Computing the derivation Lie algebra of the quadratic Jordan algebra $H_{3}\left(O_{s},-\right)$ at any characteristic.

November 20, 2001

Pablo Alberca Bjerregaard
Departamento de Matemática Aplicada - Escuela Técnica Superior de Ingeniería Industrial
Campus de El Ejido - Universidad de Málaga
Málaga - Spain
E-Mail: pgalberca@uma.es

Cándido Martín González
Departamento de Álgebra, Geometría y Topología - Facultad de Ciencias
Universidad de Málaga - Campus de Teatinos
Málaga - Spain
E-Mail: candido@apncs.cie.uma.es

Abstract

The aim of this work is to create a computational environment in which we can solve an open problem studying some Lie algebras without any restriction of the characteristic of the base field. This problem (see the references) is the study of the simplicity of the Lie algebra $f_{4}\left(O_{s},-\right)$ in the cases of characteristic two. We have constructed the quadratic Jordan structure in $H_{3}(C,-)$ by using the McCrimmon's equations. Then, after verifying the axioms for a quadratic Jordan algebra, we use them to determine the generic expression of a matrix in $f_{4}\left(O_{s},-\right)$, which is 52 -dimensional, where O_{s} is the alternative algebra of split octonions, and without any restriction on the characteristic of the base field. It is obvious the usefulness of Mathematica as we are working with 27×27 matrices and its help has been crucial to solve the problem described. We have used the Mathematica 3.0 version for Windows 98.

Algebraic concepts and results

Let $\left(O_{s},-\right)$ be the alternative split algebra of octonions over a field F. This algebra is constituted by the Zorn's matrices

$$
\left(\begin{array}{cc}
\lambda & (x, y, z) \\
(r, s, t) & \mu
\end{array}\right)
$$

where λ and μ are in the field F and $(x, y, z),(r, s, t)$ are in F^{3}. The involution - is

$$
\left(\begin{array}{cc}
\lambda & (x, y, z) \\
(r, s, t) & \mu
\end{array}\right) \mapsto\left(\begin{array}{cc}
\mu & (-x,-y,-z) \\
(-r,-s,-t) & \lambda
\end{array}\right)
$$

and the product is

$$
\left(\begin{array}{ll}
\lambda & u \\
v & \mu
\end{array}\right) \cdot\left(\begin{array}{cc}
\lambda^{\prime} & u^{\prime} \\
v^{\prime} & \mu^{\prime}
\end{array}\right) \mapsto\left(\begin{array}{cc}
\lambda \lambda^{\prime}+\left\langle u, v^{\prime}\right\rangle & \lambda u^{\prime}+\mu^{\prime} u-v \times v^{\prime} \\
\lambda^{\prime} v+\mu v^{\prime}+u \times u^{\prime} & \mu \mu^{\prime}+\left\langle v, u^{\prime}\right\rangle
\end{array}\right),
$$

where $\lambda, \lambda^{\prime}, \mu, \mu^{\prime} \in F,(x, y, z),(r, s, t), u, u^{\prime}, v, v^{\prime} \in F^{3}$ and $<>$ and \times are the scalar and vectorial product in F^{3}. The standard basis of O_{s} is

$$
\begin{aligned}
& e_{1}=\left(\begin{array}{cc}
1 & (0,0,0) \\
(0,0,0) & 0
\end{array}\right), e_{2}=\left(\begin{array}{cc}
0 & (0,0,0) \\
(0,0,0) & 1
\end{array}\right), e_{3}=\left(\begin{array}{cc}
0 & (1,0,0) \\
(0,0,0) & 0
\end{array}\right), e_{4}=\left(\begin{array}{cc}
0 & (0,1,0) \\
(0,0,0) & 0
\end{array}\right) \\
& e_{5}=\left(\begin{array}{cc}
0 & (0,0,1
\end{array}\right), e_{6}=\left(\begin{array}{cc}
0 & (0,0,0) \\
(0,0,0) & 0
\end{array}\right), e_{7}=\left(\begin{array}{cc}
0 & (0,0,0) \\
(0,1,0) & 0
\end{array}\right), e_{8}=\left(\begin{array}{cc}
0 & (0,0,0) \\
(0,0,1) & 0
\end{array}\right)
\end{aligned}
$$

Then, $H_{3}\left(O_{s},-\right)$ is the set of matrices

$$
X=\left(\begin{array}{ccc}
\lambda_{1} & a & b \\
\bar{a} & \lambda_{2} & c \\
\bar{b} & \bar{c} & \lambda_{3}
\end{array}\right), \text { with } \lambda_{i} \in F, a, b, c \in O_{s}
$$

For future computations it will be useful to define tri : $O_{s} \times O_{s} \times O_{s} \longrightarrow O_{s}$ given by $\operatorname{tri}[a, b, c]:=a(b c)$. It is usual to express a generic element of $H_{3}\left(O_{s},-\right)$ as

$$
X=\lambda_{1} E_{1}+\lambda_{2} E_{2}+\lambda_{3} E_{3}+X_{1}(a)+X_{2}(b)+X_{3}(c)
$$

where the definitions of E_{i} and X_{i} are the obvious ones. Then, a basis of $H_{3}\left(O_{s},-\right)$ is

$$
B=\left\{E_{1}, E_{2}, E_{3},\left\{X_{1}\left(e_{i}\right)\right\}_{i=1, \ldots, 8},\left\{X_{2}\left(e_{i}\right)\right\}_{i=1, \ldots, 8},\left\{X_{3}\left(e_{i}\right)\right\}_{i=1, \ldots, 8}\right\}
$$

A quadratic Jordan algebra with 1 over an arbitrary commutative ring Φ with 1 is a triple $(J, U, 1)$ where J is a unital left Φ-module, 1 a distinguished element of J, and U is a mapping $a \rightarrow U_{a}$ of J into $\operatorname{Hom}_{\Phi}(J, J)$ satisfying the following axioms:
i.- U is Φ-quadratic, that is, $U_{\alpha a}=\alpha^{2} U_{a}, \alpha \in \Phi, a \in J$ and $U_{a, b}:=U_{a+b}-U_{a}-U_{b}$ is Φ-bilinear in a and b.
ii.- $U_{1}=1$.
iii.- $U_{x}(T(y, x, z))=T\left(x, y, U_{x}(z)\right), \forall x, y, z \in J$, where $T(y, x, z):=U_{y, z}(x)$.
iv.- $U_{x} U_{y} U_{x}=U_{U_{x}(y)}, \forall x, y, z \in J$.
v.- Conditions iii. and iv. hold in every scalar extension of J.

In order to construct a quadratic Jordan structure in $H_{3}\left(O_{s},-\right)$ we use the McCrimmon's equations

$$
\begin{aligned}
& U_{a[i i]} b[i i]=a b a[i i] \\
& U_{a[i j]} b[i i]=\bar{a} b a[j j] \\
& U_{a[i j]} b[i j]=a \bar{b} a[i j] \\
& T(a[i i], b[i j], c[j j])=a b c[i j] \\
& T(a[i i], b[i j], c[j i])=(a b c+\overline{a b c})[i i] \\
& T(a[i i], b[i j], c[j k])=a b c[i k] \\
& T(a[i i], b[i i], c[i j])=a b c[i j] \\
& T(a[i j], b[j j], c[j k])=a b c[i k] \\
& T(a[i j], b[j i], c[i k])=a(b c)[i k] \\
& T(a[i j], b[j k], c[k i])=(a(b c)+\overline{a(b c)})[i i]
\end{aligned}
$$

where $a[i j]$ represents an element of $H_{3}\left(O_{s},-\right)$ filled with zeros except for an octonion a at the (i, j) position and it is understood that all the U formulas not covered by these and $a[j i]=\bar{a}[i j]$ are 0 .

A derivation in this context is a linear map $D: J \longrightarrow J$ satisfying
i.- $D(1)=0$,
ii.- $D\left(U_{x}(y)\right)=T(D(x), y, x)+U_{x}(D(y))$, for all x, y.

It is easy to prove that the set of all derivations is a Lie algebra with the product [D_{1}, D_{2}]:= $D_{1} D_{2}-D_{2} D_{1}$ for any two derivations D_{1} and D_{2}. Then, we write $f_{4}\left(O_{s},-\right)$ to be the Lie algebra of the derivation of the quadratic Jordan algebra $H_{3}\left(O_{s},-\right)$. It is important to note that this construction does not depend on the characteristic of the base field.

Implementing the quadratic Jordan structure

■ Commands and definitions

We are going to implement the quadratic Jordan structure of $H_{3}\left(O_{s},-\right)$. We have to follow McCrimmon's and define the U operator and the triple product T almost "element by element". We begin with the U operator depending of the concrete place of the particular elements involved. Afterwards, we will use certain relations to define the operator over a generic element. We start without the definitions of the structure of O_{s} and $H_{3}\left(O_{s},-\right)$ in order to clarify the process. The element $U_{a[i, j]} b[k, l]$ in McCrimmon's equations will be denoted in Mathematica syntax by $U_{\mathrm{a}_{-} \mathrm{i}_{-} \mathrm{j}_{-}}\left[\mathrm{b}_{-}, \mathrm{k}_{-}, 1_{-}\right]$. We make then

```
Ua_,i_,j_#b_, k_, l_' := Which#
    i == k == l, E m#tri#\sigma#a', b, a' ',
    i == k && j == l &&i f j j, Xi,j#tri##, \sigma#b', a'',
    i== l&&j== k&&i f j, xi,j#tri##,b, a'',
    j== k== l, E E##ri##, b, o#l'''',
    True, E E##''
```

in terms of $\boldsymbol{E}_{\boldsymbol{i}}, \boldsymbol{X}_{i, j}$, which are as X_{i} but refering to the place (i, j), and the product of three octonions with tri and the conjugation $\boldsymbol{\sigma}$. We have not defined yet the basis of $H_{3}\left(O_{s},-\right)$. The T operator is a little bit more delicate. We have to begin creating an instruction, GivenQ, to recognize the particular McCrimmon's equation we have to use:

```
GivenQ#a_, b_, c_, d_, e_, f_' := Which## == b == c &&&d != a &&d== e== f,
    \True, 1\, a == b == c &&d != a &&& e== d &&& f== a,
    \squareTrue, 2\square, a == b == c &&& d != a &&& d == e && f!=e e&&f!= a,
    \True, 3\square, a == b == c == d == e && f != a,
    \True, 4\, a != b && b == c == d== e && f != a && f != b,
    \True, 5\square, a != b && b == c && a == d == e && f != a && f != b, पTrue, 6\square,
    a != b && a == f && b == c &&d != a &&d != b &&d == e, \True, 7\, True,
    \alse, 0\square'
```

It brings out an answer like $\{$ True, $i\}$ if the equation is the i-th one. Then we can define T : (1) depending on the place of the octonions; (2) being symmetric; and (3) in terms of the U operator in such cases that we have a relation between them:

```
T#a_, i_, j_, b_, k_, l_, c_, m_, n_' := Which#
    i==m&&j == n, U Ua+c,i,j#b, k, l' - U U,i,j#b, k, l' - U Uc,i,j#b, k, l' ,
    GivenQ#i, j, k, l, m, n' ##1' ' ,
    FGiven@#i,j,k,l,m,n' ##2'' #a, i, j, b, k, l, c, m, n' ,
    GivenQ#j, i, k, l, m, n' ##1'' ,
    FGiven@#j,i,k,l,m,\mp@subsup{n}{}{\prime} ##2'' #\sigma#a' , j, i, b, k, l, c, m, n',
    GivenQ#i, j, l, k, m, n' ##1' ' ,
    F
    GivenQ#i, j, k, l, n, m' ##1' ' ,
    FGiven@#i,j,k,l,n,m' ##2' '#a, i, j, b, k, l, \sigma#c' , n, m' ,
    GivenQ#j, i, l, k, m, n' ##1' ' ,
    FGiven@#j,i,l,k,m,n' ##2'' #\sigma#a' , j, i, \sigma#b' , l, k, c, m, n' ,
    GivenQ#j, i, k, l, n, m' ##1' ',
    F
    GivenQ#i, j, l, k, n, m' ##1' ',
    FGiven@#i,j,l,k,n,m' ##2' ' #a, i, j, \sigma##' , l, k, \sigma#c' , n, m',
    GivenQ#j, i, l, k, n, m' ##1' ' , FGiven@#j,i,l,k,n,m' ##2'' #\sigma##' ,
        j, i, \sigma#b' , l, k, \sigma#c' , n, m' , GivenQ#m, n, k, l, i, j' ##1' ',
    F
    GivenQ#n, m, k, l, i, j' ##1' ',
    FGiven@#n,m,k,l,i,j' ##2' ' #\sigma#c' , n, m, b, k, l, a, i, j',
    GivenQ#m, n, l, k, i, j' ##1' ' ,
    FGiven@#m,n,l,k,i,j' ##'' ##, m, n, \sigma#b' , l, k, a, i, j',
    Given@#m, n, k, l, j, i' ##1' ',
    FGiven@#m,n,k,l,j,i' ##2' ' #C, m, n, b, k, l, \sigma#a' , j, i' ,
    GivenQ#n, m, l, k, i, j' ##1' ',
    FGiven@#n,m,l,k,i,j' ##2' ' #\sigma#c' , n, m, \sigma#b' , l, k, a, i, j' ,
    GivenQ#n, m, k, l, j, i' ##1' ' ,
    FGiven@#n,m,k,l,j,i' ##2' ' #\sigma#c' , n, m, b, k, l, \sigma#a' , j, i' ,
    GivenQ#m, n, l, k, j, i' ##1' ',
    F
    GivenQ#n, m, l, k, j, i' ##1' ' ,
    FGiven@#n,m,l,k,j,i' ##2'' #\sigma#C' , n, m, \sigma#b' , l, k, \sigma#a' , j, i',
    True, E E #O''
```

The terms $F_{\text {GivenQ }}$ represent each one of the McCrimmon's equations that we present right now:

```
F_#a_, i_, i_, b_, i_, j_, c_, j_, j_' := Xi,j#tri##a, b, c' ' ;
F2##_, i__, i_, b_, i_, j_, c_, j_, i_' := E Ei#tri#a, b, c' + \sigma#tri##a, b, c' '' ;
F3#a_, i_, i_, b_, i_, j_, c_, j_, k_' := X Xi,k#tri##a, b, c' ';
F4#a_, i_, i_, b_, i_, i_, c_, i_, j_' := Xi,j#tri#a, b, c' ';
F5#a_, i_, j_, b_, j_, j_, c_, j_, k_' := X (i,k#tri##a, b, c' ';
F6#a_, i_, j_, b_, j_, i_, c_, i_, k_' := X (i,k#tri##a, b, c' ' ;
F7#a_, i_, j_, b_, j_, k_, c_, k_, i_' := Ei##rri#a, b, c' + \sigma#tri##a, b, c' '' ';
```

It is time to define the operatores that have been inactive untill now:

```
vectorial\# \(\rceil \mathbf{x}_{-}, y_{-}, z_{-} \square, \square_{-}, v_{-}, w_{-} \square^{\prime}=\)
    \(\square \mathrm{y} * \mathrm{w}-\mathrm{z} * \mathrm{v}, \mathrm{z} * \mathrm{u}-\mathrm{x} * \mathrm{w}, \mathrm{x} * \mathrm{v}-\mathrm{y} * \mathrm{u} \square\);
scalar\# \(\ddagger \mathrm{x}_{-}, \mathrm{y}_{-}, \mathrm{z}_{-} \square, \square \mathrm{u}_{-}, \mathrm{v}_{-}, \mathrm{w}_{-} \square^{\prime}=\)
    \(x * u+y * v+z * w ;\)
```



```
            \(\alpha * \gamma+\) scalar\#x, \(\mathrm{t}^{\prime} \quad \alpha * \mathrm{z}+\delta * \mathbf{x}\) - vectorial\#y, \(\mathrm{t}^{\prime} \mathbf{1 ;}\)
    \({ }^{-} \gamma * y+\beta\) *t+vectorial\#x, \(z^{\prime} \quad \beta * \delta+\) scalar\#y, \(z^{\prime}\)
\(\sigma \# x^{\prime}:=-\begin{array}{cc}\mathbf{x \# \# \# 2 , 2 ' ' ~} & -x \# \# 1,2^{\prime \prime} \\ -\mathbf{x \# \# 2 , ~ 1 ' ~} & \mathbf{x \# \# 1 , ~ 1 ' ~}\end{array}\)
\(e_{1}=-\begin{gathered}1 \\ \square 0, \\ 0,0 \square\end{gathered} \quad \square 0,0,0 \square \mathbf{1}\);
\(e_{2}=-\begin{array}{cc}0 \\ \square 0,0,0 \square & \square 0,0,0 \square \\ 1\end{array} \mathbf{1}^{2} e_{3}=-\begin{gathered}0 \\ \square 0,0,0 \square\end{gathered} \begin{aligned} & \square 1,0,0 \square \\ & 1 ;\end{aligned}\)
\(e_{4}=-\begin{array}{cc}0 & \square 0,1,0 \square \\ \square 0,0 & 0 \\ 1\end{array}\)
\(e_{5}=-\begin{array}{cc}0 & \square 0,0,1 \square \\ \square 0,0,0 \square & 0\end{array} e_{6}=-\begin{gathered}0 \\ \square 1,0,0 \square\end{gathered} \quad \square 0,0,0 \square \mathbf{1}\);
```



```
\(I d=-\begin{array}{cc}1 & \square 0,0,0 \square \\ \square 0,0,0 \square & 1\end{array}{ }_{1}\) zero \(=0\) * Id;
```



```
\(\mathrm{x}_{2,3} \# \xi_{-}^{\prime}:=\begin{array}{llc}\mathrm{M}^{z e r o} & \text { zero } & \text { zero } \\ \text { zero } & \text { zero } & \xi \\ \mathbf{N z e r o} & \sigma \# \xi^{\prime} & \text { zero }\end{array}\);
```



```
ZERO \(=\mathrm{E}_{1} \# \mathrm{O}^{\prime}\);
\(\delta_{i_{-}, j_{-}}:=I f \# i==j, 1,0^{\prime}\);
octo\#x_' := Sum\#xi * \(e_{i}, ~ \square i, 8 \square^{\prime}\);
tri\#a_, b_, c_' := prod\#a, prod\#b, c' ' ;
```

The next definition constructs the T operator for a generic element by using the fact that it is trilinear

T\#x_, Y_, z_' := Sum\#T\#x\#\#i, j'' , i, j, y\#\#k, l'', k, l, z\#\#m, n' ' m, n', $\square i, 1,3 \square, ~ \square j, ~ i, ~ 3 \square, ~ \square k, ~ 1, ~ 3 \square, ~ \square 1, ~ k, ~ 3 \square, ~ \square m, ~ 1, ~ 3 \square, ~ \square n, ~ m, ~ 3 \square ' ~$ and also we define the U operator, first with a generic matrix as its subindex

$$
\begin{aligned}
& T \# \mathrm{E}_{1} \# \alpha^{\prime}+\mathrm{E}_{2} \# \beta^{\prime}, \mathbf{x}, \mathrm{E}_{3} \# \gamma^{\prime} '+\mathrm{T} \# \mathrm{E}_{1} \# \alpha^{\prime}, \mathbf{x}, \mathrm{E}_{2} \# \beta^{\prime}{ }^{\prime}+\mathrm{U}_{\alpha, 1,1} \# \mathbf{x}^{\prime}+\mathrm{U}_{\beta, 2,2} \# \mathrm{x}^{\prime}+
\end{aligned}
$$

$$
\begin{aligned}
& U_{a, 1,2} \# x^{\prime}+U_{b, 2,3} \# \mathbf{x}^{\prime}+U_{c, 1,3} \# \mathbf{x}^{\prime}
\end{aligned}
$$

and then with a generic matrix as its argument

$$
\begin{aligned}
& U_{x, i, j} \# \gamma, 3,3^{\prime}+U_{x, i, j} \# a, 1,2^{\prime}+U_{x, i, j} \# b, 2,3^{\prime}+U_{x, i, j} \# c, 1,3^{\prime}
\end{aligned}
$$

■ Verifying identities

Once we have defined the necessary commands and instructions to construct the quadratic Jordan structure in $H_{3}\left(O_{s},-\right)$, it is time to verify the corresponding identities. We remark at this point that the implementation of the U operator made here, ensures the codition i) in the definition of quadratic Jordan algebra. We construct a basis by making

```
b
```



```
    11<i\leq19, x (2,3#e i-11', True, x (1,3#e i-19' ' , \i, 4, 27\square' ;
ONE = b
```

and three generic elements:

```
gener \(=\operatorname{Sum\# } \# \lambda_{i} * b_{i}, ~ \square i, 1,27 \square ' ;\)
gener2 \(=\operatorname{Sum}^{\prime} \mu_{i} * b_{i}, \square i, 1,27 \square\) ' \(;\)
gener3 \(=\) Sum \(^{\prime} \delta_{i} * b_{i}, \square i, 1,27 \square ' ;\)
```

we can verify that T is, as it must be, symmetric with respect to the first and third variables:

Expand\#T\#gener, gener3, gener2' - T\#gener2, gener3, gener' ' == ZERO

True

The first identity is

$$
\begin{equation*}
\mathrm{U}_{\mathrm{Id}}=\mathrm{Id} \tag{1}
\end{equation*}
$$

that is, $U_{1}(x)=x$ for all x in $H_{3}\left(O_{s},-\right)$

$$
U_{\mathrm{ONE}} \# g e n e r '==\text { gener }
$$

True

The second one is

$$
\begin{equation*}
\mathrm{U}_{\mathrm{x}}(\mathrm{~T}(\mathrm{y}, \mathrm{x}, \mathrm{z}))=\mathrm{T}\left(\mathrm{x}, \mathrm{y}, \mathrm{U}_{\mathrm{x}}(\mathrm{z})\right), \forall \mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{H}_{3}\left(\mathrm{O}_{\mathrm{s}},-\right) \tag{2}
\end{equation*}
$$

whose verification can be shown, by using that it is linear in z, in

```
Do#Print#
    Expand#
            Ugener#T#gener2, gener, bi'' - T#gener, gener2, Ugener## ('' ' ' == ZERO' ,
    \i, 27\'
True
True
```

We only have then to confirm that

$$
\begin{equation*}
\mathrm{U}_{\mathrm{x}}\left(\mathrm{U}_{\mathrm{y}}\left(\mathrm{U}_{\mathrm{x}}(\mathrm{z})\right)\right)=\mathrm{U}_{\mathrm{U}_{\mathrm{x}}(\mathrm{y})}(\mathrm{z}), \forall \mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{H}_{3}\left(\mathrm{O}_{\mathrm{s}},-\right) \tag{3}
\end{equation*}
$$

For that, we make

```
Do\#
    Print\#
```


True
\qquad

True
This last one has been the most complex one under a computational view. Not in vain, in a PC Pentium - 233 $\mathrm{MHz}-64 \mathrm{Mb}$ Ram it has taken almost 4 hours. We not only have implemented the quadratic Jordan structure of $H_{3}\left(O_{s},-\right)$, but also without any restriction on the characteristic. This will be important to the next section, where we will present the generic expression of an element of $f_{4}\left(O_{s},-\right)$ at any characteristic.

Generic element of $\boldsymbol{f}_{4}\left(O_{s},-\right)$ at any characteristic

Once we have implemented the quadratic Jordan structure of $H_{3}\left(O_{s}\right.$, -), we have used it to determine the generic expression of an element in $f_{4}\left(O_{s},-\right)$. As we have obtained a matrix of high order (27×27) with 52 paramateres, the work has been too long to present it all here. Instead of this, we are going to show two representative examples of how to proceed.

- Example 1: the image of E_{1}

Let Δ be any derivation of $H_{3}\left(O_{s},-\right)$. We define the image of E_{1} (represented by $\left.E_{1}[1]\right)$ to be a generic element of $H_{3}\left(O_{s},-\right)$, thus

```
\Delta#E 
```

where we have used the notation Δ to represent the derivation. The numbering of the input/output depends on the particular moment of the session. As we have that $U_{E_{1}}(1)=E_{1}$, we have that $D\left(E_{1}[1]\right)=D\left(U_{E_{1}[1]}[1]\right)=\left\{D\left(E_{1}[1]\right), 1, E_{1}[1]\right\}+U_{E_{1}[1]}[D(1)]=\left\{D\left(E_{1}[1]\right), 1, E_{1}[1]\right\}$ and then it must be null

$$
\begin{aligned}
& \Delta \#_{E_{1}} \# 1^{\prime \prime} \text { ' }-\mathrm{T} \# \Delta \# \mathrm{E}_{1} \# 1^{\prime} \text { ' , ONE, } \mathrm{E}_{1} \# 1 \text { ' ' ss Expand }
\end{aligned}
$$

That is why we obtain the following conditions for the parameters:

$$
\begin{aligned}
& \Delta \#_{E_{1}} \#_{1}^{\prime \prime}=\Delta \#_{1} \# 1^{\prime \prime} \text { 'ss. } \square \lambda_{1} \rightarrow 0, \lambda_{2} \rightarrow 0, \lambda_{3} \rightarrow 0, \lambda_{12} \rightarrow 0, \lambda_{13} \rightarrow 0 \text {, } \\
& \lambda_{14} \rightarrow 0, \lambda_{15} \rightarrow 0, \lambda_{16} \rightarrow 0, \lambda_{17} \rightarrow 0, \lambda_{18} \rightarrow 0, \lambda_{19} \rightarrow 0 \square
\end{aligned}
$$

and the image of E_{1} can be written in terms of two octonions (16 parameters). We then rename these parameters in order to fix them.

- Example 2: the image of $X_{1}\left(e_{1}\right)$

We first define the image of $X_{1}\left[e_{1}\right]$ by a derivation Δ of $H_{3}\left(O_{s},-\right)$ as a generic element

$$
\Delta \# \mathrm{x}_{1} \# \mathrm{e}_{1}{ }^{\prime \prime} \text { ' = gener; }
$$

We use then the U operator with $X_{1}\left[e_{1}\right]$ and $E_{1}[1]$, whose image we have already determined, to verify that
$\mathrm{U}_{\mathrm{X}_{1} \# \mathrm{e}_{1}}{ }^{\prime} \#_{\mathrm{E}_{1} \# \mathbf{I}^{\prime}}{ }^{\prime}==$ CERO

True
and then, if we construct, from the definition of derivation,

$$
\text { defin\#x_, } y_{-}^{\prime}:=T \# \Delta \# x^{\prime}, y, x^{\prime}+U_{x} \# \Delta \# y^{\prime} '
$$

it must be null

defin\# $X_{1} \#$ e $_{1}{ }^{\prime}, E_{1} \# 1^{\prime \prime}$ ss Expand

$$
\left(\begin{array}{ccc}
\left(\begin{array}{cc}
0 & \{0,0,0\} \\
\{0,0,0\} & 0
\end{array}\right) & \left(\begin{array}{cc}
\alpha_{2}+\lambda_{1} & \{0,0,0\} \\
\{0,0,0\} & 0
\end{array}\right) & \left(\begin{array}{cc}
0 & \{0,0,0\} \\
\{0,0,0\} & 0
\end{array}\right) \\
\left(\begin{array}{cc}
0 & \{0,0,0\} \\
\{0,0,0\} & \alpha_{2}+\lambda_{1}
\end{array}\right) & \left(\begin{array}{cc}
\lambda_{5} & \{0,0,0\} \\
\{0,0,0\} & \lambda_{5}
\end{array}\right) & \left(\begin{array}{cc}
0 & \{0,0,0\} \\
\left\{\lambda_{25}, \lambda_{26}, \lambda_{27}\right\} & \lambda_{21}
\end{array}\right) \\
\left(\begin{array}{cc}
0 & \{0,0,0\} \\
\{0,0,0\} & 0
\end{array}\right) & \left.\begin{array}{cc}
\lambda_{21} & \{0,0,0\} \\
\left\{-\lambda_{25},-\lambda_{26},-\lambda_{27}\right\} & 0
\end{array}\right) & \left(\begin{array}{cc}
0 & \{0,0,0\} \\
\{0,0,0\} & 0
\end{array}\right)
\end{array}\right)
$$

Then we make

$$
\begin{aligned}
& \Delta \# \mathrm{x}_{1} \# \mathrm{e}_{1}{ }^{\prime}{ }^{\prime}= \\
& \Delta \# \mathrm{X}_{1} \# \mathrm{e}_{1} \text { ' ' ss. } \square \lambda_{1} \rightarrow-\alpha_{2}, \lambda_{5} \rightarrow 0, \lambda_{21} \rightarrow>0, \lambda_{25} \rightarrow>0, \lambda_{26} \rightarrow 0, \lambda_{27} \rightarrow 0 \square
\end{aligned}
$$

where the parameter α_{2} comes from a previous fixed image. We have used these kind of relations between elements in $H_{3}\left(O_{s},-\right)$ with the U and T operator to minimizied the number of free parameters. We have also used the Leibnitz rule

```
Leib#x_, y_, z_' := T#\Delta#x' , y, z' + T#x, \Delta#y' , z' + T#x, y, \Delta#z''
```

It can be used as follows. For instance, we have

```
T#E 
```

True
and then, by applying the derivation, it must be zero

$$
\begin{aligned}
& \Delta \# \mathrm{x}_{1} \# \mathrm{e}_{1}{ }^{\prime \prime} \text { - Leib\#E } \mathrm{E}_{1} \mathbf{1}^{\prime}, \mathrm{E}_{1} \# 1^{\prime}, \mathrm{X}_{1} \# \mathrm{e}_{1}{ }^{\prime \prime} \text { ss Expand }
\end{aligned}
$$

Then we can write

$$
\begin{aligned}
& \Delta \# \mathrm{X}_{1} \# \mathrm{e}_{1}{ }^{\prime \prime}=\Delta \# \mathrm{X}_{1} \# \mathrm{e}_{1}{ }^{\prime \prime} \mathbf{~ s s .} \square \lambda_{3} \rightarrow 0, \lambda_{13} \rightarrow \beta_{2}, \lambda_{17} \rightarrow \beta_{6}, \lambda_{18} \rightarrow \beta_{7}, \lambda_{19} \rightarrow \beta_{8} \square \\
& \left(\begin{array}{ccc}
\left(\begin{array}{cc}
-\alpha_{2} & \{0,0,0\} \\
\{0,0,0\} & -\alpha_{2}
\end{array}\right) & \left(\begin{array}{ccc}
\lambda_{4} & \left\{\lambda_{6}, \lambda_{7}, \lambda_{8}\right\} \\
\left\{\lambda_{9}, \lambda_{10}, \lambda_{11}\right\} & 0
\end{array}\right) & \left(\begin{array}{cc}
\lambda_{20} & \left\{\lambda_{22}, \lambda_{23}, \lambda_{24}\right\} \\
\{0,0,0\} & 0
\end{array}\right) \\
\left(\begin{array}{ccc}
0 & \left\{-\lambda_{6},-\lambda_{7},-\lambda_{8}\right\} \\
\left\{-\lambda_{9},-\lambda_{10},-\lambda_{11}\right\} & \lambda_{4}
\end{array}\right) & \left(\begin{array}{cc}
\alpha_{2} & 0,0,0\} \\
\{0,0,0\} & \alpha_{2}
\end{array}\right) & \left(\begin{array}{cc}
0 & \{0,0,0\} \\
\left\{\beta_{6}, \beta_{7}, \beta_{8}\right\} & \beta_{2}
\end{array}\right) \\
\left(\begin{array}{cc}
\left.0,-\lambda_{22},-\lambda_{23},-\lambda_{24}\right\} \\
\{0,0,0\} & \lambda_{20}
\end{array}\right) & \left(\begin{array}{ccc}
\beta_{2} & \{0,0,0\} \\
\left\{-\beta_{6},-\beta_{7},-\beta_{8}\right\} & 0
\end{array}\right) & \left(\begin{array}{cc}
0 & \{0,0,0\} \\
\{0,0,0\} & 0
\end{array}\right)
\end{array}\right)
\end{aligned}
$$

where the α_{i} and β_{i} parameters come from another previous fixed images.

- The matrix

Proceeding this way, we have used the multiplication rules in $H_{3}\left(O_{s},-\right)$ in terms of the U and T operators, combining them with the derivation, to characterize the Lie algebra $f_{4}\left(O_{s},-\right)$. As a result, any element of the algebra is as

Futher utility

Following the generic expression in matrix, it is easy to determine a basis of this Lie algebra. We have made it and proved that the Lie algebra is not simple if the characteristic of the base field is 2 . Working with characteristic 2, we have shown that there exists a unique proper nonzero ideal which is 26-dimensional (see the references). We have also present a new proof of the simplicity of this algebra out of the characteristic two case.

References

Alberca, P., ElDuque Palomo, A., Martín González, C. and Navarro Marquez, F.J. On the Cartan-Jacobson Theorem. Journal of Algebra. In press. 2001.
Alberca, P. and Martín González, C. On derivation algebras of some exceptional Jordan algebras in characteristic two. Preprint. 2001.
Alberca, P. On the Cartan-Jacobson and Chevalley-Schafer theorems. Ph. Thesis. 2001.
Jacobson, N. Lie algebras. Dover Publications, Inc. 1979.
Jacobson, N. Structure and Representations of Jordan Algebras. Amer. Math. Soc. Coll. Publ. Vol. 39. Providence. R.I. 1965.
Loos, O. Jordan Pairs. Lecture Notes in Mathematics. Vol. 460. Springer-Verlag. Berlin. Heidelberg. New York. 1975.
Postnikov, M. Lecons de géometrie: groupes et algèbres de Lie. Edit. Mir. 1990.
Rylands, L. J. and Taylor, D. E. Constructions for Octonion and Exceptional Jordan Algebras. Designs, Codes and Cryptography. 21. 191-203. 2000.
Schafer, R. D. An introduction to Nonassociative Algebras. Academic Press. 1966.
Zhevlakov, K. A., Slinko, A. M., Shestakov I.P. and Shirshov A. I. Rings that are nearly associative. Academic Press, Inc. N. Y. 1982.

