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Abstract. We present families of unital algebras obtained through a doubling process

from a cyclic central simple algebra D = (K/F, σ, c), employing a K-automorphism τ

and an element d ∈ D×. These algebras appear in the construction of iterated space-

time block codes. We give conditions when these iterated algebras are division which can

be used to construct fully diverse iterated codes. We also briefly look at algebras (and

codes) obtained from variations of this method.

1. Introduction

Space-time coding is used for reliable high rate transmission over wireless digital channels

with multiple antennas at both the transmitter and receiver ends. From the mathematical

point of view, designing space-times codes means to design well-behaved families of matrices

over the complex numbers, often using the representation matrix of the left multiplication

of an algebra. Central simple associative division algebras over number fields, in particular

cyclic division algebras, have been used highly successfully to systematically build space-time

block codes (cf. for instance [1], [2], [3], [4], [5], [6], [7]). Nonassociative division algebras

over number fields, like nonassociative quaternion algebras or cyclic algebras, can also be

used in code design, see for instance [8], [9] or [10].

In [11], Markin and Oggier propose an ad hoc code construction to build 2n× 2n asym-

metric space-time block codes out of a family D of n × n complex matrices coming from a

cyclic division algebra D of degree n over a number field F , and investigate when these new

codes are fully diverse and when they inherit fast-decodability from the code D. The idea

is to use well performing codes D in the construction and double them, hoping not to lose

much if anything of their good performance in the process.

The iterated construction [11] starts with a cyclic division algebra D over a number field

F and a Q-automorphism τ of K, where K is a maximal subfield of the F -algebra D. It

employs a map

αθ : D ×D → Mat2(K),

αθ : (X,Y )→

[
X Θτ(Y )

Y τ(X)

]
,
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where D = λ(D) ⊂ Matn(K) is the canonical embedding of elements of the algebra D into

Matn(K) via left regular representation, and where Θ ∈ D, i.e., θ ∈ D is identified with its

matrix representation Θ = λ(θ). For instance,

Θ =

[
θ0 dσ(θ1)

θ1 σ(θ0)

]
if θ = θ1 +jθ2 ∈ K⊕K = Cay(K, d) = D is a quaternion algebra. τ(X) simply is the matrix

obtained from X by applying τ to each entry of X. With the right choice of τ ∈ Gal(K/F )

and θ ∈ Fix(τ) ∩ F , the matrices in A = αθ(D,D) form a Q-algebra of finite dimension

2n2[F : Q] and are the representation of a central simple associative algebra.

In this paper we present the algebras behind this iteration process for any choice of θ

and τ . The codebooks αθ(D,D) consist of the matrix representations of left multiplication

of certain algebras we will call iterated algebras. If θ ∈ D \ (Fix(τ) ∩ F ), these algebras are

nonassociative. By putting the code constructions into a general algebraic framework, we

are able to systematically investigate the codes obtained through the matrices of their left

multiplication and also extend the existing iteration process to include the case of employing

the map

βθ : Matn(K)×Matn(K)→ Mat2n(K),

βθ : (X,Y )→

[
X τ(Y )Θ

Y τ(X)

]
instead. We are also able to give conditions on when a code is fully diverse without having

to restrict the choice of θ to the base field.

The paper is organized as follows: Let F always be a field of characteristic not 2. Nota-

tions and basic definitions used are given in Section 1. Starting with a cyclic central simple

algebra D = (K/F, σ, c) over F of degree n, we define doubling processes involving D,

τ ∈ Aut(K) and d ∈ D× in Section 3. In order to do so, we canonically extend τ to a map τ̃

on D. Depending on where d is placed, these doublings yield new unital algebras It(D, τ, d),

Itm(D, τ, d) or Itr(D, τ, d) over F , which have D = (K/F, σ, c) as a subalgebra. We call

them iterated cyclic algebras. If τ and σ commute, an iterated algebra is division if D is

division and ND/F (d) 6= ND/F (zτ̃(z)) for all z ∈ D. In special cases, some iterated algebras

are subalgebras of the tensor product of the cyclic algebra D and a nonassociative quater-

nion algebra. The connection between iterated algebras and code constructions is explored

in Section 4. Most notably, the iterated codes explicitly constructed in the literature so far

all require (apart from one example), apart from τ(c) = c and that τ and σ commute, that

d ∈ F×. Since the considerations in [11], Section IV.A., on iterating the Silver code given by

D = (−1,−1)F , F = Q(
√
−7), generalize to the case that θ ∈ F (i) and not in F , the code

αθ(D,D) inherits fast-decodability from the Silver code, as Lemma 15 in [11] still holds in

this setting. This supports the explicit calculation in [11], Section IV.A., that the decoding

complexity for θ = i is O(|S|13). In particular, we show that the code built and simulated in

[11], Section IV.A, with θ = i, is indeed fully diverse and has NVD. Moreover, in Example
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17 we build a code which looks very similar to the SR-code discussed for instance in [12]

and is fast-decodable. It has the same ML-decoding complexity as the SR-code. Iterated

algebras inside the tensor product of a cyclic division algebra and a (nonassociative) quater-

nion algebra are considered in Section 5, these are the algebras dealt with in the examples

for iterated code constructions of [11]. For the sake of completeness, we briefly consider

variations of this doubling process in Section 6, like a generalized Cayley-Dickson doublings

of D based on the same idea, using τ̃ and d ∈ D when defining the multiplication. For D

a quaternion algebra, τ̃ is never the standard involution on D. The resulting algebras are

division under the same conditions as the iterated algebras.

2. Preliminaries

2.1. Nonassociative algebras. Let F be a field. By “F -algebra” we mean a finite dimen-

sional unital nonassociative algebra over F .

A nonassociative algebra A 6= 0 is called a division algebra if for any a ∈ A, a 6= 0, the

left multiplication with a, La(x) = ax, and the right multiplication with a, Ra(x) = xa, are

bijective. A is a division algebra if and only if A has no zero divisors ([17], pp. 15, 16).

For an F -algebra A, associativity in A is measured by the associator [x, y, z] = (xy)z −
x(yz). The left nucleus of A is defined as Nucl(A) = {x ∈ A | [x,A,A] = 0}, the middle

nucleus of A is defined as Nucm(A) = {x ∈ A | [A, x,A] = 0} and the right nucleus of

A is defined as Nucr(A) = {x ∈ A | [A,A, x] = 0}. Their intersection Nuc(A) = {x ∈
A | [x,A,A] = [A, x,A] = [A,A, x] = 0} is the nucleus of A. The nucleus is an associative

subalgebra of A containing F1 and x(yz) = (xy)z whenever one of the elements x, y, z is in

Nuc(A).

2.2. Nonassociative quaternion division algebras. A nonassociative quaternion alge-

bra is a four-dimensional F -algebra A whose nucleus is a separable quadratic field extension

of F [19]. Let S be a quadratic étale algebra over F with canonical involution σ. For every

invertible b ∈ S \F , the vector space Cay(S, b) = S⊕S becomes a nonassociative quaternion

algebra over F with unit element (1, 0) and nucleus S under the multiplication

(u, v)(u′, v′) = (uu′ + bσ(v′)v, v′u+ vσ(u))

for u, u′, v, v′ ∈ S. Given any nonassociative quaternion algebra A over F with nucleus S,

there exists an element b ∈ S \ F such that A ∼= Cay(S, b) [16], Lemma 1.

Nonassociative quaternion algebras are neither power-associative nor quadratic. Cay(S, b)

is a division algebra if and only if S is a separable quadratic field extension of F .

Nonassociative quaternion division algebras were first discovered by Dickson [15] and

Albert [14]

2.3. Cyclic algebras. Let K/F be a cyclic Galois extension of degree n, with Galois group

Gal(K/F ) = 〈σ〉 and c ∈ F×. A cyclic algebra D = (K/F, σ, c) of degree n over F is an
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n-dimensional K-vector space

D = K ⊕ eK ⊕ e2K ⊕ · · · ⊕ en−1K,

with multiplication given by the relations

(1) en = c, xe = eσ(x),

for all x ∈ K. We call {1, e, e2, . . . , en−1} the standard basis of the right K-vector space D.

The left multiplication λy of elements of D with y = y0 + ey1 + · · · + en−1yn−1 ∈ D

induces a representation λ : D → Matn(K) which maps elements of D to matrices of the

form

(2)



y0 cσ(yn−1) cσ2(yn−2) . . . cσn−1(y1)

y1 σ(y0) cσ2(yn−1) . . . cσn−1(y2)
...

...
...

yn−2 σ(yn−3) σ2(yn−4) . . . cσn−1(yn−1)

yn−1 σ(yn−2) σ2(yn−3) . . . σn−1(y0)


where y0, . . . , yn−1 ∈ K. Obviously, we have X ± Y ∈ λ(D) for all X,Y ∈ λ(D). Thus

D = λ(D) is a linear codebook. If D is division, the codebook D = λ(D) is fully diverse. In

the following, we often identify elements x ∈ D with their standard matrix representation

X = λ(x) ∈ D and use upper case letters for them.

For the standard terminology for code design we use, we refer the reader to [11].

3. Iterated algebras

Let D = (K/F, σ, c) be a cyclic algebra over F of degree n and τ ∈ Aut(K). For

x = x0 + ex1 + e2x2 + · · ·+ en−1xn−1 ∈ D, define the map τ̃ : D → D via

τ̃(x) = τ(x0) + eτ(x1) + e2τ(x2) + · · ·+ en−1τ(xn−1).

τ̃ is Fix(τ)-linear. Let d ∈ D×. Then the 2n-dimensional F -vector space A = D ⊕ D can

be made into a unital algebra over F via the multiplication

(u, v)(u′, v′) = (uu′ + dτ̃(v)v′, vu′ + τ̃(u)v′)

for u, u′, v, v′ ∈ D. The unit element is given by 1 = (1, 0). An algebra obtained from such

a doubling of D is denoted by It(D, τ, d).

If d ∈ D× is not contained in F , we also define multiplications

(u, v)(u′, v′) = (uu′ + τ̃(v)dv′, vu′ + τ̃(u)v′)

resp.

(u, v)(u′, v′) = (uu′ + τ̃(v)v′d, vu′ + τ̃(u)v′)

onD⊕D and denote the corresponding algebras by Itm(D, τ, d), resp. Itr(D, τ, d). It(D, τ, d),

Itm(D, τ, d) and Itr(D, τ, d) are called iterated algebras over F .
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Let K/F be a Galois field extension of F of degree n with Gal(K/F ) = 〈σ〉. Let τ ∈
Aut(K), F0 = Fix(τ) ∩ F and d ∈ K. Then the 2n-dimensional F -vector space K ⊕K can

be made into a unital algebra over F0 with unit element 1 = (1, 0) via the multiplication

(u, v)(u′, v′) = (uu′ + dτ(v)v′, vu′ + τ(u)v′)

for u, u′, v, v′ ∈ K. We denote the algebra by It(K, τ, d). K is a subalgebra of It(K, τ, d).

Note that for d ∈ K, It(K, τ, d) is a subalgebra of It(D, τ, d), Itm(D, τ, d) and Itr(D, τ, d).

Remark 1. Let K/F be a Galois field extension of F of degree 2 with Gal(K/F ) = 〈σ〉.
Then It(K,σ, d) is isomorphic to the opposite algebra of the (associative or nonassociative)

quaternion algebra (K/F, σ, c) = Cay(K, c). If c ∈ F×, (K/F, σ, c) is an associative quater-

nion algebra, if c ∈ K \ F , it is a nonassociative quaternion algebra (for the definition, see

[19]).

In the following, let

A = It(D, τ, d), A = Itm(D, τ, d) or A = Itr(D, τ, d).

Clearly, D is a subalgebra of A. Put l = (0, 1D). Then l2 = d and the multiplication in, for

instance, It(D, τ, d) can also be written as

(u+ lv)(u′ + lv′) = (uu′ + dτ̃(v)v′) + l(vu′ + τ̃(u)v′))

for u, u′, v, v′ ∈ D. For a cyclic algebra D = (K/F, σ, c) of degree n over F , we call

{1, e, e2, . . . , en−1, l, le, le2, . . . , len−1}

the standard basis of the right K-vector space A.

A = It(D, τ, d) and A = Itm(D, τ, d) are right D-modules and free of rank 2, since

x(bc) = (xb)c for all b, c ∈ D and x ∈ A. After a choice of D-basis for A, e.g. 1, l, we can

embed EndD(A) into the module Mat2(D). Furthermore, left multiplication Lx with x ∈ A
is a D-linear map, so that we have a well-defined injective additive map

L : A→ EndD(A) ⊂ Mat2(D), x→ Lx.

Lemma 2. (Steele) Let K/F be a cyclic Galois extension of degree n with Galois group

Gal(K/F ) = 〈σ〉. Let τ : K → K be an automorphism of K. Let D = (K/F, σ, c) be a

cyclic division algebra over F and d ∈ D×. For u, v, u′, v′ ∈ D, multiplication in It(D, τ, d)

can be written as

(u, v)(u′, v′) = (

[
u dτ̃(v)

v τ̃(u)

] [
u′

v′

]
)T ,

and multiplication in Itm(D, τ, d) as

(u, v)(u′, v′) = (

[
u τ̃(v)d

v τ̃(u)

] [
u′

v′

]
)T .
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If τ(c) = c, the representation matrices of the left multiplication of It(D, τ, d) appear

in the iterated space-time code construction of [11], but were not recognized as matrices

representing left multiplication in a nonassociative algebra.

Lemma 3. (i) A = It(D, τ, d), Itm(D, τ, d), resp., Itr(D, τ, d), is not power-associative if

d 6∈ Fix(τ).

(ii) Let B = (K ′/F, σ′, c′) and D = (K/F, σ, c) be two cyclic algebras over F and f : D → B

an algebra isomorphism. Suppose τ is a K-automorphism and τ ′ a K ′-automorphism, such

that f(τ̃(u)) = τ̃ ′(f(u)) for all u ∈ D. Let a ∈ B×. For u, v ∈ D, the map

G : D ⊕D → B ⊕B, G(u, v) = (f(u), a−1f(v))

defines the following algebra isomorphisms:

It(D, τ, d) ∼= It(B, τ ′, τ̃ ′(a)af(d)),

Itr(D, τ, d) ∼= Itr(B, τ ′, τ̃ ′(a)af(d)),

and

Itm(D, τ, d) ∼= Itm(B, τ ′, τ̃ ′(a)f(d)a).

In particular, for a ∈ Fix(τ)×,

It(D, τ, d) ∼= It(D, τ, a2d), It(D, τ, d) ∼= It(D, τ, a2d) and It(D, τ, d) ∼= It(D, τ, a2d).

Proof. (i) We have l2 = (d, 0) and ll2 = (0, τ̃(d)) while l2l = (0, d). Therefore A is not

power-associative, if τ̃(d) 6= d, i.e. if d 6∈ Fix(τ).

(ii) is a straightforward calculation. �

Proposition 4. Let ND/F denote the norm of D. Suppose τ commutes with σ. Let D′ =

(K/F, σ, τ(c)) with standard basis 1, f, . . . , fn−1. For y = y0 + ey1 + · · · + en−1yn−1 ∈ D
define a corresponding element yD′ = y0 + fy1 + · · ·+ fn−1yn−1 ∈ D′. Then

ND/F (τ̃(y)) = τ(ND′/F (yD′)).

If c ∈ Fix(τ) then

ND/F (τ̃(y)) = τ(ND/F (y)),

λ(τ̃(y)) = τ(λ(y)) and τ̃(xy) = τ̃(x)τ̃(y).

Proof. The left multiplication of elements of D = (K/F, σ, γ) with y = y0 + ey1 + · · · +
en−1yn−1 ∈ D induces a representation λ : A → Matn(K) which maps elements of D to

matrices of the form

Y =



y0 cσ(yn−1) cσ2(yn−2) . . . cσn−1(y1)

y1 σ(y0) cσ2(yn−1) . . . cσn−1(y2)
...

...
...

yn−2 σ(yn−3) σ2(yn−4) . . . cσn−1(yn−1)

yn−1 σ(yn−2) σ2(yn−3) . . . σn−1(y0)


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where y0, . . . , yn−1 ∈ K. We have det(Y ) = ND/F (y). Thus

ND/F (τ̃(y)) = det(



τ(y0) cσ(τ(yn−1)) cσ2(τ(yn−2)) . . . cσn−1(τ(y1))

τ(y1) σ(τ(y0)) cσ2(τ(yn−1)) . . . cσn−1(y2)
...

...
...

τ(yn−2) σ(τ(yn−3)) σ2(τ(yn−4)) . . . cσn−1(τ(yn−1))

τ(yn−1) σ(τ(yn−2)) σ2(τ(yn−3)) . . . σn−1(τ(y0))


)

= τ(



y0 τ(c)σ(yn−1) τ(c)σ2(yn−2) . . . τ(c)σn−1(y1)

y1 σ(y0) τ(c)σ2(yn−1) . . . τ(c)σn−1(y2)
...

...
...

yn−2 σ(yn−3) σ2(yn−4) . . . τ(c)σn−1(yn−1)

yn−1 σ(yn−2) σ2(yn−3) . . . σn−1(y0)


) = τ(ND′/F (yD′)).

The rest is trivial. �

Remark 5. If D = (a, c)F is a quaternion algebra, D′ = (a, τ(c))F , we have ND/F (τ̃(x)) =

ND/F (τ(x0) + jτ(x1)) = NK/F (τ(x0))− cNK/F (τ(x1)) = τ(x0)σ(τ(x0))− cτ(x1)σ(τ(x1)) =

τ(x0)τ(σ(x0))−bτ(x1)τ(σ(τ(x1)) = τ(NK/F (τ(x0)))−τ(τ(c)NK/F (τ(x1))) = τ(ND′/F (xD′))

as special case.

With this result, we are now able to prove:

Theorem 6. Let D be a cyclic division algebra of degree n over F and d ∈ D×. Let

τ ∈ Aut(K) and suppose τ commutes with σ. Let A = It(D, τ, d), A = Itm(D, τ, d) or

A = Itr(D, τ, d).

(i) A is a division algebra if

ND/F (d) 6= ND/F (zτ̃(z))

for all z ∈ D. Conversely, if A is a division algebra then d 6= zτ̃(z) for all z ∈ D×.

(ii) Suppose c ∈ Fix(τ). Then:

(a) It(D, τ, d), resp. Itm(D, τ, d), is a division algebra if and only if d 6= zτ̃(z) for all z ∈ D.

Itr(D, τ, d) is a division algebra if d 6= v−1zτ̃(z)v for all v, z ∈ D.

(b) A is a division algebra if ND/F (d) 6= aτ(a) for all a ∈ ND/F (D×).

(iii) Suppose F ⊂ Fix(τ). Then A is a division algebra if ND/F (d) 6∈ ND/F (D×)2.

Proof. Let A = It(D, τ, d) (the other two cases of iterated algebras work analogously unless

stated otherwise).

(i) Suppose

(0, 0) = (u, v)(u′, v′) = (uu′ + dτ̃(v)v′, vu′ + τ̃(u)v′)

for u, v, u′, v′ ∈ D. This is equivalent to

(3) uu′ + dτ̃(v)v′ = 0 and vu′ + τ̃(u)v′ = 0.
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Assume v′ = 0, then uu′ = 0 and vu′ = 0. Hence either u′ = 0 and so (u′, v′) = 0 or u′ 6= 0

and u = v = 0. Also, if v = 0 then uu′ = 0 and τ̃(u)v′ = 0, thus u = 0 and (u, v) = 0, or

(u′, v′) = 0 and we are done.

So let v′ 6= 0 and v 6= 0. Then v′ ∈ D× and vu′ = −τ̃(u)v′ yields τ̃(u) = −vu′v′−1, i.e.

u = −τ̃(vu′v′−1). Substituted into the first equation this gives

τ̃(vu′v′−1)u′ = dτ̃(v)v′.

Applying the norm ND/F to both sides of this equation we get

ND/F (τ̃(vu′v′−1))ND/F (u′) = ND/F (d)ND/F (τ̃(v))ND/F (v′).

Employing Proposition 4, we obtain

ND/F (d)τ(ND′/F (vD′))ND/F (v′) = τ(ND′/F (vD′))τ(ND′/F (u′D′))τ(ND′/F (v′−1
D′ ))ND/F (u′),

so that

(4) ND/F (d) = ND/F (u′)ND/F (v′)−1τ(ND′/F (u′D′)ND′/F (v′−1
D ))

= ND/F (u′v′−1)τ(ND′/F (u′Dv
′−1
D )) = ND/F (u′v′−1)ND/F (τ̃(u′v′−1))

We conclude that A is division for all d ∈ D× such that

ND/F (d) 6= ND/F (zτ̃(z))

for all z ∈ D. Conversely, if there is z ∈ D× such that d = zτ̃(z), then

(z, 1)(−τ̃(z), 1) = (−zτ̃(z) + d,−τ̃(z) + τ̃(z)) = (0, 0),

so A contains zero divisors. We conclude that if A is division then d 6= zτ̃(z) for all z ∈ D.

(ii) (a) From (3) we obtain for v′ 6= 0 that u′ = −v−1τ̃(u)v′ for any of the three types

of algebras. For A = It(D, τ, d) hence uv−1τ̃(u)v′ = dτ̃(v)v′. Rearranging gives d =

uv−1τ̃(u)τ̃(v−1) = uv−1τ̃(uv−1) since c ∈ Fix(τ). Therefore It(D, τ, d) is division if d 6=
zτ̃(z) for all z ∈ D.

ForA = Itm(D, τ, d) this gives uv−1τ̃(u)v′ = τ̃(v)dv′. Rearranging gives d = τ̃(v−1)uv−1τ̃(u) =

τ̃(v−1)uτ̃(τ̃(v−1)u) since c ∈ Fix(τ). Therefore Itm(D, τ, d) is division if d 6= zτ̃(z) for all

z ∈ D.

ForA = Itr(D, τ, d) this gives uv−1τ̃(u)v′ = τ̃(v)v′d. Rearranging gives d = v′
−1
τ̃(v−1)uv−1τ̃(u)v′

which yields the assertion.

(b) If c ∈ Fix(τ), then (4) becomes

(5) ND/F (d) = ND/F (u′v′−1)τ(ND/F (u′v′−1))

and so A is division if

ND/F (d) 6= aτ(a)
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for all a ∈ ND/F (D).

(iii) If F ⊂ Fix(τ), (5) becomes

ND/F (d) = ND/F (u′v′−1)τ(ND′/F (u′v′−1)) = ND/F (u′v′−1)2.

For the multiplications in the other two iterated algebras, the order of the factors in the

first equation changes, which however does not affect the proofs. �

Proposition 7. Let K = F [x]/(f(x)) be a Galois field extension of F of degree n with

Gal(K/F ) = 〈σ〉. Let τ ∈ Aut(K) and suppose τ commutes with σ. Then

(i) NK/F (τ(x)) = τ(NK′/F (xK′)), where K ′ = F [x]/(τ(f(x))).

(ii) If c ∈ Fix(τ) then NK/F (τ(x)) = NK/F (x).

(iii) It(K, τ, d) is a division algebra for every d ∈ K, such that NK/F (d) 6= NK/F (zτ(z)) for

all z ∈ K.

(iv) If c ∈ Fix(τ) then It(K, τ, d) is a division algebra if and only if d 6= zτ̃(z) for all z ∈ K.

(v) If F ⊂ Fix(τ), then It(K, τ, d) is a division algebra if NK/F (d) 6∈ NK/F (K×)2.

This is proved analogously as Proposition 4 and Theorem 6.

Corollary 8. Let D = (K/F, σ, c) be a cyclic division algebra and d ∈ D×. Let τ ∈ Aut(K)

and suppose τ commutes with σ. Let A = It(D, τ, d), A = Itm(D, τ, d) or A = Itr(D, τ, d).

(i) A is a division algebra if ND/F (d) 6∈ ND/F (D×) for all z ∈ D×.

(ii) Suppose c ∈ Fix(τ).

(a) A is a division algebra if ND/F (d) 6= aτ(a) for all a ∈ F×.

(b) For d ∈ F×, A is a division algebra if d2 6= aτ(a) for all a ∈ F×.

(iii) Suppose F ⊂ Fix(τ).

(a) A is a division algebra if ND/F (d) 6∈ F×2.

(b) For d ∈ F×, A is a division algebra if d 6∈ ±ND/F (D×).

Note that d 6∈ ±ND/F (D×) is never the case for F = Q ([21], Theorem 1.4, p. 378).

Example 9. LetK = F (
√
a), D = (a, b)F = Cay(K, b) be a division algebra and Gal(F (

√
a)/F ) =

〈σ〉.
(i) Let F = Q or F = Q(

√
e) with e > 0. Suppose a > 0, b > 0. Then for every

d = x1i + x2j ∈ D with (x1, x2) 6= (0, 0) we know that ND/F (d) = −(ax2
1 + bx2

2) < 0 and

thus not a square in F , thus It(D,σ, d), Itm(D,σ, d) and Itr(D,σ, d) are division algebras

over F .

(ii) Let F = Q and a < 0, b < 0. ThenD is always a division algebra. It(D,σ, d), Itm(D,σ, d)

and Itr(D,σ, d) are division algebras for all d = x0 + x1i+ x2j + x3k, such that the positive

rational number ND/Q(d) = x2
0 − ax2

1 − bx2
2 + abx2

3 is not a square in Q.

(iii) Let F = Q. If D = (−1, p)Q, p 6≡ 1(4) an odd prime, D is a division algebra and

we may for instance choose d = x2i + x3k with x2, x3 ∈ Q, (x1, x2) 6= (0, 0). Then

ND/Q(d) = −p(x2
2 + x2

3) < 0, hence It(D, τ, d), Itm(D,σ, d) and Itr(D,σ, d) are division

algebras.
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If D = (−2, p)Q, p ≡ 1, 3 (8) an odd prime, D is a division algebra and we may again

choose d = x2i+x3k with x2, x3 ∈ Q, (x1, x2) 6= (0, 0). Then ND/Q(c) = −(px2
2 +2px2

3) < 0,

hence It(D,σ, d), Itm(D,σ, d) and Itr(D,σ, d) are division algebras.

We obtain the following more general rule:

Lemma 10. Let F be an ordered field such that −1 is not a square and (a, b)F a division

algebra over F with a < 0 and b > 0.

(i) It(D,σ, d), Itm(D,σ, d) and Itr(D,σ, d) are division algebras, for every d = x2i+x3k ∈ D
with (x1, x2) 6= (0, 0).

(ii) Suppose τ commutes with σ and F ⊂ Fix(τ). Then It(D, τ, d), Itm(D, τ, d) and Itr(D, τ, d)

are division algebras, for every d = x2i+ x3k ∈ D with (x1, x2) 6= (0, 0).

Proof. We have ND/F (d) = −b(x2
2 − ax2

3) < 0. �

4. Connection with iterated codes

Let D = (K/F, σ, c) be a cyclic associative division algebra of degree n over F . Let

d ∈ D×. Write d = d0 + ed1 + · · · + en−1dn−1 (di ∈ K) and identify d with its matrix

representation Θ = λ(d) ∈ D = λ(D) which is given by a matrix as in (2) with entries

di. Let τ be an automorphism of K such that τ(c) = c and τσ = στ . In the iterative

construction of [11], the map

αd : Matn(K)×Matn(K)→ Mat2n(K),

(6) αθ : (X,Y )→

[
X Θτ(Y )

Y τ(X)

]
is used to build a new code αd(D,D) out of D, where in the top right block we mean matrix

multiplication. The matrices in αd(D,D) turn out to be the matrices of left multiplication

in A = It(D, τ, d), provided that τ(c) = c.

An iterated algebra A is both a left and a right K-vector space, since (bc)x = b(cx) and

x(bc) = (xb)c for all b, c ∈ K and x ∈ A. After a choice of K-basis for A, we can embed

EndK(A) into the vector space Matn(K).

For A = It(D, τ, d) and A = Itm(D, τ, d), left multiplication λx with an element x ∈ A is

a K-linear map (since (xy)a = x(ya) for all x, y ∈ A, a ∈ K).

So let A = It(D, τ, d) or A = Itm(D, τ, d) and consider A as a right K-vector space.

Since λx(y) = λx′(y) for all y ∈ A implies (x − x′)y = 0 for all y ∈ A and thus x = x′,

λ : A ↪→ EndK(A), x 7→ λx is a well-defined injective additive map.

Thus we get an injective additive map

λ : A ↪→ Matr(K), x→ X,

where X = λ(x) is the matrix representing left multiplication with x. A = λ(A) constitutes a

linear codebook, since for all X,X ′ ∈ λ(A), we have X±X ′ = λ(x)±λ(x′) = λ(x±x′) ∈ λ(A).
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We point out that the fact that a nonassociative algebra is division does not automatically

imply that the associated codebook A = λ(A) is division, this is only true in certain cases

and turns out to be correct for the codes obtained from left multiplication in A = It(D, τ, d)

or A = Itm(D, τ, d) treated in this paper.

If A = Itm(D, τ, d) (or A = It(D, τ, d) with d ∈ K×), then (ax)y = a(xy) for all a ∈ K,

x, y ∈ A, so

λax(y) = (ax)y = a(xy) = aλx(y)

for all x, y ∈ A, a ∈ K, hence λ : A ↪→ EndK(A), a 7→ λa is even an embedding of K-vector

spaces. For our code constructions, however, it suffices that λ is an injective additive map.

Remark 11. It may be worth noting here that the codes described in the iterated code

construction of [11] all have d ∈ K×, so that λ(A) is a K-vector space. If one wants λ(A) to

be a K-vector space for any d ∈ D×, it could make sense to rather look at codes obtained

through A = Itm(D, τ, d) (where the matrix Θ appears on the right hand side in the right

upper block matrix instead of on the left hand side). However, we believe all considerations

in [11] only require λ(A) to be an F -vector space, which is true in any case.

To avoid confusion we will use upper case letters to denote the image of elements x of

an algebra A in λ(A), i.e. λ(x) = X. Codebooks obtained from an algebra A, C, D, . . .

respectively, will be denoted by A = λ(A), C = λ(C), D = λ(D)...

Theorem 5 in [18] together with Theorem 6 and Lemma 2 yields:

Theorem 12. Let K/F be a cyclic Galois extension of degree n with Galois group Gal(K/F ) =

〈σ〉. Let τ : K → K be an automorphism of K. Let D = (K/F, σ, c) be a cyclic division

algebra over F and d ∈ D×. Suppose τ(c) = c and τσ = στ. Then the following are equiva-

lent:

(i) A = It(D, τ, d) is a division algebra.

(ii) d 6= zτ̃(z) for all z ∈ D.

(iii) The codebook αd(D,D) is fully diverse and its matrices are the representation matrices

of left multiplication in A.

Moreover, the determinant of a matrix in αd(D,D) is an element of F .

4.1. 4×4 iterated codes. Let D = (a, b)F . Take the standard basis 1, j, l, lj of the right K-

vector space It(D, τ, d). Let K = F (
√
a) and τ̃(x) = τ(x0)+jτ(x1) for all x = x0 +jx1 ∈ D,

where τ is an automorphism of K commuting with σ, where 〈σ〉 = Gal(F (
√
a)/F ) and

τ(b) = b. Note that for x = x0 + jx1, X = λ(x) ∈Mat2(K1) is given by

λ(x) =

[
x0 bσ(x1)

x1 σ(x0)

]
.

For multiplication inA = It(D, τ, d) we have to observe that for all x ∈ K, d = d0+jd1 ∈ D×,

di ∈ K:

(1) xl = lτ(x),
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(2) (lx)j = (lj)σ(x),

(3) ((lj)x)l = jσ(d0)τ(x) + bσ(d1)τ(x),

(4) ((lj)x)j = lbσ(x),

(5) (jx)l = (lj)τ(x),

(6) (lx)l = σ(d)τ(x) = d0τ(x) + jd1τ(x),

(7) x(lj) = (lj)τ(σ(x)),

(8) (jx)(lj) = lbτ(σ(x)),

(9) (((lj)x)(lj) = d0bτ(σ(x)) + jd1bτ(σ(x)),

(10) (lx)(lj) = jσ(d0)τ(σ(x)) + bσ(d1)τ(σ(x)),

(11) x(lj) = (lj)τ(σ(x)).

Then the matrix representing left multiplication λx in A is given by
x0 bσ(x1) f1 f2

x1 σ(x0) f3 f4

y0 bσ(y1) τ(x0) bτ(σ(x1))

y1 σ(y0) τ(x1) τ(σ(x0))


with xi, yi ∈ K = F (

√
a) and[

f1 f2

f3 f4

]
=

[
d0τ(x2) + bσ(d1)τ(x3) b(d0στ(x3) + σ(d1)στ(x2))

d1τ(x2) + σ(d0)τ(x3) d1bστ(x3) + σ(d0)στ(x2)

]
.

Denote the linear codebook containing these matrices by A.

For X,Y ∈Mat2(K), d = d0 + jd1 ∈ D, Θ = λ(d), define

αθ(X,Y ) =

[
X Θτ(Y )

Y τ(X)

]
,

as in [11], where in the top right block we mean matrix multiplication, i.e.,

Θτ(Y ) =

[
d0τ(x2) + bσ(d1)τ(x3) b(d0στ(x3) + σ(d1)στ(x2))

d1τ(x2) + σ(d0)τ(x3) d1bστ(x3) + σ(d0)στ(x2)

]
=

[
f1 f2

f3 f4

]
.

Then

(7) αθ(

[
x0 bσ(x1)

x1 σ(x0)

]
,

[
y0 bσ(y1)

y1 σ(y0)

]
) =


x0 bσ(x1) f1 f2

x1 σ(x0) f3 f4

y0 bσ(y1) τ(x0) τ(b)τ(σ(x1))

y1 σ(y0) τ(x1) τ(σ(x0))

 ,
therefore αθ(D,D) = A, since τ(b) = b. For d ∈ K×, the representation matrix of left

multiplication in A is given by
x0 bσ(x1) dτσ(x2) dbτσ(x3)

x1 σ(x0) σ(d)τσ(x3) σ(d)τσ(x2)

x2 bσ(x3) σ(x0) bσ(x1)

x3 σ(x2) σ(x1) σ(x0)


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with xi ∈ K = F (
√
a).

As consequence of Theorem 12 we obtain:

Corollary 13. Let D = (a, b)F be a division algebra, 〈σ〉 = Gal(F (
√
a)/F ) and d ∈ D×. Let

τ : K → K be an automorphism of K such that τ(b) = b and τσ = στ . Let A = It(D, τ, d).

Then the following are equivalent:

(i) The codebook A in (7) is fully diverse.

(ii) d 6= zτ̃(z) for all z ∈ D.

(iii) A is a division algebra.

Moreover, the determinant of a matrix in A is an element of F .

Example 14. Let F = Q or F = Q(
√
e) with e > 0. Let L = F (

√
a,
√
b), K = F (

√
b) with

〈σ〉 = Gal(L/K) and D = (a, c)K a quaternion division algebra over K with c ∈ F×. Let

〈τ〉 = Gal(L/F (
√
a)). For d ∈ F (

√
b)×, the representation matrix of left multiplication in

It((a, c)K , τ, d) (or Itm((a, c)K , τ, d), see below) has the form
x0 cσ(x1) dτ(x2) dcτ(σ(x3))

x1 σ(x0) dτ(x3) dτ(σ(x2))

x2 cσ(x3) τ(x0) cτ(x1)

x3 σ(x2) τ(x1) τ(x0)

 .
For d ∈ L \ F (

√
b), it is 

x0 cσ(x1) dτ(x2) dcτ(σ(x3))

x1 σ(x0) σ(d)τ(x3) σ(d)τ(σ(x2))

x2 cσ(x3) τ(x0) cτ(x1)

x3 σ(x2) τ(x1) τ(x0)


with all xi ∈ L (using the standard basis both times). Let c > 0. Suppose a > 0, c > 0.

Then for every d = d1i + d2j ∈ D with (d1, d2) 6= (0, 0) (we do not need to restrict this to

d ∈ L×, only that the matrix representing left multiplication loses its nice form for other d)

we know that ND/K(d) = −(ad2
1 + cd2

2) < 0, i.e ND/K(d) 6∈ ND/K(D×)2. Hence It(D, τ, d),

Itm(D, τ, d) and Itr(D, τ, d) are division algebras over K.

Lemma 15. For any F = Q(
√
e), x = a+

√
eb ∈ F with a, b ∈ Q, we have

F× 2 = {(a2 + eb2) + 2ab
√
e | a, b ∈ Q}.

To obtain examples of well-performing (i.e., fast-decodable) codes from It(D,σ, d), it

seems preferable to choose F as a totally imaginary number field and K ⊂ D such that the

Galois automorphism σ of K/F commutes with complex conjugation, see [11], p. 21.

Example 16. (i) Let D = (−1,−1)F with F = Q(
√
−7), K = Q(

√
−7)(i) and σ(x0+iy0) =

x0 − iy0 for all xi ∈ F as in [11], Section IV.A. D is the division algebra over F used to

construct the Silver Code.
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d = 17 is not a square in K (loc. cit.) and by [11], Lemma 11, It(D,σ, 17) is a division

algebra (associative in this case, see loc. cit.).

Suppose d = i ∈ K \ F . By Theorem 13, It(D,σ, i) is a division algebra if and only if

i 6= zσ̃(z) for all z ∈ D. Now for z = z0 + jz1 we get

zσ̃(z) = NK/F (z0)− σ(z1)2 + jσ(z0)TK/F (z1)

and a straightforward calculation shows that i 6= zσ̃(z) for all z ∈ D. Thus the the iterated

Silver code built in [11], Section IV.A., arising from αi, i.e. given by
c −σ(d) iσ(e) −if
d σ(c) −iσ(f) −ie
e −σ(f) σ(c) −d
f σ(e) σ(d) c

 ,
is fully diverse and has NVD by Corollary 13. More generally, for all d such that

ND/F (d) 6∈ F×2 = {(a2 − 7b2) + 2ab
√
−7 | a, b ∈ Q},

A = It(D,σ, d) is a division algebra. For instance, choose d = 1+i+j thenND/F (1+i+j) = 3

and assuming 3 = (a2 − 7b2) + 2ab
√
−7 yields a = 0 or b = 0, hence that 3 is a square in

Q, a contradiction, or that −3/7 = b2, again a contradiction. Therefore It(D,σ, 1 + i + j)

is a division algebra, and analogously, so would be for instance also It(D,σ, 1 + i + ij),

It(D,σ, i+ j) etc. If, for coding theoretical purposes, we want to only consider d ∈ K, then

a similar argument yields that It(D,σ, 1 + i) is division (2 is not a square in Q, and neither

is −2/7). All these choices yield fully diverse codes.

(ii) As in [11], Section IV.B., let D = (5, i)F with standard basis 1, I, J, IJ , F = Q(i), K =

Q(i)(
√

5) and σ(
√

5) = −
√

5. Then It(D,σ, d) is division for all d = x0 + Ix1 + Jx2 + IJx3,

such that ND/Q(i)(d) = x2
0 − 5x2

1 − ix2
2 + 5ix2

3 is not a square in F = Q(i). We have

F× 2 = {(a2 − b2) + 2abi | a, b ∈ Q}.

Now ND/Q(i)(1 + I + J) = −4 − i and assuming that −4 − i = (a2 − b2) + 2abi yields

a = b = 0, contradiction. Hence It(D,σ, 1 +
√

5 + J) is a division algebra. Similarly, so is

It(D,σ, 1+
√

5
2 ), using the Golden number for d (as -1 is not a square in Q). Therefore by

Corollary 13, the iterated Golden code arising from αθ with θ = 1+
√

5
2 is fully diverse and

has NVD.

(iii) Let D = (−1,−1)Q. Then It(D,σ, d) is division for all d = x0 + x1i + x2j + x3k, such

that the positive rational number ND/Q(d) = x2
0 + x2

1 + x2
2 + x2

3 is not a square in Q, e.g.

for d = 1 + i. Its matrix representation of left multiplication yields a fully diverse codebook

which however is not full-rate.

Example 17. Let D = (−1,−1)Q(
√

5) and τ : Q(i,
√

5)→ Q(i,
√

5) given by τ(
√

5) = −
√

5,

τ(i) = i, the generator of the cyclic Galois group of Q(i,
√

5)/Q(
√

5). Then It(D, τ, d) is

division for all d ∈ D×, such that d 6= zτ̃(z) for all z ∈ D. This is for instance true for
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d = i, by an analogous argument as used in [12], Section IV.B.. The corresponding code is

hence fully diverse and has matrices with determinant in F = Q(
√

5) by Corollary 13. It

looks very similar to the SR-code [13], discussed for instance in [12], Section IV.B., and only

differs by two minus signs (one minus sign in entry (2, 3), one in (2, 4)) from the SR-code:
c −σ(d) iτ(e) −iτσ(f)

d σ(c) −iτ(f) −iτσ(e)

e −σ(f) τ(c) −τσ(d)

f σ(e) τ(d) τσ(c)

 ,
with c, d, e, f ∈ Q(i,

√
5) chosen in the ring of integers OK as usual. Since analogous con-

siderations as in [12] hold for this code (the proofs carry over verbatim), this iterated code

has the same ML-decoding complexity as the SR-code and is fast-decodable.

We observe that for all a ∈ F×, a = a0 +
√

5a1 with ai ∈ Q, we have aτ(a) = (a0 +
√

5a1)(a0 −
√

5a1) = a2
0 − 5a2

1 ∈ Q, and that for x = x0 + ix1 + jx2 + ijx3 ∈ D with

xi ∈ Q(
√

5), we get NK/F (x) = x2
0 + x2

1 + x2
2 + x2

3 ∈ Q(
√

5). By Theorem 6 (b), hence any

d ∈ D× such that NK/F (d) 6∈ Q will yield a division algebra It(D, τ, d) and therefore a fully

diverse code. E.g., any d ∈ F×, d = d0 +
√

5d1 with d0, d1 ∈ Q both nonzero will yield a

division algebra It2(D, τ, d). The determinants of the matrices in codes associated to the

left multiplication in algebras It(D, τ, d) with d ∈ F are in Q(i) which implies these codes

would have NVD. Since analogous considerations on the ML-decoding complexity as in [12]

hold for these codes, they are fast-decodable as well.

Remark 18. The considerations on iterating the Silver code given in [11], Section IV., by

employing the map αd with τ = σ and d = θ ∈ F× = Q(
√
−7)× in the base field, also

generalize to the case that d = θ ∈ F (i) \ F , considered in Example 16 (i). This mean that

the code αθ(D,D) inherits fast-decodability from the Silver code, as Lemma 15 in [11] still

holds in this setting. This confirms the explicit calculation in [11], Section IV.A., that the

decoding complexity for θ = i is O(|S|13). We conjecture that the choice of θ = −i should

give a decoding complexity of O(|S|10), as a similar result to Lemma 16 of [11] should hold

as well.

4.2. Codes obtained from Itm(D, τ, d). For multiplication in A = Itm(D, τ, d) we have

to observe that for all x ∈ K, d = d0 + jd1, di ∈ K:

(1) xl = lτ(x),

(2) (lx)j = (lj)σ(x),

(3) ((lj)x)l = jτ(x)d0 + bτ(σ(x))d1,

(4) ((lj)x)j = lbσ(x),

(5) (jx)l = (lj)τ(x),

(6) (lx)l = τ(x)d0 + jτ(σ(x))d1,

(7) x(lj) = (lj)τ(σ(x)),

(8) (jx)(lj) = lbτ(σ(x)),



16 S. PUMPLÜN

(9) (((lj)x)(lj) = bτ(σ(x))σ(d0) + jτ(x)σ(d1)b,

(10) (lx)(lj) = jτ(σ(x))σ(d0) + bτ(x)σ(d1),

(11) x(lj) = (lj)τ(σ(x)).

This yields, correspondingly, that the representation matrix of left multiplication is given

by [
A τ(B)Θ

B τ(A)

]
,

with A,B ∈ D and Θ = λ(d) as before. Analogously as Theorem 5 in [18] we can prove:

Theorem 19. Let τ : K → K be an automorphism of K. Let D = (K/F, σ, c) be a cyclic

division algebra over F and d ∈ D×. Suppose

τ(c) = c and τσ = στ.

The codebook defined by βd(D,D),

βθ : (X,Y )→

[
X τ(Y )Θ

Y τ(X)

]
,

is fully diverse, if and only if θ 6= zτ̃(z) for all z ∈ D. The determinant of a matrix in

βd(D,D) is an element of F .

Proof. If X ∈ D or Y ∈ D is the zero matrix, βθ(X,Y ) is invertible, so assume X,Y ∈ D
are both non-zero matrices. Then the determinant of βθ is given by

det(X)det(τ(X)− Y X−1τ(Y )Θ).

Suppose det(βθ(X,Y )) = 0, then, since det(X) is nonzero, we must have det(τ(X) −
Y X−1τ(Y )Θ) = 0. Since τ(c) = c, we have λ(τ̃(x)) = τ(λ(x)). Thus

τ(X)− Y X−1τ(Y )Θ = τ(λ(x))− λ(y)λ(x−1)τ(λ(y))λ(d)

= λ(τ̃(x))− λ(y)λ(x−1)λ(τ̃(y))λ(d)

= λ(τ̃(x)− yx−1τ̃(y)d)

and so

det(τ(X)− Y X−1τ(Y )Θ) = det(λ(τ̃(x)− yx−1τ̃(y)d)) = ND/F (τ(x)− yx−1τ(y)d).

Since D is division, we know ND/F (z) = 0 iff z = 0 for all z ∈ D, therefore τ(x) −
yx−1τ(y)d = 0, i.e. τ(x) = yx−1τ(y)d. Rearranging gives

d = τ(y−1)xy−1τ(x) = zτ(z),

where z = τ(y−1)x, a contradiction of our hypothesis. Moreover, we conclude that the

determinant of αθ(X,Y ) can be written as

ND/F (x)ND/F (τ(x)− yx1τ(y)d),

and thus takes values in F .
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Conversely, if θ = zτ̃(z) for some z ∈ D then βθ(Z, In) has determinant zero, because

det(τ(Z)) = det(det(λ(τ̃(z)− z−1zτ̃(z))) = 0. �

Theorem 19 together with Theorem 6 and Lemma 2 yield:

Theorem 20. Let K/F be a cyclic Galois extension of degree n with Galois group Gal(K/F ) =

〈σ〉. Let τ : K → K be an automorphism of K. Let D = (K/F, σ, c) be a cyclic division

algebra over F and d ∈ D×. Suppose τ(c) = c and τσ = στ. Then the following are equiva-

lent:

(i) A = Itm(D, τ, d) is a division algebra.

(ii) d 6= zτ̃(z) for all z ∈ D.

(iii) The codebook βd(D,D) is fully diverse and its elements are the representation matrices

of left multiplication in A.

Moreover, the determinant of a matrix in βd(D,D) is an element of F .

The considerations from Example 16 can easily be adjusted now to yield fully diverse

codes of type βd(D,D). Whenever d ∈ D \K, these codes will be of a different form that

the ones obtained via αd(D,D).

4.3. 6 × 3 case. The following setup is treated in [11], Section V for n = 3: Let L be a

Galois extension with Galois group Gal(L/F ) = C2 × Cn (i.e., ∼= C2n, if n odd), where σ

generates Cn and τ generates C2. Let K = Fix(σ), then Gal(L/K) = 〈σ〉. Let K = F (
√
a)

and D = (L/K, σ, c) a cyclic division algebra over K of degree n. Let d ∈ D× (only

d ∈ K = F (
√
a) is studied in in [11], Section V). Then A = It(D, τ, d) is division over K if

ND/K(d) 6= ND/K(zτ̃(z))

for all z ∈ D. If c ∈ Fix(τ) as in all the examples treated in [11], Section V, then A is a

division algebra if and only if d 6= zτ̃(z) for all z ∈ D by Theorem 12.

Example 21. Let ζ7 be a primitive 7th root of unity.

(i) D = (Q(ζ7, i)/Q(
√
−7, i), σ2, 1 + i) is a cyclic division algebra of degree 3 over K =

Q(
√
−7, i) with σ : ζ7 → ζ2

7 . Let F = Q(i), K = Q(
√
−7, i) = Q(

√
7, i) and τ(

√
7) = −

√
7,

τ(i) = i as in [11], Example 4. For a = a1 + ia1 +
√

7a2 +
√
−7ia3 ∈ K, ai ∈ Q we have

aτ(a) = (a2
0 − a2

1 − 7a2
2 − 7a2

3) + 2(a0a1 − 7a1a3)i.

By Corollary 8, A = It(D, τ, d) is division if

ND/K(d) 6= aτ(a)

for all a ∈ K×. It was already shown in [11] that It(D, τ, i
√

7) is an associative division

algebra. The induced code has NVD and is fast-decodable. It is easy to see that for instance

also It(D, τ, ζ7) is a division algebra.

(ii) D = (Q(ζ7)/Q(
√
−7), σ2, 3) is a cyclic division algebra of degree 3 over K = Q(

√
−7)
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with σ : ζ7 → ζ2
7 . Let F = Q(i) and τ(

√
−7) = −

√
−7, as in [11], Example 5. For

a = a0 +
√
−7a1 ∈ Q(

√
−7), ai ∈ Q, we have

aτ̃(a) = a2
0 + 7a2

1 > 0.

By Corollary 8, It(D, τ, d) is a division algebra over K if ND/K(d) 6= aτ(a) for all a ∈
ND/K(D×). Now d = ζ7 ∈ Q(ζ7) \ Q(

√
−7) has ND/K(ζ7) = ζ6

7 . Hence It(D, τ, ζ7) is

division.

5. Iterated algebras inside the tensor product of a cyclic division algebra

and a (nonassociative) quaternion algebra

The following two results deal with the setup treated in [11], Sections IV. and V.

Theorem 22. Let K/F be a cyclic field extension of degree n = 2m with Gal(K/F ) = 〈σ〉
and K1 = F (

√
a) the subfield of K with Gal(K1/F ) = 〈σm〉. Let D = (K/F, σ, c) be a cyclic

division algebra and d ∈ F (
√
a)×. Then

It(D,σm, d)

is a subalgebra of the tensor product

A = D ⊗F Cay(F (
√
a), d)

of D and the (perhaps nonassociative) quaternion algebra Cay(F (
√
a), d) over F .

In particular, if d ∈ F× then It(D,σm, d) is associative.

Proof. (K/F, σ, c) is an n-dimensional right K-vector space with basis {1, e, e2, . . . , en−1},
where en = c, and Cay(a, d) as two-dimensional right F (

√
a)-vector space with basis {1, j},

where j2 = d. Since R = K ⊗F K1 ⊂ Nuc(A), A is a free right R-algebra of dimension 2n

with R-basis

{1⊗ 1, e⊗ 1, . . . , en−1 ⊗ 1, 1⊗ j, e⊗ j, en−1 ⊗ j}.

and we identify

A = R⊕ eR⊕ · · · ⊕ en−1R⊕ jR⊕ ejR⊕ · · · ⊕ en−1jR.

An element in λ(A) has the form [
X Θσm(Y )

Y σm(X)

]
.

with Θ = λ(d), X,Y ∈ Matn(R), such that when restricting the entries of X, Y , xi, yi ∈ R,

to elements in K, we obtain X,Y ∈ D and a codebook A = αd(D,D), where

αd(X,Y ) =

[
X Θσmσ(Y )

Y σmσ(X)

]
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Restricting the matrices and only allow entries in K amounts to computing the representa-

tion matrix of left multiplication with an element in A0 for the subspace

A0 = K ⊕ eK ⊕ · · · ⊕ en−1K ⊕ jK ⊕ ejK ⊕ · · · ⊕ en−1jK

of A. This has dimension 2n2 as F -vector space. If Cay(F (
√
c), d) is associative, i.e. d ∈ F×,

A is the representation of a central simple algebra A over F [18].

A0 is a nonassociative F -subalgebra A0 of A. Its representation matrix of left multipli-

cation equals the one of It(D,σm, d) by Lemma 2, so A0 = It(D,σm, d). �

Theorem 23. Let L be a Galois extension with Galois group Gal(L/F ) = C2×Cn (i.e., ∼=
C2n, if n odd), where σ generates Cn and τ generates C2. Let K = Fix(σ), then Gal(L/K) =

〈σ〉. Let K = F (
√
a), d ∈ F (

√
a), and Gal(K/F ) = 〈τ〉. Let D = (L/K, σ, c) be a cyclic

division algebra over K of degree n. Then It(D, τ, d) is a subalgebra of the tensor product

D ⊗K (Cay(F (
√
a), d)⊗F K)

of D with the (perhaps nonassociative) split quaternion algebra Cay(F (
√
a), d) ⊗F K over

K.

In particular, if d ∈ F× then It(D, τ, d) is associative.

Proof. The K-algebra Cay(K, d) ⊗F K contains the split quadratic étale K-algebra T =

K ⊗F K ∼= K × K. D = (L/K, σ, c) is an n-dimensional right L-vector space with basis

{1, e, e2, . . . , en−1} and Cay(K, d) ⊗F K = T ⊕ jT a two-dimensional right T -module with

basis {1, j}, where j2 = d. A = (L/K, σ, c)⊗K (Cay(F (
√
a), d)⊗FK) contains the K-algebra

R = L⊗K T ∼= L× L ⊂ Nuc(A). A is a free right R-algebra of dimension 2n with R-basis

{1⊗ 1, e⊗ 1, . . . , en−1 ⊗ 1, 1⊗ j, e⊗ j, en−1 ⊗ j} and we identify

A = R⊕ eR⊕ · · · ⊕ en−1R⊕ jR⊕ ejR⊕ · · · ⊕ en−1jR.

An element in λ(A) has the form [
X Θτσ(Y )

Y τσ(X)

]

with Θ = λ(d), X,Y ∈ Matn(R), such that when restricting the matrix entries of X, Y

to elements in L ⊂ R, we obtain X,Y ∈ D. Restricting the elements to have entries in L

amounts to computing the representation matrix for left multiplication λx in the subspace

A0 = L⊕ eL⊕ · · · ⊕ en−1K ⊕ jL⊕ ejL⊕ · · · ⊕ en−1jL ⊂ A,

using elements x, y ∈ A0 only. A0 is an F -subalgebra A0 of A. Its representation matrix of

left multiplication equals the one of It(DK , τ, d) by Lemma 2, so A0 = It(DK , τ, d). �
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6. Generalized Cayley-Dickson algebras

Let D = (K/F, σ, c) be a cyclic algebra over F of degree n, τ ∈ Aut(K) and d ∈ D×. The

previously discussed way to define a multiplication on the 2n-dimensional F -vector space

D ⊕D can be changed by randomly permuting the factors inside the definition. Since the

proof of Theorem 6 is independent of theses permutations, this yields algebras which are

division under the same condition as the iterated ones and which display similar behaviour.

What makes the iterated algebras A = It(D, τ, d) and A = Itm(D, τ, d) stand out from the

other, and important for developing space-time block codes, is the fact that they are right

D-modules and λx ∈ EndD(A).

To demonstrate this, we consider one case, where the factors are arranged as in the

classical Cayley-Dickson doubling process. Then the 2n-dimensional F -vector space A =

D⊕D is made into a unital algebra over F0 with unit element 1 = (1, 0) via the multiplication

(u, v)(u′, v′) = (uu′ + dτ̃(v′)v, v′u+ vτ̃(u′))

for u, u′, v, v′ ∈ D. An algebra obtained from such a doubling ofD is denoted by Cay(D, τ, d).

If d ∈ D× is not contained in F , define

(u, v)(u′, v′) = (uu′ + τ̃(v′)dv, v′u+ vτ̃(u′))

resp.

(u, v)(u′, v′) = (uu′ + τ̃(v′)vd, v′u+ vτ̃(u′))

on D⊕D and denote the corresponding algebras by Caym(D, τ, d), resp. Cayr(D, τ, d). Even

if τ = σ and d ∈ F× (so that D is a quaternion algebra), this is not the classical Cayley-

Dickson process, as τ̃ is not the canonical involution on D (τ̃(j) = j, whereas σ(j) = −j).
Put l = (0, 1D). Then for instance the multiplication in Cay(D, τ, d) can be written as

(u+ lv)(u′ + lv′) = (uu′ + dτ̃(v′)v) + l(v′u+ vτ̃(u′))

for u, u′, v, v′ ∈ D. For a cyclic algebra D = (K/F, σ, c) of degree n over F , we call

{1, e, e2, . . . , en−1, l, le, le2, . . . , len−1}

the standard basis of the rightK-vector space It((K/F, σ, d), τ, d), Itm(D, τ, d), resp. Itr(D, τ, d).

Let K = F [x]/(f(x)) be a field extension of F of degree n with Gal(K/F ) = 〈σ〉. Let

τ ∈ Aut(K) and d ∈ K×. Then the 2n-dimensional F -vector space K⊕K can be made into

a unital algebra over F with unit element 1 = (1, 0) via the multiplication

(u, v)(u′, v′) = (uu′ + dτ(v′)v, v′u+ vτ(u′))

for u, u′, v, v′ ∈ K. This algebra is denoted by Cay(K, τ, d). For d ∈ K×, Cay(K, τ, d)

is a subalgebra of Cay(D, τ, d), Caym(D, τ, d) and Cayr(D, τ, d). If K is a quadratic field

extension and τ its non-trivial automorphism, Cay(K, τ, d) is th classical Cayley-Dickson

doubling Cay(K, d) of K and hence a quaternion algebra.
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In the following, let A = Cay(D, τ, d), A = Caym(D, τ, d) or A = Cayr(D, τ, d)). Clearly,

D is a subalgebra of A. A is a right K-vector space since x(bc) = (xb)c for all b, c ∈ K

and x ∈ A. However, here Lx is not always a K-linear map. Thus these algebras are less

interesting for code constructions.

Lemma 24. (i) A = Cay(D, τ, d), A = Caym(D, τ, d), resp., A = Cayr(D, τ, d), is not

power-associative if d 6∈ Fix(τ).

(ii) Let B = (K ′/F, σ′, c) and D = (K/F, σ, c) be two cyclic algebras over F and f : D → B

an algebra isomorphism. Suppose τ is a K-automorphism and τ ′ a K ′-automorphism, such

that f(τ̃(u)) = τ̃ ′(f(u)) for all u ∈ D. Let a ∈ B×. For u, v ∈ D, the map

G : D ⊕D → B ⊕B, G(u, v) = (f(u), a−1f(v))

defines the following algebra isomorphisms:

Cay(D, τ, d) ∼= Cay(B, τ ′, τ̃ ′(a)af(d)),

Cayr(D, τ, d) ∼= Cayr(B, τ
′, τ̃ ′(a)af(d)),

and

Caym(D, τ, d) ∼= Caym(B, τ ′, τ̃ ′(a)f(d)a).

In particular, for a ∈ Fix(τ)× ∩ F ,

Cay(D, τ, d) ∼= Cay(D, τ, a2d), Cay(D, τ, d) ∼= Cay(D, τ, a2d) and Cay(D, τ, d) ∼= Cay(D, τ, a2d).

The proof is analogous to the one of Lemma 3. Analogous to Theorem 6 we can prove:

Theorem 25. Let D be a cyclic division algebra of degree n over F and d ∈ D×. Let

τ ∈ Aut(K) and suppose τ commutes with σ. Let A = Cay(D, τ, d), A = Caym(D, τ, d) or

A = Cayr(D, τ, d).

(i) A is a division algebra if

ND/F (d) 6= ND/F (zτ̃(z))

for all z ∈ D. Conversely, if A is a division algebra then d 6= zτ̃(z) for all z ∈ D×.

(ii) Suppose c ∈ Fix(τ). Then A is a division algebra if ND/F (d) 6= aτ(a) for all a ∈
ND/F (D×).

(iii) Suppose F ⊂ Fix(τ). Then A is a division algebra if ND/F (d) 6∈ ND/F (D×)2.

With analogous proofs as before, we obtain that corresponding versions of Corollary 8,

Example 9 and Lemma 10 also hold for Cay(D, τ, d), Caym(D, τ, d) and Cayr(D, τ, d).

Remark 26. Another rather canonical way to define a unital algebra structure on D ⊕D
would be to choose

(u, v)(u′, v′) = (uu′ + vdτ̃(v′), uv′ + vτ̃(u′))

or

(u, v)(u′, v′) = (uu′ + vτ̃(v′)d, uv′ + vτ̃(u′)).
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For u, v, u′, v′ ∈ K and K/F quadratic, this would be the multiplication in the (associative

or nonassociative) quaternion algebra Cay(K, d). Moreover, then

(u, v)(u′, v′) = (u, v)

[
u′ v′

dτ̃(v′) τ̃(u′)

]
resp.,

(u, v)(u′, v′) = (u, v)

[
u′ v′

τ̃(v′)d τ̃(u′)

]
.

Now we would have left D-modules and look at matrices representing right multiplication

instead. Concerning code constructions, these would not yield anything new, though.
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