hence up to isomorphism, B−3 has four finite dimensional irreducible representations over
K: 1-dimensional trivial, 3-dimensional natural, and two other 3-dimensional.

Proof. Our standard basis for B−3 consists of these three 3 × 3 matrices defining the
natural representation:

a =

0 −1 0
1 0 0
0 0 0

 , b =

0 0 −1
0 0 0
1 0 0

 , c =

0 0 0
0 0 −1
0 1 0

 .
The original set G of generators for the ideal I(G) contains 36 elements and is already
self-reduced. We obtain 385 distinct nontrivial compositions of these generators;
the resulting set of 421 generators collapses to a self-reduced set of 30 elements,
which is a Gröbner basis:

aba, aca, ac2 + ab2
− a3, bab, b2a + ab2

− a3, b3
− ba2

− a2b, bca + acb,

bcb, bc2
− a2b, ca2

− b2c, cab + bac, cac, cba + abc, cb2
− a2c, cbc,

c2a − ab2, c2b − ba2, c3
− b2c − a2c, a2cb − a2bc − a, ab2c, ba3

− a3b − c,

ba2c, bacb + a3c − b, a5 + cb − bc, a4b + ac, a4c − ab, a3b2 + cb,

a3bc + 1
2 c2
−

1
2 b2 + 1

2 a2, ba2b2
− ca, ba2bc + ba.
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Only 28 monomials in F〈a, b, c〉 do not have a leading monomial of a Gröbner basis
element as a subword:

1, a, b, c, a2, ab, ac, ba, b2, bc, ca, cb, c2, a3, a2b, a2c,

ab2, abc, acb, ba2, bac, b2c, a4, a3b, a3c, a2b2, a2bc, ba2b.

Hence U(B−3 ) has dimension 28; as before, we find that U(B−3 ) is semisimple. The
center has dimension 4; finding a basis of orthogonal primitive idempotents re-
quires a quadratic extension of Q. The required basis is

1 + abc − acb − bac,

−
1
6

(
a2 + b2 + c2 + 2abc − 2acb − 2bac − 2a4

− 2ba2b
)
,

1
12

(
β(a2 + b2 + c2) − 4abc + 4acb + 4bac − 2β̄(a4 + ba2b)

)
,

1
12

(
β̄(a2 + b2 + c2) − 4abc + 4acb + 4bac − 2β(a4 + ba2b)

)
,

where β = 1 +
√
−3. These four elements generate simple two-sided ideals of

dimensions 1, 4, 4, 4 respectively. We omit the calculation of the isomorphisms of
each simple ideal with a full matrix algebra. �

Open Problem 8.10. Study the representation theory of the anti-Jordan triple sys-
tems B−n . In particular, over a quadratic extension K of Q do we always have
U(B−n ) ⊗Q K � K ⊕ 3 Mn(K)?

Proposition 8.11. We have U(A−2 )⊗QK � K⊕ 6 M2(K) whereK = F(β), β = 1 +
√
−3.

Hence up to isomorphism, A−2 has seven finite dimensional irreducible representations over
K: 1-dimensional trivial, 2-dimensional natural, and five other 2-dimensional.

Proof. Our standard basis for A−2 consists of the four 2 × 2 matrix units as in the
proof of Proposition 5.7. The original set G of generators for the ideal I(G) contains
120 elements and is already self-reduced. We obtain 2821 distinct nontrivial com-
positions of these generators; the resulting set of 2941 generators collapses after
three iterations to a self-reduced set of only 28 elements, which is a Gröbner basis:

ad, b2, bd − ab, c2, cd − ac, da, db − ba, dc − ca,

d2
− cb − bc + a2, aba, aca, acb + abc − a3, bab, bca − abc,

bcb − ba2
− a2b, cac, cba + abc − a3, cbc − ca2

− a2c, a2bc − 1
2 a4
−

1
2 a,

ba3
− a3b + b, ba2b, ca3

− a3c − c, ca2b − ba2c − d, ca2c,

cabc − a3c − c, a4b − ab, a4c + ac, a6
− 2abc + a3.

Only 25 monomials in F〈a, b, c, d〉 do not have a leading monomial of a Gröbner
basis element as a subword:

1, a, b, c, d, a2, ab, ac, ba, bc, ca, cb, a3, a2b,

a2c, abc, ba2, bac, ca2, cab, a4, a3b, a3c, ba2c, a5.

Hence U(A−2 ) has dimension 25; as before, we find that U(A−2 ) is semisimple. The
center has dimension 7; splitting it requires a quadratic extension of Q. We obtain
this central basis of orthogonal primitive idempotents:

1 + a3
− 2abc + bac − cab,



28 MURRAY BREMNER AND SARA MADARIAGA

1
6

(
a + 2d + 2cb + 2abc + 2cab + a4 + 2ba2c + 2a5

)
,

−
1
6

(
a − 2bc + 2a3

− 2abc + 2bac − a4
− 2ba2c + 2a5

)
,

1
12

(
βa − 2β̄bc − 4a3 + 4abc − 4bac − βa4

− 2βba2c + 2β̄a5
)
,

1
12

(
β̄a − 2βbc − 4a3 + 4abc − 4bac − β̄a4

− 2β̄ba2c + 2βa5
)
,

−
1

12

(
βa + 2βd + 2β̄cb − 4abc − 4cab + βa4 + 2βba2c + 2β̄a5

)
,

−
1

12

(
β̄a + 2β̄d + 2βcb − 4abc − 4cab + β̄a4 + 2β̄ba2c + 2βa5

)
,

where β = 1 +
√
−3. These seven elements generate simple two-sided ideals of di-

mensions 1, 4, 4, 4, 4, 4, 4 respectively. We omit the calculation of the isomorphisms
of each simple ideal with a full matrix algebra. �

Open Problem 8.12. Study the representation theory of the anti-Jordan triple sys-
tems A−n . In particular, over a quadratic extension K of Q do we always have
U(A−n ) ⊗Q K � K ⊕ 6 Mn(K)?
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