
On certain identities in symmetric

compositions ?

Pablo Alberca Bjerregaard a;¤, C¶andido Mart¶³n Gonz¶alez b
aUniversity of M¶alaga, Department of Applied Mathematics. 29013. M¶alaga. Spain
bUniversity of M¶alaga, Department of Algebra, Geometry and Topology, Science

Faculty, Apdo. 59, 29080, M¶alaga. Spain

Abstract

We give in this paper a computational approach to the veri¯cation of identities in
symmetric compositions. We also show how to use rules and patterns in noncom-
mutative and nonassociative algebras. It is also presented an implementation for
linearization of identities. All the advantages and bene¯ts of working with rules,
patterns and functional programming at the same time will be pointed out. We
have also included, as a previous section, a practical description of a package with
all the necessary instructions for checking identities in para-octonions and pseudo-
octononions algebras. This is a natural ¯rst step before working with general rings.

Key words: Nonassociative algebras, Symmetric Compositions, Identities,
Computational algebra.
PACS: 68W30, 17A75, 17-04, 17-08

1 Introduction

Ottmar Loos recently proved in (5) certain formulas in symmetric composi-
tions. We will con¯rm these identities (among others) by implementing a set

? Both authors are supported by the Spanish MCYT projects MTM2004-06580-
C02-02, MTM2004-08115-C04-04 and by the Junta de Andaluc¶³a PAI projects FQM-
336 and FQM-1215. This work has been supported by the Spanish Ministry of
Education and Science under project 'Ingenio Mathematica (i-Math)' No. CSD2006-
00032 (Consolider-Ingenio 2010).¤ Corresponding author.
Email addresses: pgalberca@uma.es (Pablo Alberca Bjerregaard),

candido@apncs.cie.uma.es (C¶andido Mart¶³n Gonz¶alez).

Preprint submitted to J. of Comp. and Applied Mathematics 7 June 2007



of rules into a computer system. The strategy shown can be a starting point
for future studies which need an almost automatic simpli¯cation technique.

In the mentioned paper, one of the results is the possibility to construct an
structure of a cubic composition from a symmetric one. The whole proof of
this result is based on the truthfulness of one identity (see (35)). We are
going to establish some of the previous formulas and present a computational
way of analyzing identities in algebraic structures and present a proof of the
mentioned one. The present work is developed with the softwareMathematica.

De¯nition 1 A symmetric composition is a triple (A; ¢; q) where (A; ¢) is a
nonassociative algebra over a ¯eld K and q is a nondegenerate quadratic form
q which satis¯es

q(x ¢ y) = q(x)q(y); (1)

b(x ¢ y; z) = b(x; y ¢ z); (2)

for all x; y; z 2 A, and where b is the polar form of q.

The second identity, the associativity of b, is equivalent to the fact that b(x ¢
y; z) is invariant under cyclic permutation of x, y and z.

Remark 1 We will use the following usual notation: xy := x ¢ y, x ¢ yz :=
x ¢ (y ¢ z), xy ¢ z := (x ¢ y) ¢ z, s := xy and t := yx.

2 Checking identities in para-octonions and pseudo-octonions al-
gebras

As a natural previous step, we have veri¯ed all the identities which will ap-
pear in this paper working with symmetric compositions over ¯elds. This
means we must work in the para-octonions and pseudo-octonions algebras
(eight-dimensional case). We will show in this section how to use our package
SymmComp:m, where we have implemented the necessary instructions in
order to work with the para-octonions and pseudo-octonions algebras. The
source of the package can be seen in a ¯nal section, and the can be freely
download in http://agt2.cie.uma.es/descargas.htm.

Let Os be the set of matrices
µ
a u
v b

¶
, where a and b are elements in the ¯eld

F and u; v 2 F 3. The set Os (Zorn matrices) is a vector space over F under
addition and scalar multiplication componentwise. De¯ne the product of two

2



octonions byµ
a u
v b

¶
¢
µ
a0 u0

v0 b0

¶
=
µ

aa0 + hu; v0i au0 + b0u¡ v £ v0
a0v + bv0 + u£ u0 hu; u0i+ bb0

¶
: (3)

The elements of Os are usually called Zorn matrices, split octonions or simply
octonions.

We de¯ne now the conjugate of an octonion as

x =
µ
a u
v b

¶
7! ¹x :=

µ
b ¡u
¡v a

¶
; (4)

and, given the order-three automorphism

x =
µ

a (u1; u2; u3)
(v1; v2; v3) b

¶
7! ¿(x) :=

µ
a (u3; u1; u2)

(v3; v1; v2) b

¶
; (5)

we de¯ne the new products

x ? y = ¹x ¢ ¹y; x ± y = ¿(¹x) ¢ ¿(¿(¹y)) (6)

and call (Os; ?) the para-octonions algebra and (Os; ±) the pseudo-octonions
algebra, which are symmetric compositions.

We ¯rst invoke the paraoctonions algebra whose product is paraoctonions[; ].
For shortness we de¯ne the dot product as the product in the paraoctonions
algebra:

x ¢ y := paraoctonion[x; y]

Next we de¯ne four generic element as linear combinations of the basis B of
the split octonions algebra (recall that the underlying vector spaces of the
paraoctonions algebra and that of split octonions algebras agree).

x = Sum[¸iB[[i]]; fi; 8g];
y = Sum[¹iB[[i]]; fi; 8g];
u = Sum[²iB[[i]]; fi; 8g];
v = Sum[¿iB[[i]]; fi; 8g];

Then we start checking identities. We are going to illustrate the method with
a previous list of identities (which will appear in Lemma 4) and with the main
one of O. Loos in (5) (see 35). Let us see the calculus for the identities of
Lemma 4. We shall use the notation q(x) for the Cayley norm:

3



q[x ] := norm[x]

and the Lie bracket is de¯ned here

lie[x ; y ] := Expand[x ¢ y¡ y ¢ x]

and also the cubic form

h[x ] := b[x ¢ x; x]

We only have to execute:

Expand[¡b[y; t ¢ s] + b[x ¢ s; y ¢ y]¡ b[s; x ¢ (y ¢ y)] + b[s; s ¢ y]] == 0
True

Expand[b[x; s ¢ t]¡ b[x ¢ x; y ¢ t]¡ b[y; t]q[x] + b[x; x ¢ x]q[y]] == 0
True

Expand[b[s; s ¢ s] + b[x ¢ s; y ¢ t]¡ b[x ¢ s; (y ¢ y) ¢ x]¡ b[s ¢ s; t]] == 0
True

and the last one of the mentioned lemma:

Expand[b[s; (x ¢ x) ¢ (y ¢ y)]¡ 2b[s; s ¢ s]¡ b[x ¢ s; y ¢ t] + b[t; t ¢ t]+
3b[x ¢ s; (y ¢ y) ¢ x] + b[x ¢ (y ¢ y); (x ¢ x) ¢ y]¡ b[x ¢ (y ¢ y); y ¢ (x ¢ x)]¡
2b[x; y]q[x]q[y]] == 0

True

Finally, we test the more di±cult identity, (35), for which we use the following
de¯nitions ((33) and (34)):

Q[x ] := Expand[x[[1]]3 ¡ 3x[[1]]q[x[[2]]] + h[x[[2]]]]

m[x ; y ] := Expand[fx[[1]]y[[1]] + b[x[[2]]; y[[2]]]; x[[1]]y[[2]] + y[[1]]x[[2]]+
® x[[2]] ¢ y[[2]] + ¯ y[[2]] ¢ x[[2]]g]

and the identity is

4



v = f¸; xg; w = f¹; yg; ¯ = 1¡ ®;
Expand[Q[v]Q[w]¡Q[m[v;w]]¡ (1¡ ®¯)(3b[x ¢ (x ¢ y); lie[x; y ¢ y]]+
(1 + ¯)h[lie[x; y]])¡ 3(1¡ ®¯)b[lie[x; y];¡¸(x ¢ y) ¢ y + ¹(y ¢ x) ¢ x + ¸¹x ¢ y]]
0

Once we have checked the identities in the paraoctonions algebra, we switch
to the pseudo-octonions algebra. So as before we write:

x ¢ y := pseudoctonion[x; y]

We only have to write again all the previous computations to con¯rm that all
the identities are also true for this algebra. In the ¯nal section we present the
complete package.

3 Previous formulas and linearizations

The aim of the following sections is to veri¯ed the previous identity, among
others, but working with general rings. We have to work with symbolic iden-
tities and manipulate them by implementing rules and using functional pro-
gramming.

Remark 2 O. Loos generalized in (5, 3.5) this de¯nition without assuming
the nondegeneracy of the quadratic form q and K being an arbitrary ring. Most
of the formulas that we are going to present are also true in that context but
modulo ker(q). We will assume from now on that q is nonsingular.

Let us show some rules that will be useful in the next sections. We ¯rst de¯ne
three list of rules which expand the quadratic form, its polar form and the
product:

expandq = fq[x ; y ]! b[x; y] + q[x] + q[y]; q[x ¢ y]! q[x]q[y]g;
expandb = fb[x + y ; z ]! b[x; z] + b[y; z]; b[x ; y + z ]! b[x; y] + b[x; z];

b[¡x ; y ]! ¡b[x; y];b[x ; ¡y ¢ z ]! ¡b[x; y ¢ z];
b[x ;¡(z ¢ t )]! ¡b[x; z ¢ t]g;

expanddot = f(x + y ) ¢ z ! x ¢ z + y ¢ z; x ¢ (y + z )! x ¢ y + x ¢ z;
x ¢ ¡y ! ¡x ¢ yg;

Now we present a function which takes out the symbolic scalars of an ex-
pression. This command will be crucial in order to simplify and linearize. We

5



thought it would be better to de¯ne the function SOut for each term that we
will face with. If we work in this direction, it will be easy to add new cases as
needed. The following de¯nition can be used to extract scalars in terms with
b's:

SOut[b[x ; y ]; scal List] :=

Module[fscaln =Union[scal;Table[³i; fi;Length[scal]g]];
m = Length[scal]; res = b[x; y]g;

Do[res = res==:¡ scal[[j]]! ³j; fj;mg];
Do[If [Not[FreeQ[res; scaln[[j]]]];

res = scaln[[j]]Length[Position[res;scaln[[j]]]]¤
(res=:scaln[[j]]! 1)]; fj;Length[scaln]g];
Do[res = res==:³j ! ¡scal[[j]]; fj;mg]; res];

This function analyzes if an expression with b's has scalars in the set "scal" by
using FreeQ. This prede¯ned command gives back true or false in each case.

The next one is for terms which have the product "¢". In an expression
f [x; y; : : :], the object f is called the Head. We have the possibility to rec-
ognize the head with a command with the same name, or using " " as we have
already done. We have then

SOut[x CenterDot; scal List] :=

Module[fscaln =Union[scal;Table[³i; fi;Length[scal]g]];
m = Length[scal]; res = xg;

Do[res = res==:¡ scal[[j]]! ³j; fj;mg];
Do[If [Not[FreeQ[res; scaln[[j]]]];

res = scaln[[j]]Length[Position[res;scaln[[j]]]]¤
(res=:scaln[[j]]! 1)]; fj;Length[scaln]g];
Do[res = res==:³j ! ¡scal[[j]]; fj;mg]; res];

Now we have to consider some terms with the quadratic form q. We only need
to write:

SOut[q[® : ¤ x ]; scal List] :=
Which[MemberQ[scal; ®]; ®2q[x];MemberQ[scal; x]; x2q[®];

True; q[® x]];

6



These three de¯nitions are the nucleus of the future simpli¯cations. Although,
this command will ¯nd terms other than pure b0, q's or dot's. We de¯ne then
the behavior of SOut in the rest of the possible cases, which is leaving the
term unchanged:

SOut[x Symbol; scal List] := x; SOut[x Power; scal List] := x;

SOut[x Subscript; scal List] := x; SOut[x ?NumberQ; scal List] := x;

We use the great possibility that Mathematica has in de¯ning values for func-
tions depending on their heads.

The ¯nal two de¯nitions insure that SOut applies to each term of a product
or sum:

SOut[x Times; scal List] :=Map[SOut[#; scal]&; x];

SOut[x Plus; scal List] :=Map[SOut[#; scal]&; x]

3.1 Linearizing q(x ¢ y) = q(x)q(y)

We can linearized the multiplication property (1) of the quadratic form. We
have to replace x and y by z1+®z2 and z3+¯z4, expand, simplify and collect
as polynomial in ® and ¯. Each term of this polynomial is, perhaps, a new
identity. The identity is:

comp = q[x ¢ y]¡ q[x]q[y];

and we make

comp==: fx! z1 + ® z2; y! z3 + ¯ z4g;

We then manipulate this resulting expression by using expandq, expandb
and ¯nally expanddot. With Expand we eliminate the parenthesis and we
apply then

SOut[%; f®; ¯g]

were % represents the previous output, and we get

7



¯b(z2 ¢ z3; z2 ¢ z4)®2 ¡ ¯b(z3; z4)q(z2)®2 + b(z1 ¢ z3; z2 ¢ z3)®
+¯b(z1 ¢ z3; z2 ¢ z4)®+ ¯b(z1 ¢ z4; z2 ¢ z3)®+ ¯2b(z1 ¢ z4; z2 ¢ z4)®
¡¯b(z1; z2)b(z3; z4)®¡ b(z1; z2)q(z3)®¡ ¯2b(z1; z2)q(z4)®
+¯b(z1 ¢ z3; z1 ¢ z4)¡ ¯b(z3; z4)q(z1)

We only need to write

Coe±cientList[%; f®; ¯g]

and the entries of the following list must be zero:

ff0; b(z1 ¢ z3; z1 ¢ z4)¡ b(z3; z4)q(z1); 0g;
fb(z1 ¢ z3; z2 ¢ z3)¡ b(z1; z2)q(z3);
b(z1 ¢ z3; z2 ¢ z4) + b(z1 ¢ z4; z2 ¢ z3)¡ b(z1; z2)b(z3; z4);
b(z1 ¢ z4; z2 ¢ z4)¡ b(z1; z2)q(z4)g;
f0; b(z2 ¢ z3; z2 ¢ z4)¡ b(z3; z4)q(z2); 0gg

and here we have new identities. We have established then:

Lemma 1 Let (A; ¢; q) be a symmetric composition algebra. We have then

b(x; y)b(u; v) = b(x ¢ u; y ¢ v) + b(x ¢ v; y ¢ u); (7)

b(x ¢ y; x ¢ u) = q(x)b(y; u); (8)

b(x ¢ y; u ¢ y) = q(y)b(x; u); (9)

for all x; y; u; v 2 A.

3.2 Linearizing (x ¢ y) ¢ x = q(x)y

As it can be seen in (4, Lemma 34.1), and as we are considering nonsingular
quadratic forms, we have from (8) that b((x ¢ y) ¢ x; u) = b(q(x)y; u), hence by
nondegeneracy of b, (x ¢ y) ¢ x = q(x)y. Finally passing to the opposite algebra
we obtain the identity

xy ¢ x = x ¢ yx = q(x)y; that is ; sx = xt = q(x)y; 8x; y 2 A: (10)

Let us linearize (x ¢y) ¢x = q(x)y. We will follow the same steps and reasonings
we used with the multiplicative identity of q at the previous section. We de¯ne
¯rst

8



iden = (x ¢ y) ¢ x¡ q[x]y;

and make the standard substitution

iden==:fx! z1 + ® z2; y! z3 + ¯ z4g;

After applying the rules expanddot, expandq and taking away the paren-
thesis, we only have to use the function SOut

SOut[%; f®; ¯g]

to obtain a polynomial in ® and ¯ whose coe±cients are

Coe±cientList[%; f®; ¯g]0@ (z1 ¢z3)¢z1¡q(z1)z3 (z1 ¢z4)¢z1¡q(z1)z4
(z1 ¢z3)¢z2+(z2 ¢z3)¢z1¡b(z1; z2)z3 (z1 ¢z4)¢z2+(z2 ¢z4)¢z1¡b(z1; z2)z4

(z2 ¢z3)¢z2¡q(z2)z3 (z2 ¢z4)¢z2¡q(z2)z4

1A
We get then a new identity which is

xy ¢ z + zy ¢ x = x ¢ yz + z ¢ yx = b(x; z)y: (11)

It is now very easy to specialize this identity and change the name of the
variables to obtain the following commutator formulas:

Lemma 2 We have the following identities at any symmetric composition
(A; ¢; q) assuming that q is nonsingular

[x; y2] = xy ¢ y ¡ y ¢ yx = sy ¡ yt; (12)

[x2; y] = x ¢ xy ¡ yx ¢ x = xs¡ tx; (13)

[x2; y2] = (x2y)y ¡ y(yx2) = x(xy2)¡ (y2x)x: (14)

3.3 More identities

We need next to establish two lemmas before we present the main formula,
the most di±cult one. The ¯rst one is

Lemma 3 With the previous notation, and by introducing the abbreviations

a := b(x; y2)b(y; x2); c := b(x; y)q(x)q(y); e := b(x; y)b(s; t); (15)

the following identities hold in any symmetric composition algebra

9



b(s; t2) = b(t; s2) = a¡ c; (16)

b(xs; yt) = e¡ c; (17)

h(s) = a¡ b(sy; xs); (18)

h(t) = a¡ b(tx; yt); (19)

b(x; y)3 = b(xy2; yx2) + c+ e; (20)

where h is the cubic form h(x) := b(x; x ¢ x).

Proof.

We de¯ne ¯rst the the cubic form h:

h[x ] := b[x; x ¢ x]

We have implemented a minimal list of rules to establish the identities of this
lemma. Each rule is labeled by the number of the identity used:

rules1 = f
b[x ; y ]b[z ;u ]! b[x ¢ z; y ¢ u] + b[x ¢ u; y ¢ z]; (3)
b[x ¢ y ; x ¢ z ]! q[x]b[y; z]; (4)

b[x ¢ y ; z ¢ y ]! q[y]b[x; z]; (5)

(x ¢ y ) ¢ x ! q[x]y; x ¢ (y ¢ x )! q[x]y; (6)

b[x ¤ q[y ]; z ]! q[y]b[x; z];

b[x ; z ¤ q[y ]]! q[y]b[x; z]g;

where the last two ones are just to extract the scalar q(y) form b. It will be
useful to have a rule, using the associativity of b, (2), which associates to one
side (to the left):

assleft = b[x ; y ¢ z ]! b[x ¢ y; z];

Now we have all the necessary ingredients. Let us prove the ¯rst identity. We
will only verify b(s; t2)¡ b(s; y)b(t; x) + b(x; y)q(x)q(y) = 0 because the other
one can be obtained by just interchanching x and y. We apply rules1 and get

b[(x ¢ y); (y ¢ x) ¢ (y ¢ x)]¡ b[x ¢ y; y]b[y ¢ x; x] + b[x; y]q[x]q[y]==: rules1
b(x¢y; (y ¢x)¢(y ¢x))¡ b((x¢y)¢(y ¢x); y ¢x)¡ b(y; y ¢(y ¢x))q(x) + b(x; y)q(x)q(y)

We associate to the left

%==: assleft

b(x; y)q(x)q(y)¡ b((y ¢ y) ¢ y; x)q(x)

10



apply again rules1

%==: rules1

b(x; y)q(x)q(y)¡ b(y; x)q(x)q(y)

and ¯nally we only have to use that b is symmetric to obtain 0:

%=: b[y; x]! b[x; y]

0

Let us see b(xs; yt) ¡ b(x; y)b(s; t) + b(x; y)q(x)q(y) = 0. This result can be
obtained immediately just doing:

b[x ¢ (x ¢ y); y ¢ (y ¢ x)]¡ b[x; y]b[x ¢ y; y ¢ x] + b[x; y]q[x]q[y]==: rules1
b(x; y)q(x)q(y)¡ b(y; x)q(x)q(y)

and ¯nally using again that b is symmetric:

%=: b[y; x]! b[x; y]

0

If we prove h(xy) ¡ b(x; y2)b(y; x2) + b(sy; xs) = 0, we have also veri¯ed the
next identity because it is obtained by interchanching x and y. We apply
rules1 to a little previous change made to this formula, using associativity to
avoid the squares, just to help the rules to obtain a simpli¯ed result:

h[x ¢ y]¡ b[x ¢ y; y]b[x ¢ y; x] + b[(x ¢ y) ¢ y; x ¢ (x ¢ y)]==: rules1
b(x ¢ y; (x ¢ y) ¢ (x ¢ y))¡ b((x ¢ y) ¢ (x ¢ y); x ¢ y)

and ¯nally

%==: assleft

0

If we previously avoid the cubic power in the equality b(x; y)3 ¡ b(xy2; yx2)¡
b(x; y)q(x)q(y) ¡ b(x; y)b(s; t) = 0, the identity can be obtained just using
rules1. We have then, using the identity (7),

b(x; y)3 = b(x; y)(b(x; y)b(x; y)) = b(x; y)(b(x2; y2) + b(s; t)): (21)

The ¯nal formula can now be veri¯ed automatically

11



b[x; y]b[x ¢ x; y ¢ y] + b[x; y]b[x ¢ y; y ¢ x]¡ b[x ¢ (y ¢ y); y ¢ (x ¢ x)]
¡b[x; y]q[x]q[y]¡ b[x; y]b[x ¢ y; y ¢ x]==: rules1
0

Q.E.D.

Lemma 4 We have the following identities in any symmetric composition
algebra

¡b(y; ts) + b(xs; y2)¡ b(s; xy2) + b(s; sy) = 0; (22)

b(x; st)¡ b(x2; yt)¡ b(y; t)q(x) + b(x; x2)q(y) = 0; (23)

b(s; s2) + b(xs; yt)¡ b(xs; y2x)¡ b(s2; t) = 0; (24)

b(s; x2y2)¡ 2b(s; s2)¡ b(xs; yt) + b(t; t2) + 3b(xs; y2x)
+b(xy2; x2y)¡ b(xy2; yx2)¡ 2b(x; y)q(x)q(y) = 0: (25)

Proof.

To establish the ¯rst identity we only have to use (12) and (2) to obtain

¡b(y; ts) + b(xs; y2)¡ b(s; xy2) + b(s; sy)
= ¡b(y; ts) + b(s; y2x)¡ b(s; xy2) + b(s; sy)

= ¡b(y; ts) + b(s; [y2; x]) + b(s; sy)
= ¡b(y; ts) + b(s; yt¡ sy) + b(s; sy) = 0: (26)

We can write the second identity as

b(x; st)¡ b(x2; yt)¡ b(y; t)q(x) + b(x; x2)q(y)
= b(x; st)¡ b(x2; yt)¡ b(t; tx) + b(t; yx2) = 0 (27)

by using the ¯rst one interchanging x and y.

The third identity needs Lemma 1, Formula (10) and Lemma 3:

b(s; s2) + b(xs; yt)¡ b(xs; y2x)¡ b(s2; t)
= (a¡ b(sy; xs)) + (e¡ c)¡ b(xs; y2x)¡ (a¡ c) (Lemma 3)

= ¡b(sy; xs) + b(x; y)b(s; t)¡ b(xs; y2x)
= ¡b(sy; xs) + b(xs; yt) + b(xt; ys)¡ b(xs; y2x) (Lemma 1)

= ¡b(sy; xs) + b(xs; yt) + b(q(x)y; q(y)x)¡ b(xs; y2x) (by (10))

12



= ¡b(sy; xs) + b(xs; yt) + b(y; x)q(x)q(y)¡ b(xs; y2x)
= ¡b(sy; xs) + b(xs; yt) + b(y2; s)q(x)¡ b(xs; y2x) (Lemma 1)

= ¡b(sy; xs) + b(xs; yt) + b(xy2; xs)¡ b(xs; y2x) (Lemma 1)

= ¡b(xs; sy ¡ yt) + b(xs; [x; y2]) = 0: (by (12)) (28)

Let us prove the last identity. First of all, we have that

b(xy2; x2y)¡ b(xy2; yx2)¡ 2b(x; y)q(x)q(y)
= b(xy2; x2y)¡ b(xy2; yx2)¡ 2b(xs; y2) (Lemma 1)

= b(xy2; [x2; y])¡ 2b(xs; xy2) = ¡b(xy2; tx)¡ b(xs; xy2); (29)

by (13). Then, by using (12) and Lemma 3, we can establish

b(s; x2y2)¡ 2b(s; s2)¡ b(xs; yt) + b(t; t2) + 3b(xs; y2x)
+b(xy2; x2y)¡ b(xy2; yx2)¡ 2b(x; y)q(x)q(y)

= b(s; x2y2)¡ 2b(s; s2)¡ b(xs; yt) + b(t; t2) + 3b(xs; y2x)
¡b(xy2; tx)¡ b(xs; xy2)

= b(s; x2y2)¡ 2b(s; s2)¡ b(xs; yt) + b(t; t2) + 2b(xs; y2x)
+b(xs; [y2; x])¡ b(xy2; tx)

= b(s; x2y2)¡ 2b(s; s2)¡ b(xs; yt) + b(t; t2) + 2b(xs; y2x)
+b(xs; yt¡ sy)¡ b(xy2; tx) (by (12))

= b(s; x2y2)¡ 2b(s; s2) + b(t; t2) + 2b(xs; y2x)
¡b(xs; sy)¡ b(xy2; tx)

= b(s; x2y2)¡ 2h(s) + a¡ b(tx; yt) + 2b(xs; y2x)
¡b(xy2; tx) + h(s)¡ a (Lemma 3)

= b(s; x2y2)¡ b(xy2; tx)¡ h(s) + 2b(xs; y2x)¡ b(tx; yt) = 4: (30)

This expression could be simpli¯ed by using (14), (12) and Lemma 3. First
we have

b(s; x2y2)¡ b(xy2; tx) = b(s; [x2; y2]) + b(s; y2x2)¡ b(xy2; tx)
= b(s; x(xy2))¡ b(s; (y2x)x) + b(s; y2x2)¡ b(xy2; tx) (by (14))

= b(sx; xy2)¡ b(xs; y2x) + b(s; y2x2)¡ b(xy2; tx) (by (2))

= b(xt; xy2)¡ b(xy2; tx)¡ b(xs; y2x) + b(s; y2x2) (by (10))

= b(tx; y2x)¡ b(xy2; tx)¡ b(xs; y2x) + b(s; y2x2) (Lemma 1)

= b(tx; [y2; x])¡ b(xs; y2x) + b(s; y2x2)
= b(tx; yt)¡ b(tx; sy)¡ b(xs; y2x) + b(s; y2x2): (by (12)) (31)

13



Using this result we can continue and write

4 = b(tx; yt)¡ b(tx; sy)¡ b(xs; y2x) + b(s; y2x2)
¡h(s) + 2b(xs; y2x)¡ b(tx; yt)

= b(s; y2x2)¡ h(s) + b(xs; y2x)¡ b(tx; sy)
= ¡c+ b(sy; xs) + b(xs; y2x)¡ b(tx; sy) (Lemma 3)

= ¡b(x; y)q(x)q(y) + b(xs; y2x) + b(sy; xs)¡ b(tx; sy)
= b(xs; [y2; x]) + b(sy; xs)¡ b(tx; sy) (by Lemma 3)

= b(xs;¡sy + yt) + b(sy; xs)¡ b(tx; sy) = b(xs; yt)¡ b(sy; tx)
= (e¡ c)¡ (e¡ c) = 0; (32)

by using that not only b(xs; yt) = e¡ c but also b(sy; tx) = e¡ c, just passing
to the opposite algebra.

Q.E.D.

4 Main formula

One of the most important theorems of O. Loos' paper (5) is Theorem 4.1.
He de¯nes a cubic form N in a direct sum K ©M , where M is a symmetric
composition (generalized), as

N(¸© x) := ¸3 ¡ 3¸q(x) + h(x); (33)

and multiplication

(¸© x) ² (¹© y) := (¸¹+ b(x; y))© (¸y + ¹x+ ®x ¢ y + ¯y ¢ x); (34)

with ® + ¯ = 1. The following identity is the last step which proves that
(K ©M;N; ²) is a unital cubic composition:

Proposition 1 In any symmetric composition we have

N(v)N(w)¡N(v ² w) =
(1¡ ®¯)

³
3b(x ¢ xy; [x; y2]) + (1 + ¯)h([x; y])

´
+3(1¡ ®¯)b([x; y];¡¸xy ¢ y + ¹yx ¢ x+ ¸¹xy): (35)

Proof.

14



The strategy of this proof is to obtain a polynomial in ¸ and ¹ from the identity
(35). Then we will observe that each coe±cient is zero. We will spread all the
routines, functions and rules previously de¯ned to this purpose. First of all,
the commutator:

con[x ; y ] := x ¢ y¡ y ¢ x;

We present now rules2, an enlarge version of rules1, which includes new
identities already veri¯ed, and q(x ¢ y) = q(x)q(y), among b(x; x) = 2q(x).
This set of rules will be the center of the future simpli¯cations. We prefer to
de¯ne a short list of rules in order to observe to where we can reach and then
add new ones if needed. The list is:

rules2 = f
b[x ; y ]b[z ;u ]! b[x ¢ z; y ¢ u] + b[x ¢ u; y ¢ z]; (3)
b[x ¢ y ; x ¢ z ]! q[x]b[y; z]; (4)

b[x ¢ y ; z ¢ y ]! q[y]b[x; z]; (5)

(x ¢ y ) ¢ x ! q[x]y; x ¢ (y ¢ x )! q[x]y; (6)

b[x ¤ q[y ]; z ]! q[y]b[x; z];

b[x ; z ¤ q[y ]]! q[y]b[x; z];

b[x ; y ]2 ! b[x ¢ x; y ¢ y] + b[x ¢ y; y ¢ x]; (3)
b[x ; y ]3 ! b[x; y]b[x ¢ x; y ¢ y] + b[x; y]b[x ¢ y; y ¢ x]; (b3 = bb2)
b[x ; x ]! 2q[x];

q[x ¢ y ]! q[x]q[y] (1)g;

It will be useful to present the next set of rules

assocb = f
b[x ¢ y ; (x ¢ y ) ¢ (y ¢ x )]! b[(x ¢ y) ¢ (x ¢ y); y ¢ x];
b[x ¢ y ; (y ¢ x ) ¢ (x ¢ y )]! b[(x ¢ y) ¢ (x ¢ y); y ¢ x];
b[y ¢ x ; (x ¢ y ) ¢ (x ¢ y )]! b[(x ¢ y) ¢ (x ¢ y); y ¢ x]g;

easily obtained from the properties of b. These are the left and right side of
the formula:

15



leftside = (¸3 ¡ 3¸q[x] + h[x])(¹3 ¡ 3¹q[y] + h[y])
¡((¸¹+ b[x; y])3 ¡ 3(¸¹+ b[x; y])q[¸y + ¹x + ®x ¢ y + ¯ y ¢ x]
+h[¸ y + ¹ x + ® x ¢ y + ¯ y ¢ x]);

rightside = (1¡ ®¯)(3b[x ¢ (x ¢ y); con[x; y ¢ y]] + (1 + ¯)h[con[x; y]])
+3(1¡ ®¯)b[con[x; y];¡¸(x ¢ y) ¢ y + ¹(y ¢ x) ¢ x + ¸¹ x ¢ y];

and the objective is to prove that

dif = Expand[leftside¡ rightside];

is zero. After applying expandq, expanddot, expandq, Expand, assocb,
SOut, rules2 and b[y; x] ! b[x; y], we obtain (preprint (1)) a polynomial in
¸ and ¹, named res. We are now going to prove that this polynomial is zero
by analyzing each coe±cient. We will need some particular rules but just to
move the variables inside b to collect terms. The ¯rst list is

move1 = fb[y ; x ¢ y ]! b[x; y ¢ y];b[y ; y ¢ x ]! b[x; y ¢ y]g;

and then the coe±cient of ¸¹2 is

Factor[Coe±cient[res; ¸¹2]==: move1;

3(®+ ¯ ¡ 1)b(y; x ¢ x)

By hypothesis ®+ ¯ = 1, and then this term is zero. We also have that

Factor[Coe±cient[res; ¸2¹]==: move1;

3(®+ ¯ ¡ 1)b(x; y ¢ y)

and then the coe±cient of ¸2¹ is also null. The next list of rules:

move2 = f
b[x; (x ¢ y) ¢ y]! b[x ¢ y; y ¢ x];b[y ¢ x; x ¢ y]! b[x ¢ y; y ¢ x];
b[x; y ¢ (y ¢ x)]! b[x ¢ y; y ¢ x];b[y; x ¢ (x ¢ y)]! b[x ¢ y; y ¢ x];
b[y; (y ¢ x) ¢ x]! b[x ¢ y; y ¢ x]g;

allows us to con¯rm that the coe±cient of ¸¹ is also null, assuming of course
that ®+ ¯ = 1. The command line is:

Factor[Coe±cient[res; ¸¹]==: move2;

¡3(®+ ¯ ¡ 1)(b(x ¢ y; y ¢ x)¡ ®q(x)q(y)¡ ¯q(x)q(y) + q(x)q(y))

16



We present the set move3:

move3 = fb[y ; y ¢ (y ¢ x )]! b[y ¢ x; y ¢ y];b[y ; (x ¢ y ) ¢ y ]! b[x ¢ y; y ¢ y]g;

and as the coe±cient of ¸2 is

Coe±cient[res; ¸2]=: ¹! 0

¡¯ b(y; y ¢(y ¢x))¡® b(y; (x¢y)¢y)¡2® b(x; y)q(y)¡2¯ b(x; y)q(y)+3b(x; y)q(y)

we obtain

%==: move3

¡® b(x¢y; y ¢y)¡ ¯ b(y ¢x; y ¢y)¡ 2® b(x; y)q(y)¡ 2¯ b(x; y)q(y) + 3b(x; y)q(y)

We only have to factorize:

Factor[%==: rules1]

¡3(®+ ¯ ¡ 1)b(x; y)q(y)

to con¯rm that this term is also zero. We can follow a similar reasoning to
prove that the coe±cient of ¹2 is null, but also, as the mentioned coe±cient
is:

Coe±cient[res; ¹2]=: ¸! 0

¡® b(x; x¢(x¢y))¡¯ b(x; (y ¢x)¢x)¡2® b(x; y)q(x)¡2¯ b(x; y)q(x)+3b(x; y)q(x)

we can a±rm that it is null just passing to the opposite algebra and using
that the coe¯cient of ¸2 is null.

The last three coe±cients need a little more calculus. As we found a bigger
set of terms we needed a bigger set of rules, but just to organize the variables
inside b. We de¯ne move4:

17



move4 = f
b[x ¢ y; x]! b[x; x ¢ y];b[x; y ¢ x]! b[x; x ¢ y];
b[y ¢ x; x]! b[x; x ¢ y];b[x ¢ y; y ¢ (y ¢ x)]! b[y; (y ¢ x) ¢ (x ¢ y)];
b[y ¢ x; (x ¢ y) ¢ y]! b[y; (y ¢ x) ¢ (x ¢ y)];
b[x ¢ y; y ¢ (y ¢ x)]! b[y; (y ¢ x) ¢ (x ¢ y)];
b[y ¢ x; (x ¢ y) ¢ y]! b[y; (y ¢ x) ¢ (x ¢ y)];
b[y; (x ¢ y) ¢ (x ¢ y)]! q[y]b[x; x ¢ y];
b[y; (y ¢ x) ¢ (y ¢ x)]! q[y]b[y ¢ x; x];
b[y; (x ¢ y) ¢ (y ¢ x)]! q[y]b[x; y ¢ x]g;

and after its e®ect on the coe±cient of ¸, and a straightfoward substitution
of ¯ by 1¡ ®, we obtain

¡3® b(y; (y ¢x)¢(x¢y)) + 3® b(x¢(x¢y); y ¢y)¡ 3® b(y; y ¢y)q(x) + 3® b(x; x¢y)q(y)

and this term is null because it is just the identity (22). To con¯rm this, we
only have to write b(y; y ¢ y)q(x) = b(s; xy2) and b(x; x ¢ y)q(y) = b(s; sy).

We de¯ne now the set move5:

move5 = f
b[y; x ¢ y]! b[y; y ¢ x];b[x ¢ y; y]! b[y; y ¢ x];
b[y ¢ x; y]! b[y; y ¢ x];
b[x ¢ y; (y ¢ x) ¢ x]! b[x; (x ¢ y) ¢ (y ¢ x)];
b[x ¢ (x ¢ y); y ¢ x]! b[x; (x ¢ y) ¢ (y ¢ x)];
b[y ¢ x; x ¢ (x ¢ y)]! b[x; (x ¢ y) ¢ (y ¢ x)];
b[x; (y ¢ x) ¢ (y ¢ x)]! q[x]b[y; y ¢ x];
b[x; (x ¢ y) ¢ (x ¢ y)]! q[x]b[x ¢ y; y];
b[x; (y ¢ x) ¢ (x ¢ y)]! q[x]b[y; x ¢ y]g;

and after applying it to the coe±cient of ¹ and making ¯ = 1¡ ® we get

3® b(x; (x ¢ y) ¢ (y ¢ x))¡ 3b(x; (x ¢ y) ¢ (y ¢ x))¡ 3® b(x ¢ x; y ¢ (y ¢ x))
+3b(x ¢ x; y ¢ (y ¢ x))¡ 3® b(y; y ¢ x)q(x) + 3b(y; y ¢ x)q(x)
¡3b(x; x ¢ x)q(y) + 3® b(x ¢ x; x)q(y)

18



It is not di±cult to see that this identity is (3®¡ 1) times (23), and then it is
zero (we can also use symmetry).

The constant term of the polynomial in ¸ and ¹, after making ¯ = 1 ¡ ®, is
also a polynomial but in ®. We will apply assocb to each coe±cient. The ¯rst
one is

Coe±cient[pol; ®2]==: assocb

¡3b(x ¢ y; (x ¢ y) ¢ (x ¢ y))¡ 3b(x ¢ (x ¢ y); y ¢ (y ¢ x))
+3b(x ¢ (x ¢ y); (y ¢ y) ¢ x) + 6b((x ¢ y) ¢ (x ¢ y); y ¢ x)
¡3b((y ¢ x) ¢ (y ¢ x); x ¢ y)

As we know that b(t2; s) = b(s2; t), this identity is ¡3 times (24), which is
zero. The coe±cient of ® of this las polynomial is:

Coe±cient[pol; ®]==: assocb

3b(x ¢ y; (x ¢ y) ¢ (x ¢ y)) + 3b(x ¢ (x ¢ y); y ¢ (y ¢ x))
¡3b(x ¢ (x ¢ y); (y ¢ y) ¢ x)¡ 9b((x ¢ y) ¢ (x ¢ y); y ¢ x) + 6b((y ¢ x) ¢ (y ¢ x); x ¢ y)

which is also zero because, after taking into account again that b(t2; s) =
b(s2; t), the identity is 3 times (24). The last coe±cient of this polynomial in
® is

pol=: ®! 0==: assocb

b(x ¢ y; (x ¢ x) ¢ (y ¢ y))¡ 2b(x ¢ y; (x ¢ y) ¢ (x ¢ y))
¡b(x ¢ (x ¢ y); y ¢ (y ¢ x)) + 3b(x ¢ (x ¢ y); (y ¢ y) ¢ x)
¡b(x ¢ (y ¢ y); y ¢ (x ¢ x)) + b(x ¢ (y ¢ y); (x ¢ x) ¢ y)
+b(y ¢ x; (y ¢ x) ¢ (y ¢ x)) + 6b((x ¢ y) ¢ (x ¢ y); y ¢ x)
¡6b((y ¢ x) ¢ (y ¢ x); x ¢ y)¡ 2b(x; y)q(x)q(y)

which, after using again that b(t2; s) = b(s2; t), is (25), and then it is also null,
and the identity (35) holds.

Q.E.D.

19



5 SymmComp.m package

(*:Name: Algebra`SymmComp` *)

(*:Title: Symmetric Composition algebras *)

(*:Authors: Pablo Alberca Bjerregaard and C¶andido Mart¶³n Gonz¶alez *)

(*:Keywords: spit octonions, Zorn matrices, Para-octonions, Pseudo-octonions *)

(*:Summary:

Package for computations with some symmetric compositions algebras*)

BeginPackage["Algebra`SymmComp`"]

p::usage = "Gives the product p[x,y] of the octonions x and y."

rec::usage= "Writes an octonion as a formal linear combinations of elements in the standard

basis."

B::usage="Standar basis of split Octonions."

cero::usage="cero Zorn matrix."

uno::usage="unit Zorn matrix."

Cayley::usage="Conjugate of octonion."

trace::usage="trace of octonion."

norm::usage="norm of octonion."

avec::usage="octonion to vector."

aoct::usage="vector to octonion."

LinearMap::usage="Linear map with given matrix"

e::usage="Idempotents (needs subscript = 1,2)."

u::usage="Elements in the (1,0) Peirce space (relative to e 1) of Zorn's algebra

(needs subscript = 1,3)."

v::usage="Elements in the (0,1) Peirce space (relative to e 1) of Zorn's algebra

(needs subscript = 1,3)."

recT::usage="TeX Form of rec."

paraoctonion::usage="Gives the product paraoctonion[x,y] of elements x,y in

the para-octonions algebra asociated to Zorn matrices algebra"

pseudoctonion::usage="Gives the product pseudoctonion[x,y] of elements x,y in

the pseudo-octonions algebra asociated to Zorn matrices algebra"

b::usage= "Polar form of the octonions norm"

auto::usage="Order-three automorphism of Zorn matrices"

20



Begin["Algebra`Zorn`Private`"]

p[x ,y ]:=ffx[[1,1]]y[[1,1]]+x[[1,2]].y[[2,1]],x[[1,1]]y[[1,2]]+y[[2,2]]x[[1,2]]-Cross[x[[2,1]],
y[[2,1]]]g,fy[[1,1]]x[[2,1]]+x[[2,2]]y[[2,1]]+Cross[x[[1,2]],y[[1,2]]],
x[[2,1]].y[[1,2]]+x[[2,2]]y[[2,2]]gg;
rec[x ]:=Sum[x[[i,i]] Subscript["e",i],fi,2g]+Sum[x[[1,2]][[i]] Subscript["u",i],fi,3g]+
Sum[x[[2,1]][[i]] Subscript["v",i],fi,3g]
recT[x ]:=TeXForm[rec[x]]

B=fff1,f0,0,0gg,ff0,0,0g,0gg,
ff0,f0,0,0gg,ff0,0,0g,1gg,
ff0,f1,0,0gg,ff0,0,0g,0gg,
ff0,f0,1,0gg,ff0,0,0g,0gg,
ff0,f0,0,1gg,ff0,0,0g,0gg,
ff0,f0,0,0gg,ff1,0,0g,0gg,
ff0,f0,0,0gg,ff0,1,0g,0gg,
ff0,f0,0,0gg,ff0,0,1g,0ggg
Do[Subscript[e,i]=B[[i]],fi,2g]
Do[Subscript[u,i]=B[[2+i]],fi,3g]
Do[Subscript[v,i]=B[[5+i]],fi,3g]
cero=ff0,f0,0,0gg,ff0,0,0g,0gg
uno=ff1,f0,0,0gg,ff0,0,0g,1gg
Cayley[x ]:=ffx[[2,2]],-x[[1,2]]g,f-x[[2,1]],x[[1,1]]gg
trace[x ]:=Expand[x+Cayley[x]][[1,1]]

norm[x ]:=Expand[p[x,Cayley[x]]][[1,1]]

avec[x ]:=fx[[1,1]],x[[2,2]],x[[1,2]][[1]],x[[1,2]][[2]],x[[1,2]][[3]],x[[2,1]][[1]],
x[[2,1]][[2]],x[[2,1]][[3]]g
aoct[x ]:=ffx[[1]],fx[[3]],x[[4]],x[[5]]gg,ffx[[6]],x[[7]],x[[8]]g,x[[2]]gg
LinearMap[M ,x ]:=aoct[M.avec[x]]//Expand

paraoctonion[x ,y ]:=p[Cayley[x],Cayley[y]]

b[x ,y ]:=Expand[norm[x+y]-norm[x]-norm[y]]

auto[x ]:=f
fx[[1,1]],fx[[1,2]][[3]],x[[1,2]][[1]],x[[1,2]][[2]]gg,
ffx[[2,1]][[3]],x[[2,1]][[1]],x[[2,1]][[2]]g,x[[2,2]]gg

21



pseudoctonion[x ,y ]:=p[auto[Cayley[x]],auto[auto[Cayley[y]]]]

End[] (* Algebra`SymmComp`Private` *)

EndPackage[] (* Algebra`SymmComp` *)

6 Acknowledgments

We are very grateful to professor Ottmar Loos for sharing with us his recent
investigation and for motivating us with the possiblity of getting a more direct
prove of certain identities by using a computer system.

References

[1] P. Alberca Bjerregaard and C. Mart¶³n Gonz¶alez. Computational
techniques for proving identities in symmetric compositions.
http://arxiv.org/. 2007.

[2] P. Alberca Bjerregaard and C. Mart¶³n Gonz¶alez. Paraoc-
tonions and pseudo-octonions package. Checking identities.
http://agt2.cie.uma.es/descargas.htm/. 2007.

[3] A. Elduque. Symmetric Composition Algebras. Journal of Algebra, 196.
283-300. 1997.

[4] M. -A. Knus, A. Merkurjev, M. Rost and J. -P. Tignol. The book of
involutions. American Mathematical Society Colloquium Publications.
Vol. 44. American Mathematical Society. Providence, RI. 1998.

[5] O. Loos. Cubic and symmetric compositions over rings.
http://www.uibk.ac.at/mathematik/loos/jordan/index.html. Preprint.
2006.

22


