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Abstract—Nonassociative division algebras have been recently
proposed as an alternative way to design fully-diverse space-
time codes. In particular, nonassociative cyclic algebras provide
division algebras more easily than their associative counter-part.
In this paper, we propose a few space-time code constructions
coming from both associative and nonassociative cyclic algebras
of degree 4, suitable for 4 transmit and 2 receive antennas, which
furthermore exhibit good fast-decodability.

I. INTRODUCTION

Following the seminal work by Sethuraman et al. [1],
division algebras, or to be more precise, associative division
algebras have been adopted as a tool to construct fully-diverse
space-time codes. Many good space-time codes coming from
division algebras are by now available in the literature, though
their main drawback stays their decoding complexity: these
codes possess a lattice structure, and maximum likelihood
(ML) decoding of a lattice code via sphere decoding remains
costly. In [2], Biglieri et al. introduced the notion of fast-
decodable space-time codes, that is space-time codes whose
code design takes into account not only the performance of the
code, but also its decoding complexing via sphere decoding.
This triggered an already rich line of research, looking for fast-
decodable codes. The particular case of MIDO (standing for
multiple input double output) space-time codes has attracted a
particular amount of attention, due to its potential application
to digital broadcasting, for scenarios where the end user is
carrying a portable device, whose number of antennas is less
than that of the transmitter. From a coding perspective, a
full rate space-time code for a MIDO channel carries 16 real
information symbols instead of 32, offering several degrees
of freedom that can be used to derive fast-decodable codes
from division algebras. This has been already exploited for
example in [3] where fast-decodable codes were derived by
puncturing codewords coming from cyclic division algebras
over a big center, in [4] where crossed product algebras over
Q were considered, or in [5] through an iterated quaternion
algebra construction. Using division algebras is of course not
the only way to get fast-decodable codes, see for example [6],
[7], [8].

Recently, nonassociative quaternion division algebras have
been proposed as an alternative way to obtain fully-diverse
space-time codes [9]. It is well understood that nonassocia-

tive finite-dimensional real division algebras can only have
dimension 1, 2, 4 or 8 [12], and in fact, the best known
finite-dimensional real division algebras are R, C, Hamilton’s
quaternions H and Cayley’s octonions O. Real nonassociative
division algebras in general are however far from being
classified. The situation becomes even more difficult when
looking at other base fields like number fields, which is the
case typically of interest in the context of space-time coding,
or finite fields, where there are no restrictions on the possible
dimensions of division algebras any more.

In [10], new nonassociative algebras have been found. Their
construction is similar to the one of associative cyclic algebras,
however they turn out to be highly nonassociative. These
algebras were called nonassociative cyclic algebras. They exist
over any base field possessing a cyclic field extension of
degree n. They are unital and of dimension nn. In particular,
we will consider nonassociative cyclic algebras of dimension
16. They contain a cyclic field extension of degree four as
a subalgebra and when division, can be used to design fully
diverse 4× 4-STBCs, similarly to the associative case.

In this paper, we address the design of MIDO space-
time codes coming from cyclic algebras, both associative
and nonassociative, of dimension 16. After recalling how to
design space-time codes from associative algebras briefly in
Section II, and more in detail for the less familiar case of
nonassociative algebras in Section III, we discuss both their
encoding in Section IV. We will present a few code con-
structions in Section V, which exhibit good fast-decodability
properties. Advantages of codes constructed from associative
and nonassociative cyclic algebras will be discussed, though
we already emphasize here that nonassociative cyclic algebras
provide division algebras much more easily than their asso-
ciative counterpart, which in itself make them interesting to
study in the context of space-time coding.

II. CODES FROM ASSOCIATIVE ALGEBRAS

Let K/F be a cyclic Galois extension of degree 4 with
Galois group G = Gal(K/F ) = 〈σ〉, and let γ be a
nonzero element of F . An associative cyclic algebra A is a 4-
dimensional K-vector space with {1, e, e2, e3} as a K-basis,
namely

A := K ⊕Ke⊕Ke2 ⊕Ke3,



where multiplication is given by

e4 = γ, el = σ(l)e, (1)

for every l in K. It is denoted A = (K/F, σ, γ). Since the
case of associative algebras is well-known (e.g. [1]), we will
just recall here that codewords coming from this algebra are
obtained by considering multiplication matrices of the form

y0 σ(y3)γ σ2(y2)γ σ3(y1)γ
y1 σ(y0) σ2(y3)γ σ3(y2)γ
y2 σ(y1) σ2(y0) σ3(y3)γ
y3 σ(y2) σ2(y1) σ3(y0)

 (2)

where y0, . . . , y3 ∈ K and that this matrix corresponds to
multiplication by y = y0 + y1e + y2e

2 + y3e
3. To get fully-

diverse codewords, it is enough for this algebra to be division,
which is guaranteed if γ ∈ F is chosen such that the smallest
integer t ≥ 0 with γt ∈ NK/F (K×) is t = 4.

III. CODES FROM NON-ASSOCIATIVE ALGEBRAS

Let us first recall a few basic properties of nonassociative
algebras.

A. Nonassociative cyclic algebras

Let A be a finite-dimensional F -vector space. We assume
there is an F -bilinear map A × A → A, (x, y) → x · y, also
denoted simply by juxtaposition xy, called a multiplication
on A. Every vector space A together with a multiplication
A×A→ A is called an algebra over F . This definition does
not mean the algebra is associative, we only have c(xy) =
(cx)y = x(cy) for all c ∈ F , x, y ∈ A. Hence we also call
such an algebra a nonassociative algebra. A nonassociative
algebra A is called unital if there is an element in A (which
can be shown to be uniquely determined), denoted by 1, such
that 1x = x1 = x for all x ∈ A. The associator of x, y, z ∈ A
is defined to be

[x, y, z] := (xy)z − x(yz).

The nucleus of A is then defined as

N(A) := {x ∈ A | [x,A,A] = [A, x,A] = [A,A, x] = 0}.

It is an associative subalgebra of A (it may be zero), and
x(yz) = (xy)z whenever one of the elements x, y, z is in
N(A). The nucleus of the algebra A contains all the elements
of A which associate with every other two elements in A.

A nonassociative F -algebra A is called a division algebra
if for any a ∈ A, a 6= 0, the left multiplication with a,
La(x) = ax, and the right multiplication with a, Ra(x) = xa,
are bijective. Since we are working with finite-dimensional
vector spaces, A is a division algebra if and only if A has no
zero divisors [11].

Let K/F be a cyclic Galois extension of degree 4, with
Galois group G = Gal(K/F ) = 〈σ〉, and pick a nonzero
element γ ∈ K\F . A nonassociative algebra A can be formed
as follows. Let A be the 4-dimensional K-vector space with
K-basis given by {1, e, e2, e3}, such that

A := K ⊕Ke⊕Ke2 ⊕Ke3.

Define a multiplication on A via the following rules for all
l,m ∈ K, which then are extended linearly to all elements of
A:

l(mej) = (lm)ej , j = 1, 2, 3
(le)m = (lσ(m))e, (le)(me) = (lσ(m))e2

(le)(me2) = (lσ(m))e3, (le)(me3) = (lσ(m))γ
(le2)m = (lσ2(m))e2, (le2)(me) = (lσ2(m))e3

(le2)me2 = (lσ2(m))γ, (le2)(me3) = (lσ2(m))γe,
(le3)m = (lσ3(m))e3, (le3)(me) = (lσ3(m)))γ,
(le3)me2 = (lσ3(m))γe, (le3)(me3) = (lσ3(m))γe2.

We observe that the way to build the algebra A is similar to
the associative case (1): we again obtain that el = σ(l)e and
also that eiej = γ for all integers i, j such that i + j = 4,
so that the expression e4 is well-defined and, indeed, e4 = γ.
Thus we again use the notation A = (K/F, σ, γ). It can be
shown that the nucleus of A is K, while its center is F . These
algebras are new unital nonassociative division algebras [10].
We call A a nonassociative cyclic algebra of dimension 16.

B. Codes from nonassociative cyclic algebras

Let K/F be a cyclic field extension of degree four. Let
A = (K/F, σ, γ) be an associative or nonassociative cyclic
F -algebra (i.e., γ ∈ F× or γ ∈ K \ F ).

In order to design space-time codes, cyclic associative
division algebras are considered as a vector space over their
subfield K, yielding fully diverse 4×4 codes. Given a nonas-
sociative F -algebra with a subfield K, this method is usually
not possible because of the nonexistence of the associative
law. However, the nonassociative algebras A presented above
are special in that the subfield K of the nonassociative cyclic
algebra is such that K = N(A).

Consider A as a right K-vector space of dimension 4. After
a choice of a K-basis for A, we can embed the right K-vector
space EndK(A) into the vector space Mat4(K). This way we
get an embedding

λ : A→ Mat4(K)

of vector spaces. Obviously, we have X ± Y ∈ λ(A) for all
X,Y ∈ λ(A). Thus if we choose a subset C of λ(A), the
difference of two distinct elements of C will also lie in λ(A),
and C can be chosen for a codebook.

Similarly to the associative case, a matrix is associated to
an element of the algebra via the regular representation. More
precisely, the right regular representation, i.e., the matrix of
right multiplication by an element y = y0 +y1e+y2e

2 +y3e
3

in the basis {1, e, e2, e3} can be computed to be
y0 σ(y3)γ σ2(y2)γ σ3(y1)γ
y1 σ(y0) σ2(y3)γ σ3(y2)γ
y2 σ(y1) σ2(y0) σ3(y3)γ
y3 σ(y2) σ2(y1) σ3(y0)

 . (3)

We note that codewords obtained from nonassociative cyclic
algebras are actually very similar to those obtained from as-
sociative cyclic algebras, apart from the choice of the element
γ.



We would like to point out here that the codewords obtained
above cannot be obtained from a representation of an associa-
tive algebra: would this be the case, we would be able to take
any two non-zero matrices in λ(A), multiply them and again
obtain an element in λ(A). This, however, is not the case due
to our choice of γ ∈ K \ F . Since this means that σ(γ) 6= γ,
a straightforward computation shows this immediately.

It remains to check when a codebook formed by such
matrices is fully diverse. This is indeed the case for any choice
of γ in K but not in F , such that 1, γ, γ2, γ3 are linearly
independent over F [10]. Observe to that effect that the highest
power of γ in the determinant of (3) is γ3, and comes from
the term

NK/F (y3)γ3

where NK/F denotes the algebraic norm (not to be mistaken
for N which stands for the nucleus). There is also a term
without γ, which is the one coming from the main diagonal:

NK/F (y0).

Suppose that the elements 1, γ, γ2, γ3 are linearly indepen-
dent over F and that the determinant of (3) is zero, then
NK/F (y0) = NK/F (y3) = 0. Since the map NK/F is non-
degenerate, this implies that y0 = y3 = 0, and (3) becomes

0 0 σ2(y2)γ σ3(y1)γ
y1 0 0 σ3(y2)γ
y2 σ(y1) 0 0
0 σ(y2) σ2(y1) 0

 .
The highest power of γ in this determinant is now γ2, with
coefficient NK/F (y2), showing that y2 = 0, and similarly y1
must be zero. This shows that right multiplication by y is an
invertible endomorphism for all nonzero y and thus A is a
division algebra, inducing a fully-diverse codebook.

IV. ENCODING AND FAST DECODABILITY

Let K/F be a cyclic Galois extension of degree 4, with
Galois group G = Gal(K/F ) = 〈σ〉.

Suppose that γ is of the form −γ′ where γ′ is a positive
real number (in what follows we will use by abuse of notation
−γ where γ is a positive real number to avoid introducing
more notation). Then (3) becomes

y0 −γσ(y3) −γσ2(y2) −γσ3(y1)
y1 σ(y0) −γσ2(y3) −γσ3(y2)
y2 σ(y1) σ2(y0) −γσ3(y3)
y3 σ(c) σ2(y1) σ3(y0)


where y0, y1, y2, y3 ∈ K. By exchanging the second and third
row and the second and third column of the above matrix, we
obtain 

y0 −γσ2(y2) −γσ(y3) −γσ3(y1)
y2 σ2(y0) σ(y1) −γσ3(y3)
y1 −γσ2(y3) σ(y0) −γσ3(y2)
y3 σ2(y1) σ(y2) σ3(y0)

 .
Notice that the determinant of the 4×4 matrix is not changed
when we multiply the second and fourth column by 1/

√
γ

and the second and fourth row by
√
γ. Renaming the variables

a, b, c, d we obtain the code C given by codewords of the form
a −√γσ2(b) −γσ(d) −√γσ3(c)√
γb σ2(a)

√
γσ(c) −γσ3(d)

c −√γσ2(d) σ(a) −√γσ3(b)√
γd σ2(c)

√
γσ(b) σ3(a)

 . (4)

This code can be seen as a vector space of dimension 16 over
F , with F -basis B1, . . . , B16. Let {θ1, θ2, θ3, θ4} be an F -
basis of K, so that

a =
4∑

j=1

ajθj , b =
4∑

j=1

bjθj , c =
4∑

j=1

cjθj , d =
4∑

j=1

djθj .

Then B1, B2, B3, B4 are given by
θj

σ2(θj)
σ(θj)

σ3(θj)

 , j = 1, . . . , 4,

B5, B6, B7, B8 by

√
γ


−σ2(θj)

θj

−σ3(θj)
σ(θj)

 , j = 1, . . . , 4,

B9, B10, B11, B12 by
−√γσ3(θj)√

γσ(θj)
θj

σ2(θj)

 , j = 1, . . . , 4

and finally B13, B14, B15, B16 by
−γσ(θj)

−γσ3(θj)
−√γσ2(θj)√

γθj

 , j = 1, . . . , 4.

It was shown in [8] that the decoding complexity of the
space-time code with F -basis B1, . . . , B16 can be read from
the matrix M whose coefficients mjk are given by

mjk = ||BjB
∗
k +BkB

∗
j ||F ,

where F refers to the Frobenius norm of matrices and ()∗

means the Hermitian transpose. More precisely, the zero
structure of M is the same as that of R, the upper right
triangular matrix used in the sphere decoder. Let S be the real
constellation in use (say PAM symbols). Then the worst case
complexity is that of exhaustive search, which is of O(|S|16)
and corresponds to a full upper right triangular matrix R. If
the zero structure of M (or equivalently of R) is such that
groups of real symbols can be decoded independently, then
the complexity order might drop.

V. CODE EXAMPLES

We now propose a few code constructions and compute their
decoding complexity order via sphere decoding.
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Fig. 1. The cyclotomic field Q(ζ5) and its subfield.

A. A code from Q(ζ5)
Let ζ5 be a primitive 5th root of unity, and consider the

cyclotomic field extension Q(ζ5)/Q (see Figure 1), with cyclic
Galois group generated by σ : ζ5 7→ ζ2

5 . We have that σ2 :
ζ5 7→ ζ2

5 generates a subgroup of order 2, with corresponding
fixed field Q(ζ5 + ζ−1

5 ) = Q(
√

5).
By considering as Q-basis the canonical basis

{1, ζ5, ζ2
5 , ζ

3
5}, and −γ for any positive real γ in Q(ζ5), we

observe that the four blocks of (4) are in fact of the form of
a generalized Alamouti block code, that is[

a −√γσ2(b)√
γb σ2(a)

]
,

[
σ(a) −√γγσ3(b)√
γσ(b) σ3(a)

]
and [

c −√γσ2(d)√
γd σ2(c)

]
,

[
−γσ(d) ζ

√
γσ3(c)√

γσ(b) σ3(a)

]
,

since σ2 fixes the maximal real subfield of Q(ζ5), and thus
plays the role of the complex conjugation. Note that by
generalized Alamouti code, we mean a slightly more general
definition than in [2]. An Alamouti codeword has the form[

u −v∗
v u∗

]
with the property that the two columns are orthonormal (we
use ()∗ to denote the complex conjugation). In our case,
each block similarly has the property that both columns are
orthogonal. As a result, we have that

mjk = ||BjB
∗
k +BkB

∗
j ||F = 0

for j = 1, 2, 3, 4 and k = 5, 6, 7, 8, j = 5, 6, 7, 8 and k =
1, 2, 3, 4, and symmetrically, for j = 13, 14, 15, 16 and k =
9, 10, 11, 12 as well as j = 9, 10, 11, 12 and k = 13, 14, 15, 16,
which gives a matrix M of the form

M =


∗ 04×4 ∗ ∗

04×4 ∗ ∗ ∗
∗ ∗ ∗ 04×4

∗ ∗ 04×4 ∗

 , (5)

where ∗ are 4× 4 full matrices, for a decoding complexity of
O(M12). Indeed, 8 symbols have to be decoded first, for a
complexity of O(M8), after which two groups of 4 symbols
each can be decoded, for a cost of O(2M4), and thus a total
of O(M12).
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Fig. 2. The cyclotomic field Q(ζ13) and its subfields: ν1 = ζ13 +ζ3
13 +ζ5

13
and ν2 = ζ2

13 + ζ3
13 + ζ10

13 + ζ11
13 .

B. A code from Q(ζ13)

What gave us four generalized Alamouti blocks in the
above code construction is the fact that the Galois group of
Q(ζ5)/Q(ζ5+ζ−1

5 ) plays the role of the complex conjugation.
This is true for every cyclotomic field Q(ζn) for ζn a primitive
nth root of unity, when looking at the quadratic extension it
forms together with its maximal real subfield Q(ζn + ζ−1

n ).
However, we further have here two constraints: we need a
cyclic Galois group, and we need it to be of degree 4. An
easy way to fullfil the former is to choose a pth root of
unity, since then the Galois group of Q(ζp)/Q is cyclic, and
a subgroup might be chosen to be of order 4. For example,
take p = 13, and consider the cyclotomic field Q(ζ13) which
is of degree 12 over Q (see Figure 2). It has Galois group
generated by σ : ζ13 7→ ζ2

13. The subgroup 〈σ3〉 has order 4,
and since σ3 : ζ13 7→ ζ8

13, it can be computed that its fixed
field is Q(ζ2

13 + ζ3
13 + ζ10

13 + ζ11
13 ). Similarly, the subgroup

of order 3 generated by σ : ζ13 7→ ζ4
13 has fixed field

Q(ζ13 +ζ3
13 +ζ5

13). The maximal real subfield Q(ζ13 +ζ−1
13 ) is

fixed by 〈σ6〉, which is a subgroup of 〈σ3〉. The field extension
Q(ζ13)/Q(ζ2

13+ζ
3
13+ζ

10
13+ζ11

13 ) has degree 4 with cyclic Galois
group generated by τ = σ3, where τ2 = σ6 is acting as the
complex conjugation.

By picking −γ, for γ a positive real number in Q(ζ13), a
codeword of the form (4) will again contain four generalized
Alamouti block codes. The corresponding matrix M is again
as in (5), for a complexity of O(M12). Unlike in the case
of Q(ζ5) where the code was naturally providing 16 real
information symbols, in this case up to 4 · 12 real symbols
are available, and thus there is a need to choose 4 · 3 symbols
to be transmitted.

C. A second code from Q(ζ5)

In order to reduce the complexity further, the matrix M in
(5) should become sparser. In particular, the 4× 4 upper left
block should get some zeroes, that is

||BjB
∗
k +BkB

∗
j ||F = 0



for some indices j, k ∈ {1, 2, 3, 4}. The condition

BjB
∗
k = −BkB

∗
j

means that BjB
∗
k is in fact a skew-Hermitian matrix. One

way to obtain this is to pick as F -basis of K elements which
are either totally real or totally imaginary. While consider the
number field Q(ζ5)/Q, the canonical Q-basis {1, ζ5, ζ2

5 , ζ
3
5}

does not satisfy this condition. However, a less natural basis
can be chosen instead, by noticing that ζ5+ζ4

5 and ζ2
5 +ζ3

5 are
totally real, while ζ5− ζ−1

5 is totally imaginary. For example,
the choice of

1, ζ5 − ζ4
5 , ζ

2
5 + ζ3

5 , (ζ
2
5 + ζ3

5 )(ζ5 − ζ4
5 ) = −1− 2ζ5 − 2ζ2

5

yields a matrix M , this time of the form

∗ 02×2 02×2 02×2 ∗ ∗ ∗ ∗
02×2 ∗ 02×2 02×2 ∗ ∗ ∗ ∗
02×2 02×2 ∗ 02×2 ∗ ∗ ∗ ∗
02×2 02×2 02×2 ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ 02×2 02×2 02×2

∗ ∗ ∗ ∗ 02×2 ∗ 02×2 02×2

∗ ∗ ∗ ∗ 02×2 02×2 ∗ 02×2

∗ ∗ ∗ ∗ 02×2 02×2 02×2 ∗


(6)

where ∗ denotes 2 × 2 full matrices. It now means that 8
symbols have to be decoded first, for a complexity of O(M8),
and then 4 groups of 2 symbols each are decoded, each with
a complexity of O(M2) for a total of O(M10).

D. Associative versus nonassociative cyclic algebras
The above code constructions were about finding suitable

cyclic extensions. They did not discuss the choice of the
element γ used in the codewords, apart from a restriction to
negative real elements in order to facilitate fast decodability.
The element γ is typically deciding whether the chosen algebra
is division, that is, whether the space-time code is fully diverse.
In fact, γ will also play a role in the overall performance of
the code by influencing its shaping. In what follows, some
terminology which is customary in the area of algebraic space-
time coding will be used without much explanation, due to
space constraints. Now,
• in the associative case, γ is restricted to the base field, and

for the algebra to be division, the non-norm condition is
usually checked (see end of Section 2). The disadvantage
is that checking the non-norm condition is actually not
easy, and can be quite restrictive in the choices that γ
can actually take. On the other hand, it is necessary
to satisfy the non-vanishing minimum determinant, a
condition which is useful to ensure the performance of
the code irrespectively of the size of the constellation.

• in the nonassociative case, γ is on the contrary taken in
the field extension. The advantage is that it is very easy
to make sure the algebra is division, but on the negative
side, a non-vanishing determinant cannot be achieved.
However, for scenarios like the MIDO code design, it
could be worth trading the non-vanishing determinant for
fast-decodability.

VI. CONCLUSION

We considered the problem of designing space-time codes
for the asymmetric channel with 4 transmit and 2 receive
antennas. We presented a few constructions all coming from
cyclic algebras containing a cyclotomic field extension. We
considered both associative and nonassociative cyclic algebras
of dimension 16, and discussed the pros and cons of both
types of algebras. All the codes presented enjoy the property
of fast-decodability.

Obvious future work involves continuing the optimization
of these codes and providing simulations to evaluate the actual
code performance. In fact, it would be valuable to start with
having a lower bound on the fast-decodability of lattice codes,
to know what can be best achieved. It would also be interesting
to address the question of designing space-time codes from
nonassociative crossed product division algebras, which means
that such algebras should first be defined/found somehow.
Getting division algebras from associative crossed product
algebras is already challenging. It would be relevant in the
context of space-time coding to have an easier condition to
test whether the algebra is division. This is particularly the
case for fast-decodable codes, where having Q(i) as a subfield
simplifies the design.
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