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Abstract

We use computer algebra to show that a linearization of the opera-

tion of intermolecular recombination from theoretical genetics satisfies a

nonassociative polynomial identity of degree 4 which implies the Jordan

identity. We use the representation theory of the symmetric group to

decompose this new identity into its irreducible components. We show

that this new identity implies all the identities of degree ≤ 6 satisfied by

intermolecular recombination.

Introduction

In the theory of DNA computing many operations on formal languages are
studied which model the processes of molecular genetics. Computer scientists
approach these operations through the theory of monoids. Linearization of
these operations permits an approach through the theory of nonassociative alge-
bras (Bremner [2]). In particular the operation of intermolecular recombination
(Landweber and Kari [6], operation (2), page 9) has the form

uxv + u′xv′ =⇒ uxv′ + u′xv, (1)

where u, u′, v, v′, x are words over some alphabet S. This notation indicates
the replacement of two strings with a common substring by two other strings.
(For the general theory of DNA computing see Păun [9].) Operation (1) can be
interpreted as a bilinear product on a free partially commutative associative al-
gebra. We show that the resulting nonassociative operation is commutative and
satisfies a polynomial identity of degree 4 which implies the Jordan identity.
We use the representation theory of the symmetric group to decompose this
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new identity into its irreducible components. We show further that this identity
implies all the identities of degree ≤ 6 satisfied by intermolecular recombina-
tion. Our proofs are computational: we use Maple 9.5 (especially the packages
LinearAlgebra and LinearAlgebra[Modular]) running on a Sun Blade 1000
with 512 megabytes of RAM.

Jordan algebras first appeared in mathematical genetics in the work of Hol-
gate [4] on population genetics; the present paper establishes a connection be-
tween Jordan algebras and theoretical molecular genetics. (For the general
theory of Jordan algebras see McCrimmon [7].)

1 Preliminaries

Let S = {x1, . . . , xm} and T = {y1, . . . , yn} be two finite nonempty sets (the
alphabets); we may assume that S = T but this is not necessary. Let F be a field
and let A be the free partially commutative associative algebra on S ∪ T over
F: that is, A is the associative algebra generated by S ∪ T subject only to the
relations xiyj = yjxi for i = 1, . . . , m and j = 1, . . . , n. Let M(S) be the free
monoid on S; that is, the set of all finite words a = a1 · · · a` where ak ∈ S for
k = 1, . . . , `, with concatenation as the associative binary operation. (We allow
` = 0 giving the empty word 1.) Since any basis monomial for A can be written
(using partial commutativity) in the form a′a′′ with a′ ∈ M(S), a′′ ∈ M(T ),
we see that the algebra A has a basis over F consisting of the ordered pairs
(a′, a′′) ∈ M(S) × M(T ). With respect to this basis the natural associative
operation on A takes the form (a′, a′′)(b′, b′′) = (a′b′, a′′b′′). We introduce a
new operation . (splicing) on A defined on basis elements by

(a′, a′′) . (b′, b′′) = (a′, b′′), (2)

and extended bilinearly to all of A. It is easy to check that this operation is again
associative. We now define the operation ◦ (intermolecular recombination) to
be the Jordan product obtained from (2) defined on basis elements by

(a′, a′′) ◦ (b′, b′′) = (a′, a′′) . (b′, b′′) + (b′, b′′) . (a′, a′′) = (a′, b′′) + (b′, a′′),

and extended bilinearly. This is the nonassociative linearization of operation
(1). The substring x is now superfluous; equivalently, we take x to be the
empty word. (Taking x to be nonempty is related to the theory of mutations of
algebras; see Elduque and Myung [3].) From this definition and the fact that
splicing is associative it follows immediately that intermolecular recombination
is commutative and satisfies the Jordan identity. However we will see that it
satisfies a much stronger identity.

We assume that the base field F has characteristic 0; this implies that every
polynomial identity over F is equivalent to a set of homogeneous multilinear
identities (Zhevlakov [11], Chapter 1). From now on we omit the symbol ◦ and
write intermolecular recombination simply as juxtaposition:

ab = (a′, a′′)(b′, b′′) = (a′, b′′) + (b′, a′′). (3)
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(ab)c (ac)b (bc)a
(a′, b′′) 0 1 1
(a′, c′′) 1 0 1
(b′, a′′) 0 1 1
(b′, c′′) 1 1 0
(c′, a′′) 1 0 1
(c′, b′′) 1 1 0

Table 1: The expansion matrix in degree 3

The polynomial identities we study are elements of the nullspace of the expan-
sion matrix. For degree n, this matrix has columns labelled by the commuta-
tive nonassociative monomials in the variables ak for i = 1, . . . , n where ak =
(a′

k, a′′

k), and rows labelled by the ordered pairs (a′

k, a′′

` ) with 1 ≤ k 6= ` ≤ n.

Proposition 1. The expansion matrix in degree n has size n(n−1)× (2n−3)!!
where for odd m the symbol m!! is the product of all odd integers from 1 to m.

Proof. The number of distinct multilinear commutative nonassociative mono-
mials of degree n equals (2n − 3)!! (see Bremner [1], Proposition 1, page 80 for
the anticommutative case; since we consider multilinear monomials, the same
proof works in the commutative case). Since each variable ak for k = 1, . . . , n

represents an ordered pair (a′

k, a′′

k) we see that n2 −n distinct ordered pairs can
arise as terms in the expansion of each monomial (all ordered pairs (a′

k, a′

`) with
k 6= `). The (i, j) entry of the expansion matrix contains the coefficient of the
i-th ordered pair in the expansion of the j-th nonassociative monomial.

2 Identities of degree 3

Lemma 2. Every identity of degree ≤ 3 satisfied by intermolecular recombina-
tion follows from the commutative identity ab = ba.

Proof. For a commutative nonassociative operation there are three inequivalent
multilinear monomials in degree 3: (ab)c, (ac)b, (bc)a. Since we consider mul-
tilinear identities it suffices to replace the variables a, b, c by basis elements in
M(S) × M(T ). So we write a = (a′, a′′), b = (b′, b′′), c = (c′, c′′). When we
evaluate any of the three monomials each term in the result is one of the six
basis elements (a′, b′′), (a′, c′′), (b′, a′′), (b′, c′′), (c′, a′′), (c′, b′′). We can there-
fore store the expansions of the monomials in the columns of the 6×3 matrix in
Table 1. Any identity of degree 3 for intermolecular recombination which is not
a consequence of commutativity must lie in the nullspace of this matrix. The
matrix has rank 3, and hence nullspace {0}.

3











































0 0 0 1 0 1 0 1 0 1 2 2 0 1 1
0 1 0 0 1 0 0 1 2 2 0 1 1 0 1
1 0 1 0 0 0 2 2 0 1 0 1 1 1 0
0 0 0 1 0 1 0 1 0 1 2 2 0 1 1
0 1 0 1 2 2 0 0 1 0 1 0 1 1 0
1 0 2 2 0 1 1 0 0 0 1 0 1 0 1
0 1 0 0 1 0 0 1 2 2 0 1 1 0 1
0 1 0 1 2 2 0 0 1 0 1 0 1 1 0
2 2 1 0 1 0 1 0 1 0 0 0 0 1 1
1 0 1 0 0 0 2 2 0 1 0 1 1 1 0
1 0 2 2 0 1 1 0 0 0 1 0 1 0 1
2 2 1 0 1 0 1 0 1 0 0 0 0 1 1









































Table 2: The expansion matrix in degree 4

3 Identities of degree 4

3.1 Computational linear algebra

Theorem 3. Every identity of degree ≤ 4 satisfied by intermolecular recombi-
nation follows from the commutative identity and the identity

(ab)(cd) = ((ab)d)c + ((ac)b)d + ((bc)a)d − 2((ab)c)d. (4)

This identity is symmetric in a, b.

Proof. By Lemma 2 it suffices to consider identities of degree 4. By Proposition
1 the expansion matrix has size 12 × 15 which we create using Maple’s Matrix
command. The row labels of this matrix are the 12 ordered pairs:

(a′, b′′), (a′, c′′), (a′, d′′), (b′, a′′), (b′, c′′), (b′, d′′),

(c′, a′′), (c′, b′′), (c′, d′′), (d′, a′′), (d′, b′′), (d′, c′′).

The column labels of this matrix are the 15 nonassociative monomials:

((ab)c)d, ((ab)d)c, ((ac)b)d, ((ac)d)b, ((ad)b)c, ((ad)c)b,

((bc)a)d, ((bc)d)a, ((bd)a)c, ((bd)c)a, ((cd)a)b, ((cd)b)a, (5)

(ab)(cd), (ac)(bd), (ad)(bc).

We compute the expansions of the monomials and store the results to get
the expansion matrix displayed in Table 2. We now use the Maple procedure
ReducedRowEchelonForm to compute the row canonical form of the expansion
matrix which is displayed in Table 3. (We omit the zero rows at the bottom
of the matrix.) This matrix has rank 6, and so its nullspace has dimension 9.
We use Maple’s NullSpace procedure to find a basis for the nullspace which
consists of the rows N1, . . . , N9 of the matrix N displayed in Table 4.
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1 0 0 0 0 1 0 −3 −3 −5 0 −3 −2 1 −2
0 1 0 0 0 −1 0 3 3 5 1 4 1 0 3
0 0 1 0 0 −1 0 −1 1 0 −2 −2 1 −2 0
0 0 0 1 0 1 0 1 0 1 2 2 0 1 1
0 0 0 0 1 1 0 −2 −1 −3 −1 −3 0 0 −2
0 0 0 0 0 0 1 3 1 3 1 3 1 1 1

















Table 3: The row canonical form of the expansion matrix in degree 4





























−1 1 1 −1 −1 1 0 0 0 0 0 0 0 0 0
3 −3 1 −1 2 0 −3 1 0 0 0 0 0 0 0
3 −3 −1 0 1 0 −1 0 1 0 0 0 0 0 0
5 −5 0 −1 3 0 −3 0 0 1 0 0 0 0 0
0 −1 2 −2 1 0 −1 0 0 0 1 0 0 0 0
3 −4 2 −2 3 0 −3 0 0 0 0 1 0 0 0
2 −1 −1 0 0 0 −1 0 0 0 0 0 1 0 0

−1 0 2 −1 0 0 −1 0 0 0 0 0 0 1 0
2 −3 0 −1 2 0 −1 0 0 0 0 0 0 0 1





























Table 4: A basis for the nullspace of the expansion matrix in degree 4

For each basis vector in the nullspace, we apply all 24 permutations of
a, b, c, d to the corresponding identity, straighten the terms to obtain mono-
mials in the standard form (5), and store the results in a matrix of size 24× 15.
The row space of this matrix is the S4-submodule generated by the basis vector.
For the basis vectors listed in Table 4, the corresponding dimensions are 3, 6,
6, 6, 6, 6, 9, 9, 9. For row 7, which corresponds to identity (4), the matrix we
obtain is displayed in Table 5. Using Maple’s Rank command, we find that this
matrix has rank 9, and so the row space of this matrix equals the nullspace of
the expansion matrix.

Identity (4) can be proved directly using the formulas

(ab)c = ac + bc,

((ab)c)d = ac + bd + 2cd,

(ab)(cd) = ac + ad + bc + bd,

which can be easily derived using definition (3). This however does not prove
that identity (4) implies all the identities of degree ≤ 4 satisfied by intermolec-
ular recombination.

Corollary 4. Every commutative nonassociative algebra satisfying identity (4)
is a Jordan algebra.

Proof. Setting a = b = c in (4) gives the Jordan identity −(a2d)a + a2(da).

5



























































































2 −1 −1 0 0 0 −1 0 0 0 0 0 1 0 0
−1 2 0 0 −1 0 0 0 −1 0 0 0 1 0 0
−1 0 2 −1 0 0 −1 0 0 0 0 0 0 1 0

0 0 −1 2 0 −1 0 0 0 0 −1 0 0 1 0
0 −1 0 0 2 −1 0 0 −1 0 0 0 0 0 1
0 0 0 −1 −1 2 0 0 0 0 −1 0 0 0 1
2 −1 −1 0 0 0 −1 0 0 0 0 0 1 0 0

−1 2 0 0 −1 0 0 0 −1 0 0 0 1 0 0
−1 0 −1 0 0 0 2 −1 0 0 0 0 0 0 1

0 0 0 0 0 0 −1 2 0 −1 0 −1 0 0 1
0 −1 0 0 −1 0 0 0 2 −1 0 0 0 1 0
0 0 0 0 0 0 0 −1 −1 2 0 −1 0 1 0

−1 0 2 −1 0 0 −1 0 0 0 0 0 0 1 0
0 0 −1 2 0 −1 0 0 0 0 −1 0 0 1 0

−1 0 −1 0 0 0 2 −1 0 0 0 0 0 0 1
0 0 0 0 0 0 −1 2 0 −1 0 −1 0 0 1
0 0 0 −1 0 −1 0 0 0 0 2 −1 1 0 0
0 0 0 0 0 0 0 −1 0 −1 −1 2 1 0 0
0 −1 0 0 2 −1 0 0 −1 0 0 0 0 0 1
0 0 0 −1 −1 2 0 0 0 0 −1 0 0 0 1
0 −1 0 0 −1 0 0 0 2 −1 0 0 0 1 0
0 0 0 0 0 0 0 −1 −1 2 0 −1 0 1 0
0 0 0 −1 0 −1 0 0 0 0 2 −1 1 0 0
0 0 0 0 0 0 0 −1 0 −1 −1 2 1 0 0

























































































Table 5: Row space of this matrix is the submodule generated by identity (4)

Question: Is every algebra satisfying identity (4) a special Jordan algebra? (In
other words, is it isomorphic to a subspace of an associative algebra A which is
closed under the Jordan product ab + ba?)

3.2 Representations of the symmetric group

The proof of Theorem 3 shows that identity (4) generates a submodule R of
dimension 9 of the S4-module of all possible multilinear commutative nonasso-
ciative polynomials of degree 4. A similar calculation shows that the multilinear
form of the Jordan identity generates a submodule of dimension 4. It is in this
sense (comparing dimensions) that identity (4) is much stronger than the Jor-
dan identity. We can make precise the difference between identity (4) and the
Jordan identity by applying the representation theory of the symmetric group
S4. We use the Maple command combinat[character](4) to compute the
character table of S4 which is displayed in Table 6. The rows are labelled by the
partitions of 4 which identify the irreducible representations of S4; the columns
are labelled by representatives of the conjugacy classes in S4 (expressed as prod-
ucts of disjoint cycles). If we know the character of a representation of S4 (the
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() (ab) (ab)(cd) (abc) (abcd)
[4] 1 1 1 1 1
[31] 3 1 −1 0 −1
[22] 2 0 2 −1 0
[211] 3 −1 −1 0 1
[1111] 1 −1 1 1 −1

Table 6: The character table of the symmetric group S4

trace of a representative of each conjugacy class), then we can use the character
table to decompose the representation into its irreducible components. (For the
representation theory of the symmetric group see James and Kerber [5].)

Proposition 5. The 9-dimensional representation r : S4 → GL(R) generated
by identity (4) decomposes as

R = [4] ⊕ [31] ⊕ [22]⊕ [211],

the direct sum of one copy of each irreducible representation for each of the first
four partitions of 4.

Proof. We apply each conjugacy class representative to the polynomial identity
corresponding to each basis vector of the nullspace of the expansion matrix
(the rows N1, . . . , N9 of the matrix N in Table 4) and use the Maple procedure
LinearSolve to express the result as a linear combination of the basis vectors.
That is, for each conjugacy class representative π ∈ S4 we compute the matrix
r(π) ∈ GL(R) defined by the equation

r(π)(Nj ) =

9
∑

i=1

r(π)ijNi.

For representative (), the identity permutation, we obtain the 9 × 9 identity
matrix. For the other four representatives we obtain the matrices displayed in
Tables 7–10. The list of traces is [9, 1, 1, 0, 1]. Since the characters form a basis
for the space of all class functions on S4, we can determine the decomposition
by using LinearSolve again to express this vector as a linear combination of
the rows of the character table.

For the (multilinear form of the) Jordan identity a similar computation gives
a 4-dimensional representation of S4 with decomposition [4]⊕[31]. The first irre-
ducible summand corresponds to the (multilinear form of the) power associative
identity

(a2a)a = (a2)2, (6)

and the second irreducible summand corresponds to the identity

a(b(cd)) − b(a(cd)) = (a(bc))d − (b(ac))d + c(a(bd)) − c(b(ad)), (7)
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0 0 0 1 0 0 0 0 0
−1 −1 0 −1 −2 −2 0 −1 −1
−1 2 1 3 1 3 0 0 2

1 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1 0





























Table 7: Representing matrix for (ab)





























0 1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0
1 1 −1 0 2 2 −1 2 0

−1 −1 0 −1 −2 −2 0 −1 −1
0 0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1





























Table 8: Representing matrix for (ab)(cd)

which states that the commutator of two multiplication operators is a deriva-
tion. In addition to these two identities, intermolecular recombination satisfies
two other identities corresponding to the irreducible summands [22] ⊕ [211] of
Proposition 5.

Proposition 6. The summands [22] and [211] of Proposition 5 are generated
respectively by the identities

((ab)c)d + ((ab)d)c − ((ad)b)c − ((ad)c)b − ((bc)a)d − ((bc)d)a

+ ((cd)a)b + ((cd)b)a + 2(ab)(cd) − 2(ad)(bc) = 0, (8)

((ab)c)d − ((ab)d)c − ((ac)b)d + ((ac)d)b + ((ad)b)c − ((ad)c)b = 0. (9)

Proof. To determine the remaining two generators we use the projection oper-
ators onto the isotypic components of a representation (Serre [10], Theorem 8,
page 21):

Pi =
ni

24

∑

π∈S4

χi(π)r(π). (10)

Here ni is the dimension of the i-th irreducible representation of S4 (from the
first column of the character table) and χi is the character of that representa-
tion (row i of the character table); Pi is the projection onto the corresponding
isotypic component (the sum of all subrepresentations of R isomorphic to that
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0 0 0 0 0 1 0 0 0
1 −3 −3 −5 −1 −4 −1 0 −3
1 0 0 0 0 0 0 0 0

−1 2 1 3 1 3 0 0 2
0 0 0 1 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0 0





























Table 9: Representing matrix for (abc)





























0 0 0 0 0 1 0 0 0
−1 3 3 5 0 3 2 −1 2
−1 −1 0 −1 −2 −2 0 −1 −1

1 1 −1 0 2 2 −1 2 0
0 1 0 0 0 0 0 0 0
0 −3 −1 −3 −1 −3 −1 −1 −1
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 1 0 0





























Table 10: Representing matrix for (abcd)

representation). To evaluate this formula, we first compute the matrix r(π)
representing each permutation as we did for the conjugacy class representatives
in the proof of Proposition 5. We write a procedure to compute the disjoint
cycle factorization of each permutation, and then we use the Maple commands
permgroup and group[areconjugate] to determine the conjugacy class of each
permutation. We then use Maple’s MatrixAdd procedure to evaluate the sum
(10). For i = 3, 4 we obtain the matrices in Tables 11 and 12.

A basis for each isotypic component is the column space of each matrix. By
Proposition 5 we know that each isotypic component is in fact irreducible, so
the column spaces will have dimensions 2 and 3. We use Maple’s ColumnSpace
procedure to compute a basis for each isotypic component, and then we use
MatrixVectorMultiply to compute NT v for each basis vector v, which changes
basis from the 9 rows of matrix N to the 15 nonassociative monomials (5). For
i = 3, the irreducible summand [22] is generated by identity (8), which alternates
in the pairs a, c and b, d. For i = 4, the irreducible summand [211] is generated
by identity (9), which is an alternating sum over b, c, d.

A classification of irreducible identities of degree 4 for commutative nonas-
sociative algebras is given by Osborn [8].
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0 0 0 0 0 0 −2 −2 4
0 0 0 0 0 0 −2 −2 4
0 0 0 0 0 0 −2 4 −2
0 0 0 0 0 0 −2 4 −2
0 0 0 0 0 0 4 −2 −2
0 0 0 0 0 0 4 −2 −2
0 0 0 0 0 0 8 −4 −4
0 0 0 0 0 0 −4 8 −4
0 0 0 0 0 0 −4 −4 8





























Table 11: Projection matrix for isotypic component [22]





























8 −8 −8 −16 0 −8 −4 4 −8
0 16 8 16 8 16 4 4 8
0 8 8 8 0 8 4 0 4
0 −8 −8 −8 0 −8 −4 0 −4
0 8 0 8 8 8 0 4 4
0 −8 0 −8 −8 −8 0 −4 −4
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0





























Table 12: Projection matrix for isotypic component [211]

4 Identities of degree 5

Theorem 7. Every identity of degree ≤ 5 satisfied by intermolecular recombi-
nation follows from commutativity and identity (4).

Proof. We follow the same algorithm as in the proof of Theorem 3; that result
also shows that it suffices to consider identities of degree 5. By Proposition
1 the expansion matrix in degree 5 has size 20 × 105. We compute that this
matrix has rank 10, and so there are 95 linearly independent identities satisfied
by intermolecular recombination in degree 5. We will show that they are all
consequences of identity (4). We write identity (4) in the form

I(a, b, c, d) = 2((ab)c)d − ((bc)a)d − ((ac)b)d − ((ab)d)c + (ab)(cd). (11)

There are five distinct ways to lift this identity to degree 5:

I(ae, b, c, d), I(a, be, c, d), I(a, b, ce, d), I(a, b, c, de), I(a, b, c, d)e. (12)

(Since I(a, b, c, d) = I(b, a, c, d) we could simplify the computations a little by
omitting the second lifting.) We create a matrix of size 225× 105, consisting of
a block of size 105 × 105 on top of a block of size 120 × 105, and initialize it
to zero. We apply all 120 permutations of a, b, c, d, e to the first lifted identity
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I(ae, b, c, d) and store the results in the lower block. We then compute the row
canonical form of the matrix; the lower block is now zero. We repeat this fill and
reduce process with the other four lifted identities, preserving at each stage the
relations in the upper block. After all five lifted identities have been processed,
the matrix has rank 95, which shows that the space of lifted identities equals
the space of all identities in degree 5.

5 Identities of degree 6

To study identities of degree 6 we will use linear algebra over a finite field as
implemented in the Maple package LinearAlgebra[Modular]. This is necessary
to keep control over the size of the entries when computing the row canonical
form of a large matrix. This approach is justified by the following result.

Lemma 8. The decompositions of any integral representation of Sn over the
field Q of rational numbers and over the field Fp with p elements where p > n

have the same multiplicities of irreducible components.

Proof. By the representation theory of the symmetric group Sn, we know that
the group algebra FSn is semisimple for any field F of characteristic 0 or p > n.
Furthermore, since Q is a splitting field for Sn (that is, all the characters take
values in Q), for the field Fp with p > n we have the algebra isomorphism

ZSn ⊗Z Fp
∼= FpSn.

This guarantees that the decomposition of any integral representation of Sn will
be the same over Q and over Fp for any p > n.

Theorem 9. Every identity of degree ≤ 6 satisfied by intermolecular recombi-
nation follows from commutativity and identity (4).

Proof. By Theorem 7 it suffices to consider identities of degree 6. By Proposition
1 the expansion matrix in degree 6 has size 30×945. As in the proof of Theorems
3 and 7, but now using modular arithmetic with p = 101, we find that this
matrix has rank 15, and so there are 930 linearly independent identities satisfied
by intermolecular recombination in degree 6. We will show that they are all
consequences of identity (4). Each of the five liftings of I(a, b, c, d) to degree 5
can be lifted to degree 6 in six different ways. After processing these 30 lifted
identities in degree 6 we obtain a matrix of rank 930, which shows that the
space of lifted identities equals the space of all identities in degree 6.
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