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Introduction

The study of Jordan algebras of quotients originated in the question raised by
Jacobson [J1, p. 426] about the possibility of imbedding a Jordan domain in a Jordan
division algebra in a way similar to Ore’s construction in associative theory. That
problem led to the study of suitable algebras of fractions and also to the related
problem of adapting Goldie’s theory to the Jordan setting, which in turn led to the
study of more general algebras of quotients for Jordan algebras.

A complete answer for the problem of finding analogues of Goldie’s theorems
for linear Jordan algebras was given by Zelmanov in [Z1, Z2] using his fundamen-
tal structural results. More recently, Martinez [M] solved the original problem of
constructing analogues of Ore’s rings of fractions by a different approach. In her
work she makes use of the Kantor-Koecher-Tits construction to define algebras of
fractions of linear Jordan algebras for a set of denominators satisfying suitable “Ore
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conditions”. Zelmanov’s and Martinez’s results have been extended to quadratic Jor-
dan algebras in [FGM] and [B] respectively, again using similar strategies of those of
their original linear versions, namely the structural approach in the case of Goldie’s
theorems and Faulkner’s generalization of the Kantor-Koecher-Tits construction for
general algebras of fractions.

Some other work on Jordan algebras of quotients include local orders [FG1, FG2],
and Jordan analogues of the Martindale algebra of quotients [GG, AGG]. Both cases
follow one of the strategies mentioned above, Zelmanov’s structural approach and
Martinez’s Lie theoretic approach.

An important construction in associative theory is Johnson’s algebra of quo-
tients. The aim of this paper is to develop an analogue of that construction for
Jordan algebras. Since these algebras are defined for denominators that are essential
one sided ideals, the natural choice for its Jordan version is taking essential inner
ideals as denominators. Moreover, the associative constructions requires that the al-
gebra be nonsingular, and therefore a Jordan analogue of nonsingularity is needed for
a Jordan version of it. There is already a definition of nonsingularity for Jordan alge-
bras given in [FGM], however for this property to relate well with the nonsingularity
of associative envelopes, we will need a more stringent version of that concept. Thus
we will define what we call strongly nonsingular Jordan algebras. Our main result
then asserts that every prime strongly nonsingular Jordan algebra has a maximal
algebra of quotients which is analogue to Jonhson’s algebra of quotients.

The paper is organized as follows. After a first section of preliminaries, we study
essential inner ideals in section 1. In particular, we define the above mentioned notion
of nonsingularity and draw some of its consequences. In section 2 we define the kind
of algebras of quotients to which the paper is devoted. Among other properties, we
prove in 2.9 the transitivity of algebras of quotients for strongly nonsingular algebras.
We also define the notion of maximal algebras of quotients and prove their uniqueness
for strongly nonsingular algebras. The rest of the paper is devoted to the problem of
proving the existence of maximal algebras of quotients for prime strongly nonsingular
Jordan algebras. Following a well established strategy in Jordan theory, we consider
separately the cases where the algebra satisfies a polynomial identity and the case
where it does not, and hence it is in particular a hermitian algebra. In section 3 we
deal with PI algebras, where the main tool is the existence of nonzero elements in
the weak center, which as we prove, keep on being elements of the weak center of
any algebra of quotients. These elements can be used to extend mappings from the
centroid of the algebra to the centroid of the algebra of quotients and this allows
to prove that the central closure is in this case the maximal algebra of quotients.
In section 4 we consider the hermitian case. Here, Lanning’s algebra of quotients
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of a ∗-tight associative ∗-envelope provides a home for the elements of the algebra
of quotients of the original Jordan algebra thanks to the good relationship between
essential inner ideals of the algebra and essential one sided ideals of the envelope. We
finally collect the previous results in the main theorem of the paper asserting that a
prime strongly nonsingular Jordan algebra has a maximal algebra of quotients.

0. Preliminaries

0.1. We will work with Jordan algebras over a unital commutative ring of scalars
Φ which will be fixed throughout. We refer to [J2, McZ] for notation, terminology,
and basic results. In particular, we will make use of the identities proved in [J2],
which we will quote with the labellings QJn of that reference. In this section we
recall some of those basic results and notations, together with some other that will
be used in the paper.

0.2. A Jordan algebra has products Uxy and x2, quadratic in x and linear in
y, whose linearizations are Ux,zy = Vx,yz = {x, y, z} = Ux+zy − Uxy − Uzy, and
x ◦ y = (x + y)2 − x2 − y2 respectively.

We will denote by Ĵ the free unital hull Ĵ = Φ1⊕J with products Uα1+x(β1+y) =
α2β1 + α2y + αx ◦ y + 2αβx + βx2 + Uxy and (α1 + x)2 = α21 + 2αx + x2. (We
will also use this notation for the corresponding construction for associative algebras:
R̂ = Φ1 + R.)

0.3. Recall that a Φ-submodule K of a Jordan algebra J is an inner ideal if
UxĴ ⊆ K for all x ∈ K, and that an inner ideal I ⊆ J is an ideal if {I, J, Ĵ}+UJI ⊆ I.
If I, L are ideals of J , so is their product UIL, and in particular so is the derived
ideal I(1) = UII. An (inner) ideal of J is essential if it has nonzero intersection with
any nonzero (inner) ideal of J .

If X ⊆ J is a subset of the Jordan algebra J , the annihilator of X in J is the set
AnnJ(X) of all z ∈ J which satisfy Uzx = Uxz = 0 and UxUzĴ = UzUxĴ = Vx,zĴ =
Vz,xĴ = 0 for all x ∈ X. This is always an inner ideal of J , and it is also an ideal if
X is an ideal. If J is nondegenerate and I is an ideal of J , the annihilator of I can
be characterized in the following alternative ways (see [Mc2, Mo2]):

AnnJ(I) = {z ∈ J | UzI = 0} = {z ∈ J | UIz = 0}.

0.4. The centroid Γ(J) of a Jordan algebra J is the set of all Φ-linear mappings
γ : J → J that satisfy: γ(Uxy) = Uxγ(y), γ2(Uxz) = Uγ(x)z, and γ({x, y, z}) =
{γ(x), y, z} for all x, y ∈ J and all z ∈ Ĵ . If J is nondegenerate, then Γ(J) is a
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reduced unital commutative ring, and if in addition J is strongly prime, then Γ(J)
is a domain acting faithfully on J . In that case we can localize to define the central
closure Γ(J)−1J which is an algebra over the field of fractions Γ(J)−1Γ(J).

Following [Fu], we define the weak center Cw(J) as the set of all z ∈ J which
have Uz, Vz ∈ Γ(J).

We refer to [Mo2] for the notions of extended centroid and extended central
closure. We will denote by C(J) the extended centroid of J , and by C(J)J its extended
central closure, which is a tight scalar extension of J (see [Mo2]).

0.5. Any associative algebra R gives rise to a Jordan algebra R(+) by taking the
products Uxy = xyx and x2 = xx. A Jordan algebra is special if it is isomorphic to a
subalgebra of an algebra of the form R(+), and it is called i-special if it satisfies all the
identities satisfied by all special algebras. An important class of special algebras are
algebras of symmetric elements H(R, ∗) of associative algebras with involution (R, ∗),
and more generally, ample subspaces H0(R, ∗) ⊆ H(R, ∗) of symmetric elements,
subspaces that satisfy: r + r∗, rr∗ and rhr∗ belong to H0(R, ∗) for all r ∈ R and all
h ∈ H0(R, ∗).

For a special Jordan algebra J we can always find a associative ∗-envelope, an
associative algebra R with involution ∗ such that J is a subalgebra of H(R, ∗), and
R is generated (as an associative algebra) by J . An associative ∗-envelope of J is
∗-tight is any nonzero ∗-ideal I of R hits J : I ∩ J 6= 0.

A fundamental fact in Jordan theory with important structural consequences
for i-special algebras is the existence of hermitian ideals in the free special Jordan
algebra FSJ [X], generated by X in the (+)-algebra of the free associative algebra
Ass[X] (see [McZ]): for any special Jordan algebra J ⊆ H(R, ∗) and any a in the
associative subalgebra algR(H(J)) of R generated by the evaluation H(J) of H(X)
on J , the trace a+a∗ belongs to H(X). An i-special Jordan algebra J is of hermitian
type if AnnJ(

∑
HH(J)) = 0, where the sum runs on the set of all hermitian ideals.

0.6. We refer to [St, R2] for basic facts about algebras of quotients for associative
algebras. We will be interested in algebras of quotients attached to the filters of dense
right or left ideals of an associative algebra R, and in particular to the right and
left maximal algebra of quotients which we will denote by Qr

max(R) and Ql
max(R)

respectively. Recall that a dense left (resp. right) ideal of R is just an essential
left (resp. right) ideal of R if R is left (resp. right) nonsingular, that is the left
singular ideal Zl(R) vanishes (resp. the right singular ideal Zr(R) vanishes). The
associative algebras that naturally arise in Jordan theory are associative envelopes
and they carry an involution, so it will be important to us to be able to extend
involutions to algebras of quotients. This can not be done in general for the one sided
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maximal algebras of quotients Ql
max(R) and Qr

max(R), so the adequate substitute is
the maximal symmetric algebra of quotients Qσ(R) defined by Lanning [L]. Recall
that Qσ(R) is the set of elements q ∈ Qr

max(R) for which there exists a dense left
ideal L of R with Lq ⊆ R (or symmetrically, the set of all q ∈ Ql

max(R) for which
there exists a dense right ideal K with qK ⊆ R). If R has an involution, this is the
biggest subalgebra of the maximal algebra of left (resp. right) quotients to which
the involution extends. Another algebra of quotients to which involutions can be
extended, and which plays a fundamental role in Zelmanov’s structure theory is the
Martindale algebra of symmetric quotients Qs(R) of a semiprime algebra R (see
[McZ]). As it is easy to see one has Qs(R) ⊆ Qσ(R), and Qσ(Qs(R)) = Qσ(R), so if
S is a subalgebra of R and R ⊆ Qs(S), then Qσ(R) = Qσ(S).

1. Strong nonsingularity

1.1. General localization theory for associative rings is based, among other
equivalent sets of data, on the notion of Gabriel filter (see [St]). A Jordan analogue
of that notion seems to be difficult to define. However, the weaker notion of linearly
topological filter of left (or right) ideals can be easily adapted to the Jordan setting.

Let J be a Jordan algebra, K be an inner ideal of J and a ∈ J , we define

(K : a) = {x ∈ K | x ◦ a ∈ K, Uax ∈ K}.

The set (K : a) is again an inner ideal. Indeed, (K : a) is clearly a Φ-submodule
of J , and if x ∈ (K : a), z ∈ J , we have (Uxz) ◦ a = {x, z, x ◦ a} −Ux(z ◦ a) ∈ K and
UaUxz = Ua◦xz − UxUaz − a ◦ Ux(z ◦ a) + {x, z, Uax} ∈ K.

A family F of inner ideals of a Jordan algebra J will be called a linearly topo-
logical filter of inner ideals if it satisfies:

LTFI. Any inner ideal of J which contains an element from F belongs to F .

LTFII. If K, L ∈ F , then K ∩ L ∈ F .

LTFIII. If K ∈ F and a ∈ J , then (K : a) ∈ F .

Since we will be interested in essential inner ideals, we first prove that in a
nondegenerate Jordan algebra they form a linearly topological filter.

1.2. Lemma. Let J be a nondegenerate Jordan algebra. If K is an essential
inner ideal of J and a ∈ J , then (K : a) is again essential.

Proof. Let N be a nonzero inner ideal of J , and let us prove that N∩(K : a) 6= 0.
By essentiality of K, we can assume that N ⊆ K. Now, let us see that we can assume
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that UaN ⊆ K. Indeed, if UaN 6⊆ K, then UaN 6= 0 and we can choose x ∈ N with
0 6= Uax ∈ UaN ∩ K. Replacing N by UxUaJ , which is obviously nonzero and is
contained in N , we obtain UaN ⊆ K. Note that under this assumption we have
N ∩ (K : a) = {x ∈ N | x ◦ a ∈ K}.

Next consider the inner ideal U1−aN . If this is nonzero, there is some k =
U1−ax ∈ U1−aN ∩K with 0 6= x ∈ N , and obviously this is also true if U1−aN = 0.
Thus, in both cases we can take a nonzero x ∈ N with U1−ax ∈ K. Then x ◦ a =
x + Uax− U1−ax ∈ K, hence x ∈ (K : a) ∩N .

1.3. The definition of a ring of quotients based on the filter of essential left
(or right) ideals in associative theory involves the nonsingularity of the ring. In
Jordan theory, an analogue of the notion of nonsingularity was introduced in [FGM]:
a Jordan algebra J is nonsingular if for any essential inner ideal K of J the annihilator
AnnJ(K) vanishes. As it will become apparent later, we will need a more stringent
notion of nonsingularity based in a weaker annihilation for essential inner ideals, so
we will consider the following property of an essential inner ideal K of J :

(∗) for all a ∈ J, UaK = 0 ⇒ a = 0

An algebra J will be called strongly nonsingular if every essential inner ideal K

satisfies (∗). Although the word ‘strongly’ departs here from its common usage in
Jordan theory, where it usually means nondegenerate, it is not very far from that
meaning since it is easy to see that an essential inner ideal K of a Jordan algebra
J satisfies (∗) if and only if K is nondegenerate as a Jordan algebra. Indeed, the
‘only if’ is obvious, and if UaK = 0 for some nonzero a ∈ J , then L = Φa + UaĴ is
a nonzero inner ideal of J , hence there is a nonzero k ∈ L ∩K, and it is easy to see
that k is an absolute zero divisor of K, contradicting the nondegeneracy of K. Thus,
a Jordan algebra J is strongly nonsingular if and only if every essential inner ideal
of J is a nondegenerate algebra.

As it is well known, the product of two essential left ideals in a left nonsingular
associative ring is again essential. We next prove an analogous fact for essential inner
ideals of strongly nonsingular Jordan algebras.

1.4. Lemma. For a Jordan algebra J and a Φ-submodule A ⊆ J of J , the set

KJ(A) = {a ∈ A | UaJ + {a, J,A} ⊆ A}

is an inner ideal of J .
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Proof. The set KJ(A) is easily seen to be a Φ-submodule of J . Now, if a ∈ K(A)
and x ∈ J , for all b ∈ A and y ∈ J we have UUaxJ ⊆ UaJ ⊆ A, and

{Uax, y, b} = {a, x, {a, y, b}} − Ua{x, b, y} ∈
∈ {a, J, {a, J,A}}+ UaJ ⊆
⊆ {a, J,A}+ A ⊆ A

Therefore Uax ∈ KJ(A), and KJ(A) is an inner ideal of J .

1.5. Proposition. Let J be a strongly nonsingular Jordan algebra and let K

be an inner ideal of J . If K is essential, then KJ(UKK) is also essential.

Proof. We first show that UUxyz ∈ KJ(UKK) for all x, y, z ∈ K. Indeed,
UUUxyzJ ⊆ UxUyJ ⊆ UKK, and for all t ∈ K, a ∈ J ,

{UUxyz, a, t} = {Uxy, z, {Uxy, a, t}} − UxUyUx{z, t, a} ∈ {K, K,K}+ UKK = UKK.

Now let L be a nonzero inner ideal of J . Since K is essential, there is a nonzero
x ∈ K ∩ L. Now, UxK 6= 0 by the strong nonsingularity of J , hence there is y ∈ K

with 0 6= Uxy. Next, UUxyK 6= 0 again by the essentiality of K and the strong
nonsingularity of J , so there is z ∈ K with a = UUxyz 6= 0. Clearly a ∈ L and
a ∈ KJ(UKK) by what we proved before. Therefore L ∩ KJ(K) 6= 0 proving the
essentiality of KJ(UKK).

We apply next the K-construction to show that strong nonsingularity is inherited
by essential ideals.

1.6. Lemma. Let J be a Jordan algebra and let I be an essential ideal of J ,
then J is strongly nonsingular if and only if I is a strongly nonsingular algebra.

Proof. Suppose first that I is strongly nonsingular and let K be an essential
inner ideal of J . If a ∈ J has UaK = 0, then UUayK = 0 for any y ∈ I. Now it is
easy to see that K ∩ I is an essential inner ideal of I, hence UUay(K ∩ I) = 0 implies
that Uay = 0, hence UaI = 0 and a = 0 by the essentiality of I.

Assume now that J is strongly nonsingular and let K be an essential ideal of I.
We claim that KJ(K) is an essential ideal of J . Indeed, if L is a nonzero inner ideal
of J , then ULI ⊆ L ∩ I is nonzero by the essentiality of I. Thus I ∩ L is a nonzero
inner ideal of I hence K ∩ L = K ∩ (I ∩ L) is nonzero and we can take a nonzero
x ∈ K ∩ L. From the essentiality of I it easily follows that we can find elements
y, z ∈ I with UUxyz 6= 0.

Now we have UUUxyzJ ⊆ UxUyJ ⊆ UKI ⊆ K, and for all a ∈ J and k ∈ K,
applying QJ15 we also have {UUxyz, a, k} = {Uxy, {z, Uxy, a}, k}−{UxUyUxa, z, k} ∈
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{K, I,K} ⊆ K. Therefore UUxyz ∈ KJ(K) and, since UUxyz ∈ L, we get KJ(K)∩L 6=
0. This proves the essentiality of KJ(K).

Finally, if UaK = 0 for some a ∈ I, then UaKJ(K) = 0, hence a = 0 by the
essentiality of KJ(K) and the strong nonsingularity of J .

2. Algebras of quotients

2.1. Let J̃ be a Jordan algebra, let J be a subalgebra of J̃ and let ã ∈ J̃ .
Recall from [Mo2] that an element x ∈ J is a J-denominator of ã if the following
multiplications take ã back into J :

(Di) Uxã (Dii) Uãx (Diii) UãUxĴ

(Diii’) UxUãĴ (Div) Vx,ãĴ (Div’) Vã,xĴ

We will denote the set of J-denominators of ã by DJ(ã). It has been proved in
[Mo2, 4.2] that DJ(ã) is an inner ideal of J . We remark (see [FGM, p.410]) that any
x ∈ J satisfying (Di), (Dii), (Diii) and (Div) belongs to DJ(ã).

2.2. Let J be a subalgebra of a Jordan algebra Q. We will say that Q is an
algebra of quotients of J if the following conditions hold:

(i) DJ(q) is an essential inner ideal of J for all q ∈ Q.

(ii) UqDJ(q) 6= 0 for any nonzero q ∈ Q.

Clearly, any nondegenerate algebra J is its own algebra of quotients since its
inner ideal of denominators DJ(x) = J is essential for all x ∈ J , and the nondegen-
eracy of J implies UxDJ(x) = UxJ 6= 0. Reciprocally, any Jordan algebra having an
algebra of quotients is nondegenerate by property (ii).

2.3. Examples.

1. We have already mentioned that a nondegenerate Jordan algebra J is an algebra
of quotients of J itself. More generally, if I is an essential ideal of J which is
nondegenerate as a Jordan algebra, then J is an algebra of quotients of I. Indeed,
any x ∈ J has DJ(x) = I essential, and UxDJ(x) = UxI 6= 0.

2. If J is a strongly nonsingular Jordan algebra and K is an essential inner ideal
of J , then J is an algebra of quotients of K. Indeed, it is easy to see that
DJ(x) = (K : x) for all x ∈ J , which is an essential inner ideal of J by 1.2. Now,
if N is a nonzero inner ideal of K, for any 0 6= y ∈ N , UyK ⊆ N is a nonzero inner
ideal of J by strong nonsingularity of J , hence 0 6= UyK∩ (K : x) ⊆ N ∩ (K : x),
and (K : x) is an essential inner ideal of K. The condition Ux(K : x) 6= 0
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follows from the essentiality of (K : x) as an inner ideal of J , and the strong
nonsingularity of J .

3. Suppose that J is strongly prime and let Γ−1J be the central closure of J .
Then for any element q = γ−1a ∈ Γ−1J we have γ2J ⊆ DJ(q) [FGM, p. 409].
Moreover, since J is strongly prime, J has no Γ-torsion by 0.4, hence for any
0 6= γ ∈ Γ, the set γJ is a nonzero ideal of J which is essential as an inner
ideal. By the nondegeneracy of J , we have UqDJ(q) ⊇ Uγ−1aγ2J ⊇ UaJ 6= 0
(see [FGM 4.2]). Hence Γ−1J is an algebra of quotients of J .

4. The extended central closure C(J)J of a nondegenerate Jordan algebra J is an
algebra of quotients of J . Indeed, since for any x ∈ C(J)J there is an essential
ideal of J contained in DJ(x) by [Mo2, 4.3(ii)], we get UxDJ(x) 6= 0 by [FGM,
4.3].

5. Let J be a Jordan algebra. Recall that an element s ∈ J is said to be injective
if the mapping Us is injective over J . Following [FGM] we denote by Inj(J) the
set of injective elements of J . A set S ⊆ Inj(J) is a monad if Ust, s

2 ∈ S for
any s, t ∈ S (see [Z1, Z2, FGM]). A monad S is said to be an Ore monad if
UsS ∩ UtS 6= ∅ for any s, t ∈ S. An algebra Q containing J as a subalgebra
is an algebra of S-quotients (and J is an S-order of Q) if all elements of S

are invertible in Q and for all q ∈ Q, DJ(q) ∩ S 6= ∅. It has been proved in
[M,B] that a necessary condition for such an algebra Q to exist is that S satisfies
the Ore condition in J : for any x ∈ J and any s ∈ S there exists t ∈ UsS

such that t ◦ x ∈ Ks = Φs + UsĴ . Note that for such an element t, we have
Uxt2 = (x ◦ t)2 + Utx

2 − {x ◦ t, x, t} ∈ Ks, hence t2 ∈ S ∩ (Ks : x). Moreover,
if r ∈ S ∩ (Ks : x), then any t ∈ UsS ∩ UrS has t ∈ UsS and t ◦ x ∈ Ks. Thus
the Ore condition can be rephrased: for any x ∈ J and any inner ideal K of J ,
K ∩ S 6= ∅ implies (K : x) ∩ S 6= ∅.

If J is a nondegenerate Jordan algebra and S ⊆ Inv(J) is an Ore monad, any
algebra of S-quotients Q of J is an algebra of quotients in the sense of 2.2,
that is, any element from S becomes invertible in Q: S ⊆ Inv(Q), and for any
q ∈ Q, DJ(q) ∩ S 6= ∅. Indeed, if K is an inner ideal of J with K ∩ S 6= ∅,
then, for any nonzero x ∈ J , UxK = 0 implies UxUsJ = 0, hence UUsxJ = 0,
and Usx = 0 by the nondegeneracy of J . Hence x = 0, a contradiction. In
particular 0 6= Ux(K : x) ⊆ UxJ ∩ K, which proves that K is essential. Then
DJ(q) is essential for any q ∈ Q, and if UqDJ(q) = 0, then for any s ∈ DJ(q)∩S,
UUsqJ ⊆ UsUqDJ(q) = 0, hence Usq = 0 because Usq ∈ J . Thus q = 0 since s is
invertible in Q.

2.4. Lemma. Let Q be an algebra of quotients of the Jordan algebra J . Then:
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(i) Q is nondegenerate,

(ii) For any q ∈ Q, UqJ ∩ J 6= 0,

(iii) Any nonzero inner ideal of Q hits J nontrivially,

If J is strongly nonsingular, then:

(iv) If K is an essential inner ideal of K, then UqK 6= 0 for any nonzero q ∈ Q,

(v) If L is an inner ideal of Q, then L is essential if and only if L∩J is an essential
inner ideal of J ,

(vi) Q is strongly nonsingular.

Proof. (i) and (ii) are obvious since 0 6= UqDJ(q) ⊆ UqJ ∩ J ⊆ UqQ for any
nonzero q ∈ Q, and (iii) easily follows from this.

Now if K is an essential inner ideal of J and UqK = 0 for some q ∈ Q, then
UUqxK = UqUxUqK = 0 for any x ∈ DJ(q), hence Uqx = 0 since Uqx ∈ J and J is
strongly nonsingular. Thus UqDJ(q) = 0, hence q = 0, which proves (iv).

Next assume that L is an essential inner ideal of Q and let K be a nonzero
inner ideal of J and take a nonzero a ∈ K. Then UaQ is a nonzero inner ideal of Q

hence there is q ∈ Q such that 0 6= Uaq ∈ UaQ ∩ L by the essentiality of L. Now
UUaq(DJ(q) : a) ⊆ UaUqDJ(q) ∩ L ⊆ UaJ ∩ L ⊆ K ∩ L, and UUaq(DJ(q) : a) 6= 0 by
(iv) since (DJ(q) : a) is essential by 1.2. On the other hand, if L is an inner ideal
of Q and L ∩ J is essential. For any nonzero inner ideal N of Q, and any nonzero
q ∈ N we have 0 6= UqQ ∩ J by (iii), hence N ∩ J is a nonzero inner ideal of J and
thus 0 6= (N ∩ J) ∩ (L ∩ J) ⊆ N ∩ L, hence L is essential.

Finally, (vi) is straightforward from (iii) and (iv).

2.5. Lemma. Let J be a Jordan algebra and let M ⊆ J be a Φ-submodule. If
UzM 6= 0 for all 0 6= z ∈ J , then UMz 6= 0 for all 0 6= z ∈ J .

Proof. Consider the polynomial algebra J [t] = J ⊗Φ Φ[t] and the submodule
M [t] ⊆ J [t] of polynomials whose coefficients belong to M . Then, for any 0 6= p ∈ J [t]
we have UpM [t] 6= 0. Indeed, if UpM [t] = 0 for some nonzero p ∈ J [t], we can choose
such a p of minimal degree. If ztn 6= 0 is the leading term of p, for any m ∈ M ,
the term of degree 2n in Upm is Uzm = 0, hence UzM = 0 and thus z = 0, a
contradiction.

Now assume that UMz = 0 for some z ∈ J . If m = m0 + m1t + . . . + mntn ∈
M [t], we have Umz =

∑n
i=1 Umizt2i +

∑
1≤i<j≤n{mi, z, mj} ∈ (UMz)[t] = 0, hence

UM [t]z = 0.

Now take x, y ∈ M and set m = x + yt ∈ M [t] and a = UmUzm. Then we have
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Ua = UmUzUmUzUm = UUmzUzUm = 0 and, since the condition satisfied by M [t]
implies that J [t] is nondegenerate, we get a = UmUzm = 0. Then the coefficient in
degree 1 of a is UxUzy + {x,Uzx, y} = 0, but since {x,Uzx, y} = {Uxz, x, y} = 0,
we obtain UxUzy = 0 for all x, y ∈ M . Then UUzxM = UzUxUzM = 0 for all
x ∈ M , hence Uzx = 0 by the hypothesis on M . Thus UzM = 0 hence, again by the
hypothesis on M , we get z = 0.

2.6. Lemma. Let J be a strongly nonsingular Jordan algebra and let Q be an
algebra of quotients of J . If K is an essential inner ideal of J , then UKq 6= 0 for all
0 6= q ∈ Q.

Proof. This is straightforward from 2.5 and 2.4(iv).

Our next result will be useful to check essentiality of inner ideals of denominators
without going through all conditions Di-iv.

2.7. Lemma. Let J̃ be a Jordan algebra, let J be a subalgebra of J̃ and ã ∈ J̃ .
If J is strongly nonsingular and there is an essential inner ideal K of J such that
x ◦ ã and Uxã are in J for all x ∈ K, then DJ(q) is an essential inner ideal.

Proof. Take x, y ∈ K, and set z = Uxy. Note that z ∈ K, hence z ◦ ã and Uzã

belong to J . Next, for all c ∈ J , we have {z, ã, c} = {Uxy, ã, c} = {x, y ◦ (x ◦ ã), c} −
{x, {y, ã, x}, c} − {Uxã, y, c} ∈ J . Also, UzUãz = UxUyUxUãUxy = UxUyUUxãy ∈ J .

Now, take b, c ∈ J and set d = UUzbc. Since d ∈ UxK, we have d◦ ã ∈ J , Udã ∈ J

and {d, ã, J} ⊆ J . On the other hand, the identity QJ6 in the z-homotope yields
Uãd = UãUzUbUzc = U{ã,z,b}Uzc−UbUUz ãc−{{ã, Uzb, c}, Uzã, b}+{c, z, UbUzUãz} ∈
J . Moreover, since UdJ ⊆ UUzbJ we also have UãUdJ ⊆ J . Thus d satisfies (Di),
(Dii), (Diii) and (Div) of 2.1, hence d ∈ DJ(ã).

Now let N be a nonzero inner ideal of J . Since K is essential we can choose
0 6= x ∈ K ∩ N , and since J is strongly nonsingular, we can choose y ∈ K with
z = Uxy 6= 0. Finally, from the nondegeneracy of J , it follows that there exist
b, c ∈ J with 0 6= Uzb and d = UUzbc 6= 0. Since d ∈ DJ(ã) ∩ UxJ ⊆ DJ(ã) ∩K, this
proves the essentiality of K.

2.8. Lemma. Let Q be an algebra of quotients of a strongly nonsingular Jordan
algebra J and assume that Q is a subalgebra of a Jordan algebra Q̃. If q̃ ∈ Q̃ has an
essential inner ideal of denominators DJ(q̃), then DQ(q̃) is essential. Moreover, if
Uq̃DJ(q̃) 6= 0, then Uq̃DQ(q̃) 6= 0.

Proof. For any x, y ∈ DJ(q̃) and any p ∈ Q we have by QJ15,

{q̃, Uxy, p} = {{q̃, x, y}, x, p} − {y, Uxq̃, p} ∈ {J, J,Q} ⊆ Q.
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Moreover, by QJ6,

Uq̃UUxyp = U{q̃,x,y}Uxp− UyUUxq̃p− {{q̃, Uxy, p}, Uxq̃, y}+ {p, x, UyUxUq̃x} ∈

UJUJQ + {{J, J,Q}, J, J}+ {Q, J, J} ⊆ Q.

Therefore, Uxy ∈ DQ(q̃) for any x, y ∈ DJ(q̃), hence K = KJ(UDJ (q̃)DJ(q̃)) ⊆
DQ(q̃). Since K is essential in J by 1.5, the essentiality of DQ(q̃) follows from 2.4(v).

Now, if Uq̃DJ(q̃) = 0, then, with the previous notation, Uq̃K = 0. Hence for any
p ∈ DQ(q̃) we have UUq̃pK = 0, and since Uq̃p ∈ Q and K is an essential ideal of J ,
we get Uq̃p = 0 for all p ∈ DQ(q̃) by 2.4(iv), that is Uq̃DQ(q̃) = 0.

2.9. Proposition. Let J1 ⊆ J2 ⊆ J3 be Jordan algebras, each a subalgebra of
the next one, and assume that J1 is strongly nonsingular. Then J3 is an algebra of
quotients of J1 if and only if J3 is an algebra of quotients of J2 and J2 is an algebra
of quotients of J1.

Proof. If J3 is an algebra of quotients of J1, it is obvious that J2 is also an
algebra of quotients of J1, and it follows from 2.8 that J3 is an algebra of quotients
of J2.

Now assume that J2 is an algebra of quotients of J1, and J3 is an algebra of
quotients of J2. Take q ∈ J3 and consider the set

N = {x ∈ J1 | x ◦ q ∈ J1, Uxq ∈ J1, {x, q, J1} ⊆ J1}.

The set N is then an inner ideal of J1. Indeed, if x, y ∈ N , it is clear that
(x + y) ◦ q = x ◦ q + y ◦ q ∈ J1, {x + y, q, J1} ⊆ {x, q, J1} + {y, q, J1} ⊆ J1 and
Ux+yq = {x, q, y} − Uxq − Uyq ∈ {x, q, J1} + J1 ⊆ J1, hence x + y ∈ J1, and N is
a Φ-submodule of J1. On the other hand, if x ∈ N and z ∈ J1, then Uxz ◦ q =
x ◦ (z ◦ (x ◦ q)) − x ◦ {x, q, z} − Uxq ◦ z ∈ J1, UUxzq = UxUzUxq ∈ J1, and for all
w ∈ J1, {Uxz, q, w} = {x, z ◦ (x ◦ q), w} − {x, {z, q, x}, w} − {Uxq, z, w} ∈ J1, hence
Uxz ∈ N , and N is an inner ideal.

Now DJ2(q)∩J1 is an essential inner ideal of J1 by 2.4(v). Thus for any nonzero
inner ideal K of J1 there is a nonzero x ∈ DJ2(q) ∩ K. Now, since J1 is strongly
nonsingular, and DJ1(Uxq) is essential (note that Uxq ∈ J2), there is y ∈ DJ1(Uxq)
with Uxy 6= 0. Then {q, x, y} and {q, x, y} ◦ x belong to J2, hence DJ1({q, x, y}) and
DJ1({q, x, y}◦x) are both essential, hence so is DJ1({q, x, y})∩DJ1({q, x, y}◦x), and
by the strong nonsingularity of J1 there is z ∈ DJ1({q, x, y})∩DJ1({q, x, y} ◦x) with
a = UUxyz 6= 0. Now, for any b ∈ Ĵ1 we have:
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{q, a, b} = {q, UUxyz, b} = {{q, Uxy, z}, Uxy, b} − {z, UUxyq, b} = by QJ15

= {{{q, x, y}, x, z}, Uxy, b}−
− {{y, Uxq, z}, Uxy, b} − {z, UUxyq, b} = by QJ15

= {({q, x, y} ◦ x) ◦ z, Uxy, b} − {{x, {q, x, y}, z}, Uxy, b}−
− {{y, Uxq, z}, Uxy, b} − {z, UxUyUxq, b} ∈ by QJ14

∈ {({q, x, y} ◦ x) ◦ DJ1({q, x, y} ◦ x), J1, J1}+
+ {{J1, {q, x, y},DJ1({q, x, y})}, J1, Ĵ1}+
+ {{DJ1(Uxq), Uxq, J1}, J1, Ĵ1}+
+ {J1, UJ1UDJ1

(Uxq)}Uxq, Ĵ1} ⊆ J1

and

Uaq = UUxyUzUxUyUxq ∈ U3
J1

UDJ1 (Uxq)Uxq ∈ J1.

Therefore a ∈ N and obviously a ∈ K, hence N ∩K 6= 0, which proves that N

is essential, and by 2.7, that DJ1(q) is essential.

Now, if UqDJ1(q) = 0, then for any p ∈ DJ2(q) we have UUpqDJ1(q) = 0, hence
Upq = 0 by 2.4(iv) and the essentiality of DJ1(q). Thus UDJ2 (q)q = 0, hence q = 0 by
2.6. This proves that J3 is an algebra of quotients of J1.

2.10. We will say that an algebra of quotients Q of a Jordan algebra J is a
maximal algebra of quotients if for any other algebra of quotients Q′ ⊇ J there
exists a homomorphism α : Q′ → Q whose restriction to J is the identity mapping:
α(x) = x for all x ∈ J .

2.11. Remark. If Q and Q′ are algebras of quotients of a Jordan algebra
J and α : Q′ → Q is a homomorphism which restricts to the identity on J , then
α is injective. Indeed, if q ∈ Q has α(q) = 0, then UqDJ(q) = α(UqDJ(q)) (since
UqDJ(q) ⊆ J) = Uα(q)α(DJ(q)) = 0, hence q = 0.

2.12. Lemma. Let Q and Q′ be algebras of quotients of a strongly nonsingular
Jordan algebra J . If α, β : Q′ → Q are homomorphisms whose restriction to J is the
identity mapping, then α = β.

Proof. Take q ∈ Q and k ∈ DJ(q) and set p = α(q) − β(q). We have Ukp =
Ukα(q)−Ukβ(q) = Uα(k)α(q)−Uβ(k)β(q) = α(Ukq)−β(Ukq) = Ukq−Ukq = 0. Thus
UDJ (q)p = 0, hence p = 0 by 2.6.
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2.13. Lemma. If Q and Q′ are maximal algebras of quotients of a strongly
nonsingular Jordan algebra J , then there exists a unique isomorphism α : Q → Q′

that extends the identity mapping J → J .

Proof. This is straightforward from 2.12.

In view of this result, if a strongly nonsingular Jordan algebra J has a maximal
algebra of quotients, such an algebra is unique up to an isomorphism extending the
identity on J . We will then denote this algebra by Qmax(J) and will refer to it as
the maximal algebra of quotients of J .

3. Algebras of quotients of PI algebras

We show in this section that the maximal algebra of quotients of a strongly
prime PI-algebra is just its central closure. Two main ingredient for the proof of that
fact is the good behavior of the weak center with respect to algebras of quotients and
the fact that an inner ideal of such an algebra is essential if and only if it contains
an essential ideal. We begin by proving the latter assertion and next study the weak
center.

3.1. Lemma. Let J be a strongly prime PI Jordan algebra. Then

(a) Any essential inner ideal of J hits nontrivially the weak center of J .

(b) An inner ideal of J is essential if and only if it contains an essential ideal of J .

(c) J is strongly nonsingular.

Proof. (a) Since J is a strongly prime PI algebra, its central closure J̃ =
Γ(J)−1J is simple of finite capacity [ACM, 1.1]. In particular, the only essential
inner ideal of J̃ is J̃ itself. Now, the span K̃ = Γ−1K ⊆ J̃ of K over Γ(J)−1Γ(J) is
easily seen to be an essential inner ideal of J̃ , hence K̃ = J̃ . Since J̃ is unital, we have
1 ∈ K̃, hence there are γ ∈ Γ(J) and k ∈ K such that 1 = γ−1k, and γ1 = k ∈ K

clearly has k ∈ Cw(J).

(b) Since J is strongly prime, every nonzero ideal is essential, so it suffices to
show that if K is an essential inner ideal of J , then it contains a nonzero ideal of
J . Now, by (a), there is a nonzero z ∈ K ∩ Cw(J), and it is straightforward that
UzJ ⊆ K is a nonzero ideal of J .

(c) This immediately follows from (b).

3.2. Lemma. Let J be a nondegenerate Jordan algebra.

(a) If J is unital and Q is an algebra of quotients of J , then Q is also unital with
the same unit as J .
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(b) The socle of J is contained in every essential inner ideal of J .

(c) If J has finite capacity, then J = Qmax(J).

Proof. (a) If 1 ∈ J is the unit of J , then 1 is an idempotent of J , hence of
Q. Thus it gives rise to a Peirce decomposition Q = Q0(1) + Q1(1) + Q2(1). Now,
Q0(1) is an inner ideal of Q, and Q0(1) ∩ J = 0, hence it follow from 2.4(iii) that
Q0(1) = 0. Then Q1(1) is an inner ideal of Q, and again Q1(1) ∩ J = 0 implies
Q1(1) = 0. Therefore Q = Q2(1), and 1 is the unit of Q.

(b) The socle of J is the sum of all minimal inner ideals of J and if K is an
essential inner ideal of J , it is easy to see that it contains every minimal inner ideal
of J , hence it contains the socle.

(c) If J has finite capacity, then it is unital and coincides with its socle. Thus, if
K is a essential inner ideal of K, then K = J and thus 1 ∈ K. Now, for any algebra
of quotients Q of J and any q ∈ Q, the inner ideal DJ(q) is essential, hence 1 ∈ DJ(q)
and q = U1q ∈ J . Therefore J = Q.

3.3. Lemma. The following identity holds in any Jordan algebra J :

(∗∗) UUabUcd + UUacUbd + {a, {b, a, c}, {d, b, Uac}} =

= UaU{b,a,c}d + {Uac, b, {d, b, Uac}}+ {a, UbUaUca, d}.

Proof. First note that by JQ15 we have

{Uab, c, {d, b, Uac}} − {a, {b, a, c}, {d, b, Uac}} = {Uac, b, {d, b, Uac}},

hence identity (∗∗) can be rewritten as

UUabUcd + UUacUbd + {Uab, c, {d, b, Uac}} =

= UaU{b,a,c}d + {a, UbUaUca, d}.

Now consider the polynomial algebra J [t]. Evaluating the identity UxUUyxz =
UUxyUyz in x = a, y = b + ct and z = d and comparing coefficients in t2 we get

UUabUcd + UUacUbd + {Uab, {b, d, c}, Uac} =

= UaU{b,a,c}d + Ua{Uba, d, Uca}.

Thus we have to prove the identity

{Uab, {b, d, c}, Uac}+ {a, UbUaUca, d} =
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{Uab, c, {d, b, Uac}}+ Ua{Uba, d, Uca}.

Now, by the partial linearization of QJ8’, we have

{Uab, {b, d, c}, Uac} − {Uab, c, {d, b, Uac}} =

{Uab, b, {d, c, Uac}} − {Uab, {c, Uac, b}, d}.

On the other hand, by QJ11 we get

Ua{Uba, d, Uca} = {Uab, b, {d, Uac, c}} − {UaUba, Uac, d}.

So gathering all the above information, it only remains to prove the identity

{Uab, {Uca, a, b}, d} = {a, UbUaUca, d}+ {UaUba, Uca, d}.

Set x = Uca. Using identity QJ15 several times we obtain

{Uab, {x, a, b}, d} = {a, {b, a, {x, a, b}}, d} − {Ua{x, a, b}, b, d} =

= 2{a, UbUax, d}+ {a, {Uba, a, x}, d} − {{Uax, b, a}, b, d} =

= 2{a, UbUax, d}+ {UaUba, x, d}+ {Uax, Uba, d}−
− {{Uax, b, a, }, b, d} = 2{a, UbUax, d}+ {UaUba, x, d}−
− {a, UbUax, d} = {a, UbUax, d}+ {a, UaUbx, d},

and this finishes the proof of identity (∗∗).

3.4. Proposition. If Q is an algebra of quotients of a strongly nonsingular
Jordan algebra J , then Cw(J) = Cw(Q) ∩ J .

Proof. The containment Cw(Q) ∩ J ⊆ Cw(J) is obvious.

Take z ∈ Cw(J), and let q ∈ Q̂, k ∈ DJ(q). Then, for all x ∈ J we have by QJ15

Uk{x, z, q} = {{k, x, z}, q, k} − {z, x, Ukq} =

= {{k, z, x}, q, k} − {x, z, Ukq} =

= Uk{z, x, q},

hence UDJ (q)({x, z, q} − {z, x, q}) = 0, which implies by 2.6

(1) {x, z, q} = {z, x, q} for all x ∈ J, q ∈ Q̂.
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Now, for all x ∈ Ĵ ⊆ Q̂, q ∈ Q̂ and k ∈ K = DJ(q) ∩ DJ({z, x, q}), we have

UkUzUxq = U{k,z,x}q − UxUzUkq−
− {x, z, Uk{z, x, q}}+ {UxUzk, q, k} = by JP21 of [Lo]

= U{k,x,z}q − UzUxUkq−
− {z, x, Uk{x, z, q}}+ {UzUxk, q, k} =

= UkUxUzq.

Hence UK(UzUxq − UxUzq) = 0. thus, by 2.6 we get

(2) UzUxq = UxUzq for all x ∈ Ĵ , q ∈ Q̂.

Next, using (2) we get Uz{x, y, q} = Uz(x ◦ (y ◦ q)− {x, q, y}) = x ◦ (y ◦ Uzq)−
{x,Uzq, y} = {x, y, Uzq}, hence

(3) Uz{x, y, q} = {x, y, Uzq} for all x, y ∈ J, q ∈ Q̂.

Now, write the identity (∗∗) of 3.3 as UUabUcd = f(a, b, c, d) and take p, q ∈ Q̂

and s, t ∈ DJ(p), and set also k = Ust. Then, using (2) and (3) we have

UkUzUpq = UzUkUpq = UzUUstUpq =

= Uzf(s, t, p, q) = f(s, t, p, Uzq) =

= UUstUpUzq = UkUpUzq.

Therefore UL(UzUpq − UpUzq) = 0, where L = KJ(UDJ (p)DJ(p)). Since L is
essential by 1.5, we get from 2.6

(4) UzUpq = UpUzq for all p, q ∈ Q̂.

This implies that Uz ∈ Γ(Q), since if p ∈ Q and q ∈ Q̂, we have U2
z Upq =

UzUpUzq = UUzpq.

Now, since z2 ∈ Cw(J), we have UzVz = Uz,z2 = Uz+z2 − Uz − Uz2 ∈ Γ(Q).
Thus, for any p, q ∈ Q̂ we get Uz(VzUpq − UpVzq) = UzVzUpq − UpUzVzq = 0 and
U2

z (V 2
z Upq − UVzpq) = (UzVz)2Upq − UUzVzpq = 0, hence Uz(V 2

z Upq − UVzpq) = 0
(since γ2(w) = 0 implies γ(w) = 0 by the nondegeneracy of Q). Then, setting
w = VzUpq−UpVzq or V 2

z Upq−UVzpq it is easy to see that w belongs to the annihilator
of the ideal I = Φz + UzQ̂, generated by z in Q, and since w ∈ I, the semiprimeness
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of Q implies that w = 0, hence VzUpq = UpVzq and V 2
z Upq = UVzpq for all p, q ∈ Q̂,

and therefore Vz ∈ Γ(Q) hence z ∈ Cw(Q).

3.5. Theorem. Let J be a strongly prime PI Jordan algebra. Then the central
closure Γ(J)−1J is the maximal algebra of quotients of J .

Proof. We first note that J is strongly nonsingular by 3.1 and therefore the
algebra of quotients, if it exists, is unique up to isomorphism by 2.13, and also that
Γ(J)−1J is an algebra of quotients of J by 2.3.3.

Let now Q be an algebra of quotients of J . Since J is strongly prime and Q

is tight over J by 2.4(iii), Q is also strongly prime. Set Q̃ = Γ(Q)−1Q, the central
closure of Q, and note that since Q̃ is an algebra of quotients of Q, it is also an algebra
of quotients of J by 2.9. We claim that there exists a monomorphism φ : Γ(J) → Γ(Q̃)
which satisfies φ(γ)(x) = γ(x) for all x ∈ J and γ ∈ Γ(J). To define φ, take γ ∈ Γ(J).
Then, if q ∈ Q̃, DJ(q) is essential, hence there is a nonzero z ∈ DJ(q) ∩ Cw(J) by
3.1(a), and z ∈ Cw(Q̃) by 3.4. We set

φ(γ)(q) := U−1
z γ(Uzq)

which makes sense since Uzq ∈ J and Uz ∈ Γ(Q̃) is invertible in Γ(Q)−1Γ(Q) ⊆ Γ(Q̃).

Let us first show that the above expression is independent of the choice of z, or
more generally, that any z′ ∈ Cw(J) with Uz′q ∈ J will give the same result. Indeed,
for such a z′ we also have U−1

z′ ∈ Γ(Q̃), and

U−1
z′ γ(Uz′q) =U−1

z′ U−1
z Uzγ(Uz′q) = U−1

z′ U−1
z γ(UzUz′q) =

=U−1
z′ U−1

z γ(Uz′Uzq) = U−1
z′ U−1

z Uz′γ(Uzq) =

=U−1
z γ(Uzq).

Now take p, q ∈ Q̃. Then K = DJ(p)∩DJ(q)∩DJ(p + q) is essential in J hence
there exists a nonzero z ∈ K ∩ Cw(J), an we have:

φ(γ)(p + q) =U−1
z γ(Uz(p + q)) = U−1

z γ(Uzp + Uzq) =

=U−1
z γ(Uzp) + U−1

z γ(Uzq) = φ(γ)(p) + φ(γ)(q),

hence φ is linear.

Next note that z3 ∈ Cw(J) has Uz3Upq = Uz2UpUzq = UUzpUzq ∈ J , and we
have

φ(γ)(Upq) =U−1
z3 γ(Uz3Upq) = U−1

z3 γ(UUzpUzq) =

=U−1
z3 UUzpγ(Uzq) = U−1

z3 U2
z Upγ(Uzq) =

=U−1
z Upγ(Uzq) = UpU

−1
z γ(Uzq) =

=Upφ(γ)(q).
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Analogous computations using z3 as a denominator show that φ(γ)2(Upq) =
Uφ(γ)(p)q, and using z2, that φ(γ)(p ◦ q) = p ◦ φ(γ)(q) and φ(γ)2(q2) = (φ(γ)(q))2.
Therefore φ maps Γ(J) into Γ(Q̃). It only remains to show that φ is a ring ho-
momorphism. To prove that take γ, δ ∈ Γ(J). It is quite straightforward that
φ(γ + δ) = φ(γ) + φ(δ). On the other hand, if q ∈ Q̃ and 0 6= z ∈ DJ(q), we have
Uzφ(δ)(q) = UzU

−1
z δ(Uzq) = δ(Uzq) ∈ J , and

φ(γ)φ(δ)(q) = U−1
z γ(Uzφ(δ)(q)) =

= U−1
z γ(δ(Uzq)) = U−1

z (γδ)(Uzq) = φ(γδ)(q),

hence φ(γ)φ(δ) = φ(γδ), and φ is a homomorphism.

The mapping φ gives Q̃ a structure of Γ(J)-algebra, and it is clear that ˜̃
Q =

Γ(Q̃)−1Q̃ is then a Γ(J)−1Γ(J)-algebra. Thus there exists a monomorphism of

Γ(J)−1J into ˜̃
Q which extends the inclusion J ⊆ Q̃ ⊆ ˜̃

Q, and we can view Γ(J)−1J

as a subalgebra of ˜̃
Q. Now, Q̃ is an algebra of quotients of J and ˜̃

Q is an algebra

of quotients of Q̃, hence ˜̃
Q is an algebra of quotients of J by 2.9. Therefore ˜̃

Q is
an algebra of quotients of Γ(J)−1J , again by 2.9. On the other hand, since J is PI
and strongly prime, Γ(J)−1J is simple of finite capacity by [ACM], hence it is its

own maximal algebra of quotients by 3.2(c). Then Γ(J)−1J = ˜̃
Q and Q ⊆ Γ(J)−1J ,

which proves that Qmax(J) = Γ(J)−1J .

4. Algebras of hermitian type and general case

Since algebras of hermitian type are special we can make use of associative
envelopes to transfer our problems to the associative setting. In the case of algebras
of quotients this requires first to have a good relationship between essential inner
ideals of the Jordan algebra and essential one sided ideals of its associative envelopes.

4.1. Let J be a Jordan algebra, recall that an element a ∈ J gives rise to a local
algebra Ja defined as the quotient of the a-homotope by the ideal Kera = {x ∈ J |
Uax = UaUxa = 0}. following [Mo1] we denote by PI(J) the set of all a ∈ J such
that Ja is a PI-algebra. It is proved in [Mo1] that if J is nondegenerate PI(J) is an
ideal of J and if J is strongly prime and PI(J) 6= 0, then the extended central closure
C(J)J as nonzero socle and Soc(C(J)J) ∩ J = PI(J). Similar notions can be defined
for associative algebras where we again use the notation PI(R).

4.2. Lemma. Let J be a strongly prime special Jordan algebra and let R be a
∗-tight associative ∗-envelope of J .
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(i) If L is an essential left ideal of R, then L ∩ J is an essential inner ideal of J .

(ii) If K is an essential inner ideal of J , then R̂K is an essential left ideal of R.

Proof. (i) Consider first the case where PI(J) 6= 0. Since J is nondegenerate it
suffices to show that UaJ ∩ (L∩J) 6= 0 for all 0 6= a ∈ J . Since PI(J) = PI(R)∩J by
[Mo1, 6.5], we have PI(R) 6= 0, hence R satisfies a GPI. Then the socle Soc(R̃) of the
central closure R̃ = C∗(R)R is nonzero and PI(R) = R ∩ Soc(R̃) by [R1, Ej. 7.6.2,
p.287] and the ∗-primeness of R. Now the essentiality of L in R implies the essentiality
of the left ideal L̃ = C∗(R)L of R̃, and this implies Soc(R̃) ⊆ L̃ (arguing as in 3.2(b)).
Now UaPI(J) 6= 0 since J is strongly prime and PI(J) is a nonzero ideal. Thus we
can take a nonzero b ∈ UaPI(J). Then b ∈ PI(J) ⊆ PI(R) ⊆ Soc(R̃) ⊆ L̃, so b can be
written as b =

∑n
i=1 λixi for some λ1, . . . , λn ∈ C∗(R) and x1, . . . , xn ∈ L. Now there

exists a nonzero ∗-ideal I of R with λiI ⊆ R for all i. Then I∩J is a nonzero ideal of J

since R is ∗-tight over J , hence N = UI∩J(I∩J) is a nonzero ideal of J by primeness.
Now, if x, y ∈ I ∩ J , we have UbUxy =

∑
i,j xi(λix)z(xλj)xj ∈

∑
j Rxj ⊆ L, hence

UbN ⊆ L. On the other hand UbN ⊆ UaJ , and this is nonzero since N 6= 0 and J

is strongly prime, so we have 0 6= UbN ⊆ L ∩ UaJ which proves the essentiality of
L ∩ J .

The assertion for case where PI(J) = 0 has been proved in [FGM, p.467].

(ii) Again, we consider first the case where PI(J) 6= 0. If J is PI, then K

contains an essential ideal I ⊆ K by 3.1(b), hence R̂K contains the nonzero ∗-
ideal R̂I generated by I in R. Thus, if N ⊆ R is a nonzero left ideal we have
0 6= R̂IN (by ∗-primeness of R)⊆ R̂K ∩N , which proves that R̂K is essential. Now
assume that J is not PI and put J̃ = C(J)J , the extended central closure of J ,
and K̃ = C(J)K, the C(J)-span of K in J̃ . Take a ∗-tight associative ∗-envelope
R̃ of J̃ . Since J is not PI, by [Mc3, 2.2] there exists a unique ∗-homomorphism
R → R̃ which extends the inclusion J ⊆ R, moreover, that homomorphism is injective
since its kernel is a ∗-ideal of R which intersects J trivially, hence it is zero by ∗-
tightness of R over J . Thus, we can assume that R ⊆ R̃. Now, the inner ideal
K̃ of J̃ is easily seen to be essential, and since J̃ has nonzero socle 3.2(b) gives
Soc(J̃) ⊆ K̃. Now, if N is a nonzero left ideal of R, arguing as in the PI case, we get
0 6= R̃Soc(J) ∩ R̃N ⊆ R̃K ∩ R̃N . We claim that for any x̃ ∈ R̃ there is a nonzero
ideal I of J such that Ix̃ ⊆ R. Indeed, since R̃ is generated by J̃ , the element x̃ is
a sum of products of elements from J̃ . So first finding an ideal in those conditions
for each summand, and then taking the intersection of them all, produces an ideal
of the required kind for x̃. Thus we can assume that x̃ = ỹ1 · · · ỹn for some ỹi ∈ J̃ .
We carry on an induction on n. If x̃ = ỹ1 ∈ J̃ , by [Mo2,4.3(ii)] there exists an
ideal I ⊆ DJ(x̃), hence (UIJ)x̃ ⊆ I{J, I, x̃} + (UI x̃)J ⊆ JJ ⊆ R, and the ideal UIJ

works. If the result holds up to n − 1 factors, set z̃ = ỹ1 · · · ỹn−1, so that x̃ = z̃ỹn
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and take an ideal I0 of J with I0z̃ ⊆ R, and an ideal I1 of J with I1ỹn ⊆ R. Then
UI0I1x̃ ⊆ I0I1I0z̃ỹn ⊆ I0I1Rỹn ⊆ I0R̂I1ỹn (since I1R ⊆ R̂I1 by [FGM, 1.12 (i)])
⊆ I0RR ⊆ R.

Take then a nonzero x̃ ∈ R̃N ∩ R̃K. Then x̃ =
∑n

i=1 r̃ixi =
∑m

i=1 s̃iki for some
r̃1, . . . , r̃n, s̃1, . . . , s̃m ∈ R̃, x1, . . . , xn ∈ N and k1, . . . , km ∈ K. By what we have just
proved there exist nonzero ideals Ii and I ′j of J with Iir̃i ⊆ R and I ′j s̃j ⊆ R for all i

and j. Then I = I1 ∩ · · · ∩ In ∩ I ′1 ∩ · · · I ′m is a nonzero ideal of J by primeness, and
we have Ix̃ ⊆

∑n
i=1 Ir̃ixi ⊆

∑n
i=1 Rxi ⊆ N , and similarly Ix̃ ⊆ RK. Now, if Ix̃ = 0,

then (UI J̃)x̃ = 0 but UI J̃ = UC(J)I J̃ is a nonzero ideal of J̃ , hence 0 6= x̃ annihilates
the ideal R̃(UI J̃) generated by it. But this is impossible since R̃ is ∗-tight over J̃ .
Thus we conclude that 0 6= Ix̃ ⊆ R̂K ∩N , and this proves that R̂K is essential.

Finally, the case where PI(J) = 0 has been proved in [FGM, 10.10].

4.3. Lemma. Let J be a strongly prime special Jordan algebra and let R be a
∗-tight associative ∗-envelope of J . Then J is strongly nonsingular if and only if R

is (left and right) nonsingular.

Proof. Suppose first that J is strongly nonsingular. Then it is in particular,
nonsingular, and by [FGM, 6.14] we have Zl(R)∩J = 0, hence (Zl(R)∩Zr(R))∩J = 0
since Zl(R)∗ = Zr(R), were Zl(R) (resp. Zr(R)) denotes the left (resp. right) singular
ideal of R. Now, the ideal Zl(R)∩Zr(R) is ∗-invariant, hence Zl(R)∩Zr(R) = 0 by
∗-tightness of R over J . Now, if a ∈ (Zl(R)+Zr(R))∩J , since Zl(R)∩Zr(R) = 0, a

can be uniquely written as a = b + b∗ with b ∈ Zl(R). Then there exists an essential
left ideal L of R with Lb = 0 (hence also b∗L∗ = 0). Now L ∩ J and L∗ ∩ J are
essential inner ideals of J by 4.2(i), hence L∩L∗∩J is also an essential inner ideal of
J . Now we have UL∩L∗∩Ja ⊆ LaL∗ = L(b+b∗)L∗ = 0, hence a = 0 by 2.6. Therefore
(Zl(R) + Zr(R)) ∩ J = 0, hence Zl(R) + Zr(R) = 0 by ∗-tightness of R.

Now assume that R is (left and right) nonsingular and let K be an essential inner
ideal of J . If PI(J) 6= 0, then C(J)J has nonzero socle Soc(C(J)J) by [Mo2, 5.1]. The
C(J)-span C(J)K of K ⊆ J ⊆ C(J)J is then an essential inner ideal of C(J)J , hence
Soc(C(J)J) ⊆ C(J)K. Thus, if UaK = 0 for some a ∈ J , then UaSoc(C(J)J) = 0,
hence a ∈ AnnC(J)J(Soc(C(J)J)) = 0, and therefore J is strongly nonsingular.

On the other hand, if PI(J) = 0, and UaK = 0 for the essential inner ideal
K ⊆ J and some a ∈ J , then J is special, and in a ∗-tight associative ∗-envelope R

of J we have akJka = UaUkJ ⊆ UaK = 0 for all k ∈ K. Then the ideal I = idR(ka)
generated by ka in R has I ∩ I∗ = 0 by [FGM, 5.2(ii)]. If R is prime, this implies
I = 0, hence ka = 0 and therefore Ka = 0 which yields K ⊆ AnnJ(a). Thus
a ∈ Θ(J), the singular ideal of J (see [FGM]), and Θ(J) = 0 by [FGM, 6.14], hence
a = 0.
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Therefore we can assume that R is not prime. We now denote by rannR (resp.
lrannR) the right (resp. left) annihilator in R. By [FGM, 5.2,5.3], we get Ka ⊆ P

for a ∗-splitting ideal P of R. Then KaK ⊆ P ∩P ∗ = 0, hence K ⊆ rannR(Ka) and
rannR(Ka) is essential by 4.2(ii), hence Ka ⊆ Zr(R) = 0, and we get K ⊆ lannR(a).
So again by 4.2(ii), lannR(a) is essential, and a ∈ Zl(R) = 0.

4.4. Lemma. Let J be a strongly prime Jordan algebra and let Q be an algebra
of quotients of J . Assume that Q is special and let A be a ∗-tight associative ∗-
envelope of Q. Denote by T = algA(J) the associative subalgebra of A generated by
J . Then:

(i) For any a ∈ A there exists an essential inner ideal K of J such that Ka ⊆ T ,

(ii) T is a ∗-tight associative ∗-envelope of J .

Proof. (i) Since every a ∈ A is a sum of products of elements of Q, if the result
holds for products of elements of Q, it will hold for arbitrary elements a ∈ A by
taking the intersection of the inner ideals corresponding to each summand in which
a decomposes. Thus we can assume that a = q1 · · · qn with qi ∈ Q. We prove the
result by induction on n.

If n = 1, so that a = q1 ∈ Q, for any x, y ∈ DJ(a) we have (Uxy)q = x{y, x, q}x−
y(Uxq) ∈ JJ ⊆ T , so K = KJ(UDJ (a)DJ(a)) has the desired property since it is
essential by 1.5.

If the result holds for a product of at most n−1 elements of Q, write b = q2 · · · qn,
so that a = q1b. Then there is an essential inner ideal N of J such that Nb ⊆ T . Set
L = {x ∈ T | xq1 ∈ T̂N}, and K = L ∩ J . Then it is clear that L is a left ideal of
T , hence K is an inner ideal of J , and Ka ⊆ La = Lq1b ⊆ TNb ⊆ T , so it suffices
to prove that K is essential. Now, since N is an essential inner ideal of J , T̂N is an
essential left ideal of T by 4.2(ii). Then L = (T̂N : q1) is essential [R2, 3.3.3], hence
K is essential by 4.2(i).

(ii) Let I be a nonzero ∗-ideal of T . Then clearly Ĩ = ÂIÂ is a nonzero ∗-ideal of
A, and by tightness, there is a nonzero q ∈ Ĩ ∩Q. Now we can write q =

∑
i aiyibi ∈

ÂIÂ for some ai, bi ∈ Â and yi ∈ I. By (i), for each i there are an essential inner
ideals Ki and Ni of J with Kiai + Nib

∗
i ⊆ T , hence Li = Ki ∩ Ni, which is again

essential, has Liai + biLi ⊆ T . Then, the essential inner ideal K =
⋂

i Li satisfies
Kai + biK ⊆ T for all i. Now put N = K ∩ DJ(q), which is again an essential inner
ideal. Then we have UNq ⊆ UDJ (q)q ⊆ J , and UNq ⊆

∑
i KaiyibiK ⊆

∑
i TIT ⊆ I.

By 2.6 UNq 6= 0, hence 0 6= I ∩ J and T is ∗-tight over J .

4.5. Remark. Let J be a strongly prime special Jordan algebra, and let I be
a nonzero ideal of J . If R is a ∗-tight associative ∗-envelope of J and S = algR(I) is
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the subalgebra of R generated by I, we can assume by [McZ] that R ⊆ Qs(S) where
Qs denotes the algebra of symmetric quotients, and therefore Qs(S) = Qs(R), hence
Qσ(R) = Qσ(S) by 0.6.

4.6. Proposition. Let J be a prime strongly nonsingular Jordan algebra of
hermitian type and let R be a ∗-tight associative ∗-envelope of J . Then, the set

Q = {q ∈ H(Qσ(R), ∗) | DJ(q) is essential in J}

is an ample subspace of symmetric elements of the maximal algebra of symmetric
quotients Qσ(R) of R.

Proof. Since J is of hermitian type, it is special and there is a hermitian ideal
H(X) in the free special Jordan algebra FSJ [X] on a denumerable set of generators
with H(J) 6= 0. Denote by S the subalgebra algR(H(J)) generated by I = H(J),
which is a ∗-tight associative ∗-envelope of I [McZ]. We consider the set Q(I) = {q ∈
H(Qσ(S), ∗) | DI(q) is essential in I}. We claim that Q(I) is an ample subspace of
symmetric elements of Qσ(I) (which is the particular case I = J of the proposition).

If p, q ∈ Q(I), for any x ∈ DI(p)∩DI(q) we have x◦(p+q) = x◦p+x◦q ∈ I and
Ux(p+q) = Uxp+Uxq ∈ I, so it follows from 2.7 and the essentiality of DI(p)∩DI(q)
that DI(p + q) is essential, hence p + q ∈ Q(I).

Next, if q ∈ Qσ(S), then there exists a dense (hence essential) left ideal L of S

that satisfies Lq + Lq∗ ⊆ S. Then K = L∩ I is also essential by 4.2(i). Now we have
kq ∈ Lq ⊆ S and kq∗ ∈ Lqast ⊆ S for any k ∈ K, hence k ◦ (q+q∗) = (kq)+(k∗q)∗+
(qk) + (qk∗)∗ = (kq) + (kq)∗ + (qk) + (qk)∗ is a sum of two traces of elements of S,
hence it belongs to the ample subspace I. Also Uk(q + q∗) = Ukq + (Ukq)∗ is a trace
of an element of S, so again it belongs to I. Since S is ∗-tight over S, it follows from
4.2(1) that K is essential in I, hence DI(q+q∗) is essential by 2.7, and q+q∗ ∈ Q(I).

Now take q ∈ Qσ(S) and h ∈ Q(I). The inner ideal DI(h) is essential in I, hence
N = KI(UDI(h)DI(h) is also essential by 1.5 and the strong nonsingularity of I due to
1.6. Then ŜN (resp. NŜ) is an essential left (resp. right) ideal of S by 4.2(2). Since
S is nonsingular by 4.3 and the strong nonsingularity of I, the ideal ŜN is dense, and
there exists a dense (hence essential) left ideal L of S with Lh ⊆ ŜN . On the other
hand, there exists a dense (hence essential) left ideal L′ of S with L′qhq∗ ⊆ ŜN , so
by taking the intersection of L and L′ we can assume that Lqhq∗ ⊆ ŜN .

Now set K = L ∩ I, which is an essential inner ideal of I by 4.2(1). For any
k ∈ K we have kqhq∗ ∈ Lqhq∗ ⊆ S and qhq∗k = (kqhq∗)∗ ∈ S∗ = S, hence
k ◦ (qhq∗) = (kqhq∗ + (kqhq∗)∗) + (qhq∗k + (qhq∗k)∗) ∈ I, since this is a sum of
traces of elements of S and I is an ample subspace of symmetric elements of S. On
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the other hand, since kq ∈ ŜN , there exist elements si ∈ Ŝ and xi, yi ∈ DI(h) with
kq =

∑
i siUxiyi. Thus, using the notation {s} = s + s∗ for s ∈ S, we have

Uk(qhq∗) = kqh(kq)∗ =
∑

i

si(Uxi
yi)q(Uxi

yi)s∗i +
∑
i<j

{si(Uxi
yi)q(Uxj

yj)s∗j} =

=
∑

i

si(UUxi
yi

q)s∗i +
∑
i<j

{sixi{yi, xi, q}(Uxj
yj)s∗j}−

− {si(Uxi
q)yi(Uxj

yj)s∗j} ∈ I,

since the elements UUxi
yiq ∈ S, sixi{yi, xi, q}(Uxj yj)s∗j and si(Uxiq)yi(Uxj yj)s∗j be-

long to S, and I is an ample subspace of symmetric elements of S.

Since K is essential, 2.7 implies that DI(qhq∗) is essential, hence qhq∗ ∈ Q(I).
Note also that Qσ(S) is unital, and if 1 is its unit element 1 = 1∗ obviously has
DI(1) = I, hence 1 ∈ Q(I). Thus we have proved that all elements q+q∗, qq∗ = q1q∗

and qhq∗ belong to Q(I), for all q ∈ Qσ(S) and all h ∈ Q(I), and therefore Q(I) is
an ample subspace of symmetric elements of Qσ(S), and in particular it is a Jordan
subalgebra of H(Qσ(S), ∗).

It is clear now that Q(S) will be an algebra of quotients of I if UqDI(q) 6= 0
for all nonzero q ∈ Q(I). So suppose that q ∈ Q(I) has UqDI(q) = 0. Then for any
x ∈ DI(q) we have UUxqDI(q) = 0 hence Uxq = 0 since DI(q) is essential, Uxq ∈ I,
and I is strongly nonsingular. Thus UDI(q)q = 0, and for any x, y ∈ DI(q) we have
x◦q ∈ I, and Ux◦qy = UqUxy+UxUqy+{q, x, {y, q, x}}−(Uqx

2)◦y = 0. Again, since
DI(q) is essential, x ◦ q ∈ I, and I is strongly nonsingular, we get x ◦ q = 0, hence
q◦DI(q) = 0. Now, for any x, y ∈ DI(q), we have {y, x, q} = y◦(x◦q)−{y, q, x} = 0,
and (Uxy)q = x{y, x, q} − (Uxq)y = 0. Therefore, setting K = KI(UDI(q)DI(q)) we
have ŜKq = 0. But since K is essential by 1.5, ŜK is an essential left ideal of S by
4.2(2), hence a dense left ideal by the nonsingularity of S, and therefore [L, 2.1] gives
q = 0.

To complete the proof it only remains to show that Q(I) = Q. First note
that we have Qσ(R) = Qσ(S) by 4.5, hence J ⊆ H(Qσ(S), ∗) = H(Qσ(R), ∗) and
Q(I) ⊆ H(Qσ(R), ∗). Since clearly DI(x) = I is essential for any x ∈ J , we have
J ⊆ Q(I), hence Q(I) is an algebra of quotients of J by 2.9. In particular, DJ(q)
is essential in J for any q ∈ Q(I), hence Q(I) ⊆ Q. Reciprocally, if q ∈ Q, then
K = DJ(q)∩I is an essential inner ideal of I, hence N = KI(UKK) is also an essential
inner ideal of I. Now, if x, y ∈ K and z ∈ Î we have UUxyq = UxUyUxq ∈ UxUyJ ⊆ I,
{Uxy, q, z} = {x, {y, x, q}, z}− {Uxq, y, z} ∈ {I, J, Î}+ {J, I, Î} ⊆ I, so in particular,
N ◦ q ⊆ I and UNq ⊆ I. Then DI(q) is essential by 2.7, and q ∈ Q(I).

4.7. Theorem. Let J be a prime strongly nonsingular Jordan algebra of her-
mitian type, and let Q be as in 4.6. Then the algebra Q = Qmax(J) is the maximal
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algebra of quotients of J .

Proof. Let Q be an algebra of quotients of J . Since J ⊆ Q is of hermitian type,
so is Q, and in particular it is special. Let A and R be ∗-tight associative ∗-envelopes
of Q and J respectively. Set T = algA(J), the associative subalgebra of A generated
by J . By 4.4(ii), T is a ∗-tight associative ∗-envelope of J , hence by [Mc3, 2.3] (see
remark below) the identity J → J uniquely extends to a ∗-isomorphism R → T since
J is of hermitian type. Thus we can assume that R = T .

Now by 4.4(i), for any a ∈ A there exists a essential inner ideals K1 and K2 of J

with K1a + K2a
∗ ⊆ T , so Ka + aK ⊆ T for the essential inner ideal K = K1 ∩K2 of

J . then the left ideal L = T̂K of T , which is essential by 4.2, satisfies La+ aL∗ ⊆ T .
Since T is left (and right) nonsingular by 4.3, L is a dense left ideal. Moreover, if N

is a dense left ideal of T and Na = 0, then AN ∩Q ⊇ N ∩ J , and N ∩ J is essential
by 4.2(i), hence AN is an essential left ideal of A by 4.2(ii), and therefore it is dense
since A is nonsingular by 4.3 and 2.4(vi), hence a = 0.

Thus, by [L, 2.1], A ⊆ Qσ(T ) and Q ⊆ H(Qσ(T ), ∗). Since all elements of Q

have essential inner ideal of J-denominators, we get Q ⊆ Q, and this proves the
maximality of Q.

4.8. Remark. To apply the Prime Zelmanov Extension Theorem as it is
stated in [Mc3, 2.3], we would need that Z(J) 6= 0 for the particular hermitian ideal
generated by the polynomial Z48 mentioned in [Mc3, 0.4], however it is easy to see
that the only condition that is needed in its proof is that the hermitian ideal satisfies,
in addition to being hermitian, the eating property {y1 · · · yrZ(X)(m)yr +2 · · · yn} ⊆
FSJ [X ∪ T ] for m ≥ n − 4, and the ampleness property: If J ⊆ H(A, ∗), then
Z(J) = H0(A, ∗) is an ample subspace of symmetric elements in the subalgebra
A0 ⊆ A it generates. These two conditions hold for any hermitian ideal H(X) by
[McZ, 2.3, 1.3].

4.9. Theorem. Let J be a strongly prime Jordan algebra. If J is strongly
nonsingular, then J has a maximal algebra of quotients Qmax(J). More precisely,

(a) If J is PI, then Qmax(J) = Γ(J)−1J is the central closure of J .

(b) If J is not PI (hence it is special), and R is a ∗-tight associative ∗-envelope
of J , then Qmax(J) = {q ∈ H(Qσ(R), ∗) | DJ(q) is essential in J}, which is
an ample subspace of symmetric elements of the maximal symmetric algebra of
quotients Qσ(R) of R.

Proof. The assertion (a) about PI algebras is proved in 3.5, and if J is not PI,
then it is of hermitian type and 4.7 gives (b).
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