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Abstract. We introduce non-associative vector bundles and study Dirichlet
forms and the associated Markov semigroups on these bundles.

1. Introduction

A non-commutative theory of Dirichlet forms and Markov semigroups has
been developed in [1, 8, 9, 10]. Two forms of non-commutative theory are usu-
ally considered: either the domains of the Dirichlet forms are furnished by some
non-commutative C*-algebras, typically, the non-commutative Lp(A) spaces of a
semifinite von Neumann algebra A, or, one considers the semigroups acting on sec-
tions of vector bundles over Riemannian manifolds, with non-commutative fibres.
In [9, 10], the latter case has been studied for C*-bundles over compact manifolds
whose fibres are finite-dimensional real C*-algebras. To be precise, the Dirichlet
forms in both cases are defined in terms of the Hermitian part of the relevant
spaces, namely, either the Hermitian part

L2
h(A) = {x ∈ L2(A) : x∗ = x}

of the non-commutative space L2(A), as in [1, p. 177], or the section L2(Ah) with
bundle Ah whose fibres are the Hermitian part

Ah = {x ∈ A : x∗ = x}

of a finite-dimensional real C*-algebra A, equipped with the L2-norm of a trace,
as in [9, Theorem 2]. It was also noted in [9] that a natural alternative approach
would be to consider bundles whose fibres have the structure of a compact Jordan
algebra.

In this paper, we consider more general vector bundles modelled on the non-
associative Lp-spaces, usually infinite dimensional, of a semifinite Jordan von Neu-
mann algebra. This includes the bundles Ah considered in [9] as well as the alter-
native approach proposed in [9] and mentioned above. We describe a framework
for a non-associative theory of Dirichlet forms on these bundles and extend to this
setting some contractivity results concerning the associated Markov semigroups
(cf. [9, 10, 17]).
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We begin by describing the non-associative Lp-spaces, constructed from a
Jordan algebra. We recall that a real, but not necessarily associative, algebra A
is called a Jordan algebra if its algebraic product satisfies

xy = yx and x2(yx) = (x2y)x (x, y ∈ A).

By a Jordan von Neumann algebra A, we mean a real Banach space A which is
also a Jordan algebra, with a (necessarily unique) separable predual A∗, such that

‖xy‖ ≤ ‖x‖‖y‖
‖x2‖ = ‖x‖2

‖x2‖ ≤ ‖x2 + y2‖
for x, y ∈ A. Without the separability condition on the predual, these algebras are
known as JBW-algebras in literature [19]. The weak topology on A is the topology
σ(A,A∗). We note that A contains an identity 1 and the order in A is induced
by the closed cone

A+ = {x2 : x ∈ A}
and we have A = A+ − A+. Given x ∈ A, one can define its modulus |x| =
(x2)1/2 ∈ A+. Each x ∈ A has a polar decomposition

x = s|x|
where s is a symmetry in A which means that s2 = 1.

Example 1.1. Let A be a (complex) von Neumann algebra with a separable
predual, for instance, the algebra B(H) of bounded linear operators on a complex
separable Hilbert space H. Then the Hermitian part

Ah = {T ∈ A : T ∗ = T}
is a Jordan von Neumann algebra, with the Jordan product defined by

T ◦ S =
1

2
(TS + ST )

where the product on the right is the original product in A. The positive cone
A+ = {T ∗T : T ∈ A} coincides with A+

h .

Example 1.2. Let A be a real C*-algebra. Then its complexification Ã = A+ iA
can be given a norm so that it becomes a (complex) C*-algebra, and A embeds

isometrically as a real C*-subalgebra of Ã [15, 15.4]. We note that A is generally

not identical with the Hermitian part of Ã. If A has a separable predual, then its
Hermitian part

Ah = {x ∈ A : x∗ = x}
is a Jordan von Neumann algebra, with the Jordan product defined by

x ◦ y =
1

2
(xy + yx)

where the associative product on the right is the original product in A.
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We refer to [19] for other examples of Jordan von Neumann algebras which
are not the Hermitian part of a real or complex C*-algebra.

We recall that a Jordan von Neumann algebra A is semifinite if it admits a
faithful semifinite normal trace. A trace on A is an additive function τ : A+ −→
[0,∞] satisfying

(i) τ(αx) = ατ(x) (α ≥ 0)
(ii) τ(sxs) = τ(x) (s is a symmetry).

A trace τ is faithful if τ(x) = 0 implies x = 0. It is called semifinite if for any
x ∈ A+\{0}, there exists y ∈ A+\{0} such that y ≤ x and τ(y) < ∞. If τ
preserves monotone convergence, then it is called normal.

A prototypic example of a semifinite Jordan von Neumann algebra is the
Hermitian part B(H)h of the algebra B(H) of bounded operators on a separa-
ble Hilbert space H, with the canonical trace; but important examples include
Hermitian parts of all finite von Neumann algebras with separable predual, in par-
ticular, the group von Neumann algebras of infinite-conjugacy-class groups which
are type II1 factors (cf. [27, p.367]).

In the sequel, A will denote a semifinite Jordan von Neumann algebra with a
faithful semifinite normal trace τ . There is a weakly dense ideal of A associated
with τ , namely,

Nτ = N+
τ −N+

τ

where
N+

τ = {a ∈ A+ : τ(a) <∞}
and the trace τ can be extended to a linear functional on Nτ , still denoted by τ .
For 1 ≤ p <∞, we define the Lp-norm

|‖x|‖p = τ(|x|p)1/p (x ∈ Nτ )

where |x|p ∈ N+
τ is defined by function calculus. The completion of the normed

space (Nτ , |‖ · |‖p) is denoted by Lp(A, τ), called the non-associative Lp-space of
A with respect to τ . The space L1(A, τ) is linearly isometric to A∗ and L2(A, τ)
is a Hilbert space with inner product denoted by 〈·, ·〉τ . We define L∞(A, τ) = A
and refer to [20] for further details of these Lp spaces.

One can construct a non-commutative Lp-space Lp(M, τ0) of a (complex)
von Neumann algebra M with a faithful semifinite normal trace τ0. If M has
a separable predual, then the Hermitian part A = Mh of M is a Jordan von
Neumann algebra with trace τ which is the restriction of τ0 to A+, and Lp(A, τ)
identifies with the Hermitian part Lp

h(M, τ0) of Lp(M, τ0) [2].

Example 1.3. If A = B(H)h is the Hermitian part of the algebra of bounded op-
erators on a separable Hilbert space H, with the canonical trace τ , then L2(A, τ) =
Nτ is the space of self-adjoint Hilbert-Schmidt operators on H and is separable.

Example 1.4. If A is a finite-dimensional real C*-algebra, then L2(Ah, τ) =
(Ah, |‖ · |‖2) for any trace τ on Ah. This is the space considered in [9].
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2. Non-associative vector bundles and Dirichlet forms

In this section, we introduce non-associative vector bundles on Riemannian
manifolds and the setting for a non-associative theory of Dirichlet forms. These
bundles are vector bundles whose fibres have Jordan algebraic structures, more
precisely, the fibres of these bundles are real Hilbert spaces isometric to a non-
associative Hilbert space of a semifinite Jordan von Neumann algebra.

Let M be a Riemannian manifold with the Riemannian measure dx and let
L2(A, τ) be a non-associative Hilbert space as before. We denote by L2(M,L2(A, τ))
the real Hilbert space of (equivalence classes of) L2(A, τ)-valued Bochner inte-
grable functions f on M satisfying

‖f‖2 =

(∫
M

|‖f(x)|‖2
2dx

) 1
2

<∞

(cf. [13, p.97]), with inner product

〈f, g〉 =

∫
M

〈f(x), g(x)〉τdx.

Let C∞c (M,L2(A, τ)) be the space of smooth L2(A, τ)-valued functions on M with
compact support. Standard arguments show that C∞c (M,L2(A, τ)) is ‖ · ‖2-dense
in L2(M,L2(A, τ)).

A vector bundle π : E −→M is called a non-associative bundle if its fibres Ex

are all real Hilbert spaces linearly isometric to the non-assoicative Hilbert space
L2(A, τ) of a Jordan von Neumann algebra A with a faithful semifinite normal
trace τ . In this case, E is a Hilbert manifold modeled on the real Hilbert space
L2(A, τ) × Rn where n = dimM . We denote the inner product in Ex by 〈·, ·〉x.
Given the linear isometry

γx : Ex −→ L2(A, τ)
we have 〈ξ, ζ〉x = 〈γx(ξ), γx(ζ)〉τ . The set C∞c (E) of smooth sections on M with
compact support is a vector space with inner product and norm:

〈ϕ, ψ〉 =

∫
M

〈ϕ(x), ψ(x)〉xdx

‖ϕ‖2 = 〈ϕ, ϕ〉1/2.

The completion L2(E) of C∞c (E) with respect to the above norm identifies with
the real Hilbert space L2(M,L2(A, τ)). More generally, for 1 ≤ p <∞, we denote
by Lp(E) the completion of C∞c (E) with respect to the following norm:

‖ϕ‖p =

(∫
M

〈ϕ(x), ϕ(x)〉p/2
x dx

)1/p

.

Let L∞(E) be the space of (essentially) bounded sections on M .
The Lp-space Lp(A, τ) can be partially ordered by the cone Lp(A, τ)+ which is

defined to be the |‖ · |‖p-closure of N+
τ . For p ∈ (1,∞), the norm |‖ · |‖p is Fréchet
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differentiable except at 0. Given a map f : R −→ Lp(A, τ)+, differentiable at
t0 ∈ R with f(t0) 6= 0, we have, by [20, Lemma 14],

d

dt
τ (f(t)p) |t=t0 = pτ

(
f(t0)

p−1 d

dt
f(t) |t=t0

)
.

For z, w ∈ L2(A, τ)+, we have 〈z, w〉τ ≥ 0 (cf. [20, Lemma 1]). Every z ∈
L2(A, τ) has a decomposition z = z+ − z− with z+, z− ≥ 0 and z+z− = 0. The
modulus of z is defined to be |z| = z+ + z−.

Each fibre Ex of the non-associative vector bundle π : E −→ M carries the
above order and Jordan algebraic structures of L2(A, τ) via the isometry γx :
Ex −→ L2(A, τ). A section ϕ of E is said to be positive if ϕ(x) ≥ 0 for almost all
x ∈M . We denote this by ϕ ≥ 0.

Let Γ(E) be the space of smooth sections of E. Given ϕ ∈ Γ(E), we define
ϕ±(x) = ϕ(x)± and |ϕ|(x) = |ϕ(x)| for x ∈ M . Then ϕ = ϕ+ − ϕ− and |ϕ| =
ϕ+ + ϕ−. We have 〈ϕ+, ϕ−〉 = 0, in fact,∫

M

〈ϕ(x)+, ϕ(x)−〉xdµ(x) = 0

for any measure µ on M . The above order structures can be extended to the
completion L2(E) w L2(M,L2(A, τ)). A linear map P : L2(E) −→ L2(E) is
called positive, in symbol, P ≥ 0, if ϕ ≥ 0 implies Pϕ ≥ 0.

Let Q be a closable non-negative quadratic form with domain C∞c (E) ⊂
L2(E). Then there is a positive self-adjoint operator L in L2(E) such that

Q(ϕ, ψ) = 〈Lϕ, ψ〉 (ϕ, ψ ∈ C∞c (E)).

We write Q(ϕ) for Q(ϕ, ϕ). The proof of the following result is similar to [9,
Theorem 1].

Theorem 2.1. Let Q(·) = 〈L1/2(·), L1/2(·)〉 be a quadratic form where L : D(L) −→
L2(E) is a self-adjoint, positive operator which generates a semigroup (Pt)t≥0 on
L2(E). The following conditions are equivalent.

(i) Pt ≥ 0 for t > 0.
(ii) Given ϕ ∈ D(L1/2), we have |ϕ| ∈ D(L1/2) and Q(|ϕ|) ≤ Q(ϕ).
(iii) Given ϕ ∈ D(L1/2), we have |ϕ| ∈ D(L1/2) and

Q(ϕ+, ϕ−) ≤ 0.
(iv) For ϕ ∈ L2(E) and ϕ ≥ 0, we have (α+ L)−1(ϕ) ≥ 0 for all α > 0.

Proof. (i) ⇒ (ii). Let ϕ ∈ D(L1/2). Then by positivity of Pt, we have

〈Ptϕ, ϕ〉 = 〈Ptϕ
+ − Ptϕ

−, ϕ+ − ϕ−〉
= 〈Ptϕ

+, ϕ+〉+ 〈Ptϕ
−, ϕ−〉 − 〈Ptϕ

+, ϕ−〉 − 〈Ptϕ
−, ϕ+〉

≤ 〈Pt|ϕ|, |ϕ|〉.
Hence

1

t
〈(I − Pt)|ϕ|, |ϕ|〉 ≤

1

t
〈(I − Pt)ϕ, ϕ〉
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and lim supt→0
1
t
〈(I − Pt)|ϕ|, |ϕ|〉 ≤ 〈L1/2ϕ,L1/2ϕ〉. It follows that |ϕ| ∈ D(L1/2)

and Q(|ϕ|) ≤ Q(ϕ).

(ii) ⇔ (iii). This follows from

4Q(ϕ+, ϕ−) = Q(|ϕ|)−Q(ϕ)

where ϕ, |ϕ| ∈ D(L1/2) implies that ϕ± ∈ D(L1/2).

(iii) ⇒ (iv). Fix α > 0. Denote K = D(L1/2) which is a Hilbert space with respect
to the inner product

〈ψ, ϕ〉1 = 〈L1/2ψ,L1/2ϕ〉+ α〈ψ, ϕ〉.
Let J : K −→ L2(E) be the natural embedding. Then, for ψ ∈ K, ϕ ∈ L2(E), we
have

〈ψ, (α+ L)−1ϕ〉1 = 〈L1/2ψ,L1/2(α+ L)−1ϕ〉
+ α 〈ψ, (α+ L)−1ϕ〉

= 〈(α+ L)ψ, (α+ L)−1ϕ)〉
= 〈ψ, ϕ〉 = 〈Jψ, ϕ〉.

Therefore J∗ϕ = (α+ L)−1ϕ. Let ψ = J∗ϕ. We have

〈|ψ|, |ψ|〉1 = Q(|ψ|) + α〈|ψ|, |ψ|〉
≤ Q(ψ) + α〈ψ, ψ〉 = 〈ψ, ψ〉1.

Let ϕ ≥ 0. Then

〈|ψ|, ψ〉1 = 〈|ψ|, J∗ϕ〉1
= 〈|ψ|, ϕ〉
≥ 〈ψ, ϕ〉 = 〈ψ, J∗ϕ〉1 = 〈ψ, ψ〉1.

Hence (α+ L)−1ϕ = J∗ϕ = ψ = |ψ| ≥ 0.

(iv) ⇒ (i). This follows from

Pt = lim
n→∞

(
I +

t

n
L

)−n

.

�

A quadratic form Q in L2(E) satisfying the conditions in Theorem 2.1 and
generating a contractive semigroup (Pt) on Lp(E) for p ∈ [1,∞] is called a Dirich-
let form, where Pt is called a contraction on Lp(E) if it maps L2(E) ∩ Lp(E) into
L2(E) ∩ Lp(E), and is contractive in the Lp-norm.

From now on, we fix a non-associative vector bundle π : E −→M with fibres
isometric to the real Hilbert space L2(A, τ) of a Jordan von Neumann algebra
A with a faithful semifinite normal trace τ . By [21, Theorem 1.8.19], the vector



DIRICHLET FORMS AND MARKOV SEMIGROUPS 7

bundle π : E −→ M has a Riemannian metric, that is, the inner products 〈·, ·〉x
on Ex can be chosen to depend smoothly on x ∈M . Let TE be the total tangent
space of E. By [21, Theorem 1.8.23], the above vector bundle possesses a metric
connection K : TE −→ E, compatible with the Riemannian structure such that,
for each ϕ ∈ Γ(E),

DXϕ(x) := K ◦ dϕx(X) ∈ E
is the associated covariant derivation of ϕ in the direction X ∈ TxM , where dϕx :
TxM −→ Tϕ(x)E is the differential of ϕ at x ∈ M . For any vector field X on M ,
DXϕ is a smooth section of E (cf.[21, p.49]) and

X〈ϕ, ψ〉 = 〈DXϕ, ψ〉+ 〈ϕ,DXψ〉.

We note that K ◦ dϕx ∈ L(TxM,Ex), the space of linear maps between TxM and
Ex, and the tensor product Ex⊗T ∗xM is dense in L(TxM,Ex) in the compact open
topology (cf. [13, p.240]). If the fibre Ex is finite-dimensional, then L(TxM,Ex) =
Ex ⊗ T ∗xM and we have the connection D : Γ(E) −→ Γ(E)⊗ Γ(T ∗M) given by

Dϕ = K ◦ dϕ.

For ϕ, ψ ∈ C∞c (E), we define

〈Dϕ(x), Dψ(x)〉τ =
n∑

i=1

〈DXi
ϕ(x), DXi

ψ(x)〉x

where {X1, . . . , Xn} is an orthonormal moving frame on M .

Given π : E −→ M endowed with a Riemannian structure and a compatible
affine connection D, the qudratic form

E(ϕ, ψ) =

∫
M

〈Dϕ,Dψ〉τdµ (ϕ, ψ ∈ C∞c (E))

satisfies the conditions in Theorem 2.1 since E(ϕ+, ϕ−) = 0.

3. Hypercontractivity

The theory of hypercontractive semigroups was introduced in a fundamental
paper of Nelson [24] who discovered that the Ornstein-Uhlenbeck semigroup Pt :
Lp(Rd, µ) −→ Lq(Rd, µ) is bounded if p, q and t are properly related, where µ
is the Gaussian measure. After important improvements in [14, 26], the precise
minimum time t for contractivity from Lp to Lq was established in [25].

In his seminal paper [17], Gross proved the equivalence of hypercontractivity
and a logarithmic Sobolev inequality for diffusion semigroups which may be stated
as follows. Let (Pt)t≥0 be the diffusion semigroup associated to a local Dirichlet
form (E ,F) on L2(X,X , µ) for some σ-finite measure (X,X , µ). Let

(1) Ent(f) =

∫
X

(f ln f) dµ−
(∫

X

fdµ

) (
ln

∫
X

fdµ

)
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denote the entropy of f . Let a > 0 and b ≥ 0. Define

p(t) = 1 + (p− 1)e4t/a; m(t) = b
(
p−1 − p(t)−1

)
.

Then the following logarithmic Sobolev inequality

(2) Ent(f 2) ≤ aE(f, f) + b||f ||22 (f ∈ F)

holds if, and only if,

(3) ||Ptf ||p(t) ≤ em(t)||f ||p
for all f ∈ Lp(µ), p ∈ (1,∞) and t > 0. We refer to [3, 6, 11, 12, 17, 18] for the
evolution of this form of Gross’s theorem. We also refer to [7] for a bibliographic
review of hyercontractivity.

Let π : E →M be a non-associative vector bundle, endowed with a Riemann-
ian structure and a compatible affine connection D. Let

E(ϕ, ψ) =

∫
M

〈Dϕ,Dψ〉τdµ (ϕ, ψ ∈ C∞c (E) ⊂ L2(E))

be a Dirichlet form. Let (Pt)t≥0 be the diffusion semigroup of the vector bundle E
with generator L defined by E . That is, Pt = e−tL and the self-adjoint operator L
is determined via integration by parts∫

M

〈Dϕ,Dψ〉τdµ =

∫
M

〈Lϕ, ψ〉τdµ =

∫
M

〈Lϕ(x), ψ(x)〉xdµ(x) .

As before, let ||ϕ||p denote the Lp-norm of |ϕ|τ , where we define

|ϕ|τ (x) = 〈ϕ(x), ϕ(x)〉1/2
x (x ∈M)

which is abbreviated to

|ϕ|2τ = 〈ϕ, ϕ〉τ
if no confusion is likely.

In the following result for non-associative vector bundles, the special case for
line bundles is implicit in the fundamental work of Gross [17]. The proof uses an
argument of Bakry [4].

Proposition 3.1. Let a > 0, b ≥ 0. The following two conditions are equivalent.

(i) (Pt)t≥0 possesses hypercontractivity, that is,

(4) ||Ptϕ||p(t) ≤ em(t)||ϕ||p (ϕ ∈ C∞c (E)) with

(5) p(t) = 1 + (p− 1)e
4
a
t , m(t) = b

(
p−1 − p(t)−1

)
(t > 0, p > 1).

(ii) For all p > 1, we have

(6) Ent (|ϕ|pτ ) ≤ − ap2

8(p− 1)

∫
M

|ϕ|p−2
τ

d

dt

∣∣∣∣
t=0

|Ptϕ|2τ + b||ϕ||pp .
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Proof. Consider the function F (t) = e−m(t)||Ptϕ||p(t) where m(0) = 0 and p(0) = p.
We have F (0) = ||ϕ||p. A straightforward computation shows that

d

dt
logF (t) = −m′(t) +

p′(t)

p(t)2

1

||Ptϕ||p(t)
p(t)

Ent
(
|Ptϕ|p(t)

τ

)
(7)

+
1

2||Ptϕ||p(t)
p(t)

∫
M

|Ptϕ|p(t)−2
τ

d

dt
|Ptϕ|2τ .

Multiplying both sides by ||Ptϕ||p(t)
p(t), we obtain

||Ptϕ||p(t)
p(t)

(
d

dt
logF (t)

)
(8)

=
p′(t)

p2(t)

[
Ent

(
|Ptϕ|p(t)

τ

)
+
p(t)2

2p′(t)

∫
M

|Ptϕ|p(t)−2
τ

d|Ptϕ|2τ
dt

− m′(t)p(t)2

p′(t)
||Ptϕ||p(t)

p(t)

]
By definition, p(t) and m(t) are chosen to solve the following differential equations:

p(t)2

p′(t)
=

ap2

4(p− 1)
, p(0) = p

and
m′(t)p(t)2

p′(t)
= b , m(0) = 0 .

Assume (i). Since F (0) = ||ϕ||p, the hypercontractivity of (Pt) implies F ′(0) ≤ 0
which gives, via (8),

Ent (|ϕ|pτ ) +
p2

2p′(0)

∫
M

|ϕ|p−2
τ

d

dt

∣∣∣∣
t=0

|Ptϕ|2τ −
m′(0)p2

p′(0)
||ϕ||pp ≤ 0 .

Together with (5), this shows (6) holds.
Conversely, assume (ii). Applying (6) to Ptϕ and using (8), we see that (6)

implies d
dt

logF (t) ≤ 0, so F ′(t) ≤ 0. Therefore F (t) ≤ F (0) which in turn yields
the hypercontractivity of (Pt)t≥0. �

Theorem 3.2. Let (Pt)t≥0 be the diffusion semigroup on a non-associative vector
bundle E −→M with the generator L associated with the Dirichlet form

E(ϕ, ψ) =

∫
M

〈Dϕ,Dψ〉τdµ (ϕ, ψ ∈ C∞c (E)).

Then the hypercontractivity of (Pt)t≥0 is equivalent to the following log-Sobolev
inequality

(9) Ent
(
|ϕ|2τ

)
≤ a

∫
M

|Dϕ|2τ + b||ϕ||22 .
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Proof. As

d

dt

∣∣∣∣
t=0

|Ptϕ|2τ (x) =
d

dt

∣∣∣∣
t=0

〈Ptϕ(x), Ptϕ(x)〉x = 2〈Lϕ(x), ϕ(x)〉x ,

we have

(10) −
∫

M

|ϕ|p−2
τ

d

dt

∣∣∣∣
t=0

|Ptϕ|2τdµ = 2

∫
M

〈Dϕ,D(|ϕ|p−2
τ ϕ)〉τdµ .

For any β > 0, we have by the product rule,

D(|ϕ|βτϕ) =
(
d|ϕ|βτ

)
ϕ+ |ϕ|βτDϕ

so that

|D(|ϕ|βτϕ)|2τ = 〈
(
d|ϕ|βτ

)
ϕ+ |ϕ|βτDϕ,

(
d|ϕ|βτ

)
ϕ+ |ϕ|βτDϕ〉τ

= |d|ϕ|βτ |2|ϕ|2τ + |ϕ|2β
τ |Dϕ|2τ + 〈Dϕ,

(
d|ϕ|2β

τ

)
ϕ〉τ .

While

〈Dϕ,D(|ϕ|p−2
τ ϕ)〉τ = 〈Dϕ,

(
d|ϕ|p−2

τ

)
ϕ〉τ + |ϕ|p−2

τ |Dϕ|2τ ,

and therefore, with β = (p− 2)/2, we have

〈Dϕ,D(|ϕ|p−2
τ ϕ)〉τ = |D(|ϕ|βτϕ)|2τ − |d|ϕ|βτ |2|ϕ|2τ

= |D(|ϕ|
p
2
−1

τ ϕ)|2τ −
(p− 2)2

p2
|d|ϕ|

p
2
τ |2 .

Hence, by Proposition 3.1, the hypercontractivity of (Pt)t≥0 is equivalent to the
following entropy inequality:

Ent
(
|ϕ|2τ

)
≤ ap2

4(p− 1)

∫
M

(
|Dϕ|2τ −

(p− 2)2

p2
|d|ϕ|τ |2

)
+ b||ϕ||22

for all p > 1 and ϕ ∈ C∞c (E). Our claim will follow if we can show for any given
ϕ, the right-hand side is minimized when p = 2. To this end we consider

U(p) =
p2

p− 1

∫
M

(
|Dϕ|2τ −

(p− 2)2

p2
|d|ϕ|τ |2

)
=

p2

p− 1

∫
M

|Dϕ|2τ −
(p− 2)2

p− 1

∫
M

|d|ϕ|τ |2 ,

where it is clear that

U ′(p) =
p(p− 2)

(p− 1)2

(∫
M

|Dϕ|2τ −
∫

M

|d|ϕ|τ |2
)

.

Therefore U(p) takes its minimum value at p = 2, or at
∫

M
|Dϕ|2τ =

∫
M
|d|ϕ|τ |2,

where in the latter case, U(p) is constant. In both cases, the minimum value of
U(p) is 4

∫
M
|Dϕ|2τ which proves our claim. �
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In the scalar case, the reduction in (6) from any value p to p = 2 (logarithmic
Sobolev inequality) is achieved by the simple fact that

∫
M
|Dϕ|2 =

∫
M
|d|ϕ|τ |2.

The latter is no longer true for sections of vector bundles. Our only contribution
is the observation that, nevertheless, such a reduction can still be obtained via a
max-min argument instead.

Corollary 3.3. Let µ be a σ-finite measure on a Riemannian manifold M . If a
logarithmic Sobolev inequality holds for functions:

(11) Ent
(
f 2

)
≤ a

∫
M

|∇f |2 + b||f ||22 for all f ∈ C∞c (M) ,

then the semigroup (Pt)t≥0 on a non-associative vector bundle E −→ M as in
Theorem 3.2 possesses hypercontractivity.

Proof. Since D is compatible with the Riemannian structure on E, we have

d|ϕ|2τ = 2〈Dϕ,ϕ〉τ
so that |d|ϕ|2τ | ≤ 2|Dϕ|τ |ϕ|τ which implies that |d|ϕ|τ | ≤ |Dϕ|τ . However |d|ϕ|τ | =
|∇|ϕ|τ |, therefore by applying (11) to |ϕ|τ , we obtain

Ent
(
|ϕ|2τ

)
≤ a

∫
M

|d|ϕ|τ |2 + b||ϕ||22

≤ a

∫
M

|Dϕ|2τ + b||ϕ||22 .

The conclusion now follows from the above theorem immediately. �

4. Harmonic functions

To conclude, we discuss harmonic functions with respect to a Dirichlet Lapla-
cian in the scalar case on Lie groups. We show, not surprisingly, the absence of a
nontrivial Lp harmonic function for 1 ≤ p <∞.

Let G be a Lie group with a right invariant Haar measure λ, and let Lp(G) be
the Lebesgue spaces with respect to the Haar measure λ. Given a Dirichlet form
E on L2(G), we consider the associated positive self-adjoint operator L in L2(G),
the Dirichlet Laplacian of E , satisfying

E(ϕ, ψ) = 〈Lϕ, ψ〉 (ϕ, ψ ∈ D(L)).

We assume that L commutes with right translations of G:

Lra = raL (a ∈ G)

where ra : x 7→ xa ∈ G is a right translation by a. In this case, the Markov
semigroup

Pt : L2(G) −→ L2(G) (t ≥ 0)



12 C-H. CHU AND Z. QIAN

generated by L, commutes with right translations of G and is a convolution semi-
group:

Pt(f) = f ∗ σt (f ∈ L2(G))

where (σt)t≥0 is a family of probability measures on G and the support of each
σt generates the group G. A complex function f ∈ D(L) is called L-harmonic if
Lf = 0.

Theorem 4.1. Let 1 ≤ p <∞ and let f ∈ Lp(G). If f is L-harmonic, then f is
constant.

Proof. Let (σt)t≥0 be the induced convolution semigroup of probability measures
on G. Then we have f ∗ σt = f and since the support of σt generates G, by [5,
Theorem 3.12], f is constant. �

We note that, given a complete Riemannian manifold M and the Laplace
operator ∆ of its Riemannian metric, it is a well-known result of Yau [28] that all
Lp ∆-harmonic functions on M are constant, for 1 < p < ∞, and if in addition,
M has non-negative Ricci curvature, then all L1 harmonic functions on M are also
constant [29, 22] (see also [16]). Yau’s result applies to Lie groups for 1 < p <
∞, however, it has been shown by Milnor [23] that for almost all left-invariant
Riemannian metrics on a Lie group, the Ricci curvature changes sign and in this
case, the above L1 result does not apply directly although Theorem 4.1 shows that
it is still true for all Lie groups.
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