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Abstract

In this paper we introduce 2-JB*-triple-summing operators on real
and complex JB*-triples. These operators generalize 2-C*-summing
operators on C*-algebras. We also obtain a Pietsch’s factorization
theorem in the setting of 2-JB*-triple-summing operators on JB*-
triples.
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1 Introduction.

Let X, Y be Banach spaces, 0 < p < ∞, and T : X → Y a bounded linear
operator. We say that T is p-summing if there is a constant C ≥ 0 such that
for any finite sequence (x1, . . . , xn) of X we have(

n∑
k=1

‖T (xk)‖p
) 1

p

≤ C sup


(

n∑
k=1

|f(xk)|p
) 1

p

: f ∈ X∗, ‖f‖ ≤ 1

 .

In 1978, G. Pisier [20] introduced the following extension of the p-summing
operators in the setting of C*-algebras. Let T be a bounded linear operator
from a C*-algebra A to a Banach space Y , and 0 < p < ∞. We say that T
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is p-C*-summing if there exists a positive constant C such that for any finite
sequence (a1, . . . , an) of hermitian elements of A we have(

n∑
i=1

‖T (ai)‖p
) 1

p

≤ C
∥∥∥( n∑

i=1

|ai|p
) 1

p ∥∥∥, (1)

where, for x in A, the “modulus” is defined by |x|2 := 1
2
(xx∗ + x∗x). The

smallest constant C for which (1) holds is denoted Cp(T ). It is well known
that every p-summing operator from a C*-algebra to a Banach space is p-
C*-summing but the converse is false in general (compare [20, Remark 1.2]).

In [20] G. Pisier proved a Pietsch’s factorization theorem for p-C*-summing
operators. Indeed, if T : A → Y is a p-C*-summing operator from a C*-
algebra to a complex Banach space then there is a norm-one positive linear
functional ϕ in A∗ such that

‖T (x)‖ ≤ Cp(T ) (ϕ(|x|p))
1
p

for every hermitian element x in A.
Complex JB*-triples were introduced by W. Kaup in the study of Bounded

Symmetric Domains in complex Banach spaces ([15], [14]). The class of com-
plex JB*-triples includes all C*-algebras and all JB*-algebras.

The aim of this paper is the study of summing operators on real and
complex JB*-triples. In Section 2 we introduce the natural definition of p-
JB*-summing operators in the setting of JB*-algebras. We obtain a Pietsch’s
factorization theorem for p-JB*-summing operators. Section 3 deals with
the definition and study of 2-JB*-triple-summing operators in the setting of
complex JB*-triples. Operators which generalize 2-C*-summing and 2-JB*-
summing operators on C*-algebras and JB*-algebras, respectively. For the
most general class of 2-JB*-triple-summing operators, we obtain a Pietsch’s
factorization theorem in the setting of JB*-triples (Theorems 3.5 and 3.6).
It is worth mentioning that in the proof of this result, the so-called ”Little
Grothendieck’s inequality” for JB*-triples [18] play a very important role.
In the last section we establish analogous results in the setting of real JB*-
triples. We also discuss the relations between 2-summing and 2-JB*-triple-
summing operators.

Let X be a Banach space. Through the paper we denote by BX , SX , and
X∗ the closed unit ball, the unit sphere, and the dual space, respectively, of
X. IX will denote the identity operator on X, JX the natural embedding
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of X in its bidual X∗∗, and if Y is another Banach space, then BL(X, Y )
stands for the Banach space of all bounded linear operators from X to Y .
We usually write BL(X) instead of BL(X,X).

2 Summing Operators on JB*-algebras

Let A be a JB*-algebra. Given x ∈ A, the modulus |x| is defined by |x|2 :=
x ◦x∗ for all x ∈ A. Given a norm-one positive linear functional ψ ∈ A∗, the
mapping (x, y) 7→ (x/y)ψ := ψ(x ◦ y∗) is a positive sesquilinear form on A.
If we denote Nψ := {x ∈ A : ψ(x ◦ x∗) = 0}, then the quotient A/Nψ can be
completed to a Hilbert space, which is denoted by Hψ. The natural quotient
map ofA on Hψ is denoted by Jψ. Inspired by the definition of p-C*-summing
operators, we introduced the following concept of p-JB*-summing operator
in the setting of JB*-algebras.

Definition 2.1. Let 0 < p < ∞. A bounded linear operator T from a JB*-
algebra A to a Banach space Y is said to be p-JB*-summing if there exists a
positive constant C such that for any finite sequence (a1, . . . , an) of hermitian
elements of A we have(

n∑
i=1

‖T (ai)‖p
) 1

p

≤ C
∥∥∥( n∑

i=1

|ai|p
) 1

p ∥∥∥. (2)

The smallest constant C for which (2) holds is denoted Cp(T ).

Remark 2.2. Let A be a C*-algebra. Then A is a JB*-algebra with respect
x ◦ y := 1

2
(xy + yx). In this case, it is easy to see that a bounded linear

operator from A to a Banach space is p-C*-summing if and only if it is
p-JB*-summing.

The next result is an extension of Pietsch’s factorization theorem ([9]) in
the JB*-algebra setting which is a verbatim extension of Pisier’s analogous
result for C*-algebras [20, Proposition 1.1].

Proposition 2.3. Let A be a JB*-algebra, Y a Banach space, and T : A →
Y a p-JB*-summing operator. Then there exists a norm-one positive linear
functional ϕ on A such that

‖T (x)‖ ≤ Cp(T ) (ϕ(|x|p))
1
p

for every hermitian element x in A.
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Proof. Let K denote the set of all positive linear functionals on A with norm
less or equal to 1. Then K is a convex σ(A∗,A)-compact subset of A∗ and

‖a‖ = sup
f∈K
|f(a)| (3)

for every hermitian element a ∈ A [12].
Let us denote by C the set of all continuous functions on K of the form

F{a1,... ,an}(f) := Cp(T )p f(

n∑
i=1

|ai|p)−
n∑
i=1

‖Tai‖p,

where (a1, . . . , an) is a finite collection of hermitian elements in A. Then C
is a convex cone in C(K). Moreover, since T is p-JB*-summing, (3) assures
that C is disjoint from the open cone O := {Φ ∈ C(K) : max Φ < 0}. By the
Hahn-Banach theorem there exists a positive measure λ on K such that∫

K

F{a1,... ,an}(k)λ(dk) ≥ 0

for every finite collection of hermitian elements (a1, . . . , an) ∈ A. We can
suppose that λ is a probability measure on K. Finally taking ϕ(x) :=∫
K
k(x)λ(dk) (x ∈ A), we finish the proof.

Remark 2.4. Let A, Y , and T be as in Proposition 2.3 above with p = 2.
If x ∈ A, then x = a + ib with a∗ = a, b∗ = b, and hence |x|2 = a2 + b2.
Therefore

‖T (x)‖ ≤
√

2C2(T )(ϕ(|x|2))
1
2 .

The next result is a weak* version of Pietsch factorization theorem for
JB*-algebras (Proposition 2.3) and a extension of [21, Lemma 4.1] in the
JBW*-algebra setting. We recall that a JBW*-algebra is a JB*-algebra which
is also a dual Banach space [12].

Proposition 2.5. Let A be a JBW*-algebra, Y a Banach space, and T :
A → Y ∗ a p-JB*-summing operator which is also weak*- continuous. Then
there exists a norm-one positive linear functional ϕ in A∗ such that

‖T (x)‖ ≤ Cp(T ) (ϕ(|x|p))
1
p

for every hermitian element x in A.
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Proof. By [12, 4.4.17] there exists a central projection e ∈ A∗∗ such that

Le : A → e ◦ A∗∗

Le(x) := e ◦ x
is an isomorphism and A∗ = L∗e(A∗). By Proposition 2.3, there exists a
norm-one positive linear functional ψ ∈ A∗ such that

‖T (x)‖ ≤ Cp(T ) (ψ(|x|p))
1
p

for every hermitian element x in A. Now we take ϕ := L∗e(ψ) ∈ A∗, f ∈ SY
and compute

< f, T (x) >=< T ∗(f), x >=< LeT
∗(f), x >≤ ‖T ∗∗(e ◦ x)‖

≤ Cp(T ) (ψ(|e ◦ x|p))
1
p = Cp(T ) (ψ(e ◦ |x|p))

1
p = Cp(T ) (ϕ(|x|p))

1
p .

Finally taking supremum over f ∈ SY we finish the proof.

3 Summing Operators on JB*-triples

We recall that a (complex) JB*-triple is a complex Banach space E with
a continuous triple product {., ., .} : E × E × E → E which is bilinear and
symmetric in the outer variables and conjugate linear in the middle variable,
and satisfies:

1. (Jordan Identity) L(a, b){x, y, z} = {L(a, b)x, y, z} − {x, L(b, a)y, z} +
{x, y, L(a, b)z} for all a, b, c, x, y, z in E , where L(a, b)x := {a, b, x};

2. The map L(a, a) from E to E is an hermitian operator with non negative
spectrum for all a in E ;

3. ‖{a, a, a}‖ = ‖a‖3 for all a in E .

We recall that a bounded linear operator on a complex Banach space is
said to be hermitian if ‖ exp(iλT )‖ = 1 for all λ ∈ R.

It is worth mentioning that every C*-algebra is a (complex) JB*-triple
with respect to {a, b, c} = 1

2
(ab∗c + cb∗a) and also every JB*-algebra with

respect to {a, b, c} = (a ◦ b∗) ◦ c + (c ◦ b∗) ◦ a− (a ◦ c) ◦ b∗. We refer to [23],
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[24] and [8] for recent surveys on the theory of JB*-triples. A JBW*-triple
is a JB*-triple which is a dual Banach space. If E is a JB*-triple then E∗∗
is a JBW*-triple [11]. It is well known that every JBW*-triple has a unique
predual and the triple product is separately weak*-continuous [3].

Let E be a JB*-triple and ϕ a norm-one functional in E∗. By [1, Propo-
sition 1.2] the map (x, y) 7→ ϕ {x, y, z} is a positive sequilinear form on E ,
where z is any norm-one element of E∗∗ verifying ϕ(z) = 1 (If E is a JBW*-
triple and ϕ ∈ SE∗ , then z can be chosen in SE).

If we define Nϕ := {x ∈ E : ‖x‖ϕ = 0}, the completion Hϕ of E/Nϕ is
a Hilbert space with respect to the norm ‖.‖ϕ. Throughout the paper the
natural quotient map of E on Hϕ will be denoted by Jϕ.

Let W be a JBW*-triple. The strong* topology of W, denoted by
S∗(W,W∗), is the topology onW generated by the family {‖.‖ϕ : ϕ ∈ SW∗}.

The following definition is the natural extension of the 2-summing oper-
ators in the setting of JB*-triples.

Definition 3.1. Let E be a JB*-triple and Y a Banach space. An operator
T : E → Y is said to be 2-JB*-triple-summing if there exists a positive
constant C such that for every finite sequence (x1, . . . , xn) of elements in E
we have

n∑
i=1

‖T (xi)‖2 ≤ C
∥∥∥ n∑
i=1

L(xi, xi)
∥∥∥. (4)

The smallest constant C for which (4) holds is denoted C2(T ).

Let X be a Banach space, and u a norm-one element in X. The set of
states of X relative to u, D(X, u), is defined as the non empty, convex, and
weak*-compact subset of X∗ given by

D(X, u) := {Φ ∈ BX∗ : Φ(u) = 1}.

For x ∈ X, the numerical range of x relative to u, V (X, u, x), is given by
V (X, u, x) := {Φ(x) : Φ ∈ D(X, u)}. The numerical radius of x relative to
u, v(X, u, x), is given by

v(X, u, x) := max{|λ| : λ ∈ V (X, u, x)}.

It is well known that a bounded linear operator T on a complex Banach
space X is hermitian if and only if V (BL(X), IX , T ) ⊆ R (compare [5,
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Corollary 10.13]). If T is a bounded linear operator on X, then we have
V (BL(X), IX , T ) = co W (T ) where

W (T ) = {x∗(T (x)) : (x, x∗) ∈ Γ},

and Γ ⊆ {(x, x∗) : x ∈ SX , x∗ ∈ SX∗ , x∗(x) = 1} verifies that its projection
onto the first coordinate is norm dense in SX [4, Theorem 9.3]. Moreover,
the numerical radius of T can be calculated as follows

v(BL(X), IX , T ) = sup{|x∗(T (x))| : (x, x∗) ∈ Γ}.

In particular if X = Y ∗, then by the Bishop-Phelps-Bollobás theorem, it
follows that

v(BL(X), IX , T ) = sup{|x∗(T (x))| : x ∈ SX , x∗ ∈ SY , x∗(x) = 1}.

Remark 3.2. Let A be a JB*-algebra with unit 1, Y a Banach space, and
T : A → Y a 2-JB*-triple-summing operator (regarded A as a JB*-triple).
We have

n∑
i=1

‖T (xi)‖2 ≤ C2(T )
∥∥∥ n∑
i=1

L(xi, xi)
∥∥∥ (5)

for every finite sequence (x1, . . . , xn) of elements in A. Since S :=
∑n

i=1 L(xi, xi)
is an hermitian operator on A, Sinclair’s theorem [5, Theorem 11.17] assures
that

‖S‖ = sup{|Φ(S(z))| : z ∈ SA,Φ ∈ SA∗ ,Φ(z) = 1}.
It is worth mentioning that Φ(S(z)) ≥ 0 for such Φ and z. Let z ∈ SA
and Φ ∈ SA∗ with Φ(z) = 1. Let us define Ψ(x) := Φ(x ◦ z), then we have
Ψ ∈ SA∗ , Ψ(1) = Φ(z) = 1, and

Ψ(L(x, x)(1)) = Φ(L(x, x)(1) ◦ z)

=
1

2
Φ({x, x, z} + {x∗, x∗, z}) =

1

2
(‖x‖Φ + ‖x∗‖Φ)

≥ 1

2
‖x‖Φ =

1

2
Φ(L(x, x)(z))

for all x ∈ A. Therefore Φ(S(z)) ≤ 2Ψ(S(1)) and hence

‖S‖ ≤ 2 sup{Ψ(S(z)) : Ψ ∈ SA∗ ,Φ(1) = 1}
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= 2 sup{Ψ(
n∑
i=1

|xi|2) : Ψ ∈ SA∗ ,Φ(1) = 1} = 2
∥∥∥ n∑
i=1

|xi|2
∥∥∥.

It follows from (5) that T is 2-JB*-summing. This shows that every 2-JB*-
triple-summing operator from a unital JB*-algebra to a Banach space is 2-
JB*-summing. Conversely, the inequality∥∥∥ n∑

i=1

|xi|2
∥∥∥ =

∥∥∥ n∑
i=1

L(xi, xi)(1)
∥∥∥ ≤ ∥∥∥ n∑

i=1

L(xi, xi)
∥∥∥,

shows that every 2-JB*-summing operator from a unital JB*-algebra is also
2-JB*-triple-summing.

In 1987 T. Barton and Y. Friedman [1, Corollary 3.1] established a
Ringrose-type inequality for JB*-triples. However the Barton-Friedman proof
of this inequality is based in [1, Theorem 1.3], result which has a gap (see
[17] and [18]). Now we can follow the same ideas to prove this Ringrose-
type inequality, but replacing [1, Theorem 1.3] by [18, Theorem 3]. Given a
JB*-triple E and norm-one elements ϕ1, ϕ2 ∈ E∗ we denote by ‖.‖ϕ1,ϕ2 the
prehilbert seminorm on E given by ‖x‖2

ϕ1,ϕ2
:= ‖x‖2

ϕ1
+ ‖x‖2

ϕ2
.

Proposition 3.3. Let E and F be JB*-triples, T : E → F a bounded linear
operator, and x1, . . . , xn in E . Then∥∥∥ n∑

i=1

L(T (xi), T (xi))
∥∥∥ ≤ 2‖T‖2

∥∥∥ n∑
i=1

L(xi, xi)
∥∥∥.

Proof. Let us denote S :=
∑n

i=1 L(T (xi), T (xi)). Then S is an hermitian
operator on F . By Sinclair’s theorem [5, Theorem 11.17]

‖S‖ = sup{|ψ(S(z))| : z ∈ SF , ψ ∈ SF∗ , ψ(z) = 1}.

Note that ψ(S(Z)) > 0 for every such ψ and z. Fix ε > 0 and choose ψ and
z such that

‖S‖ ≤ ψ(S(z)) + ε.

The mapping JψT : E → Hψ is a bounded linear operator. Let m ∈ N. By
[18, Theorem 3], there are norm-one functionals ϕ1,m, ϕ2,m ∈ E∗ such that

‖JψT (x)‖ ≤ (
√

2 +
1

m
)‖T‖ (‖x‖2

ϕ1,m
+

1

m
‖x‖2

ϕ2,m
)

1
2 , i. e.
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ψ {T (x), T (x), z} ≤ (
√

2 +
1

m
)2‖T‖2 (ϕ1,m {x, x, e1,m}+

1

m
ϕ2,m {x, x, e2,m})

for all x ∈ E , where e1,m, e2,m ∈ SE∗∗ verify ϕi,m(ei,m) = 1 for i ∈ {1, 2}.
Therefore

‖S‖ − ε ≤ ψ(S(z)) ≤ (
√

2 +
1

m
)2‖T‖2 (ϕ1,m(

n∑
i=1

L(xi, xi)e1,m)+

1

m
ϕ2,m(

n∑
i=1

L(xi, xi)e2,m)) ≤ (
√

2 +
1

m
)2(1 +

1

m
)‖T‖2

∥∥∥ n∑
i=1

L(xi, xi)
∥∥∥.

Finally, letting ε→ 0, m→∞, we get∥∥∥ n∑
i=1

L(T (xi), T (xi))
∥∥∥ ≤ 2‖T‖2

∥∥∥ n∑
i=1

L(xi, xi)
∥∥∥.

From the above proposition, we immediately obtain the following corol-
lary.

Corollary 3.4. Let E and F be JB*-triples, Y a Banach space, T : F → Y
a 2-JB*-triple-summing operator, and R : E → F a bounded linear operator.
Then TR : E → Y is a 2-JB*-triple-summing operator.

Now we deal with the following characterization of 2-JB*-triple-summing
operators from a JBW*-triple to a complex Banach space which generalizes
Pietsch’s factorization theorem for C*-algebras [21, Theorem 3.2].

Theorem 3.5. Let T be a weak*-continuous linear operator from a JBW*-
triple W with values in a Banach space Y ∗. The following assertions are
equivalent.

1. T is 2-JB*-triple-summing.

2. There are norm-one functionals ϕ1, ϕ2 in W∗ and a positive constant
C(T ) such that

‖T (x)‖ ≤ C(T )‖x‖ϕ1,ϕ2

for all x ∈ W.
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Proof. 1 ⇒ 2.− By [6, Proposition 2] there is a (unital) JBW*-algebra A
and a contractive projection P : A → W. Actually, by [23, Theorem D.20],
P can be supposed weak*-continuous. Since, by Corollary 3.4 and Remark
3.2, it follows that T P : A → Y ∗ is a 2-JB*-summing operator, which
is also weak*-continuous, we conclude, by Theorem 2.5, that there exists a
norm-one positive functional ψ ∈ A∗ such that

‖TP (α)‖ ≤
√

2 C2(T )(ψ(α ◦ α∗)) 1
2

for all α ∈ A.
It is worth mentioning that, by the same arguments given in the proof of

[22, Corollary 1], the natural quotient map Jψ is weak*-continuous. There-
fore, we can apply [18, Theorem 3] to the restriction Jψ|W :W → Hψ to get
norm-one functionals ϕ1, ϕ2 ∈ W∗ such that

ψ(x ◦ x∗) ≤ 4 ‖x‖2
ϕ1,ϕ2

,

and hence
‖T (x)‖ ≤ 2

√
2C2(T ) ‖x‖ϕ1,ϕ2

for all x ∈ W.

2 ⇒ 1.− Let (x1, . . . , xn) be a finite sequence of elements of W, and
e1, e2 ∈ SW such that ϕi(ei) = 1 for i ∈ {1, 2}. Then we have

n∑
i=1

‖T (xi)‖2 ≤ C(T )2

n∑
i=1

‖xi‖2
ϕ1,ϕ2

= C(T )2 (ϕ1(
n∑
i=1

L(xi, xi)(e1)) + ϕ2(
n∑
i=1

L(xi, xi)(e2)))

≤ 2C(T )2
∥∥∥ n∑
i=1

L(xi, xi)
∥∥∥.

Inequality which shows that T is 2-JB*-triple-summing.

Let E be a complex JB*-triple and Φ ∈ D(BL(E), IE). Since for every
x ∈ E , the operator L(x, x) is hermitian and has non-negative spectrum, it
follows from [5, Lemma 38.3] that the mapping (x, y) → Φ(L(x, y)) from
E × E to C becomes a positive sesquilinear form on E . Then we define the
prehilbert seminorm ‖|.‖|Φ on E by ‖|x‖|2Φ := Φ(L(x, x)).

Our next result is the natural extension of Pietsch’s factorization theorem
in the setting of JB*-triples.
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Theorem 3.6. Let T be a bounded operator from a JB*-triple E with values
in a Banach space Y . The following assertions are equivalent.

1. T is 2-JB*-triple-summing.

2. There is a state Ψ ∈ D(BL(E), IE) and a positive constant C(T ) such
that

‖T (x)‖ ≤ C(T )‖|x‖|Ψ
for every x ∈ E .

3. There are norm-one functionals ϕ1, ϕ2 in E∗ and a positive constant
C(T )′ such that

‖T (x)‖ ≤ C(T )′‖x‖ϕ1,ϕ2

for all x ∈ E .

Proof. 1⇒ 2.− Let K denote the set of states of BL(E) relative to IE . Then
K is a non empty, convex, and weak*-compact subset of BL(E)∗. Moreover,
by Sinclair’s theorem [5, Theorem 11.17],

‖T‖ = sup
Φ∈K
|Φ(T )| (6)

for every hermitian operator T on X.
Let us denote by C the set of all continuous functions on K of the form

F{x1,... ,xn}(Φ) := C2(T )Φ(
n∑
i=1

L(xi, xi))−
n∑
i=1

‖T (xi)‖2

where n ∈ N and {x1, . . . , xn} ⊂ E . Since for every {x1, . . . , xn} ⊂ E ,
the map

∑n
i=1 L(xi, xi) is an hermitian operator on E and T is 2-JB*-triple-

summing, (6) assures that C is disjoint from the open cone O := {ϕ ∈ C(K) :
maxϕ < 0}. Therefore, by the Hahn-Banach theorem there is a probability
measure µ on K such that∫

K

F{x1,... ,xn}(k) µ(dk) ≥ 0

for every finite collection of elements {x1, . . . , xn} ∈ E . Finally taking
Ψ(T ) :=

∫
K
T (k) µ(dk) we obtain 2.
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2 ⇒ 3.− Let Ψ the state given in 2. The map ‖|.‖|Ψ is a pre-Hilbert
seminorm on E . Denoting N := {x ∈ E : ‖|x‖|Ψ = 0}, then the quotient
E/N can be completed to a Hilbert space H . Let us denote by Q the natural
quotient map from E to H . By [18, Corollary 1] (see also [19, Corollary 1.11])
there are norm-one functionals ϕ1, ϕ2 ∈ E∗ such that the inequality

‖Q(x)‖ = ‖|x‖|Ψ ≤ 2‖x‖ϕ1,ϕ2

holds for every x ∈ E . Then it follows that

‖T (x)‖ ≤ 2C(T )‖x‖ϕ1,ϕ2

for every x ∈ E .
The implication 3⇒ 1.− follows as (2⇒ 1) in Theorem 3.5.

Let T : E → Y be a 2-JB*-triple-summing operator from a JB*-triple
to a Banach space. By Theorem 3.6 above, there are norm-one functionals
ϕ1, ϕ2 in E∗ and a positive constant C(T )′ such that

‖T (x)‖ ≤ C(T )′‖x‖ϕ1,ϕ2 (7)

for all x ∈ E . Let α ∈ E∗∗. Since by [2, Theorem 3.2], the strong*-topology
of E∗∗ is compatible with the duality, it follows that there is a net (xλ) ⊆ E
converging to α in the strong*-topology and hence also in the weak*-topology
of E∗∗. Since the seminorm ‖.‖ϕ1,ϕ2 is strong*-continuous, by (7) and the
weak*-lower semicontinuity of the norm we have

‖T ∗∗(α)‖ ≤ C(T )′‖α‖ϕ1,ϕ2.

Therefore, by Theorem 3.6 we conclude that T ∗∗ is 2-JB*-triple-summing.
We have thus proved the following lemma.

Lemma 3.7. Let T : E → Y be a 2-JB*-triple-summing operator from a
JB*-triple to a Banach space. Then there are norm-one functionals ϕ1, ϕ2

in E∗ and a positive constant C(T )′ such that

‖T ∗∗(α)‖ ≤ C(T )′‖α‖ϕ1,ϕ2

for all α ∈ E∗∗. In particular T ∗∗ is 2-JB*-triple-summing.
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Remark 3.8. Let A be a JB*-algebra. By [12, Proposition 3.5.4] A has an
increasing approximate identity of hermitian elements, i. e., there is a net
(uλ)Λ ⊆ A where Λ is a directed set, u∗λ = uλ, ‖uλ‖ ≤ 1, and ‖uλ◦x−x‖ → 0
for every x ∈ A. Then

‖L(x, x)(uλ)− |x|2‖ = ‖|x|2 ◦ uλ + (uλ ◦ x∗) ◦ x− (uλ ◦ x) ◦ x∗ − |x|2‖ → 0

and hence

‖
n∑
i=1

|xi|2‖ = lim
λ
‖

n∑
i=1

L(xi, xi)(uλ)‖ ≤ ‖
n∑
i=1

L(xi, xi)‖

for every finite sequence (x1, . . . , xn) ∈ A. It follows that every 2-JB*-
summing operator from A to a Banach space is 2-JB*-triple-summing (re-
garded A as a JB*-triple). Conversely if T : A → Y is a 2-JB*-triple-
summing operator then, by Lemma 3.7, T ∗∗ : A∗∗ → Y ∗∗ is a 2-JB*-triple-
summing operator. Since A∗∗ is a unital JBW*-algebra, it follows, by Remark
3.2, that T ∗∗ (and hence T ) is a 2-JB*-summing operator.

4 Summing Operators on real JB*-triples

Real JB*-triples were defined by J. M. Isidro, W. Kaup, and A. Rodŕıguez
[13], as norm-closed real subtriples of complex JB*-triples. In [13], it is shown
that given a real JB*-triple E, then there exists a unique complex JB*-triple
structure on its complexification Ê = E ⊕ iE and a unique conjugation
(conjugate-linear isometry of period 2) τ on Ê such that E = Êτ := {z ∈ Ê :
τ(z) = z}. All JB-algebras, all real C*-algebras and obviously all complex
JB*-triples are examples of real JB*-triples. By a real JBW*-triple we mean a
real JB*-triple whose underlying Banach space is a dual Banach space. As in
the complex case, the triple product of every real JBW*-triple is separately
weak*-continuous [16], and the bidual E∗∗ of a real JB*-triple E is a real
JBW*-triple whose triple product extends the one of E [13]. Noticing that
every real JBW*-triple is a real form of a complex JBW*-triple [13], it follows
easily that, if W is a real JBW*-triple and if ϕ is a norm-one element in W∗,
then, for z ∈ W such that ϕ(z) = ‖z‖ = 1, the mapping x 7→ (ϕ {x, x, z}) 1

2

is a prehilbert seminorm on W (not depending on z). Such a seminorm will
be denoted by ‖.‖ϕ. The strong* topology on W , denoted by S∗(W,W∗), is
the topology on W generated by the family {‖.‖ϕ : ϕ ∈ SW∗}.
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As in the complex case, we say that a linear operator T from a real
JB*-triple E to a real Banach space Y is 2-JB*-triple-summing if there ex-
ists a positive constant C such that for every finite sequence (x1, . . . , xn) of
elements in E we have

n∑
i=1

‖T (xi)‖2 ≤ C
∥∥∥ n∑
i=1

L(xi, xi)
∥∥∥. (8)

The smallest constant C for which (8) holds is again denoted C2(T ).
Let T : E → F be a bounded linear operator between real JB*-triples

and let M >
√

2. Let us consider T̂ : Ê → F̂ the natural complex linear
extension of T . By Proposition 3.3∥∥∥ n∑

k=1

L(T̂ (zk), T̂ (zk))
∥∥∥ ≤ 2M2‖T̂‖2

∥∥∥ n∑
k=1

L(zk, zk)
∥∥∥,

for every finite sequence (z1, . . . , zn) ⊆ Ê. In particular, the inequality∥∥∥ n∑
k=1

L(T (xk), T (xk))
∥∥∥ ≤ 8M2‖T‖2

∥∥∥ n∑
k=1

L(xk, xk)
∥∥∥,

holds for every finite sequence (x1, . . . , xn) ⊆ E. We deduce, as in the
complex case, the following result.

Corollary 4.1. Let E and F be real JB*-triples, Y a real Banach space,
T : F → Y a 2-JB*-triple-summing operator, and R : E → F a bounded
linear operator. Then TR : E → Y is a 2-JB*-triple-summing operator.

Remark 4.2. Let E be a real JB*-triple, Y a real Banach space, and T :
E → Y a 2-JB*-triple-summing operator. We denote by Ỹ the complex
Banach space Y ⊕ iY equipped with the norm

‖x+ iy‖c := sup{‖αx− βy‖ : α + iβ ∈ C with |α + iβ| = 1}.

Then T can be extended to a complex linear operator T̂ : Ê → Ỹ . We claim
that T̂ is 2-JB*-triple-summing. Indeed, given (x1 + iy1, . . . , xn + iyn) ⊆ Ê
we have

n∑
k=1

‖T̂ (xk + iyk)‖2 ≤ 2

n∑
k=1

‖T (xk)‖2 + ‖T (yk)‖2 (9)

≤ C2(T )
∥∥∥2

n∑
k=1

L(xk, xk) + L(yk, yk)
∥∥∥
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Now, since S :=
∑n

k=1L(xk, xk) + L(yk, yk) is an hermitian operator on

Ê it follows, by Sinclair’s theorem, that

‖2S‖ = sup{2Φ(S(z)) : Φ ∈ S
bE∗ , z ∈ S bE ,Φ(z) = 1}

= sup{2
n∑
k=1

‖xk‖2
Φ + ‖yk‖2

Φ : Φ ∈ S
bE∗ , z ∈ S bE,Φ(z) = 1}

= sup{
n∑
k=1

‖xk + iyk‖2
Φ + ‖τ(xk + iyk)‖2

Φ : Φ ∈ S
bE∗, z ∈ S bE ,Φ(z) = 1}

≤
∥∥∥ n∑
k=1

L(xk + iyk, xk + iyk)
∥∥∥+

∥∥∥ n∑
k=1

L(τ(xk + iyk), τ(xk + iyk))
∥∥∥

= 2
∥∥∥ n∑
k=1

L(xk + iyk, xk + iyk)
∥∥∥.

Therefore, we conclude by (9) that T̂ is 2-JB*-triple-summing and C2(T̂ ) ≤
2C2(T ).

Let E be a real JB*-triple. Following [19], we known that given Φ ∈
D(BL(E), IE) then the mapping (x, y) → Φ(L(x, y)) from E × E to R is
a positive symmetric bilinear form on E, and hence ‖|x‖|2Φ := Φ(L(x, x))
defines a prehilbert seminorm on E.

With the help of the previous remark, we can now obtain the following
Pietsch’s factorization theorem in the setting of real JB*-triples.

Theorem 4.3. Let T be a linear operator from a real JB*-triple E with
values in a real Banach space Y . The following assertions are equivalent.

1. T is 2-JB*-triple-summing.

2. There is a state Ψ ∈ D(BL(E), IE) and a positive constant C(T ) such
that

‖T (x)‖ ≤ C(T )‖|x‖|Ψ
for every x ∈ E.

3. There are norm-one functionals ϕ1, ϕ2 in E∗ and a positive constant
C(T )′ such that

‖T (x)‖ ≤ C(T )′‖x‖ϕ1,ϕ2

for all x ∈ E.
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Proof. 1 ⇒ 2.− By Remark 4.2 above, we see that T can be extended to
a complex linear operator T̂ : Ê → Ỹ which is also 2-JB*-triple summing,
where Ỹ denotes the complexification of Y defined in Remark 4.2. Now by
Theorem 3.6 there exists a state Φ ∈ D(BL(Ê), I

bE) and a positive constant

C(T̂ ) such that

‖T (x)‖ ≤ C(T̂ )‖|x‖|Φ ≤ 2
√

2C2(T )‖|x‖|Φ

for every x ∈ E. By [19, Corollary 1.7] there exists Ψ ∈ D(BL(E), IE) such
that

‖|x‖|Φ = ‖|x‖|Ψ
for all x ∈ E. Therefore

‖T (x)‖ ≤ 2
√

2C2(T )‖|x‖|Ψ

for every x ∈ E.
The rest of the proof runs as in Theorem 3.6.

The next lemma can be derived form Theorem 4.3 above as Lemma 3.7
was derived from Theorem 3.6.

Lemma 4.4. Let T : E → Y be a 2-JB*-triple-summing operator from a real
JB*-triple to a Banach space. Then there are norm-one functionals ϕ1, ϕ2

in E∗ and a positive constant C(T ) such that

‖T ∗∗(α)‖ ≤ C(T )‖α‖ϕ1,ϕ2

for all α ∈ E∗∗. In particular T ∗∗ is 2-JB*-triple-summing.

Our last goal is to obtain a weak*-version of Theorem 4.3 above. The
next remark play a fundamental role in the proof of such result.

Remark 4.5. Let T : W → Y ∗ be a 2-JB*-triple-summing and weak*-
continuous operator form a real JBW*-triple to a dual Banach space. Let
us denote by Ŵ and τ the complexification of W and the canonical conjuga-
tion τ on Ŵ , respectively. We define

φ : Ŵ ∗ → Ŵ ∗
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by
φ(f)(z) = f(τ(z)).

From [13] we can assure that φ is a conjugation (conjugate-linear isometry

of period 2) on Ŵ ∗. Furthermore the map

(Ŵ ∗)φ := {f ∈ Ŵ ∗ : φ(f) = f} → (Ŵ τ )∗

f 7→ f |W
is an isometric bijection. In the same way, the predual W∗ of W can be
identified with (Ŵ∗)

φ := {f ∈ Ŵ∗ : φ(f) = f}. The construction can be

realized one more time to get a conjugation φ̂ on Ŵ ∗∗ such that

W ∗∗ ∼= (Ŵ ∗∗)
bφ.

Since T is weak*-continuous, there is a bounded linear operator R : W∗ →
Y such that R∗ = T . Let Ỹ denote the complexification of Y defined in
Remark 4.2 and R̃ : Ŵ∗ → Ỹ the complex linear extension of R. Then
T̃ := (R̃)∗ : Ŵ → (Ỹ )∗ is a weak*-continuous operator extending T to Ŵ

and verifying ‖T̃‖ = ‖R̃‖ ≤ 2‖R‖ = 2‖T‖. Now we can repeat the same

arguments given in Remark 4.2 to assure that T̃ is 2-JB*-triple-summing
(and C2(T̃ ) ≤ 2C2(T )).

We can now state the weak*-version of Theorem 4.3.

Theorem 4.6. Let T be a weak*-continuous linear operator from a real
JBW*-triple W with values in a real Banach space Y ∗. The following as-
sertions are equivalent.

1. T is 2-JB*-triple-summing.

2. There are norm-one functionals ϕ1, ϕ2 in W∗ and a positive constant
C(T ) such that

‖T (x)‖ ≤ C(T )‖x‖ϕ1,ϕ2

for all x ∈W .

Proof. 1 ⇒ 2.− By Remark 4.5 above, we see that T can be extended to a
weak*-continuous operator T̃ : Ŵ → (Ỹ )∗ which is also 2-JB*-triple sum-
ming, where Ỹ denotes the complexification of Y defined in Remark 4.2. Now
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by Theorem 3.5 there are norm-one functionals ψ1, ψ2 in Ŵ∗ and a positive
constant C(T̃ ) such that

‖T (x)‖ ≤ C(T̂ ) ‖x‖ψ1,ψ2 ≤ 2
√

2C2(T ) ‖x‖ψ1,ψ2 (10)

for all x ∈ W .
Let e1, e2 ∈ ScW with ψ1(e1) = ψ2(e2) = 1. The map (x, y) 7→ (x|y) :=

<e(ψ1 {x, y, e1}+ψ2 {x, y, e2}) is a positive bilinear form on W . If we denote
N := {x ∈ W : (x|x) = 0}, the quotient W/N can be completed to a a
Hilbert space, which is denoted by H . The natural quotient map of W on
H will be denoted by Jψ1,ψ2 . We note that, by the same arguments given
in the proof of [22, Corollary 1], it may be concluded that Jψ1,ψ2 is weak*-
continuous. Now By [18, Theorem 5] it follows that there exist norm-one
functionals ϕ1, ϕ2 ∈ SW∗ such that

‖Jψ1,ψ2(x)‖2 = <e(ψ1 {x, x, e1}+ ψ2 {x, x, e2}) = ‖x‖2
ψ1,ψ2

≤ 62 ‖x‖2
ϕ1,ϕ2

for all x ∈ W . Therefore, by (10), we conclude that

‖T (x)‖ ≤ 12
√

2C2(T ) ‖x‖ϕ1,ϕ2

for all x ∈ W .
The implication 2⇒ 1.− follows as in Theorem 3.5.

Remark 4.7. Let T : E → Y be a 2-summing operator from a real or com-
plex JB*-triple to a Banach space. Let ϕ ∈ SE∗ and z ∈ SE∗∗ satisfying
ϕ(z) = 1. By [2, Proof of Theorem 3.2] we have

|ϕ(x)| ≤ ‖x‖ϕ = (ϕ(L(x, x)z))
1
2

for all x in E , and hence

n∑
k=1

‖T (xk)‖2 ≤ C2(T )2 sup

{
n∑
k=1

f(L(x, x)z) : f ∈ SE∗ , z ∈ SE , f(z) = 1

}

≤ C2(T )2
∥∥∥ n∑
i=1

L(xi, xi)
∥∥∥,

for every finite sequence (x1, . . . , xn) ⊆ E . Therefore every 2-summing op-
erator from a real or complex JB*-triple to a Banach space is 2-JB*-triple-
summing.
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Corollary 4.8. Let T be a 2-summing operator from a real or complex JB*-
triple E to a Banach space. Then there are norm-one functionals ϕ1, ϕ2 in
E∗ and a positive constant C(T ) such that

‖T (x)‖ ≤ C(T )‖x‖ϕ1,ϕ2

for all x ∈ E.

Let X and Y be Banach spaces. We recall that an operator T : X → Y
is said to be of cotype q (2 ≤ q < ∞), if there is a constant C such that for
any {x1, . . . , xn} ⊆ X the inequality

( n∑
j=1

‖T (xj‖q
) 1
q ≤ C

(∫
D

‖
n∑
j=1

εjxj‖2d(µ)
) 1

2

holds, where εj ∈ {−1, 1}; D = {−1, 1}N and µ is the uniform probability
measure on D. A Banach space X is said to be of cotype q if IX is of cotype
q. By [21, page 120], we know that if X is a Banach space of cotype q then
IX is (q, 1)−summing, i. e., there is a constant C such that, for all finite
sequences (xi) in X, we have( n∑

i=1

‖xi‖q
) 1
q ≤ C sup{

n∑
i=1

|ξ(xi)| : ξ ∈ X∗, ‖ξ‖ ≤ 1}.

In general it can not be expected that if Y is a Banach space of cotype 2 then
IY could be 2-summing. However, as we are showing in what follows, if Y is
a Banach space of cotype 2 then every bounded linear operator from a real
or complex JB*-triple to Y is always 2-JB*-triple-summing. Indeed, in [7,
Theorem 12] C-H. Chu, B. Iochum and G. Loupias show that if T : E → Y
is a bounded linear operator from a JB*-triple to a Banach space of cotype
2, then there are norm-one functionals ϕ1, ϕ2 in E∗ and a positive constant
C(Y ) (depending only on Y ) such that

‖T (x)‖ ≤ C(Y )‖T‖ ‖x‖ϕ1,ϕ2 (11)

for all x ∈ E . Therefore, we conclude by Theorem 3.6 that T is 2-JB*-triple-
summing. We have thus proved the following corollary.

Corollary 4.9. Every bounded linear operator from a real or complex JB*-
triple to a Banach space of cotype 2 is 2-JB*-triple-summing.
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Remark 4.10. It is worth mentioning that in [7, Theorem 12] the authors
affirm that if T : E → Y is a bounded linear operator from a JB*-triple to
a Banach space of cotype 2, then there exists a norm-one functional ϕ in E∗
and a positive constant C(Y ) (depending only on Y ) such that

‖T (x)‖ ≤ C(Y )‖T‖ ‖x‖ϕ
for all x ∈ E . In the proof of this theorem, the result [7, Proposition 4] ([1,
Theorem 1.3]) play a fundamental role. Since, as we have mentioned before,
the proof of the last result contains some subtle difficulties (compare [17, 18]),
the original setting of [7, Theorem 12] is only a conjecture. However, when
in the Chu-Iochum-Loupias proof, [18, Theorem 3] (see also [19, Corollary
1.11]) replaces [7, Proposition 4] we obtain the statement in (11).
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[23] Rodŕıguez A.: Jordan structures in Analysis. In Jordan algebras: Proc.
Oberwolfach Conf., August 9-15, 1992 (ed. by W. Kaup, K. McCrimmon
and H. Petersson), 97-186. Walter de Gruyter, Berlin, 1994.

[24] Russo B.: Structure of JB*-triples. In Jordan algebras: Proc. Oberwol-
fach Conf., August 9-15, 1992 (ed. by W. Kaup, K. McCrimmon and
H. Petersson), 209-280. Walter de Gruyter, Berlin, 1994.


