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Abstract. A Lie algebra L over a field F is said to be finitary if it is isomorphic to
a subalgebra of the Lie algebra of finite rank linear transformations of a vector space
over F. A nonzero element a ∈ L is said to be extremal if ad2

aL = Fa

By using Baranov’s classification, it is not difficult to verify that any simple finitary
Lie algebra over an algebraically closed field of characteristic 0 is spanned by extremal
elements. In this note, we provide a classification-free proof of this result by using
Jordan theory instead of representation theory.

Introduction

Let L be a simple infinite dimensional Lie algebra over an algebraically closed field

F of characteristic 0. According to Baranov’s structure theorem [2, Corollary 1.2], L is

finitary if and only if it is isomorphic to one of the following:

(1) fslY (X) := [FY (X),FY (X)],

(2) fo(X) := Skew(FX(X), #),

(3) fsp(X) := Skew(FX(X), #),

where in (1), X,Y are vector spaces over F dually paired by a nondegenerate bilinear

form 〈·, ·〉 : X × Y → F and FY (X) denotes the associative algebra of finite rank linear

transformations a : X → X having a (unique) adjoint a# : Y → Y , 〈ax, y〉 = 〈x, a#y〉
for all x ∈ X, y ∈ Y ; and in (2) (resp. (3)), Y = X and the form 〈·, ·〉 is symmetric

(resp. alternate).

As checked in [7, Proposition 6.4], each of the Lie algebras listed above contains

an extremal element (in fact, these algebras are spanned by extremal elements). The

converse of this result, i.e., every simple Lie algebra containing an extremal element over

an algebraically closed field of characteristic 0 is finitary, also holds and was derived
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in [5] from a more general theorem, due to Zelmanov, on simple Lie algebras having a

finite grading [15].

In this note, we prove the existence of extremal elements in any nondegenerate finitary

Lie algebra L over an algebraically closed field F of characteristic 0 as follows:

• Any finitary Lie algebra has an algebraic adjoint representation. Hence L contains a

nonzero Jordan element, i.e., an element a such that ad3
a = 0.

• The Jordan algebra La attached to this Jordan element is algebraic of bounded degree

and inherits nondegeneracy from L. Hence La has finite capacity.

• Any division idempotent of La yields an abelian minimal inner ideal B of L.

• Any 0 6= b ∈ B is a Jordan element of L such that Lb is an algebraic division Jordan

algebra over F.

• Since F is algebraically closed, Lb is actually one-dimensional, equivalently, b is an

extremal element of L.

1. Common features of Lie and Jordan algebras

1. Throughout this section F will stand for a field of characteristic different from 2. We

will deal with Lie algebras L [10, 11], with [x, y] denoting the Lie product and adx the

inner derivation determined by x; Jordan algebras J [12, 13], with Jordan product x · y,

multiplication operators mx : y 7→ x · y, quadratic operators Ux = 2m2
x−mx2 and triple

product Vx,yz = {x, y, z} = Ux+zy−Uxy−Uzy; and associative algebras A, with product

denoted by juxtaposition and left (resp. right) multiplication operators denoted by lx

(resp. rx), x ∈ L. Algebras (Lie, Jordan or associative) will be understood over the

field F.

Any associative algebra A gives rise to a Lie algebra A− with Lie product [x, y] :=

xy − yx, and a Jordan algebra A+ with Jordan product x · y := 1/2(xy + yx). A

Jordan algebra J is said to be special if it is isomorphic to a subalgebra of A+ for some

associative algebra A.

2. An element x of a Jordan algebra J is called an absolute zero divisor if Ux = 0.

We say that J is nondegenerate if it has no nonzero absolute zero divisors, semiprime

if B2 = 0 implies B = 0, and prime if B · C = 0 implies B = 0 or C = 0, for any

ideals B, C of J . Similarly, given a Lie algebra L, x ∈ L is an absolute zero divisor of

L if ad2
x = 0 (for Lie algebras over a field of characteristic 2, the standard definition of
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absolute zero divisor requires ad2
x = 0 = adxadyadx for every y ∈ L); L is nondegenerate

if it has no nonzero absolute zero divisors, semiprime if [B, B] = 0 implies B = 0, and

prime if [B, C] = 0 implies B = 0 or C = 0, for any ideals B, C of L. Nondegeneracy for

both Jordan and Lie algebras implies semiprimeness, but the converse does not hold.

(Notice, however, that an associative algebra A is semiprime if and only if the Jordan

algebra A+ is nondegenerate.) A Jordan or Lie algebra is said to be strongly prime if

it is prime and nondegenerate. Simplicity, for both Jordan and Lie algebras, means

nonzero product and the absence of nonzero proper ideals.

3. Inner Ideals. An inner ideal of a Jordan algebra J is a vector subspace B of J such

that {B, J,B} ⊆ B. Similarly, an inner ideal of a Lie algebra L is a vector subspace B

of L such that [[B,L], B] ⊆ B. An abelian inner ideal of L is an inner ideal B which is

also an abelian subalgebra, i.e. [B, B] = 0.

For any element a ∈ J , UaJ is an inner ideal of J , as follows from the Fundamental

Jordan Identity UUxy = UxUyUx, x, y ∈ J . Hence a nonzero subspace B of a nondegen-

erate algebra J is a minimal inner ideal if and only if B = UbJ for any nonzero b ∈ J .

As will be seen later, only a special kind of elements in Lie algebras yield inner ideals

in a similar way.

2. Algebraic Jordan algebras of bounded degree

The aim of this section is to prove that a nondegenerate Jordan algebra which is

algebraic of bounded degree over a field of characteristic 0 is unital and has finite

capacity. Although this result is essentially known, it is included here for the sake of

completeness.

Throughout this section, and unless specified otherwise, F will denote a field of char-

acteristic different from 2 and J a Jordan algebra over F.

4. Jordan PI-algebras. A Jordan polynomial p(x1, . . . , xn) of the free Jordan F-

algebra J(X) is said to be an s-identity if it vanishes in all special Jordan algebras, but

not in all Jordan algebras. A Jordan polynomial which is not an s-identity is called

admissible. A Jordan algebra satisfying an admissible Jordan polynomial is called a

Jordan PI-algebra.

5. Algebraic elements and degree. Let A now stand for an associative or Jordan

F-algebra. Denote by Â the unital hull of A, i.e., Â = A if A is unital and Â = F1⊕ A

otherwise. An element a ∈ A is said to be algebraic if it is a root of a nonzero polynomial
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in F[ξ], equivalently, the subalgebra of A generated by a is finite dimensional (notice

that this characterization makes sense for any non-associative algebra). In this case,

deg(a) := dimF F[a] is the degree of a, where F[a] denotes the unital subalgebra of

Â generated by a. Then A is said to be algebraic if every x ∈ A is algebraic, and

algebraic of bounded degree if it is algebraic and there exists a positive integer n such

that deg(x) ≤ n for all x ∈ A.

6. I-algebras A Jordan algebra is said to be an I-algebra if every non-nil inner ideal of

J contains a nonzero idempotent. By [13, I.8.1 (Algebraic I Proposition)], any algebraic

Jordan algebra is an I-algebra.

Lemma 2.1. [1, 1.9] Let J be algebraic of bounded degree, then J is a Jordan PI-algebra.

Proof. Suppose that every element of J is algebraic of degree less than or equal to a

fixed number n. Then J satisfies the admissible Jordan polynomial

p(x, y, z) := An+1(Vxn,y, · · · , Vx,y, V1,y)z

for the alternating standard identity

An+1(x1, . . . , xn, xn+1) :=
∑

π

sg(π)xπ(1) · · · xπ(n)xπ(n+1),

which proves that J is PI. ¤

7. Semiprimitive Jordan algebras. A Jordan algebra is said to be semiprimitive if

has no quasi-invertible ideals (see [13, III.1.3.1] for definition), i.e., its Jacobson radical

vanishes. Any semiprimitive Jordan algebra is nondegenerate [13, III.1.6.1].

Lemma 2.2. Let J be algebraic of bounded degree. If J is nondegenerate, then it is

semiprimitive.

Proof. By Lemma 2.1, J is PI, and hence, by Zelmanov PI-Radical Theorem [14, The-

orem 4], J does not contain nonzero nil ideals. This and the fact that J is an I-algebra

(6) imply that J is semiprimitive (otherwise the Jacobson radical of J would contain a

nonzero idempotent, a contradiction). ¤

8. Division Jordan algebras and division idempotents. Let J be a Jordan

algebra with 1. An element x ∈ J is called invertible if there exists y ∈ J such that

x · y = 1 and x2 · y = x. In this case Ux is invertible and the inverse of x, denoted by

x−1 is uniquely determined: x−1 = U−1
x x [13, II.6.1.1-7].
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A unital Jordan algebra in which every nonzero element is invertible is called a division

Jordan algebra. If J = A+ for an associative algebra A, then A+ is a division Jordan

algebra if and only if A is a division associative algebra [13, II.6.1.5].

A nonzero idempotent e ∈ J is called a division idempotent if the unital Jordan

algebra UeJ is a division Jordan algebra, equivalently (if J is nondegenerate), UeJ is a

minimal inner ideal of J .

9. Capacity. A Jordan algebra J is said to have capacity n if J is unital and 1 can

be written as a sum 1 = e1 + · · · + en of n orthogonal division idempotents, Uei
J is a

division Jordan algebra. By Jacobson’s capacity theorem [13, I.5.2], any nondegenerate

Jordan algebra having finite capacity is a direct sum of ideals each of which is a simple

Jordan algebra of finite capacity.

Theorem 2.3. [13, I.8.1 (I-Finite Capacity Theorem)] Any semiprimitive I-algebra

having no infinite family of nonzero orthogonal idempotents is unital and has finite

capacity.

Lemma 2.4. Suppose that F is of characteristic 0 and that J is algebraic of bounded

degree n. Then any family of nonzero orthogonal idempotents of J has a cardinal less

than or equal to n.

Proof. Given m ≥ 1, let {e1, . . . , em} be a sequence of nonzero orthogonal idempotents of

J , let λ1, . . . , λm be nonzero elements of F such that λi 6= λj whenever i 6= j, and set a :=

λ1e1+· · ·+λmem. Vandermonde determinant says to us that the vectors a, a2, . . . , am are

linearly independent. This proves that any sequence of nonzero orthogonal idempotents

of J has a cardinal less than or equal to n. ¤

Theorem 2.5. Let J be a nondegenerate algebraic Jordan algebra of bounded degree

over a field F of characteristic 0. Then J has finite capacity.

Proof. We know by (6) that J is an I-algebra, and have proved in Lemmas 2.2 and

2.4 that J is semiprimitive with no infinite family of nonzero orthogonal idempotents.

Hence J is unital and has finite capacity by Theorem 2.3. ¤

Remark 2.6. E. Zelmanov shows in [14] that any strongly prime algebraic Jordan PI-

algebra over a field of characteristic different from 2 is simple and has finite capacity.

We encourage the reader to glance through the proof and observe the amazing reduction

to the case of a special Jordan algebra [14, Lemma 20] to prove the idempotent finite
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condition [14, Lemma 24]. The reader is also referred to [6, Theorem 2.3] for a sketch

of the proof of the whole theorem.

3. The Lie-Jordan connection

Throughout this section, and unless specified otherwise, F will denote a field of char-

acteristic different from 2 and 3 and L a Lie algebra over F.

10. Engel, Jordan and Extremal Elements. An element a of a Lie algebra L

is called Engel if the inner derivation is ada nilpotent. Engel elements of index of

nilpotency at most 3 are called Jordan elements. It is easy to verify that any element a

of an associative algebra A such that a2 = 0 is a Jordan element of the Lie algebra A−.

Clearly, any element of an abelian inner ideal is a Jordan element. Conversely, by

[3, Lemma 1.8], any Jordan element a generates the principal abelian inner ideal ad2
aL.

As in the Jordan case, this result follows from an analogue of the Fundamental Jordan

Identity:

ad2
ad2

ax = ad2
aad2

xad2
a

which holds for any Jordan element a and any x in L [3, Lemma 1.7(iii)]. This identity

is a good justification for using the term Jordan element. Another reason for adopting

this terminology will be given later.

A nonzero element a ∈ L is said to be extremal if ad2
aL = Fa, i.e., a generates a

one-dimensional inner ideal. Notice that any extremal element is a Jordan element.

11. Jordan Algebra at a Jordan Element. Let a be a Jordan element of a Lie

algebra L. It was proved in [8, Theorem 2.4] that the underlying vector space L with

the new product defined by x ·a y := [[x, a], y] is a nonassociative algebra, denoted by

L(a), such that

(i) KerLa := {x ∈ L : [a, [a, x]] = 0} is an ideal of L(a).

(ii) La := L(a)/KerLa is a Jordan algebra, called the Jordan algebra of L at a.

We denote by x 7→ x̄ the natural epimorphism of L(a) onto La and by U
(a)
x̄ the U -

operator of x̄ in La. As proved in [9], many properties of a Lie algebra can be transferred

to its Jordan algebras. Moreover, the nature of the Jordan element in question is

reflected in the structure of the attached Jordan algebra. These facts turn out to be

crucial for applications of the Jordan theory to Lie algebras. (See [9, Proposition 4.2].)
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4. Finitary Lie algebras

Throughout this section, and unless specified otherwise, F will stand for an arbitrary

field. Given a vector space X over F, we denote by L(X) the associative F-algebra of

all linear transformations of X and by F(X) the ideal of L(X) consisting of all finite

rank linear transformations.

12. For any a ∈ F(X), rank(a) := dim(aX) denotes the rank of a. The following

properties of the rank are immediate. Let a, b ∈ F(X) and c ∈ L(X), Then:

(i) rank(a + b) ≤ rank(a) + rank(b),

(ii) max{rank(ac), rank(ca)} ≤ rank(a),

(iii) rank([a, c]) ≤ 2rank(a).

13. Following [2], a Lie algebra L is said to be finitary (over F) if it is isomorphic to a

subalgebra of F(X)−, the Lie algebra consisting of all finite rank operators on a vector

space X over F.

Lemma 4.1. Let A be an associative F-algebra and let a, b be algebraic elements of A

such that ab = ba. Then for any x ∈ F[a, b], x is algebraic with deg(x) ≤ deg(a) deg(b).

Proof. Let r = deg(a) and s = deg(b). Then dimF F[a, b] ≤ rs. ¤

Lemma 4.2. Let a ∈ F(X) be a finite rank linear transformation with rank(a) = r.

Then:

(i) a is algebraic with deg(a) ≤ r2 + 1.

(ii) la and ra are algebraic with max{deg(la), deg(ra)} ≤ r2 + 1.

(iii) ada is algebraic with deg(ada) ≤ (r2 + 1)2.

Proof. (i) The restriction â of a to the r-dimensional subspace aX is algebraic with

deg(â) ≤ r2, so a is algebraic with deg(a) ≤ r2 + 1.

(ii) For any associative F-algebra A, the map x 7→ lx (resp. x 7→ rx) is a homomor-

phism (resp. anti-homomorphism) of A into L(AF). Hence, by (i), both la and ra are

algebraic of degree less than or equal to r2 + 1.

(iii) Since [la, ra] = 0, deg(ada) = deg(la − ra) ≤ (r2 + 1)2 by Lemma 4.1. ¤

Proposition 4.3. Let L ≤ F(X)− be a finitary Lie algebra over a field F of character-

istic different from 2 and 3 and let a ∈ L be a Jordan element. Then La is algebraic of

bounded degree.
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Proof. Let rank(a) = r. It follows by induction that for each c ∈ L and any integer

n ≥ 1,

c̄n = adn−1
[c,a]c.

Then, by Lemma 4.2(iii), c̄ is algebraic with deg(c̄) ≤ (4r2 + 1)2 + 1. This proves that

the Jordan algebra La is algebraic of bounded degree. ¤

14. A Lie algebra L over a field F is said to be algebraic if for each x in L the inner

derivation adx is algebraic over F.

Theorem 4.4. Let L be a nondegenerate finitary Lie algebra over an algebraically closed

field F of characteristic 0. Then L contains extremal elements.

Proof. By Lemma 4.2(iii), L is algebraic and hence, by [9, Corollary 2.3], L contains a

nonzero Jordan element a. By [8, Proposition 2.15(i)], La is a nondegenerate Jordan

algebra, which is algebraic of bounded degree by Proposition 4.3, so La has finite ca-

pacity by Theorem 2.5. Let ē be a division idempotent of La, equivalently, U
(a)
ē La is a

minimal inner ideal of La. By [8, 2.14], ad2
ad2

aeL is an abelian minimal inner ideal of L,

and hence any nonzero element of ad2
ad2

aeL is extremal by [9, Proposition 4.3] (since F
is algebraically closed). This completes the proof. ¤

Corollary 4.5. Let L be a simple finitary Lie algebra over an algebraically closed field

F of characteristic 0. Then L is spanned by its extremal elements.

Proof. Any simple Lie algebra over a field of characteristic 0 is nondegenerate, so L

contains extremal elements by Theorem 4.4. Let e ∈ L be an extremal element. By the

Jacobson-Morozov Lemma (see [4] for the special case of an extremal element), L has

a nontrivial finite grading and therefore it is generated by Engel elements. Thus any

subspace of L which is invariant under automorphisms is an ideal. In particular, the

linear span of extremal elements of L is a nonzero ideal and therefore equals L, since L

is simple. ¤
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