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Abstract. In this note we extend the Lie inner ideal structure of simple Artinian
rings with involution, initiated by Benkart and completed by Benkart and Fernández
López, to centrally closed prime algebras with a ring involution over a field of char-
acteristic not 2 or 3. New Lie inner ideals (which we call special) occur when making
this extension. We also give a a purely algebraic description of the so-called Clifford
inner ideals, which had been described only in geometric terms. Our main tool is a
theorem by Martindale and Miers on nilpotent inner derivations of the skew-symmetric
elements of prime rings with involution.

1. Introduction

Inner ideals of Lie algebras are the analogues of one-sided ideals in associative rings

and algebras. They are Φ-submodules B of a Lie algebra L (over a ring of scalars Φ)

such that [[B,L], B] ⊆ B. An abelian inner ideal of L is an inner ideal B which is also an

abelian subalgebra, i.e., such that [B,B] = 0. Since their introduction over 30 years ago

([9],[4]), abelian inner ideals have proved to be a useful tool for classifying both finite-

dimensional and infinite-dimensional simple Lie algebras. Premet ([19],[20]) has shown

that every finite-dimensional simple Lie algebra over an algebraically closed field of

characteristic not 2 or 3 must contain one-dimensional inner ideals. Moreover, it follows

from ([4],[21]) (see also [6]) that when the field is algebraically closed of characteristic

p > 5, the classical Lie algebras (modular versions of the complex finite-dimensional

simple Lie algebras) can be characterized as the finite-dimensional simple Lie algebras

satisfying the following two equivalent conditions:
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(i) They are generated by one-dimensional inner ideals.

(ii) They are nondegenerate, that is, they have no nonzero absolute zero divisors

(where by an absolute zero divisor or sandwich element we mean an element x

such that [x, [x, L]] = 0).

Further evidence of the usefulness of inner ideals comes from [15], where it is shown

that an abelian inner ideal B of finite length in a nondegenerate Lie algebra L over

a ring of scalars Φ such that 2 and 3 are invertible gives rise to a finite Z-grading

L = L−n ⊕ · · · ⊕ L0 ⊕ · · · ⊕ Ln with B = Ln. Zelmanov in [24] described the simple

Lie algebras over fields of characteristic 0 or p > 4n + 1 with such gradings in terms

of finite Z-gradings of simple associative rings with involution. A description of these

associative rings and their gradings was later provided by Smirnov in [22],[23]. As a

result, any nondegenerate simple Lie algebra with a nonzero abelian inner ideal of finite

length comes either from a simple associative ring with a finite Z-grading by taking the

Lie commutator, from the skew-symmetric elements of such a simple associative ring

with involution or from the Tits-Kantor-Koecher construction of a Jordan algebra of

Clifford type, or is of exceptional type E6, E7, E8, F4 or G2.

We also note that there is a strong connection between inner ideals of Lie algebras

and inner ideals of Jordan systems (algebras and pairs, [16]) which has been developed

in a series of articles during the last five years ([11]-[15],[7],[8]). In particular, results

from [15] enable us to adopt a Jordan approach based on the notion of a subquotient

of an abelian inner ideal to obtain the desired Lie theoretic theorems.

Let A be a non-necessarily unital associative algebra with involution ∗ over an arbi-

trary ring of scalars Φ, and let K := Skew(A, ∗) be the Lie algebra of the skew-symmetric

elements of A. Denote by T the Jordan triple system defined on the Φ-module K by

the quadratic operator Pab = aba. Any abelian inner ideal of K (respectively, any inner

ideal of T ) will be called a Lie inner ideal (respectively, Jordan inner ideal) of K.

If V is a submodule of K such that V V = 0, then V is a Lie inner ideal if and only

if it is a Jordan inner ideal. In this case V will be called a Jordan-Lie inner ideal.

It is clear that if V is a Jordan-Lie inner ideal of K and Ω is a Φ-submodule of

Skew(Z(A), ∗) then V + Ω is a Lie inner ideal of K. Lie inner ideals of K of the form

V + Ω with V and Ω as above will be called standard.

Let A be a unital (associative) ring whose centre is a field, with an involution ∗ of

the second kind, so that K is a Lie algebra over the field Sym(Z(A), ∗). Let V be a

Jordan-Lie inner ideal of K and let V0 be a hyperplane of V such that [[V, K], V ] ⊆ V0.

If f : V → Skew(Z(A), ∗) is a Sym(Z(A), ∗)-linear map with Ker(f) = V0, then the set
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Inn(V, V0, f) := {v + f(v) : v ∈ V } is a Lie inner ideal of K which is not standard. This

kind of Lie inner ideal will be called special. We have the following result: K contains

a special inner ideal if and only if there exists a skew-symmetric element a in A such

that a2 = 0 and a is not von Neumann regular.

Suppose now that A is a prime associative algebra with nonzero socle and with

an involution ∗ of transpose type. Then K can be regarded as a subalgebra of the

orthogonal algebra o(X) containing the finitary orthogonal algebra fo(X) [1], where X

is a vector space (possibly infinite-dimensional) with a nonsingular symmetric bilinear

form 〈., .〉. Given x, z ∈ X, we set x∗z to denote the linear map defined by x∗z(y) =

〈y, x〉z for all y ∈ X. It is easy to check that fo(X) is the linear span of the linear maps

of the form x∗z − z∗x.

Given a hyperbolic plane H of X and a nonzero isotropic vector x of H, we have

that the set [x,H⊥] := {x∗z − z∗x : z ∈ H⊥} is a Lie inner ideal of o(X) contained in

fo(X). Since the subquotient of such an inner ideal [x,H⊥] is a Clifford Jordan pair,

an inner ideal of the form [x,H⊥] will be called a Clifford inner ideal. They can also be

described in algebraic terms as κ(eA(1 − e)) := {a− a∗ : a ∈ eA(1 − e)}, where e ∈ A

is a rank-one isotropic idempotent.

Our last example of Lie inner ideal is a very singular one. Let A be the algebra

M2(F) of 2 by 2 matrices over a field F of characteristic not 2 and let ∗ be the transpose

involution. Then K = Skew(M2(F), ∗) is itself a Lie inner ideal.

A prime associative algebra A over a field F is centrally closed if its extended centroid

is F itself. Then any ring involution ∗ of A induces an involution, also denoted by ∗,
in F. We say that ∗ is of the first kind if it is the identity on F; otherwise ∗ is of the

second kind. Note that K is then a Lie algebra over the field Sym(F, ∗).
The main result of this paper proves that the examples of Lie inner ideals listed above

essentially exhaust all possibilities in the case of a centrally closed prime associative

algebra with a ring involution.

Theorem (Main Theorem). Let A be a centrally closed prime associative algebra with

a ring involution over a field F of characteristic not 2 or 3, let F be the algebraic closure

of F, and suppose that F ⊗F A is not the full matrix algebra M2(F) with the transpose

involution. If B is a Lie inner ideal of Skew(A, ∗), then either

(i) B = V is a Jordan-Lie inner ideal,

(ii) B = V ⊕ Skew(Z(A), ∗) is a standard inner ideal,

(iii) B = Inn(V, V0, f) is special, or
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(iv) B = κ(eA(1− e)) is Clifford.

Moreover, in cases (ii) and (iii) A is unital and ∗ is of the second kind, while in case

(iv) A has nonzero socle and ∗ is the transpose involution.

As will be shown in a forthcoming paper, this theorem provides a new approach to the

inner ideal structure of the skew-symmetric elements of an associative algebra initiated

by Benkart [3] and completed by in Benkart and Fernández López in [5].

2. Lie inner ideals and Jordan inner ideals

Throughout this section, and unless otherwise specified, we will be dealing with non-

necessarily unital associative algebras A, with product xy; Lie algebras L, with [x, y]

denoting the Lie bracket and adx the adjoint map determined by x; and Jordan triple

systems T (see [16] for a definition), with quadratic Jordan operator Px and triple

product {x, y, z}; all of them over a ring of scalars Φ. We denote by Z(A) the centre of

A. Note that any ring is an associative algebra over Z.

2.1. Any associative algebra A with involution ∗ gives rise to:

(i) A Lie algebra K defined on the Φ-submodule Skew(A, ∗) by the Lie bracket

[x, y] := xy − yx.

(ii) A Jordan triple system T defined on Skew(A, ∗) by the quadratic Jordan operator

Pxy := xyx, with triple product {x, y, z} = xyz + zyx.

2.2. Given a Jordan triple system T , an inner ideal of T is any Φ-submodule V of T

such that {V, T, V } ⊆ V . Similarly, an inner ideal of a Lie algebra L is a Φ-submodule

B of L such that [[B, L], B] ⊆ B. An abelian inner ideal of L is an inner ideal B which

is also an abelian subalgebra, i.e., such that [B, B] = 0.

2.3. An abelian inner ideal of the Lie algebra K will be called a Lie inner ideal.

Similarly, an inner ideal of the Jordan triple system T will be called a Jordan inner

ideal.

2.4. Let V = (V +, V −) be a Jordan pair (see [16]). An element x ∈ V σ, σ = ±, is called

an absolute zero divisor if QxV
−σ = 0. A Jordan pair V is said to be nondegenerate

if it has no nonzero absolute zero divisors. Similarly, given a Lie algebra L, x ∈ L is

an absolute zero divisor of L if ad2
x = 0, and L is said to be nondegenerate if it has no

nonzero absolute zero divisors.
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2.5. Let B ⊆ V + be an inner ideal of a Jordan pair V . Following [17], the kernel of B

is the set KerV B := {y ∈ V − | QBy = 0}. Then (0, KerV B) is an ideal of the Jordan

pair (B, V −), and the quotient SubV B := (B, V −)/(0, KerV B) = (B, V −/KerV B) is a

Jordan pair called the subquotient of B. The kernel and the corresponding subquotient

of an inner ideal B ⊆ V − are defined in a similar way.

The analogue of this result holds for the abelian inner ideals of a Lie algebra if we

replace the Jordan triple product {x, y, z} by the left double commutator [[x, y], z] as

we describe next.

2.6. Let M be an abelian inner ideal of a Lie algebra L.

(i) The kernel of M is the set KerLM := {y ∈ L | [M, [M, y]] = 0}.
(ii) The pair of Φ-modules SubLM := (M, L/KerLM) with triple products given by

{m, a, n} := [[m, a], n] for every m,n ∈ M and a ∈ L,

{a,m, b} := [[a,m], b] for every m ∈ M and a, b ∈ L,

where x denotes the coset of x relative to the submodule KerLM , is a Jordan

pair called the subquotient of M [15, Lemma 3.2].

(iii) A Φ-submodule B of M is an inner ideal of L if and only if it is an inner ideal

of SubLM [15, Proposition 3.5 (i)].

2.7. (See [15, Proposition 3.3].) Let L = L−n ⊕ · · · ⊕ L0 ⊕ · · · ⊕ Ln be a (2n + 1)-

grading. Then Ln and L−n are abelian inner ideals. Moreover, if L is nondegenerate,

then SubLLn is isomorphic to the Jordan pair (Ln, L−n); the triple products are given

by the left double commutator.

Definition 2.8. Let B and C be abelian inner ideals of L. We will say that B and C

are Jordan isomorphic (B ∼= C) if their subquotients SubLB and SubLC are isomorphic

as Jordan pairs.

3. Standard inner ideals

Throughout this section A will denote an associative algebra with an involution ∗
over a ring of scalars Φ containing 1

2
, and K = Skew(A, ∗) will be the Lie algebra of the

skew-symmetric elements of A.

3.1. If V is a Φ-submodule of Skew(A, ∗) such that V V = 0, then V is a Jordan inner

ideal of K if and only if it is a Lie inner ideal: for u, v ∈ V and x ∈ K, V V = 0 implies
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[[u, x], v] = uxv + vxu = {u, x, v}. In this case, V will be called a Jordan-Lie inner

ideal.

Note that any Lie inner ideal B of K such that b2 = 0 for all b ∈ B is Jordan-Lie: for

any b, c ∈ B, 0 = (b + c)2 = 2bc, so BB = 0 and B is Jordan-Lie.

Definition 3.2. A Lie inner ideal B of K will be said to be standard if B = V + Ω,

where V is a Jordan-Lie inner ideal of K and Ω is a Φ-submodule of Skew(Z(A), ∗).

3.3. Given a Lie inner ideal B of K, we denote by VB the subset of all zero square

elements of the commutative set B + Skew(Z(A), ∗).

Lemma 3.4. Let A be semiprime and let B be a Lie inner ideal of K.

(i) If B ⊆ VB+Skew(Z(A), ∗), then VB is a Jordan-Lie inner ideal and {VB, K, VB} ⊆
B.

(ii) If in addition VB ⊆ B, then B = VB ⊕ (B ∩ Skew(Z(A), ∗)) is standard. In

particular, this is so if Skew(Z(A), ∗) ⊆ B, or if every v ∈ VB is von Neumann

regular.

Proof. (i) Since B + Skew(Z(A), ∗) is closed under the sum, we have

VB + VB ⊆ B + Skew(Z(A), ∗) ⊆ VB + Skew(Z(A), ∗),
which implies VB +VB ⊆ VB because VB ⊆ B+Z(A) is commutative and Z(A) contains

no nonzero nilpotent elements, since A is semiprime. Then, for any u, v ∈ VB, we have

0 = (u+v)2 = 2uv, and hence {u, x, v} = uxv+vxu = [[u, x], v] ∈ B with {u, x, v}2 = 0.

This proves that VB has the required properties.

(ii) Suppose in addition that VB ⊆ B. Then the Modular Law applied to the inclusion

B ⊆ VB ⊕ Skew(Z(A), ∗) yields B = VB ⊕ (Skew(Z(A), ∗) ∩ B). Note finally that if

Skew(Z(A), ∗) ⊆ B then VB ⊆ B + Skew(Z(A), ∗) ⊆ B, and that if every v ∈ VB is von

Neumann regular, then VB = {VB, K, VB} ⊆ B by (i). This completes the proof. ¤

Theorem 3.5. Let A be semiprime and let B be a Lie inner ideal of K. Then B is

standard if and only if the following condition holds:

VB ⊆ B ⊆ VB + Skew(Z(A), ∗). (ST)

Proof. By Lemma 3.4, condition (ST) is sufficient for B to be standard. Suppose then

that B = V ⊕ Ω is standard. Clearly, V ⊆ VB, and VB ⊆ B + Skew(Z(A), ∗) ⊆
V ⊕ Skew(Z(A), ∗) implies VB = V , which proves that B satisfies (ST). ¤
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4. Special inner ideals

Recall that an involution ∗ of a unital associative ring A is of the first kind if ∗ is the

identity map on Z(A); otherwise ∗ is said to be of the second kind. As above, we denote

by K the Lie algebra Skew(A, ∗) over the ring of scalars Sym(Z(A), ∗).
4.1. We show a way of constructing Lie inner ideals of K which are not standard. For

this purpose we need:

(i) A unital ring A whose centre is a field of characteristic not 2, with an involution

∗ of the second kind,

(ii) a Jordan-Lie inner ideal V of K containing a hyperplane V0 such that [[V,K], V ] ⊆
V0, and

(iii) a Sym(Z(A), ∗)-linear map f : V → Skew(Z(A), ∗) such that Ker(f) = V0.

Theorem 4.2. Let A, ∗, K, V , V0 and f be as above. Then the set Inn(V, V0, f) :=

{v + f(v) : v ∈ V } is a Lie inner ideal of K which is not standard.

Proof. Set B := Inn(V, V0, f).

(1) B is a Lie inner ideal of K. Indeed,

[[B, K], B] = [[V, K], V ] ⊆ V0 ⊆ B

and

[B,B] = [V, V ] = 0.

(2) B ∩Z(A) = 0, since v + f(v) = z ∈ Z(A) implies v = z− f(v) ∈ Z(A) and hence

z = f(v) = 0 because A is semiprime and v is nilpotent.

(3) VB = V : From the very definition of B, V ⊆ B + Skew(Z(A), ∗), and since

V V = 0 we have V ⊆ VB. Conversely, let x := b + z ∈ VB with b = v + f(v). If v = 0

then b = 0 and hence x2 = 0 implies z = 0, so we may assume v 6= 0. Then

0 = x2 = (b + z)2 = (v + (f(v) + z))2 = 2(f(v) + z)v + (f(v) + z)2

implies f(v) + z = 0. Thus x = v ∈ V , which proves that VB ⊆ V .

(4) Let u ∈ V be such that f(u) 6= 0. Since V ∩ B = Ker(f), we have that u does

not belong to B. Thus VB = V is not contained in B, so B is not standard by Theorem

3.5. ¤

Lie inner ideals of the form Inn(V, V0, f) will be called special. Note that a Jordan-Lie

inner ideal V giving rise to an special inner ideal necessarily contains an element which

is not von Neumann regular. Conversely:
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Example 4.3. Let A be a unital ring with an involution ∗ of the second kind whose

centre is a field of characteristic not 2. Then any element x ∈ K which is of zero

square but not von Neumann regular yields the special inner ideal Inn(V, V0, f), where

V = Sym(Z(A), ∗)x⊕xKx, V0 = xKx and f : V → Skew(Z(A), ∗) is given by f(x) = 1

and f(xKx) = 0.

5. Clifford inner ideals

Throughout this section F will denote a field of characteristic not 2.

5.1. Let X be a vector space over F endowed with a nonsingular symmetric bilinear

form 〈· , ·〉. Denote by LX(X) the associative algebra of the linear maps a : X → X

having a (unique) adjoint a∗ : X → X, that is, such that 〈ax, y〉 = 〈x, a∗y〉 for all

x, y ∈ X. Then:

(i) LX(X) is a primitive algebra with involution ∗ (the adjoint).

(ii) The socle of LX(X) is the ideal FX(X) of all a ∈ LX(X) having finite rank (cf.

[2, Theorems 4.3.7 and 4.6.8]).

(iii) Skew(LX(X), ∗) is the orthogonal algebra o(X) and Skew(FX(X), ∗) is the fini-

tary orthogonal algebra fo(X) [1].

(iv) If b ∈ o(X), then 〈bx, x〉 = 0 for every x ∈ X.

5.2. Given x, y ∈ X, write y∗x to denote the linear map on X defined by y∗x(x′) =

〈x′, y〉x for all x′ ∈ X. We have:

(i) (y∗x)∗ = x∗y and therefore y∗x ∈ FX(X). In fact, FX(X) is the additive span

of these rank-one linear maps.

(ii) a(y∗x) = y∗ax and (y∗x)b = (b∗y)∗x for all x, y ∈ X, any linear map a on X and

any b ∈ LX(X).

(iii) (y∗x)(z∗w) = 〈w, y〉z∗x for all x, y, z, w ∈ X.

(iv) The linear map defined by [x, y] := x∗y − y∗x, x, y ∈ X, belongs to fo(X). If V

and W are subspaces of X, we write [V,W ] to denote the additive span of all

the linear maps [v, w], v ∈ V , w ∈ W . With this convention, fo(X) = [X, X].

5.3. A hyperbolic pair is a pair of isotropic vectors (x, y) of X such that 〈x, y〉 = 1, i.e,

such that H = Fx⊕ Fy is a hyperbolic plane.

(i) If H is a hyperbolic plane then X = H⊕H⊥, where H⊥ = {z ∈ X : 〈z, H〉 = 0}.
(ii) Any nonzero isotropic vector x ∈ X is part of a hyperbolic pair.



INNER IDEALS OF LIE ALGEBRAS OF SKEW ELEMENTS 9

5.4. An idempotent e ∈ LX(X) is isotropic if ee∗ = 0 = e∗e. It is easy to see that e is

a rank-one isotropic idempotent if and only if e = x∗y where (x, y) is a hyperbolic pair.

Proposition 5.5. Let X be a vector space over F, dimFX > 2, endowed with a non-

singular symmetric bilinear form 〈· , ·〉, let H be a hyperbolic plane of X and let x ∈ H

be a nonzero isotropic vector. Then:

(i) [x,H⊥] is a Lie inner ideal of o(X) contained in fo(X).

(ii) For any z ∈ H⊥, [x, z]3 = 0 and [x, z]2 = −〈z, z〉x∗x, with [x, z]2 = 0 if and

only if z is isotropic. Hence there exists b ∈ [x,H⊥] such that b3 = 0 and b2 is

a rank-one linear map.

(iii) [x,H⊥] = ad2
[x,z](fo(X)) for any nonisotropic vector z ∈ H⊥.

(iv) [x,H⊥] is minimal if and only if H⊥ has no nonzero isotropic vectors.

(v) [x,H⊥] is a maximal commutative subset, and therefore a maximal Lie inner

ideal, of o(X).

Proof. (i)-(iv) are proved in [12, Lemma 3.7].

(v) Let a ∈ o(X) be such that

a(x∗z − z∗x) = (x∗z − z∗x)a, z ∈ H⊥. (1)

We will show that for any isotropic vector y ∈ H such that 〈x, y〉 = 1 we have that

ay ∈ H⊥ and a = [x, ay].

Since a∗ = −a, equation (1) can be written as

x∗az − z∗ax = (az)∗x− (ax)∗z, z ∈ H⊥, (2)

which evaluated in y yields az = 〈y, az〉x − 〈y, ax〉z, z ∈ H⊥. Taking z1 ∈ H⊥ such

that 〈z1, z1〉 6= 0, which is possible because dimFX > 2, and since 〈az1, z1〉 = 0 because

a is skew-symmetric, we have that 〈y, ax〉 = 0. Thus

az = 〈y, az〉x, z ∈ H⊥. (3)

Taking again z1 ∈ H⊥ such that 〈z1, z1〉 6= 0, it follows from (2) and (3) that ax =

〈z1, ax〉z1 = −〈az1, x〉z1 = −〈y, az1〉〈x, x〉z1 = 0. Thus

ax = 0. (4)

It follows from (4) that 〈ay, x〉 = −〈y, ax〉 = 0, and since 〈ay, y〉 = 0, we have that

ay ∈ H⊥. Using the decomposition X = Fx ⊕ Fy ⊕ H⊥ we prove that a = [x, ay] ∈
[x,H⊥]. ¤
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5.6. By [11, 5.11] (see also [11, 5.7] for the definition of a Clifford pair), the finitary

orthogonal algebra fo(X) can be realized as the Tits-Kantor-Koecher algebra of the

Clifford pair (H⊥, H⊥). Moreover, we can verify (using formula (12) of [12]) that the

pair of maps (z 7→ [x, z], v 7→ −[y, v]) defines an isomorphism of the Clifford Jordan

pair (H⊥, H⊥) onto the Jordan pair ([x,H⊥], [y, H⊥]), which is isomorphic to SubLH⊥

by 2.7. For this reason, Lie inner ideals of the form [x,H⊥] will be called Clifford inner

ideals.

We describe Clifford inner ideals in algebraic terms. To this end we introduce the

following notation, which makes sense for any subset S of a ring A with involution:

κ(S) := {a + a∗ : a ∈ S}.
Proposition 5.7. A Lie inner ideal B of o(X) is Clifford if and only if B = κ(eA(1−
e)), where A = LX(X) and e ∈ A is a rank-one isotropic idempotent.

Proof. As previously noted, cf. (5.4), e ∈ A is a rank-one isotropic idempotent if and

only if e = x∗y, where (x, y) is a hyperbolic pair. Let H = Fx ⊕ Fy be the associated

hyperbolic plane and set f := e + e∗. Then Ae = A(x∗y) = x∗Ay = x∗X, and since

1− f is the orthogonal projection on the subspace H⊥, we have:

(1− f)Ae = (1− f)x∗X = x∗(1− f)X = x∗H⊥.

Now consider b ∈ o(X) and note that e∗be = (y∗x)b(x∗y) = (y∗x)(x∗by) = x∗〈by, y〉x = 0

by (5.1)(iv). Then κ((1−f)ae) = κ((1−e)ae−e∗ae) = κ((1−e)ae)−e∗κ(a)e = κ(ea(1−
e)) for every a ∈ A. Hence [x,H⊥] = κ(x∗H⊥) = κ((1− f)Ae) = κ(eA(1− e)). ¤

Theorem 5.8. Let X be a vector space over a field F of characteristic not 2, dimFX >

2, which is endowed with a nonsingular symmetric bilinear form 〈· , ·〉. Let L be a

subalgebra of the Lie algebra o(X) containing fo(X) and let B be an abelian inner ideal

of L. Then B is a Clifford inner ideal of L if and only if there exists b ∈ B such that

b3 = 0 and b2 is a rank-one linear map.

Proof. By (5.2), b2 = αx∗x, where both α ∈ F and x ∈ X are nonzero. Moreover, since

b3 = 0, x is isotropic. Let y ∈ X be such that (x, y) is a hyperbolic pair (cf. 5.3(ii)).

Then the vectors y, by, b2y = αx are linearly independent and satisfy the following

metric relations:

〈y, y〉 = 0, 〈y, by〉 = 0, 〈y, b2y〉 = α, 〈by, by〉 = −α, 〈by, b2y〉 = 0.

Hence the vector subspace V := Fy ⊕ Fby ⊕ Fb2y is the orthogonal sum V = H ⊕ Fby,

where H = Fy⊕ Fb2y = Fy⊕ Fx is a hyperbolic plane and the vector by is anisotropic,
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so V is nonsingular and X = V ⊕ V ⊥. Since V is nonsingular and invariant under b,

and b is skew-symmetric, bV ⊥ ⊆ V ⊥. Set b = b1 ⊕ b0, where b1v = bv, b1w = 0 and

b0v = 0, b0w = w for all v ∈ V, w ∈ V ⊥. Set c = [x, by]. We claim that c = b1. Indeed:

(i) cy = (x∗by − (by)∗x)y = by,

(ii) c(by) = (x∗by − (by)∗x)by = −〈by, by〉x = αx = b(by),

(iii) c(b2y) = (x∗by − (by)∗x)b2y = 0 = b(b2y), and

(iv) cw = (x∗by − (by)∗x)w = 0 for all w ∈ V ⊥.

As previously noted, cf. (5.6), ([x,H⊥], [y, H⊥]) is a Clifford Jordan pair, and hence

von Neumann regular. Then there exists w ∈ H⊥ such that ad2
cd = c, where d = [y, w].

As above we can see that dV ⊆ V and dV ⊥ = 0. Hence ad2
bd = ad2

cd = c, so [x, by] =

c ∈ B. Since [x,H⊥] is a maximal abelian inner ideal by Theorem 5.8(v), we conclude

that B = [x,H⊥] is Clifford. ¤

6. centrally closed prime algebras with a ring involution

6.1. Let A be a prime associative algebra over a field F. Following [2] denote by C the

extended centroid of A. Then C is a field extension of F and the central closure CA of

A is a prime associative algebra over C. We say that A is centrally closed if F is itself

the extended centroid of A.

Any ∗-subalgebra A of LX(X) containing FX(X), where X is a vector space over

a field F endowed with a nonsingular symmetric bilinear form (see 5.1), is a centrally

closed primitive algebra with involution over F.

Suppose now that A has a ring involution ∗. Then ∗ induces an involution on C and

therefore it can be extended to an involution of the central closure. We say that ∗ is of

the first kind if it is the identity on C, otherwise ∗ is of the second kind.

The following proposition is a corollary of a theorem due to Martindale and Miers, [18,

Main Theorem], for prime rings with involution. Although the general result requires

the characteristic to be zero, in our particular case only characteristic different from 2

and 3 is needed.

Proposition 6.2. Let A be a centrally closed prime associative algebra with involution

∗ over a field F of characteristic not 2 or 3. Let K be the Lie algebra of its skew-

symmetric elements, and let b ∈ K be such that ad3
bK = 0. Suppose that F ⊗F A is

not the algebra M2(F) with the transpose involution, where F is the algebraic closure of

F. Then b2 = 0, unless A is a ∗-subalgebra of LX(X) containing FX(X), where X is
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a vector space with a nonsingular symmetric bilinear form over F and ∗ is the adjoint

involution, b3 = 0 and b2 is a rank-one symmetric linear map.

Theorem 6.3 (Main Theorem). Let A be a centrally closed prime associative algebra

with a ring involution over a field F of characteristic not 2 or 3, let F be the algebraic

closure of F, and suppose that F ⊗F A is not the full matrix algebra M2(F) with the

transpose involution. If B is a Lie inner ideal of Skew(A, ∗), then either

(i) B = V is a Jordan-Lie inner ideal,

(ii) B = V ⊕ Skew(Z(A), ∗) is a standard inner ideal,

(iii) B = Inn(V, V0, f) is special, or

(iv) B = κ(eA(1− e)) is Clifford.

Moreover, in cases (ii) and (iii) A is unital and ∗ is of the second kind, while in case

(iv) A has nonzero socle and ∗ is the transpose involution.

Proof. Let A be a centrally closed prime associative algebra with a ring involution ∗
over a field F of characteristic not 2, 3 such that F⊗FA is not M2(F) with the transpose

involution, with F being the algebraic closure of F, and let B be an abelian inner ideal of

K := Skew(A, ∗). Suppose first that ∗ is of the second kind and let ξ be a nonzero skew-

symmetric element of F. Then A = K ⊕ ξK. Set C := B ⊕ ξB. It is straightforward

to see that C is an abelian inner ideal of the Lie algebra A−. By [10, Theorem 5.5],

either (i) C = U , where U is an inner ideal of A− with UU = 0; (ii) C = U ⊕F1, where

U is as in (i); or (iii) C = {u + f(u)1 : u ∈ U}, where U is as in (i) and f : U → F
is a nonzero linear form. If C = U as in (i), then B = Skew(U, ∗) is a Jordan-Lie

inner ideal of K (cf. 3.1). Suppose then that A is unital and C is as in (ii) or (iii). In

both cases U is ∗-invariant: U∗ ⊆ C∗ = C implies [U∗, U ] = 0 and hence u∗ = v + α1,

u, v ∈ U , α ∈ F, implies u∗ = v ∈ U since UU = 0 and u∗ is nilpotent. If (ii), then

B = Skew(U, ∗)⊕ Skew(F, ∗)1, with Skew(U, ∗) being a Jordan-Lie inner ideal of K; if

(iii), then B = {v + f(v)1 : v ∈ V }, where V = Skew(U, ∗) is a Jordan-Lie inner ideal

of K and f : V → Skew(F, ∗) is a nonzero linear map.

Suppose now that the involution ∗ is of the first kind. If b2 = 0 for every b ∈ B,

then B is a Jordan-Lie inner ideal. Thus we may assume that b2 6= 0 for some b ∈ B.

Then we have by Proposition 6.2 that A is a ∗-subalgebra of LX(X) containing FX(X),

where X is a vector space with a nonsingular symmetric bilinear form over F and ∗ is

the adjoint involution, b3 = 0 and b2 is a rank-one symmetric linear map. By Theorem

5.8, B is a Clifford inner ideal. ¤
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Note that the Lie algebra Skew(M2(F), ∗), where ∗ is the transpose involution, is an

abelian inner ideal in itself which does not lie in any of the four cases of the theorem

above. Thus the exception in the statement is not superfluous.
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[8] C. Draper, A. Fernández López, E. Garćıa and M. Gómez Lozano, The inner ideals of the classical
Lie algebras, related gradings and Jordan pairs, J. Lie Theory (to appear).

[9] J.R. Faulkner, On the geometry of inner ideals, J. Algebra 26 (1973), 1-9.
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[20] A.A. Premet, Inner ideals in modular Lie algebras, Vestsi Akad. Navuk BSSR Ser. Fõz.-Mat.
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