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ABSTRACT: We attach a Jordan algebra Lx to any ad-nilpotent element x of index of nilpotence

at most 3 in a Lie algebra L. This Jordan algebra has a behaviour similar to that of the local

algebra of a Jordan system at an element. Thus, Lx inherits nice properties from L and keeps

relevant information about the element x.

Introduction

Local algebras of a Jordan system (introduced by Meyberg [25], used by
Zelmanov as a minor part of his brilliant classification of Jordan systems [31], and
revisited by D’Amour and McCrimmon [9]) have played a prominent role in the
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recent structure theory of Jordan systems, mainly due to the fact that niceness
properties flow between the system and their local algebras. Thus, D’Amour and
McCrimmon extended a substantial part of Zelmanov’s results [31] to arbitrary
quadratic Jordan systems by making use of local algebras [9, 10]; Anquela and
Cortés characterized the primitivity of a Jordan system in terms of their local
algebras and, as a consequence, gave a full classification of primitive systems [1];
the relationship between generalized polynomial identities and the existence of
socle in primitive Jordan systems can actually be seen, after the works of D’Amour
and McCrimmon [9], and Montaner [26], as a consequence of the existence of local
algebras which are PI; and local algebras of a Jordan system seem to be a crucial
notion in order to develop a local Goldie theory for Jordan systems [13]. Local
algebras (or their related notion of subquotient) have also proved their usefulness
in some questions involving Jordan Banach systems. For instance, in the solution
given by Loos to the problem on the coincidence of the socle with the largest
properly spectrum-finite ideal of a semiprimitive Banach Jordan pair [21] (see
also [14]); in the proof of a structure theorem for Noetherian Banach Jordan pairs
[8]; and in the solution to the problem on automatic continuity of derivations on
semiprimitive Banach Jordan pairs [15]. On the other hand, ad-nilpotent elements
of index at most 3 (here called Jordan elements) play a fundamental role in the
proof of Kostrikin’s conjecture that any finite dimensional simple nondegenerate
Lie algebra (over a field of characteristic greater than 5) is classical [6, 28]. Jordan
elements are also of great importance in the Lie inner ideal structure of associative
rings [5].

In this paper we show how it is possible to attach a Jordan algebra to any
Jordan element x of a Lie algebra L (over a ring of scalars containing 1

6 ): define
a homotope like product in L by a • b = 1

2 [[a, x], b] and divide the nonassociative
algebra L(x) = (L, •) by the ideal kerL(x) = {z ∈ L : [[x, z], x] = 0}. Then
Lx = L(x)/ kerL(x) turns out to be a Jordan algebra which we call the Jordan
algebra at (the Jordan element) x. These Jordan algebras Lx have a behaviour
similar to that of the local algebras of a Jordan system. In fact, if L has a
short grading, L = L−n ⊕ . . . ⊕ L−1 ⊕ L0 ⊕ L1 ⊕ . . . ⊕ Ln, then any x ∈ L±n

is a Jordan element of L and Lx agrees with the local algebra of the Jordan pair
V = (Ln, L−n) at x. If L is nondegenerate, so are their Jordan algebras. Moreover,
in this case, a Jordan element x is von Neumann regular if and only if Lx is
unital. Jordan elements of simple nondegenerate Lie algebras of classical type
are determined, what, together with the classification of simple nondegenerate
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Lie algebras containing abelian minimal inner ideals, allows us to prove that a
Jordan element x of a nondegenerate Lie algebra L (over a field of characteristic
0 or greater than 7) belongs to the socle if and only if Lx has finite capacity.
In particular, if L coincides with the socle, any Jordan element is von Neumann
regular. Local characterizations of the socle of a nondegenerate Jordan systems
were obtained by Loos and Montaner [20, 26].

We would like to think that this local Jordan approach could throw new light
on the structure theory of Lie algebras. For the moment, the existence of Jordan
algebras in Lie algebras having ad-nilpotent elements seems at least to confirm
McCrimmon’s assertion: nine times out of ten, when you open up a Lie algebra
you find a Jordan algebra inside which makes it tick.

1. Preliminaries

1.1 Throughout this paper and at least otherwise specified, we will be dealing
with Lie algebras L, associative algebras R, Jordan algebras J , and Jordan pairs
V , over a ring of scalars Φ containing 1

6 . As usual, [x, y] will denote the Lie bracket
of two elements x, y of L, with adx the adjoint map determined by x (sometimes
we will use capital letters to denote the adjoint operators, i.e., X := adx); the
product of two elements x, y of R will be written by juxtaposition, xy, or by x · y;
the Jordan product of two elements x, y of J will be denoted by x • y, with U -
operator Uxy = 2x•(x•y)−x2•y; Jordan products of a Jordan pair V = (V +, V −)
will be written by Qxy, for any x ∈ V σ, y ∈ V −σ, σ = ±, with linearizations
Qx,zy = {x, y, z}. The reader is referred to [18, 19, 24] for basic results, notation
and terminology on Lie algebras, Jordan pairs, and Jordan algebras respectively.
Nevertheless, we will stress some notions and basic properties for both Lie algebras
and Jordan systems (algebras and pairs).

1.2 Any associative algebra R gives rise to:

(i) a Lie algebra R(−) with Lie bracket [x, y] := xy − yx, for all x, y ∈ R,

(ii) a Jordan algebra R(+) with Jordan product x • y := 1
2 (xy + yx),

(iii) a Jordan pair V = (R, R) with Jordan quadratic operator Qxy := xyx (in
general, any Jordan algebra J yields a Jordan pair (J, J), with Qx = Ux for
all x ∈ J).

1.3 Let V = (V +, V −) be a Jordan pair and let L be a Lie algebra.
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(i) An element x ∈ V σ, σ = ±, is called an absolute zero divisor of V if
Qx = 0. A Jordan pair V is said to be nondegenerate if it has no nonzero absolute
zero divisors. Similarly, x ∈ L is an absolute zero divisor of L if ad2

x = 0; L is
nondegenerate if it has no nonzero absolute zero divisors.

(ii) A submodule B ⊂ V σ is an inner ideal of V if QB(V −σ) ⊂ B. By an
inner ideal of a Jordan algebra J we mean an inner ideal of the Jordan pair (J, J).
A submodule B of L is an inner ideal of L provided [B, [B, L]] ⊂ B.

(iii) Any x ∈ V σ yields two inner ideals: [x] := QxV −σ and (x) := Φx + [x].

1.4 Let L = L−n ⊕ . . . ⊕ L−1 ⊕ L0 ⊕ L1 ⊕ . . . ⊕ Ln be a Lie algebra with
a (2n + 1)-grading. Then V := (Ln, L−n) is a Jordan pair for the triple product
defined by {x, y, z} := [[x, y], z] for all x, z ∈ Lσ, y ∈ L−σ, σ = ±n, called the
associated Jordan pair relative to the grading [30, p.351].

(i) If L is nondegenerate, so is V [30, Lemma 1.8].

(ii) Because of the grading, a submodule B of L±n is an inner ideal of L if
and only if it is an inner ideals of V .

1.5 An element e of a Lie algebra L is called von Neumann regular if ad3
e = 0

and e ∈ ad2
e(L). The notion of von Neumann regularity is compatible with the

usual one for associative rings and Jordan algebras (see [12, Proposition 2.4]).

1.6 Recall that a pair of elements (e, f) of a Lie algebra L is said to be an
idempotent if they satisfy: ad3

e = ad3
f = 0, [[e, f ], e] = 2e and [[e, f ], f ] = −2f.

Notice that the two last conditions imply that (e, [e, f ], f) is a sl(2)-triple. When
1
5 ∈ Φ, any idempotent (e, f) of L gives rise to a 5-grading

L = L−2 ⊕ L−1 ⊕ L0 ⊕ L1 ⊕ L2,

where Li is the i-eigenspace of L relative to ad[e,f ], for i ∈ {−2,−1, 0, 1, 2}. As in
the associative and Jordan cases, von Neumann regular elements yield idempotents
when 1

5 ∈ Φ (see [29, V.8.2] or [11, Proposition 2.9])

1.7 An idempotent of a Jordan pair V is a pair (x, y) ∈ V + × V − such that
Qxy = x and Qyx = y. It is a direct consequence of the grading properties that if
L = L−n ⊕ . . .⊕ L−1 ⊕ L0 ⊕ L1 ⊕ . . .⊕ Ln is a (2n + 1)-grading of a Lie algebra
L with associated Jordan pair V = (Ln, L−n), then every idempotent of V is an
idempotent of L.
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1.8 (i) Let V = (V +, V −) be a Jordan pair, and let x ∈ V −σ, σ = ±. On the
Φ-module V σ, a product is defined by a • b := 1

2{a, x, b}. With this product, V σ

becomes a Jordan algebra (with U-operator Ua = QaQx) called the x-homotope of
V and denoted by V (x) [19, 1.9]. In particular, any element x of a Jordan algebra
J yields the x-homotope J (x) := V (x), V being the Jordan pair defined by J .

(ii) The set kerV (x) = {a ∈ V σ : Qxa = 0} is an ideal of V (x), and the
quotient Vx := V (x)/ kerV (x) is a Jordan algebra called the local algebra of V at
x [9].

(iii) The local algebra Rx of an associative algebra R at an element x ∈ R is
defined similarly (see [16]): a · b = axb for all a, b ∈ R, and kerR(x) = {a ∈ R :
xax = 0}. Note that for the Jordan pair V = (R, R), Vx agrees with the Jordan
algebra R

(+)
x .

2. The Jordan algebra of a Lie algebra at a Jordan element

2.1 Definition. We say that an element x in a Lie algebra L is a Jordan
element if x is ad-nilpotent of index at most 3. Note that:

(i) Any nonzero ad-nilpotent element gives rise to a nonzero Jordan element,
by a celebrated result due to Kostrikin [6, Corollary 1.6].

(ii) Any nonzero finite dimensional Lie algebra over an algebraically closed
field of arbitrary characteristic necessarily contains a nonzero ad-nilpotent element
[7], and therefore a nonzero Jordan element.

As it will be seen later, there is a good reason for calling Jordan elements to
those ad-nilpotent elements of index at most 3.

2.2 A natural example of Jordan element is that of a zero-square element of
an associative algebra. Let R be an associative algebra and let L be a subalgebra
of the Lie algebra R(−). For any x, y ∈ L, we have:

(i) ad2
x(y) = [x, [x, y]] = x2y − 2xyx + yx2,

(ii) ad3
x(y) = x3y − 3x2yx + 3xyx2 − yx3.

Thus, if x2 = 0, then ad3
x(L) = 0, and therefore x is a Jordan element of L.

Note also that ad2
x(L) = xLx in this case.

In the following lemma and in its proof, we will use capital letters to denote
the adjoint operators: X := adx, A := ada, B := adb.
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2.3 Lemma. Let x be a Jordan element of a Lie algebra L. For any a, b ∈ L,
α ∈ Φ, we have

(i) X2AX = XAX2.

(ii) X2AX2 = 0.

(iii) X2A2XAX2 = X2AXA2X2.

(iv) [X2(a), X(b)] = [X2(b), X(a)].

(v) ad2
x[[a, x], b] = ad2

x[[b, x], a].

(vi) X2 ad[a,X2(b)] = ad[X2(a),b] X
2.

(vii) ad2
X2(a) = X2A2X2.

(viii) αx, ad2
x(a) are Jordan elements.

Proof. (i), (ii), (vii) are [6, Lemma 1.7 (i),(ii), (iii)].

(iii) By (ii),

0 = X2[A, [A, [A,X]]]X2 = X2(A3X − 3A2XA + 3AXA2 −XA3)X2

= 3X2AXA2X2 − 3X2A2XAX2
,

which proves (iii), because L is 3-torsion free.

(iv) From ad3
x = 0, using the Leibniz rule we get

0 = X3[a, b] = 3[X2(a), X(b)] + 3[X(a), X2(b)],

which implies [X2(a), X(b)] = [X2(b), X(a)], because L is 3-torsion free.

(v) Use the Leibniz rule and apply (iv).

(vi) Since ad[a,X2(b)] = [A, [X, [X,B]], we get

X2 ad[a,X2(b)] = X2(A(X2B + BX2 − 2XBX)− (X2B + BX2 − 2XBX)A)

= X2ABX2 − 2X2AXBX = X2ABX2 − 2XAXBX2

= ((X2A + AX2 − 2XAX)B −B(X2A + AX2 − 2XAX))X2

= ad[X2(a),b] X
2,

as required.

(viii) ad3
αx = α3 ad3

x = 0 shows that αx is a Jordan element. Set w :=
ad2

x(a). Using (ii) and (vii) we get, ad3
w = ad[x,[x,a]] ad2

ad2
x(a) = (X2A − 2XAX +

AX2)X2A2X2 = 0, so w = ad2
x(a) is a Jordan element.
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2.4 Theorem. Let L be a Lie algebra and let x ∈ L be a Jordan element.
Then L with the new product defined by a • b := 1

2 [[a, x], b] is a nonassociative
algebra, denoted by L(x), such that:

(i) kerL(x) := {a ∈ L | [x, [x, a]] = 0} is an ideal of L(x).

(ii) Lx := L(x)/ kerL(x) is a Jordan algebra, with U -operator given by

Uab =
1
8
ad2

a ad2
x b,

for all a, b ∈ L, where a denotes the coset of a with respect to kerL(x).

Proof. (i) Let a ∈ kerL(x) and b ∈ L. Using the Leibniz rule we get

ad2
x[[a, x], b] = −[X3(a), b]− 2[X2(a), X(b)]− [X(a), X2(b)] = 0,

since X2(a) = 0 and, by (2.3)(iv), [X(a), X2(b)] = [X(b), X2(a)]. Now we have
by (2.3)(v) that ad2

x[[b, x], a] = ad2
x[[a, x], b] = 0, which proves that kerL(x) is an

ideal of L(x) altogether.

(ii) Consider now the quotient algebra Lx = L(x)/ kerL(x). It follows from
(2.3)(v) that the bullet product in Lx is commutative. Thus we only need to verify
the Jordan identity. Let a, b ∈ L and put w := [[[a, x], a], x]. Then

8 (a2 • b) • a = [[[[[[a, x], a], x], b], x], a] = [[[w, b], x], a] = [w, b] • a = a • [w, b]

= [[a, x], [w, b]] and,

8 a2 • (b • a) = 8 a2 • (a • b) = [[[[a, x], a], x], [[a, x], b]] = [w, [[a, x], b]]

= [[u, [a, x]], b] + [[a, x], [w, b]] = [[w, [a, x]], b] + 8 (a2 • b) • a.

But [[w, [a, x]], b] ∈ kerL(x). Indeed, according to our convention, denote by capital
letters the adjoint maps. Then

ad2
x ad[w,[a,x]] = X2[W, [A,X]] = X2WAX −X2WXA−X2AXW,

since X3 = 0, and where

W = 2AXAX −XA2X −A2X2 − 2XAXA + X2A2 + XA2X.
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Now ad2
x ad[w,[a,x]] = 0 follows by using (2.3)(i)-(iii). Therefore Lx is a Jordan

algebra. Finally, since [x, L] ⊂ kerL(x) and a • b = b • a, we have for all a, b, c ∈ L,

4 {a, b, c} := a • (b • c) + c • (a • b)− b • (a • c)

= [[a, x], [[b, x], c]] + [[c, x], [[a, x], b]]− [[b, x], [[a, x], c]]

= [[[a, x], [b, x]], c] + [[b, x], [[a, x], c]] + [[c, x], [[a, x], b]]− [[b, x], [[a, x], c]]

= [[[a, x], [b, x]], c] + [[c, x], [[a, x], b]] = [[[a, x], [b, x]], c] + [[c, [[a, x], b]], x]

+ [c, [x, [[a, x], b]]] = [[[a, x], [b, x]], c] + 0 + [c, [x, [[a, x], b]]]

= [[[a, x], [b, x]], c] + [c, [x, [[b, x], a]]] = [[[a, x], [b, x]], c]

+ [[x, [a, [b, x]]], c] = [[a, [x, [b, x]]], c] = −[[a, ad2
x b], c].

Therefore, 8 Uab = 4 {a, b, a} = ad2
a ad2

x b.

2.5 Definition. For any Jordan element x of L, the Jordan algebra Lx we
have just introduced will be called the Jordan algebra of L at x.

2.6 It deserves to be mentioned that we can define a functor from the category
of the pairs (L, a), where L is a Lie algebra over Φ and a is a Jordan element of
L, with the morphisms f : (L, a) → (M, b) being the homomorphisms f : L → M

of Lie algebras such that f(a) = b, to the category of the Jordan Φ-algebras,
which assigns to each pair (L, a) the Jordan algebra La, and to each morphism
f : (L, a) → (M, b) the homomorphism f : La → Mb given by f(x) = f(x).

Other elementary facts on Jordan elements and their attached Jordan algebras
are listed in the next lemma.

2.7 Lemma. Let x be a Jordan element of L.

(i) [x] := ad2
x(L) and (x) := Φx + ad2

x(L) are both inner ideals of L.

(ii) For any inner ideal B of L, Bx := (B/ kerL(x) ∩B, •) is a subalgebra of Lx.

(iii) If I is an ideal of L and x ∈ I is von Neumann regular, then both Jordan
algebras Ix and Lx agree.

(iv) If L = B ⊕ C is a direct sum of ideals and x = b + c with respect to this
decomposition, then Lx

∼= Bb × Cc.

Proof. (i). It follows from [6, Lemma 1.10] and its proof, while (ii) and (iv)
are straightforward. Now to prove (iii) it suffices to show that any coset a in Lx

is equal to a coset b in Ix. Write x = ad2
x(y) for some y ∈ L. Then, by (2.3(vii)),
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ad2
x = ad2

ad2
x(y) = ad2

x ad2
y ad2

x and hence, for any a ∈ L, ad2
x(a) = ad2

x(b), where
b = ad2

y ad2
x(a) ∈ I.

2.8 Proposition. Let x be a Jordan element of a Lie algebra L. For any
y ∈ L we have that w := 1

4 [[x, y], x] is a Jordan element and (Lx)y
∼= Lw.

Proof. That w is a Jordan element follows from (2.3)(viii). For any a ∈ L,
denote by a and ã the cosets of a in Lx and Lw respectively. First we note:

(1) a = 0 ⇔ ad2
x(a) = 0 ⇒ ad2

w(a) = 1
16 ad2

x ad2
y ad2

x(a) = 0,

which proves that a 7→ ã defines a map, say ϕ, of Lx onto Lw. We claim that ϕ is
actually a homomorphism of the y-homotope L

(y)
x onto Lw, with ker(ϕ) = ker(Uy),

and therefore ϕ induces an isomorphism of (Lx)y onto Lw. Since ϕ is clearly linear,
to show that it is a homomorphism of Jordan algebras it suffices to verify that
ϕ(a2) = ã2, for any a ∈ L. By (2.4)(ii),

(2) ϕ(a2) = ϕ(Uay) = 1
8

˜ad2
a ad2

x(y) = 1
2

˜[[a,w], a] = ã • ã.

Finally,

(3) ã = 0 ⇔ ad2
w(a) = 1

16 ad2
x ad2

y ad2
x(a) = 0 ⇔ Uya = 0 ⇔ a ∈ ker(Uy).

2.9 Proposition. Let L = L−n ⊕ . . .⊕ L−1 ⊕ L0 ⊕ L1 ⊕ . . .⊕ Ln be a Lie
algebra with a (2n + 1)-grading, and let V = (Ln, L−n) be its associated Jordan
pair. For any x ∈ L−n, x is a Jordan element and Lx is isomorphic to the local
algebra Vx of V at x.

Proof. Because of the grading, x is a Jordan element of L. Denote by πn the
projection of L onto Ln. For any a ∈ L, [x, [x, a]] = [x, [x, πn(a)]] = −{x, πn(a), x},
so a ∈ kerL(x) if and only if πn(a) ∈ kerV (x). Hence πn : L → Ln induces an
isomorphism of Lx onto Vx.

2.10 When 1
5 ∈ Φ, given an idempotent (e, f) of a Lie algebra L, denote

by V (e, f) its associated Jordan pair (L2, L−2) = (ad2
e(L), ad2

f (L)), and by J(e, f)
the unital Jordan algebra defined on the Φ-module ad2

e(L) by the product x • y :=
[[x, f ], y], for all x, y ∈ ad2

e(L), (see [6, Lemmas 2.1 and 2.2] or [11, Proposition
2.9]).

2.11 Proposition. Let (e, f) be an idempotent of a Lie algebra L with
1
5 ∈ Φ. Then the Jordan algebra Le of L at e is isomorphic to the Jordan algebra
J(e, f).

Proof. Since (e, f) remains idempotent in the Jordan pair V (e, f), it follows
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from [9, (1.7)] that J(e, f) is isomorphic to the local algebra of V (e, f) at x. Now
(2.9) applies.

In the following corollary we get that any unital Jordan algebra can be re-
garded as the Jordan algebra of a Lie algebra at an element. For a Jordan pair V ,
we denote by TKK(V ) the Tits-Kantor-Koecher algebra of V .

2.12 Corollary. Let J is a unital Jordan algebra, V = (J, J) and L =
TKK(V ). If 1

5 ∈ Φ, the Jordan algebra of L at 1 is isomorphic to J .

Proof. The unit element 1 ∈ J is part of an idempotent (1, 1̃) ∈ L = TKK(V ),
so by (2.11) L1

∼= J(1, 1̃) = J .

2.13 (i) Recall [20] that the socle of a nondegenerate Jordan pair V is defined
as Soc(V ) = (Soc(V +), Soc(V −)), where Soc(V σ) is the sum of all the minimal
inner ideals of V contained in V σ; the socle of a nondegenerate Jordan algebra
J , denoted by Soc(J), is defined as the sum of all its minimal inner ideals. For a
nondegenerate Lie algebra L, the socle, Soc(L), is defined as the sum of all minimal
inner ideals of L [11].

(ii) The socle of a nondegenerate Jordan pair, Jordan algebra or Lie algebra
is an ideal which is a direct sum of simple ideals ([20, Theorem 2], [27, Theorem
17], [11, Theorem 3.6]).

(iii) It follows from [16, Corollary 2.2] that for a semiprime associative algebra
R, the associative socle of R agrees with the Jordan socle of R(+). (Note that R(+)

is nondegenerate if and only if R is semiprime.)

2.14 Note that if x is a Jordan element of L, then the map a 7→ ad2
x(a),

defines a bijection from Lx onto the inner ideal [x] of L. In fact, this map induces
an one-to-one order-preserving correspondence between the set of inner ideals [a]
of the Jordan algebra Lx and the set of inner ideals [y] of L, y ∈ [x].

2.15 Proposition. Let L be a nondegenerate Lie algebra and let x be a
Jordan element of L. Then

(i) Lx is a nondegenerate Jordan algebra.

(ii) If 1
5 ∈ Φ, Lx is unital if and only if x is von Neumann regular.

(iii) a ∈ Soc(Lx) if and only if ad2
x(a) ∈ Soc(L).

Proof. (i) If Uab = 0 for every b ∈ Lx, then 0 = ad2
x ad2

a ad2
x b = ad2

ad2
x a b for

every b ∈ L (2.3)(vii), which implies, since L is nondegenerate, that ad2
x a = 0,
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i.e., a = 0.

(ii) Suppose that there exists y ∈ L such that {x, [x, y], y} is a sl2-triple with
ad3

y = 0. Then y is the unit of Lx because

[x, [x, [[y, x], a]]] = [x, [[x, [y, x]], a]] = [[x, [y, x]], [x, a]] = 2[x, [x, a]]

therefore y • a = 1
2 [[y, x], a] = a.

Suppose, conversely, that Lx is a unital Jordan algebra and let t be its unit.
Put z := [x, [x,−t]]− 2x. Then for every a ∈ L,

0 = [x, [x, [[t, x], a]− 2a]] = −[x, [[x, [x, t]], a] + 2[x, a]]

= [[x, [x,−t]], [x, a]]− 2[x, [x, a]] = [z, [x, a]]

but [z, x] = 0 and 0 = ad[z,[x,a]] = − adz ada adx− adx ada adz which implies that

[z, [[x, [x,−t]], a]] = [[x, [x,−t]], [z, a]] = [x, [x, [−t, [z, a]]]]

= −[x, [z, [−t, [x, a]]]] = 0.

Now, [z, [z, a]] = 0 for every a ∈ L and therefore, since L is nondegenerate, z = 0,
i.e., [x, [x,−t]] = 2x. Finally, by [29, Lemma V.8.2] (or [11, 2.9]), there exists
y ∈ L such that {x, [x, y], y} is a sl2-triple with ad3

y = 0.

(iii) Since the socle of a nondegenerate Jordan system or Lie algebra is a sum
of minimal inner ideals, it follows from (2.14) that a belongs to Soc(Lx) if and
only if ad2

x(a) lies in Soc(L).

3. Jordan algebras of simple special Lie algebras

3.1 Let R be a (not necessarily unital) associative algebra with associated
Lie algebra R(−). We have the Lie algebras R′ := [R,R], R := R(−)/Z(R) and
R
′
:= R′/R′ ∩Z(R), where Z(R) stands for the center of R. We write π to denote

the canonical projection of R(−) onto R. Note that R
′
can be regarded as an ideal

of R.

3.2 Lemma. Let y ∈ R be a nonzero element such that y2 = 0. Then

(i) y is a Jordan element of R(−) and we have a canonical isomorphism of R
(−)
y

onto R
(+)
y , the local algebra of the Jordan algebra R(+) at y.

(ii) If R is semiprime, then Rπ(y)
∼= R

(−)
y

∼= R
(+)
y .
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(iii) Rπ(y) is simple whenever R is simple.

Proof. (i) y2 = 0 implies [y, [y, a]] = −2yay for all a ∈ R. Hence ad3
y = 0

and therefore y is a Jordan element of R(−). Moreover, for any a, b ∈ R, we
have y[[a, y], b]y = y(ayb + bya)y which implies that the map a + kerR(−)(y) →
a + kerR(+)(y) defines an isomorphism of R

(−)
y onto R

(+)
y .

(ii) As pointed out in (2.6), π : R(−) → R induces the epimorphism π : R
(−)
y →

Rπ(y). We claim that π is actually an isomorphism. Indeed, let a ∈ R be such that
[π(y), [π(y), π(a)]] = π(0). Then [y, [y, a]] ∈ Z(R). Hence [y, [y, a]] = −2yay = 0
because R cannot contain nonzero central nilpotent elements, by semiprimeness.
Now we have by (i) that Rπ(y)

∼= R
(−)
y

∼= R
(+)
y .

(iii) If R is simple, then R(+) is a simple Jordan algebra [17, Theorem 1.1].
Hence, by local theory of Jordan systems [2, Corollary 3.5], R

(+)
y is also simple.

3.3 Theorem. Let R be a simple associative algebra and x ∈ R′. If π(x) is
a nonzero Jordan element of R

′
, then R

′
π(x) is a simple Jordan algebra. In fact,

R
′
π(x)

∼= R
(+)
y , for some y ∈ R such that y2 = 0.

Proof. By [11, Lemma 5.2], R
′

is nondegenerate and therefore R
′
π(x) 6= 0.

Now ad3
π(x) = 0 implies ad4

x = 0, and hence, by [5, Theorem 3.2], (x − z)2 = 0
for some z ∈ Z(R). Put y := x − z which is nonzero since π(x) 6= 0. Then
π(x) = π(y) and R

′
π(x) = R

′
π(y). Now (3.2)(iii) applies since R

′
π(y) can be

regarded as a nonzero ideal of Rπ(y).

3.4 Assume now that R has an involution ∗. Denote by K = Skew(R, ∗)
the Lie algebra of the skew-symmetric elements of R. We also consider the Lie
algebras K ′ = [K,K], K = K/K ∩ Z(R) and K

′
= K ′/K ′ ∩ Z(R). Notice that

K
′ ∼= [K, K]. If R is simple and either Z(R) = 0 or the dimension of R over Z(R)

is greater than 16, then K is nondegenerate and K
′
is a simple nondegenerate Lie

algebra [11, Lemma 5.13].

3.5 Lemma. Let R be a simple associative algebra with involution ∗, and let
a ∈ K be a nonzero skew-symmetric element such that a2 = 0. Then

(i) the map −∗ induces an involution ? on Ra, the associative local algebra of R

at a, given by x? = −x∗, x ∈ R,

(ii) π(a) is a nonzero Jordan element of K and Kπ(a)
∼= Sym(Ra, ?),

(iii) the Jordan algebra Kπ(a) is simple.
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Proof. (i) It is straightforward. (ii) By (3.2(i)), a is a Jordan element of R(−)

and hence also of K (since a is skew). Then π(a) is a Jordan element of K, which
is nonzero by simplicity of R. Moreover, the canonical isomorphism of R

(−)
a onto

R
(+)
a given in (3.2(ii)) restricts to an isomorphism of Kπ(a) onto Sym(Ra, ?). (iii)

Finally, Ra inherits simplicity of R and hence Sym(Ra, ?) is also simple by [17,
Theorem 2.1].

3.6 Theorem. Let R be a simple associative algebra with involution ∗ of
the second kind (over the centroid of R). Suppose that either Z(R) = 0 or the
dimension of R over Z(R) is greater than 16. Let b ∈ K ′ be such that π(b) is a
nonzero Jordan element of K

′
. Then

(i) there is an α ∈ K ∩ Z(R) such that (b− α)2 = 0,

(ii) Kπ(b)
∼= Kπ(a)

∼= Sym(Ra, ?), for a = b− α, and

(iii) the Jordan algebra K
′
π(b) is simple.

Proof. (i) By (2.7)(i), (π(b)) = Φπ(b)+ad2
π(b)(K

′
) is an abelian inner ideal of

K
′
, so (π(b)) = π(B), where B = π−1((π(b))) is a proper inner ideal of K ′. Since

b ∈ B, it follows from [6, Theorem 4.26] that there is an α ∈ Z(R) such that (b−
α)2 = 0. Write α = αs + αk, where αs ∈ Sym(Z(R), ∗) and αk ∈ Skew(Z(R), ∗).
Then (b− (αs +αk))2 = 0 and ((b− (αs +αk))2)∗ = (−b− (αs−αk))2 = 0. Hence

0 = (b− (αs + αk))2 − (b + (αs − αk))2 = −4αsb + 4αsαk = −4αs(b− αk),

which implies αs = 0 or b = αk. But the latter does not hold since π(b) 6= 0.
Thus, αs = 0 and therefore α = αk ∈ K ∩ Z(R).

(ii) and (iii). Put a = b − α as in (i). Then a ∈ K with a2 = 0. Hence,
by (3.5)(ii), Kπ(b) = Kπ(a)

∼= Sym(Ra, ?), which is a simple Jordan algebra by
(3.5)(iii). Since K

′
π(b) can be regarded as a nonzero ideal of Kπ(b), K

′
π(b)

∼= Kπ(b)

by simplicity.

Before dealing with the case where the involution is of the first kind, we recall
some notation on pairs of dual vector spaces.

3.7 Let P = (X, Y, g) be a dual pair of vector spaces over a division algebra
∆. A linear operator a : X → X is continuous (relative to P) if there exists
a# : Y → Y , necessarily unique, such that g(ax, y) = g(x, a#y) for all x ∈ X,
y ∈ Y . Denote by LY (X) the Φ-algebra of all continuous operators on X, and by
FY (X) the ideal of LY (X) consisting of all finite rank continuous operators.
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3.8 Let P = (X, Y, g) be as above. For x ∈ X, y ∈ Y , write y∗x to denote
the linear operator defined by y∗x(x′) = g(x′, y)x for all x′ ∈ X. Note that y∗x
is continuous with adjoint yx∗ given by yx∗(y′) = yg(x, y′) for all y′ ∈ Y . Every
a ∈ FY (X) can be expressed as a sum a =

∑
y∗i xi of these rank one operators.

3.9 (i) Let R be a simple associative algebra coinciding with its socle. By
[4, Theorem 4.3.9], we can regard R as the algebra FY (X), relative to a dual pair
P = (X, Y, g) over a division algebra ∆.

(ii) If R has an involution ∗, then the dual pair P comes from a self-dual vector
space (X, h), where h is a nondegenerate Hermitian or skew-Hermitian form h over
a division algebra with involution (∆,−). Then R can be regarded as FX(X), with
∗ being the adjoint involution with respect to h [4, Theorem 4.6.8]. Actually, we
may assume, without loss of generality, that either h is symmetric (in this case ∆
is a field with the identity as involution), or h is skew-Hermitian. In the first case
we say that ∗ is orthogonal, and skew-Hermitian in the second case.

3.10 Theorem. Let R be a simple associative algebra with involution ∗
of the first kind (over the centroid of R). Suppose that either Z(R) = 0 or the
dimension of R over Z(R) is greater than 16. Let b ∈ K ′ be such that π(b) is a
nonzero Jordan element of K

′
. Then b3 = 0 and one of the following holds:

(i) b2 = 0. Then K
′
π(b)

∼= Sym(Rb, ?).

(ii) b2 6= 0. Then R has nonzero socle with orthogonal involution, K
′
= K is a

finitary orthogonal Lie algebra, and K
′
π(b) is isomorphic to the Jordan algebra

defined by a nondegenerate quadratic form with base point on a vector space
of dimension greater than 2.

(iii) In any case, K
′
π(b) is simple.

Proof. By (2.7)(i), (π(b)) = Φπ(b) + ad2
π(b)(K

′
) is an abelian inner ideal of

K
′
, so (π(b)) = π(B), where B = π−1((π(b))) is a proper inner ideal of K ′. Then

[B, B] = 0 by [5, Theorem 4.21]. Since b ∈ B, it follows from [5, Theorem 4.21]
that b3 = 0. Moreover, [B,B] = 0 implies ad3

b(K
′) = [b, ad2

b(K
′)] = 0 and hence

ad4
b(K) = 0. Then 6b2Kb2 = ad4

b(K) = 0. Since 1
6 ∈ Φ, R satisfies the generalized

polynomial identity with involution b2(X − X∗)b2 = 0. (See [4] for definition of
generalized polynomial identity with involution (∗GPI)).

(i) Suppose that b2 = 0. By (3.5)(ii), Kπ(b)
∼= Sym(Rb, ?), which is a simple

Jordan algebra by (3.5)(iii). Since K
′
π(b) can be regarded as a nonzero ideal of
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Kπ(b), K
′
π(b)

∼= Kπ(b) by simplicity.

(ii) If b2 6= 0, the ∗GPI b2(X − X∗)b2 = 0 is nontrivial and hence R satis-
fies a nonzero generalized polynomial identity [4, Corollary 6.25]. Then, by [4,
Corollary 6.1.7], R has nonzero socle and R is isomorphic to FX(X), relative to a
nondegenerate symmetric or skew-Hermitian form h form over a division algebra
with involution (∆,−). We claim that the involution is necessarily orthogonal,
that is, the skew-Hermitian case cannot occur. Otherwise, for any nonzero x ∈ X,
the rank one operator x∗x is skew. Hence 0 = b2(x∗x)b2 = (b2(x))∗b2(x), which
implies b2(x) = 0 for all x ∈ X, a contradiction. Therefore, K is isomorphic to the
finitary orthogonal Lie algebra [3] fo(X, h) = Skew(FX(X), ∗). Finally, it follows
from [12, (3.7) and (3.8)] (where actually only characteristic different from 2 is
required) that b = x∗z−z∗x, where x is a nonzero isotropic vector of an hyperbolic
plane H of X and z ∈ H⊥ is not isotropic. By [11, (8)], taking an isotropic vector
y in H such that h(x, y) = 1, and putting c = −2h(z, z)−1(y∗z−z∗y), we obtain an
idempotent (b, c) of K

′
= K ′ = K = fo(X,h), with associated Jordan pair V (b, c)

isomorphic to the Jordan pair defined by the restriction of the quadratic form
q(v) := h(v, v), v ∈ H⊥, to H⊥. By (2.11), K

′
π(b) = Kb is isomorphic to J(b, c),

the latter being isomorphic to the Jordan algebra defined by a scalar multiple of
the quadratic form q [24, 7.3.1].

4. Jordan algebras of a Lie algebra which coincides with its socle

The main result of this section proves that for an element of a nondegenerate
Lie algebra coinciding with its socle, being Jordan is equivalent to being von
Neumann regular. In fact, a Jordan element of a nondegenerate Lie algebra belongs
to the socle if and only if the Jordan algebra attached to this element has finite
capacity.

4.1 Recall that a nondegenerate Jordan algebra J is said to have finite
capacity if it has a unit 1 which can be written as a finite sum of orthogonal
division idempotents: 1 = e1 + · · · + en with e2

i = ei, ei • ej = 0 for i 6= j, UeiJ

a division Jordan algebra [24, p.96]. It is known that a nondegenerate Jordan
algebra J has finite capacity if and only if satisfies both descending and ascending
conditions on all principal inner ideals [x], x ∈ J , [23, 1.15].

4.2 Theorem. Let L be a nondegenerate Lie algebra over a field of charac-
teristic 0 or greater than 7. For a nonzero Jordan element x of L, the following
conditions are equivalent:
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(1) x ∈ Soc(L).

(2) x is von Neumann regular and Lx has finite capacity.

(3) x is von Neumann regular and L satisfies the descending chain condition for
all inner ideals [y], y ∈ (x).

Proof. (1) ⇒ (2). Since Jordan algebras having finite capacity are unital, it
suffices to show by (2.15)(ii) that Lx has finite capacity. Let us first assume that
L is a simple nondegenerate Lie algebra containing an abelian minimal inner ideal
(the general case will be considered later). By [11, Theorem 6.1], we have the
following possibilities for L: (i) L is finite dimensional over its centroid; (ii) there
exists a simple associative algebra R which coincides with its socle and which is
not a division algebra such that L = [R, R]/Z(R) ∩ [R,R]; (iii) L is isomorphic
to [K, K]/Z(R) ∩ [K, K], where K = Skew(R, ∗), for R being a simple associative
algebra with isotropic involution (a∗a = 0 for some nonzero element a ∈ R) which
coincides with its socle, and where either Z(R) = 0 or the dimension of R over Z(R)
is greater than 16. Let F denote the centroid of L, which is a field since L is simple.
If (i), then Lx is a nondegenerate (2.15)(i) finite dimensional Jordan algebra, so
Lx has finite capacity, as required. Suppose now that L = [R, R]/Z(R) ∩ [R, R]
as in (ii). By (3.3), Lx

∼= R
(+)
y for some nonzero element y ∈ R such that y2 = 0.

Hence, by the local characterization of the socle [26, (0.7)], Lx has finite capacity.
Consider finally the case when L = [K, K]/Z(R) ∩ [K, K] as in (iii). We can still
distinguish between two cases. If the involution ∗ of R is of the second kind (over
F ), we have by (3.6) that Lx is a simple Jordan algebra (in fact, Lx

∼= Sym(Ra, ?),
with a being a nonzero skew-symmetric element of R). Then Ra is Artinian by [16,
Theorem 2.3], and hence Lx

∼= Sym(Ra, ?) has finite capacity by [22, Proposition
4]. Suppose now that the involution ∗ of R is of the first kind. By (3.10), either
Lx

∼= Sym(Rb, ?), where b is a nonzero skew-symmetric element of R, or Lx is
a Jordan algebra isomorphic to the Jordan algebra defined by a nondegenerate
quadratic form with base point on a vector space of dimension greater than 2. In
both cases, Lx is simple and has finite capacity.

Let us now deal with the general case x ∈ Soc(L). Since Soc(L) is a direct
sum of simple ideals, we can write x = x1 + · · · + xn, where each xi is nonzero
and belongs to an ideal Mi, which is simple as a Lie algebra and coincides with its
socle; the Mi being mutually orthogonal. Hence, for each 1 ≤ i ≤ n, xi is a Jordan
element of Mi. This implies, by (2.7)(i), that Mi contains a nonzero abelian inner
ideal, and hence an abelian minimal inner ideal, by the classification of minimal
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inner ideals [6, Theorem 1.12]. Then, by the above, for each 1 ≤ i ≤ n, (Mi)xi

is a nondegenerate Jordan algebra of finite capacity. Set M = M1 ⊕ · · · ⊕ Mn.
By (2.7)(iv), Mx

∼= (M1)x1 × · · · × (Mn)xn
, so M has finite capacity and x is von

Neumann regular in M . Hence, by (2.7)(iii), Lx
∼= Mx has finite capacity.

(2) ⇒ (3). By (2.14), L satisfies the descending chain condition for all inner
ideals [y], y ∈ (x), since Lx has dcc on principal inner ideals.

(3) ⇒ (1). It was proved in [11, Corollary 4.3].
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