DIRICHLET FORMS AND MARKOV SEMIGROUPS ON NON-ASSOCIATIVE VECTOR BUNDLES

CHO-HO CHU AND ZHONGMIN QIAN

Abstract

We introduce non-associative vector bundles and study Dirichlet forms and the associated Markov semigroups on these bundles.

1. Introduction

A non-commutative theory of Dirichlet forms and Markov semigroups has been developed in $[1,8,9,10]$. Two forms of non-commutative theory are usually considered: either the domains of the Dirichlet forms are furnished by some non-commutative C^{*}-algebras, typically, the non-commutative $L^{p}(\mathcal{A})$ spaces of a semifinite von Neumann algebra \mathcal{A}, or, one considers the semigroups acting on sections of vector bundles over Riemannian manifolds, with non-commutative fibres. In $[9,10]$, the latter case has been studied for C^{*}-bundles over compact manifolds whose fibres are finite-dimensional real C^{*}-algebras. To be precise, the Dirichlet forms in both cases are defined in terms of the Hermitian part of the relevant spaces, namely, either the Hermitian part

$$
L_{h}^{2}(\mathcal{A})=\left\{x \in L^{2}(\mathcal{A}): x^{*}=x\right\}
$$

of the non-commutative space $L^{2}(\mathcal{A})$, as in [1, p. 177], or the section $L^{2}\left(\mathfrak{A}_{h}\right)$ with bundle \mathfrak{A}_{h} whose fibres are the Hermitian part

$$
A_{h}=\left\{x \in A: x^{*}=x\right\}
$$

of a finite-dimensional real C*-algebra A, equipped with the L_{2}-norm of a trace, as in [9, Theorem 2]. It was also noted in [9] that a natural alternative approach would be to consider bundles whose fibres have the structure of a compact Jordan algebra.

In this paper, we consider more general vector bundles modelled on the nonassociative L^{p}-spaces, usually infinite dimensional, of a semifinite Jordan von Neumann algebra. This includes the bundles \mathfrak{A}_{h} considered in [9] as well as the alternative approach proposed in [9] and mentioned above. We describe a framework for a non-associative theory of Dirichlet forms on these bundles and extend to this setting some contractivity results concerning the associated Markov semigroups (cf. $[9,10,17]$).

[^0]We begin by describing the non-associative L^{p}-spaces, constructed from a Jordan algebra. We recall that a real, but not necessarily associative, algebra \mathcal{A} is called a Jordan algebra if its algebraic product satisfies

$$
x y=y x \quad \text { and } \quad x^{2}(y x)=\left(x^{2} y\right) x \quad(x, y \in \mathcal{A})
$$

By a Jordan von Neumann algebra \mathcal{A}, we mean a real Banach space \mathcal{A} which is also a Jordan algebra, with a (necessarily unique) separable predual \mathcal{A}_{*}, such that

$$
\begin{aligned}
\|x y\| & \leq\|x\|\|y\| \\
\left\|x^{2}\right\| & =\|x\|^{2} \\
\left\|x^{2}\right\| & \leq\left\|x^{2}+y^{2}\right\|
\end{aligned}
$$

for $x, y \in \mathcal{A}$. Without the separability condition on the predual, these algebras are known as $J B W$-algebras in literature [19]. The weak topology on \mathcal{A} is the topology $\sigma\left(\mathcal{A}, \mathcal{A}_{*}\right)$. We note that \mathcal{A} contains an identity 1 and the order in \mathcal{A} is induced by the closed cone

$$
\mathcal{A}^{+}=\left\{x^{2}: x \in \mathcal{A}\right\}
$$

and we have $\mathcal{A}=\mathcal{A}^{+}-\mathcal{A}^{+}$. Given $x \in \mathcal{A}$, one can define its modulus $|x|=$ $\left(x^{2}\right)^{1 / 2} \in \mathcal{A}^{+}$. Each $x \in \mathcal{A}$ has a polar decomposition

$$
x=s|x|
$$

where s is a symmetry in \mathcal{A} which means that $s^{2}=1$.
Example 1.1. Let \mathcal{A} be a (complex) von Neumann algebra with a separable predual, for instance, the algebra $B(H)$ of bounded linear operators on a complex separable Hilbert space H. Then the Hermitian part

$$
\mathcal{A}_{h}=\left\{T \in \mathcal{A}: T^{*}=T\right\}
$$

is a Jordan von Neumann algebra, with the Jordan product defined by

$$
T \circ S=\frac{1}{2}(T S+S T)
$$

where the product on the right is the original product in \mathcal{A}. The positive cone $\mathcal{A}^{+}=\left\{T^{*} T: T \in \mathcal{A}\right\}$ coincides with \mathcal{A}_{h}^{+}.
Example 1.2. Let A be a real C*-algebra. Then its complexification $\widetilde{A}=A+i A$ can be given a norm so that it becomes a (complex) C^{*}-algebra, and A embeds isometrically as a real C^{*}-subalgebra of $\widetilde{A}[15,15.4]$. We note that A is generally not identical with the Hermitian part of \widetilde{A}. If A has a separable predual, then its Hermitian part

$$
A_{h}=\left\{x \in A: x^{*}=x\right\}
$$

is a Jordan von Neumann algebra, with the Jordan product defined by

$$
x \circ y=\frac{1}{2}(x y+y x)
$$

where the associative product on the right is the original product in A.

We refer to [19] for other examples of Jordan von Neumann algebras which are not the Hermitian part of a real or complex C*-algebra.

We recall that a Jordan von Neumann algebra \mathcal{A} is semifinite if it admits a faithful semifinite normal trace. A trace on \mathcal{A} is an additive function $\tau: \mathcal{A}^{+} \longrightarrow$ $[0, \infty]$ satisfying
(i) $\tau(\alpha x)=\alpha \tau(x) \quad(\alpha \geq 0)$
(ii) $\tau(s x s)=\tau(x) \quad(s$ is a symmetry $)$.

A trace τ is faithful if $\tau(x)=0$ implies $x=0$. It is called semifinite if for any $x \in \mathcal{A}^{+} \backslash\{0\}$, there exists $y \in \mathcal{A}^{+} \backslash\{0\}$ such that $y \leq x$ and $\tau(y)<\infty$. If τ preserves monotone convergence, then it is called normal.

A prototypic example of a semifinite Jordan von Neumann algebra is the Hermitian part $B(H)_{h}$ of the algebra $B(H)$ of bounded operators on a separable Hilbert space H, with the canonical trace; but important examples include Hermitian parts of all finite von Neumann algebras with separable predual, in particular, the group von Neumann algebras of infinite-conjugacy-class groups which are type II_{1} factors (cf. [27, p.367]).

In the sequel, \mathcal{A} will denote a semifinite Jordan von Neumann algebra with a faithful semifinite normal trace τ. There is a weakly dense ideal of \mathcal{A} associated with τ, namely,

$$
\mathcal{N}_{\tau}=\mathcal{N}_{\tau}^{+}-\mathcal{N}_{\tau}^{+}
$$

where

$$
\mathcal{N}_{\tau}^{+}=\left\{a \in \mathcal{A}^{+}: \tau(a)<\infty\right\}
$$

and the trace τ can be extended to a linear functional on \mathcal{N}_{τ}, still denoted by τ. For $1 \leq p<\infty$, we define the L^{p}-norm

$$
\left|\|x \mid\|_{p}=\tau\left(|x|^{p}\right)^{1 / p} \quad\left(x \in \mathcal{N}_{\tau}\right)\right.
$$

where $|x|^{p} \in \mathcal{N}_{\tau}^{+}$is defined by function calculus. The completion of the normed space $\left(\mathcal{N}_{\tau},\left|\|\cdot \mid\|_{p}\right)\right.$ is denoted by $L^{p}(\mathcal{A}, \tau)$, called the non-associative L^{p}-space of \mathcal{A} with respect to τ. The space $L^{1}(\mathcal{A}, \tau)$ is linearly isometric to \mathcal{A}_{*} and $L^{2}(\mathcal{A}, \tau)$ is a Hilbert space with inner product denoted by $\langle\cdot, \cdot\rangle_{\tau}$. We define $L^{\infty}(\mathcal{A}, \tau)=\mathcal{A}$ and refer to $[20]$ for further details of these L^{p} spaces.

One can construct a non-commutative L^{p}-space $L^{p}\left(\mathcal{M}, \tau_{0}\right)$ of a (complex) von Neumann algebra \mathcal{M} with a faithful semifinite normal trace τ_{0}. If \mathcal{M} has a separable predual, then the Hermitian part $\mathcal{A}=\mathcal{M}_{h}$ of \mathcal{M} is a Jordan von Neumann algebra with trace τ which is the restriction of τ_{0} to \mathcal{A}^{+}, and $L^{p}(\mathcal{A}, \tau)$ identifies with the Hermitian part $L_{h}^{p}\left(\mathcal{M}, \tau_{0}\right)$ of $L^{p}\left(\mathcal{M}, \tau_{0}\right)$ [2].
Example 1.3. If $\mathcal{A}=\mathcal{B}(H)_{h}$ is the Hermitian part of the algebra of bounded operators on a separable Hilbert space H, with the canonical trace τ, then $L^{2}(\mathcal{A}, \tau)=$ \mathcal{N}_{τ} is the space of self-adjoint Hilbert-Schmidt operators on H and is separable.
Example 1.4. If A is a finite-dimensional real C^{*}-algebra, then $L^{2}\left(A_{h}, \tau\right)=$ $\left(A_{h},\left|\|\cdot \mid\|_{2}\right)\right.$ for any trace τ on A_{h}. This is the space considered in [9].

2. Non-associative vector bundles and Dirichlet forms

In this section, we introduce non-associative vector bundles on Riemannian manifolds and the setting for a non-associative theory of Dirichlet forms. These bundles are vector bundles whose fibres have Jordan algebraic structures, more precisely, the fibres of these bundles are real Hilbert spaces isometric to a nonassociative Hilbert space of a semifinite Jordan von Neumann algebra.

Let M be a Riemannian manifold with the Riemannian measure $d x$ and let $L^{2}(\mathcal{A}, \tau)$ be a non-associative Hilbert space as before. We denote by $L^{2}\left(M, L^{2}(\mathcal{A}, \tau)\right)$ the real Hilbert space of (equivalence classes of) $L^{2}(\mathcal{A}, \tau)$-valued Bochner integrable functions f on M satisfying

$$
\|f\|_{2}=\left(\int_{M}\left|\|f(x) \mid\|_{2}^{2} d x\right)^{\frac{1}{2}}<\infty\right.
$$

(cf. [13, p.97]), with inner product

$$
\langle f, g\rangle=\int_{M}\langle f(x), g(x)\rangle_{\tau} d x
$$

Let $C_{c}^{\infty}\left(M, L^{2}(\mathcal{A}, \tau)\right)$ be the space of smooth $L^{2}(\mathcal{A}, \tau)$-valued functions on M with compact support. Standard arguments show that $C_{c}^{\infty}\left(M, L^{2}(\mathcal{A}, \tau)\right)$ is $\|\cdot\|_{2}$-dense in $L^{2}\left(M, L^{2}(\mathcal{A}, \tau)\right)$.

A vector bundle $\pi: E \longrightarrow M$ is called a non-associative bundle if its fibres E_{x} are all real Hilbert spaces linearly isometric to the non-assoicative Hilbert space $L^{2}(\mathcal{A}, \tau)$ of a Jordan von Neumann algebra \mathcal{A} with a faithful semifinite normal trace τ. In this case, E is a Hilbert manifold modeled on the real Hilbert space $L^{2}(\mathcal{A}, \tau) \times \mathbb{R}^{n}$ where $n=\operatorname{dim} M$. We denote the inner product in E_{x} by $\langle\cdot, \cdot\rangle_{x}$. Given the linear isometry

$$
\gamma_{x}: E_{x} \longrightarrow L^{2}(\mathcal{A}, \tau)
$$

we have $\langle\xi, \zeta\rangle_{x}=\left\langle\gamma_{x}(\xi), \gamma_{x}(\zeta)\right\rangle_{\tau}$. The set $C_{c}^{\infty}(E)$ of smooth sections on M with compact support is a vector space with inner product and norm:

$$
\begin{gathered}
\langle\varphi, \psi\rangle=\int_{M}\langle\varphi(x), \psi(x)\rangle_{x} d x \\
\|\varphi\|_{2}=\langle\varphi, \varphi\rangle^{1 / 2}
\end{gathered}
$$

The completion $\mathcal{L}^{2}(E)$ of $C_{c}^{\infty}(E)$ with respect to the above norm identifies with the real Hilbert space $L^{2}\left(M, L^{2}(\mathcal{A}, \tau)\right)$. More generally, for $1 \leq p<\infty$, we denote by $\mathcal{L}^{p}(E)$ the completion of $C_{c}^{\infty}(E)$ with respect to the following norm:

$$
\|\varphi\|_{p}=\left(\int_{M}\langle\varphi(x), \varphi(x)\rangle_{x}^{p / 2} d x\right)^{1 / p}
$$

Let $\mathcal{L}^{\infty}(E)$ be the space of (essentially) bounded sections on M.
The L^{p}-space $L^{p}(\mathcal{A}, \tau)$ can be partially ordered by the cone $L^{p}(\mathcal{A}, \tau)^{+}$which is defined to be the $\left|\|\cdot \mid\|_{p}\right.$-closure of \mathcal{N}_{τ}^{+}. For $p \in(1, \infty)$, the norm $|\|\cdot \mid\|_{p}$ is Fréchet
differentiable except at 0 . Given a map $f: \mathbb{R} \longrightarrow L^{p}(\mathcal{A}, \tau)^{+}$, differentiable at $t_{0} \in \mathbb{R}$ with $f\left(t_{0}\right) \neq 0$, we have, by [20, Lemma 14],

$$
\left.\frac{d}{d t} \tau\left(f(t)^{p}\right)\right|_{t=t_{0}}=p \tau\left(\left.f\left(t_{0}\right)^{p-1} \frac{d}{d t} f(t)\right|_{t=t_{0}}\right) .
$$

For $z, w \in L^{2}(\mathcal{A}, \tau)^{+}$, we have $\langle z, w\rangle_{\tau} \geq 0$ (cf. [20, Lemma 1]). Every $z \in$ $L^{2}(\mathcal{A}, \tau)$ has a decomposition $z=z^{+}-z^{-}$with $z^{+}, z^{-} \geq 0$ and $z^{+} z^{-}=0$. The modulus of z is defined to be $|z|=z^{+}+z^{-}$.

Each fibre E_{x} of the non-associative vector bundle $\pi: E \longrightarrow M$ carries the above order and Jordan algebraic structures of $L^{2}(\mathcal{A}, \tau)$ via the isometry γ_{x} : $E_{x} \longrightarrow L^{2}(\mathcal{A}, \tau)$. A section φ of E is said to be positive if $\varphi(x) \geq 0$ for almost all $x \in M$. We denote this by $\varphi \geq 0$.

Let $\Gamma(E)$ be the space of smooth sections of E. Given $\varphi \in \Gamma(E)$, we define $\varphi^{ \pm}(x)=\varphi(x)^{ \pm}$and $|\varphi|(x)=|\varphi(x)|$ for $x \in M$. Then $\varphi=\varphi^{+}-\varphi^{-}$and $|\varphi|=$ $\varphi^{+}+\varphi^{-}$. We have $\left\langle\varphi^{+}, \varphi^{-}\right\rangle=0$, in fact,

$$
\int_{M}\left\langle\varphi(x)^{+}, \varphi(x)^{-}\right\rangle_{x} d \mu(x)=0
$$

for any measure μ on M. The above order structures can be extended to the completion $\mathcal{L}^{2}(E) \simeq L^{2}\left(M, L^{2}(\mathcal{A}, \tau)\right)$. A linear map $P: \mathcal{L}^{2}(E) \longrightarrow \mathcal{L}^{2}(E)$ is called positive, in symbol, $P \geq 0$, if $\varphi \geq 0$ implies $P \varphi \geq 0$.

Let Q be a closable non-negative quadratic form with domain $C_{c}^{\infty}(E) \subset$ $\mathcal{L}^{2}(E)$. Then there is a positive self-adjoint operator L in $\mathcal{L}^{2}(E)$ such that

$$
Q(\varphi, \psi)=\langle L \varphi, \psi\rangle \quad\left(\varphi, \psi \in C_{c}^{\infty}(E)\right) .
$$

We write $Q(\varphi)$ for $Q(\varphi, \varphi)$. The proof of the following result is similar to [9, Theorem 1].
Theorem 2.1. Let $Q(\cdot)=\left\langle L^{1 / 2}(\cdot), L^{1 / 2}(\cdot)\right\rangle$ be a quadratic form where $L: \mathcal{D}(L) \longrightarrow$ $\mathcal{L}^{2}(E)$ is a self-adjoint, positive operator which generates a semigroup $\left(P_{t}\right)_{t \geq 0}$ on $\mathcal{L}^{2}(E)$. The following conditions are equivalent.
(i) $P_{t} \geq 0$ for $t>0$.
(ii) Given $\varphi \in \mathcal{D}\left(L^{1 / 2}\right)$, we have $|\varphi| \in \mathcal{D}\left(L^{1 / 2}\right)$ and $Q(|\varphi|) \leq Q(\varphi)$.
(iii) Given $\varphi \in \mathcal{D}\left(L^{1 / 2}\right)$, we have $|\varphi| \in \mathcal{D}\left(L^{1 / 2}\right)$ and $Q\left(\varphi^{+}, \varphi^{-}\right) \leq 0$.
(iv) For $\varphi \in \mathcal{L}^{2}(E)$ and $\varphi \geq 0$, we have $(\alpha+L)^{-1}(\varphi) \geq 0$ for all $\alpha>0$.

Proof. (i) \Rightarrow (ii). Let $\varphi \in \mathcal{D}\left(L^{1 / 2}\right)$. Then by positivity of P_{t}, we have

$$
\begin{aligned}
\left\langle P_{t} \varphi, \varphi\right\rangle & =\left\langle P_{t} \varphi^{+}-P_{t} \varphi^{-}, \varphi^{+}-\varphi^{-}\right\rangle \\
& =\left\langle P_{t} \varphi^{+}, \varphi^{+}\right\rangle+\left\langle P_{t} \varphi^{-}, \varphi^{-}\right\rangle-\left\langle P_{t} \varphi^{+}, \varphi^{-}\right\rangle-\left\langle P_{t} \varphi^{-}, \varphi^{+}\right\rangle \\
& \leq\left\langle P_{t}\right| \varphi|,|\varphi|\rangle .
\end{aligned}
$$

Hence

$$
\frac{1}{t}\left\langle\left(I-P_{t}\right)\right| \varphi|,|\varphi|\rangle \leq \frac{1}{t}\left\langle\left(I-P_{t}\right) \varphi, \varphi\right\rangle
$$

and $\lim \sup _{t \rightarrow 0} \frac{1}{t}\left\langle\left(I-P_{t}\right)\right| \varphi|,|\varphi|\rangle \leq\left\langle L^{1 / 2} \varphi, L^{1 / 2} \varphi\right\rangle$. It follows that $|\varphi| \in \mathcal{D}\left(L^{1 / 2}\right)$ and $Q(|\varphi|) \leq Q(\varphi)$.
(ii) \Leftrightarrow (iii). This follows from

$$
4 Q\left(\varphi^{+}, \varphi^{-}\right)=Q(|\varphi|)-Q(\varphi)
$$

where $\varphi,|\varphi| \in \mathcal{D}\left(L^{1 / 2}\right)$ implies that $\varphi^{ \pm} \in \mathcal{D}\left(L^{1 / 2}\right)$.
(iii) \Rightarrow (iv). Fix $\alpha>0$. Denote $K=\mathcal{D}\left(L^{1 / 2}\right)$ which is a Hilbert space with respect to the inner product

$$
\langle\psi, \varphi\rangle_{1}=\left\langle L^{1 / 2} \psi, L^{1 / 2} \varphi\right\rangle+\alpha\langle\psi, \varphi\rangle .
$$

Let $J: K \longrightarrow \mathcal{L}^{2}(E)$ be the natural embedding. Then, for $\psi \in K, \varphi \in \mathcal{L}^{2}(E)$, we have

$$
\begin{aligned}
\left\langle\psi,(\alpha+L)^{-1} \varphi\right\rangle_{1}= & \left\langle L^{1 / 2} \psi, L^{1 / 2}(\alpha+L)^{-1} \varphi\right\rangle \\
& +\alpha\left\langle\psi,(\alpha+L)^{-1} \varphi\right\rangle \\
= & \left.\left\langle(\alpha+L) \psi,(\alpha+L)^{-1} \varphi\right)\right\rangle \\
= & \langle\psi, \varphi\rangle=\langle J \psi, \varphi\rangle .
\end{aligned}
$$

Therefore $J^{*} \varphi=(\alpha+L)^{-1} \varphi$. Let $\psi=J^{*} \varphi$. We have

$$
\begin{aligned}
\langle | \psi|,|\psi|\rangle_{1} & =Q(|\psi|)+\alpha\langle | \psi|,|\psi|\rangle \\
& \leq Q(\psi)+\alpha\langle\psi, \psi\rangle=\langle\psi, \psi\rangle_{1} .
\end{aligned}
$$

Let $\varphi \geq 0$. Then

$$
\begin{aligned}
\langle | \psi|, \psi\rangle_{1} & =\langle | \psi\left|, J^{*} \varphi\right\rangle_{1} \\
& =\langle | \psi|, \varphi\rangle \\
& \geq\langle\psi, \varphi\rangle=\left\langle\psi, J^{*} \varphi\right\rangle_{1}=\langle\psi, \psi\rangle_{1} .
\end{aligned}
$$

Hence $(\alpha+L)^{-1} \varphi=J^{*} \varphi=\psi=|\psi| \geq 0$.
(iv) \Rightarrow (i). This follows from

$$
P_{t}=\lim _{n \rightarrow \infty}\left(I+\frac{t}{n} L\right)^{-n} .
$$

A quadratic form Q in $\mathcal{L}^{2}(E)$ satisfying the conditions in Theorem 2.1 and generating a contractive semigroup $\left(P_{t}\right)$ on $\mathcal{L}^{p}(E)$ for $p \in[1, \infty]$ is called a Dirichlet form, where P_{t} is called a contraction on $\mathcal{L}^{p}(E)$ if it maps $\mathcal{L}^{2}(E) \cap \mathcal{L}^{p}(E)$ into $\mathcal{L}^{2}(E) \cap \mathcal{L}^{p}(E)$, and is contractive in the L^{p}-norm.

From now on, we fix a non-associative vector bundle $\pi: E \longrightarrow M$ with fibres isometric to the real Hilbert space $L^{2}(\mathcal{A}, \tau)$ of a Jordan von Neumann algebra \mathcal{A} with a faithful semifinite normal trace τ. By [21, Theorem 1.8.19], the vector
bundle $\pi: E \longrightarrow M$ has a Riemannian metric, that is, the inner products $\langle\cdot, \cdot\rangle_{x}$ on E_{x} can be chosen to depend smoothly on $x \in M$. Let $T E$ be the total tangent space of E. By [21, Theorem 1.8.23], the above vector bundle possesses a metric connection $K: T E \longrightarrow E$, compatible with the Riemannian structure such that, for each $\varphi \in \Gamma(E)$,

$$
D_{X} \varphi(x):=K \circ d \varphi_{x}(X) \in E
$$

is the associated covariant derivation of φ in the direction $X \in T_{x} M$, where $d \varphi_{x}$: $T_{x} M \longrightarrow T_{\varphi(x)} E$ is the differential of φ at $x \in M$. For any vector field X on M, $D_{X} \varphi$ is a smooth section of E (cf.[21, p.49]) and

$$
X\langle\varphi, \psi\rangle=\left\langle D_{X} \varphi, \psi\right\rangle+\left\langle\varphi, D_{X} \psi\right\rangle .
$$

We note that $K \circ d \varphi_{x} \in L\left(T_{x} M, E_{x}\right)$, the space of linear maps between $T_{x} M$ and E_{x}, and the tensor product $E_{x} \otimes T_{x}^{*} M$ is dense in $L\left(T_{x} M, E_{x}\right)$ in the compact open topology (cf. [13, p.240]). If the fibre E_{x} is finite-dimensional, then $L\left(T_{x} M, E_{x}\right)=$ $E_{x} \otimes T_{x}^{*} M$ and we have the connection $D: \Gamma(E) \longrightarrow \Gamma(E) \otimes \Gamma\left(T^{*} M\right)$ given by

$$
D \varphi=K \circ d \varphi .
$$

For $\varphi, \psi \in C_{c}^{\infty}(E)$, we define

$$
\langle D \varphi(x), D \psi(x)\rangle_{\tau}=\sum_{i=1}^{n}\left\langle D_{X_{i}} \varphi(x), D_{X_{i}} \psi(x)\right\rangle_{x}
$$

where $\left\{X_{1}, \ldots, X_{n}\right\}$ is an orthonormal moving frame on M.
Given $\pi: E \longrightarrow M$ endowed with a Riemannian structure and a compatible affine connection D, the qudratic form

$$
\mathcal{E}(\varphi, \psi)=\int_{M}\langle D \varphi, D \psi\rangle_{\tau} d \mu \quad\left(\varphi, \psi \in C_{c}^{\infty}(E)\right)
$$

satisfies the conditions in Theorem 2.1 since $\mathcal{E}\left(\varphi^{+}, \varphi^{-}\right)=0$.

3. Hypercontractivity

The theory of hypercontractive semigroups was introduced in a fundamental paper of Nelson [24] who discovered that the Ornstein-Uhlenbeck semigroup P_{t} : $L^{p}\left(\mathbb{R}^{d}, \mu\right) \longrightarrow L^{q}\left(\mathbb{R}^{d}, \mu\right)$ is bounded if p, q and t are properly related, where μ is the Gaussian measure. After important improvements in [14, 26], the precise minimum time t for contractivity from L^{p} to L^{q} was established in [25].

In his seminal paper [17], Gross proved the equivalence of hypercontractivity and a logarithmic Sobolev inequality for diffusion semigroups which may be stated as follows. Let $\left(P_{t}\right)_{t \geq 0}$ be the diffusion semigroup associated to a local Dirichlet form $(\mathcal{E}, \mathcal{F})$ on $L^{2}(X, \mathcal{X}, \mu)$ for some σ-finite measure (X, \mathcal{X}, μ). Let

$$
\begin{equation*}
\operatorname{Ent}(f)=\int_{X}(f \ln f) d \mu-\left(\int_{X} f d \mu\right)\left(\ln \int_{X} f d \mu\right) \tag{1}
\end{equation*}
$$

denote the entropy of f. Let $a>0$ and $b \geq 0$. Define

$$
p(t)=1+(p-1) e^{4 t / a} ; \quad m(t)=b\left(p^{-1}-p(t)^{-1}\right) .
$$

Then the following logarithmic Sobolev inequality

$$
\begin{equation*}
\operatorname{Ent}\left(f^{2}\right) \leq a \mathcal{E}(f, f)+b\|f\|_{2}^{2} \quad(f \in \mathcal{F}) \tag{2}
\end{equation*}
$$

holds if, and only if,

$$
\begin{equation*}
\left\|P_{t} f\right\|_{p(t)} \leq e^{m(t)}\|f\|_{p} \tag{3}
\end{equation*}
$$

for all $f \in L^{p}(\mu), p \in(1, \infty)$ and $t>0$. We refer to $[3,6,11,12,17,18]$ for the evolution of this form of Gross's theorem. We also refer to [7] for a bibliographic review of hyercontractivity.

Let $\pi: E \rightarrow M$ be a non-associative vector bundle, endowed with a Riemannian structure and a compatible affine connection D. Let

$$
\mathcal{E}(\varphi, \psi)=\int_{M}\langle D \varphi, D \psi\rangle_{\tau} d \mu \quad\left(\varphi, \psi \in C_{c}^{\infty}(E) \subset \mathcal{L}^{2}(E)\right)
$$

be a Dirichlet form. Let $\left(P_{t}\right)_{t \geq 0}$ be the diffusion semigroup of the vector bundle E with generator L defined by \mathcal{E}. That is, $P_{t}=e^{-t L}$ and the self-adjoint operator L is determined via integration by parts

$$
\int_{M}\langle D \varphi, D \psi\rangle_{\tau} d \mu=\int_{M}\langle L \varphi, \psi\rangle_{\tau} d \mu=\int_{M}\langle L \varphi(x), \psi(x)\rangle_{x} d \mu(x) .
$$

As before, let $\|\varphi\|_{p}$ denote the L^{p}-norm of $|\varphi|_{\tau}$, where we define

$$
|\varphi|_{\tau}(x)=\langle\varphi(x), \varphi(x)\rangle_{x}^{1 / 2} \quad(x \in M)
$$

which is abbreviated to

$$
|\varphi|_{\tau}^{2}=\langle\varphi, \varphi\rangle_{\tau}
$$

if no confusion is likely.
In the following result for non-associative vector bundles, the special case for line bundles is implicit in the fundamental work of Gross [17]. The proof uses an argument of Bakry [4].

Proposition 3.1. Let $a>0, b \geq 0$. The following two conditions are equivalent.
(i) $\left(P_{t}\right)_{t \geq 0}$ possesses hypercontractivity, that is,

$$
\begin{gather*}
\left\|P_{t} \varphi\right\|_{p(t)} \leq e^{m(t)}\|\varphi\|_{p} \quad\left(\varphi \in C_{c}^{\infty}(E)\right) \quad \text { with } \tag{4}\\
p(t)=1+(p-1) e^{\frac{4}{a} t}, \quad m(t)=b\left(p^{-1}-p(t)^{-1}\right) \quad(t>0, p>1) .
\end{gather*}
$$

(ii) For all $p>1$, we have

$$
\begin{equation*}
\operatorname{Ent}\left(|\varphi|_{\tau}^{p}\right) \leq-\left.\frac{a p^{2}}{8(p-1)} \int_{M}|\varphi|_{\tau}^{p-2} \frac{d}{d t}\right|_{t=0}\left|P_{t} \varphi\right|_{\tau}^{2}+\left.b| | \varphi\right|_{p} ^{p} \tag{6}
\end{equation*}
$$

Proof. Consider the function $F(t)=e^{-m(t)}\left\|P_{t} \varphi\right\|_{p(t)}$ where $m(0)=0$ and $p(0)=p$. We have $F(0)=\|\varphi\|_{p}$. A straightforward computation shows that

$$
\begin{align*}
\frac{d}{d t} \log F(t)= & -m^{\prime}(t)+\frac{p^{\prime}(t)}{p(t)^{2}} \frac{1}{\left\|P_{t} \varphi\right\|_{p(t)}^{p(t)}} \operatorname{Ent}\left(\left|P_{t} \varphi\right|_{\tau}^{p(t)}\right) \tag{7}\\
& +\frac{1}{2\left\|P_{t} \varphi\right\|_{p(t)}^{p(t)}} \int_{M}\left|P_{t} \varphi\right|_{\tau}^{p(t)-2} \frac{d}{d t}\left|P_{t} \varphi\right|_{\tau}^{2}
\end{align*}
$$

Multiplying both sides by $\left\|P_{t} \varphi\right\|_{p(t)}^{p(t)}$, we obtain
$=\frac{p^{\prime}(t)}{p^{2}(t)}\left[\operatorname{Ent}\left(\left|P_{t} \varphi\right|_{\tau}^{p(t)}\right)+\frac{p(t)^{2}}{2 p^{\prime}(t)} \int_{M}\left|P_{t} \varphi\right|_{\tau}^{p(t)-2} \frac{d\left|P_{t} \varphi\right|_{\tau}^{2}}{d t}-\frac{m^{\prime}(t) p(t)^{2}}{p^{\prime}(t)}\left\|P_{t} \varphi\right\|_{p(t)}^{p(t)}\right]$
By definition, $p(t)$ and $m(t)$ are chosen to solve the following differential equations:

$$
\frac{p(t)^{2}}{p^{\prime}(t)}=\frac{a p^{2}}{4(p-1)}, \quad p(0)=p
$$

and

$$
\frac{m^{\prime}(t) p(t)^{2}}{p^{\prime}(t)}=b, \quad m(0)=0
$$

Assume (i). Since $F(0)=\|\varphi\|_{p}$, the hypercontractivity of $\left(P_{t}\right)$ implies $F^{\prime}(0) \leq 0$ which gives, via (8),

$$
\operatorname{Ent}\left(|\varphi|_{\tau}^{p}\right)+\left.\frac{p^{2}}{2 p^{\prime}(0)} \int_{M}|\varphi|_{\tau}^{p-2} \frac{d}{d t}\right|_{t=0}\left|P_{t} \varphi\right|_{\tau}^{2}-\frac{m^{\prime}(0) p^{2}}{p^{\prime}(0)}\|\varphi\|_{p}^{p} \leq 0
$$

Together with (5), this shows (6) holds.
Conversely, assume (ii). Applying (6) to $P_{t} \varphi$ and using (8), we see that (6) implies $\frac{d}{d t} \log F(t) \leq 0$, so $F^{\prime}(t) \leq 0$. Therefore $F(t) \leq F(0)$ which in turn yields the hypercontractivity of $\left(P_{t}\right)_{t \geq 0}$.

Theorem 3.2. Let $\left(P_{t}\right)_{t \geq 0}$ be the diffusion semigroup on a non-associative vector bundle $E \longrightarrow M$ with the generator L associated with the Dirichlet form

$$
\mathcal{E}(\varphi, \psi)=\int_{M}\langle D \varphi, D \psi\rangle_{\tau} d \mu \quad\left(\varphi, \psi \in C_{c}^{\infty}(E)\right)
$$

Then the hypercontractivity of $\left(P_{t}\right)_{t \geq 0}$ is equivalent to the following log-Sobolev inequality

$$
\begin{equation*}
\operatorname{Ent}\left(|\varphi|_{\tau}^{2}\right) \leq a \int_{M}|D \varphi|_{\tau}^{2}+b\|\varphi\|_{2}^{2} \tag{9}
\end{equation*}
$$

Proof. As

$$
\left.\frac{d}{d t}\right|_{t=0}\left|P_{t} \varphi\right|_{\tau}^{2}(x)=\left.\frac{d}{d t}\right|_{t=0}\left\langle P_{t} \varphi(x), P_{t} \varphi(x)\right\rangle_{x}=2\langle L \varphi(x), \varphi(x)\rangle_{x},
$$

we have

$$
\begin{equation*}
-\left.\int_{M}|\varphi|_{\tau}^{p-2} \frac{d}{d t}\right|_{t=0}\left|P_{t} \varphi\right|_{\tau}^{2} d \mu=2 \int_{M}\left\langle D \varphi, D\left(|\varphi|_{\tau}^{p-2} \varphi\right)\right\rangle_{\tau} d \mu \tag{10}
\end{equation*}
$$

For any $\beta>0$, we have by the product rule,

$$
D\left(|\varphi|_{\tau}^{\beta} \varphi\right)=\left(d|\varphi|_{\tau}^{\beta}\right) \varphi+|\varphi|_{\tau}^{\beta} D \varphi
$$

so that

$$
\begin{aligned}
\left|D\left(|\varphi|_{\tau}^{\beta} \varphi\right)\right|_{\tau}^{2} & \left.=\left.\left\langle\left(d|\varphi|_{\tau}^{\beta}\right) \varphi+\right| \varphi\right|_{\tau} ^{\beta} D \varphi,\left(d|\varphi|_{\tau}^{\beta}\right) \varphi+|\varphi|_{\tau}^{\beta} D \varphi\right\rangle_{\tau} \\
& =\left.\left.|d| \varphi\right|_{\tau} ^{\beta}\right|^{2}|\varphi|_{\tau}^{2}+|\varphi|_{\tau}^{2 \beta}|D \varphi|_{\tau}^{2}+\left\langle D \varphi,\left(d|\varphi|_{\tau}^{2 \beta}\right) \varphi\right\rangle_{\tau} .
\end{aligned}
$$

While

$$
\left\langle D \varphi, D\left(|\varphi|_{\tau}^{p-2} \varphi\right)\right\rangle_{\tau}=\left\langle D \varphi,\left(d|\varphi|_{\tau}^{p-2}\right) \varphi\right\rangle_{\tau}+|\varphi|_{\tau}^{p-2}|D \varphi|_{\tau}^{2},
$$

and therefore, with $\beta=(p-2) / 2$, we have

$$
\begin{aligned}
\left\langle D \varphi, D\left(|\varphi|_{\tau}^{p-2} \varphi\right)\right\rangle_{\tau} & =\left|D\left(|\varphi|_{\tau}^{\beta} \varphi\right)\right|_{\tau}^{2}-\left.\left.|d| \varphi\right|_{\tau} ^{\beta}\right|^{2}|\varphi|_{\tau}^{2} \\
& =\left|D\left(|\varphi|_{\tau}^{\frac{p}{\tau}-1} \varphi\right)\right|_{\tau}^{2}-\left.\left.\frac{(p-2)^{2}}{p^{2}}|d| \varphi\right|_{\tau} ^{\frac{p}{2}}\right|^{2} .
\end{aligned}
$$

Hence, by Proposition 3.1, the hypercontractivity of $\left(P_{t}\right)_{t \geq 0}$ is equivalent to the following entropy inequality:

$$
\operatorname{Ent}\left(|\varphi|_{\tau}^{2}\right) \leq \frac{a p^{2}}{4(p-1)} \int_{M}\left(|D \varphi|_{\tau}^{2}-\left.\left.\frac{(p-2)^{2}}{p^{2}}|d| \varphi\right|_{\tau}\right|^{2}\right)+b\|\varphi\|_{2}^{2}
$$

for all $p>1$ and $\varphi \in C_{c}^{\infty}(E)$. Our claim will follow if we can show for any given φ, the right-hand side is minimized when $p=2$. To this end we consider

$$
\begin{aligned}
U(p) & =\frac{p^{2}}{p-1} \int_{M}\left(|D \varphi|_{\tau}^{2}-\left.\left.\frac{(p-2)^{2}}{p^{2}}|d| \varphi\right|_{\tau}\right|^{2}\right) \\
& =\frac{p^{2}}{p-1} \int_{M}|D \varphi|_{\tau}^{2}-\left.\left.\frac{(p-2)^{2}}{p-1} \int_{M}|d| \varphi\right|_{\tau}\right|^{2}
\end{aligned}
$$

where it is clear that

$$
U^{\prime}(p)=\frac{p(p-2)}{(p-1)^{2}}\left(\int_{M}|D \varphi|_{\tau}^{2}-\left.\left.\int_{M}|d| \varphi\right|_{\tau}\right|^{2}\right) .
$$

Therefore $U(p)$ takes its minimum value at $p=2$, or at $\int_{M}|D \varphi|_{\tau}^{2}=\left.\left.\int_{M}|d| \varphi\right|_{\tau}\right|^{2}$, where in the latter case, $U(p)$ is constant. In both cases, the minimum value of $U(p)$ is $4 \int_{M}|D \varphi|_{\tau}^{2}$ which proves our claim.

In the scalar case, the reduction in (6) from any value p to $p=2$ (logarithmic Sobolev inequality) is achieved by the simple fact that $\int_{M}|D \varphi|^{2}=\left.\left.\int_{M}|d| \varphi\right|_{\tau}\right|^{2}$. The latter is no longer true for sections of vector bundles. Our only contribution is the observation that, nevertheless, such a reduction can still be obtained via a max-min argument instead.

Corollary 3.3. Let μ be a σ-finite measure on a Riemannian manifold M. If a logarithmic Sobolev inequality holds for functions:

$$
\begin{equation*}
\operatorname{Ent}\left(f^{2}\right) \leq a \int_{M}|\nabla f|^{2}+b\|f\|_{2}^{2} \quad \text { for all } f \in C_{c}^{\infty}(M) \tag{11}
\end{equation*}
$$

then the semigroup $\left(P_{t}\right)_{t \geq 0}$ on a non-associative vector bundle $E \longrightarrow M$ as in Theorem 3.2 possesses hypercontractivity.

Proof. Since D is compatible with the Riemannian structure on E, we have

$$
d|\varphi|_{\tau}^{2}=2\langle D \varphi, \varphi\rangle_{\tau}
$$

so that $\left.\left.|d| \varphi\right|_{\tau} ^{2}|\leq 2| D \varphi\right|_{\tau}|\varphi|_{\tau}$ which implies that $\left.|d| \varphi\right|_{\tau}\left|\leq|D \varphi|_{\tau}\right.$. However $| d|\varphi|_{\tau} \mid=$ $\left.|\nabla| \varphi\right|_{\tau} \mid$, therefore by applying (11) to $|\varphi|_{\tau}$, we obtain

$$
\begin{aligned}
\operatorname{Ent}\left(|\varphi|_{\tau}^{2}\right) & \leq\left.\left. a \int_{M}|d| \varphi\right|_{\tau}\right|^{2}+b\|\varphi\|_{2}^{2} \\
& \leq a \int_{M}|D \varphi|_{\tau}^{2}+b\|\varphi\|_{2}^{2}
\end{aligned}
$$

The conclusion now follows from the above theorem immediately.

4. Harmonic functions

To conclude, we discuss harmonic functions with respect to a Dirichlet Laplacian in the scalar case on Lie groups. We show, not surprisingly, the absence of a nontrivial L^{p} harmonic function for $1 \leq p<\infty$.

Let G be a Lie group with a right invariant Haar measure λ, and let $L^{p}(G)$ be the Lebesgue spaces with respect to the Haar measure λ. Given a Dirichlet form \mathcal{E} on $L^{2}(G)$, we consider the associated positive self-adjoint operator L in $L^{2}(G)$, the Dirichlet Laplacian of \mathcal{E}, satisfying

$$
\mathcal{E}(\varphi, \psi)=\langle L \varphi, \psi\rangle \quad(\varphi, \psi \in \mathcal{D}(L)) .
$$

We assume that L commutes with right translations of G :

$$
L r_{a}=r_{a} L \quad(a \in G)
$$

where $r_{a}: x \mapsto x a \in G$ is a right translation by a. In this case, the Markov semigroup

$$
P_{t}: L^{2}(G) \longrightarrow L^{2}(G) \quad(t \geq 0)
$$

generated by L, commutes with right translations of G and is a convolution semigroup:

$$
P_{t}(f)=f * \sigma_{t} \quad\left(f \in L^{2}(G)\right)
$$

where $\left(\sigma_{t}\right)_{t \geq 0}$ is a family of probability measures on G and the support of each σ_{t} generates the group G. A complex function $f \in \mathcal{D}(L)$ is called L-harmonic if $L f=0$.
Theorem 4.1. Let $1 \leq p<\infty$ and let $f \in L^{p}(G)$. If f is L-harmonic, then f is constant.
Proof. Let $\left(\sigma_{t}\right)_{t \geq 0}$ be the induced convolution semigroup of probability measures on G. Then we have $f * \sigma_{t}=f$ and since the support of σ_{t} generates G, by [5 , Theorem 3.12], f is constant.

We note that, given a complete Riemannian manifold M and the Laplace operator Δ of its Riemannian metric, it is a well-known result of Yau [28] that all $L^{p} \Delta$-harmonic functions on M are constant, for $1<p<\infty$, and if in addition, M has non-negative Ricci curvature, then all L^{1} harmonic functions on M are also constant [29, 22] (see also [16]). Yau's result applies to Lie groups for $1<p<$ ∞, however, it has been shown by Milnor [23] that for almost all left-invariant Riemannian metrics on a Lie group, the Ricci curvature changes sign and in this case, the above L^{1} result does not apply directly although Theorem 4.1 shows that it is still true for all Lie groups.

References

[1] S. Albeverio and R. H egh-Krohn, Dirichlet forms and Markov semigroups on C^{*}-algebras, Comm. Math. Phys. 56 (1977) 173-187.
[2] Sh. A. Ayupov and R.Z. Abdullaev, On isometries of nonassociative L_{p}-spaces, in "Quantum probability and applications IV (Rome 1987)", (Lecture Notes in Math. 1396, SpringerVerlag, Berlin 1989) 99-106.
[3] D. Bakry, L’hypercontractivité et son utilisation en théorie des semigroupes, in "Ecole d'Eté de Probabilités de Saint Flour 1992", Lecture Notes in Math. 1581, Springer-Verlag, Berlin, (1994) 1-114.
[4] D. Bakry, On Sobolev and logarithmic Sobolev inequalities for Markov semigroups, in "New Trends in Stochastic Analysis" (ed. K. D. Elworthy) World Scientific (1997) 43-75.
[5] C-H. Chu, Harmonic function spaces on groups, J. London Math. Soc. 70 (2004) 182-198.
[6] E.B. Davies, Heat kernels and spectral theory, Cambridge Univ. Press, 1989, Cambridge.
[7] E.B. Davies, L. Gross and B. Simon, Hpercontractivity: a bibliogrphic review, in "Ideas and methods in quantum and statistical physics", Cambridge Univ. Press (1992) 370-389.
[8] E.B. Davies and J.M. Lindsay, Non-commutative symmetric Markov semigroups, Math. Z. 210 (1992) 379-411.
[9] E.B. Davies and O.S. Rothaus, Markov semigroups on C^{*} bundles, J. Funct. Analysis 85 (1989) 264-286.
[10] E.B. Davies and O.S. Rothaus, A BLW inequality for vector bundles and applications to spectral bounds, J. Funct. Analysis 86 (1989) 390-410.
[11] E.B. Davies and B. Simon, Ultracontractivity and the heat kernel for Schödinger operators and Dirichlet Laplacians, J. Func. Analysis 59 (1992) 335-395.
[12] J.-D. Deuschel and D.W. Stroock, Large Deviations, Academic Press, New York, 1989.
[13] J. Diestel and J.J. Uhl, Vector measures, Mathematical Survey 15, Amer. Math. Soc. 1977.
[14] J. Glimm, Boson fields with nonlinear self-interaction in two dimensions, Comm. Math. Phys. 8 (1968) 12-25.
[15] K.R. Goodearl, Notes on real and complex C*-algebras, Shiva, England 1982.
[16] R.E. Greene and H. Wu, Integrals of subharmonic functions on manifolds of nonnegative curvature, Invent. Math. 27 (1974) 265-298.
[17] L. Gross, Logarithmic Sobolev inequalities, Amer. J. Math. 97 (1975) 1061-1083.
[18] L. Gross, Logarithmic Sobolev inequalities and contractivity properties of semigroups, in "Dirichlet forms (Varenna 1992)", Lecture Notes in Math. 1563, Springer-Verlag, Berlin (1993) 54-88.
[19] H.Hanche-Olsen and E. Stormer, Jordan operator algebras, Pitman, London, 1984.
[20] B. Iochum, Non-associative L^{p}-spaces, Pacific J. Math. 122 (1986) 417-433.
[21] W. Klingenberg, Riemannian geometry, de Gruyter, Berlin (1982).
[22] P. Li and R. Schoen, L^{p} and mean value properties of subharmonic functions on Riemannian manifolds, Acta Math. 153 (1984) 279-301.
[23] J. Milnor, Curvatures of left invariant metrics on Lie groups, Adv. Math. 21 (1976) 293329.
[24] E. Nelson, A quartic interaction in two dimensions, in "Mathematical Theory of Elementary Particles", 69-73, M.I.T. Press, Cambridge, Mass. 1966.
[25] E. Nelson, The free Markoff field, J. Funct. Analysis, 12 (1973) 211-227.
[26] I.E. Segal, Construction of non-linear local quantum processes I, Ann. of Math. 92 (1970) 462-481.
[27] M. Takesaki, Theory of operator algebras I, Springer-Verlag, Heildelberg, 1979.
[28] S-T. Yau, Some function-theoretic properties of complete Riemannian manifolds and their applications to geometry, Indiana Univ. Math. J. 25 (1976) 659-670.
[29] S-T. Yau, Harmonic functions on complete Riemannian manifolds, Comm. Pure Appl. Math. 28 (1975) 201-228.

School of Mathematical Sciences, Queen Mary, University of London, London E1 4NS, UK

[^0]: Mathematics Subject Classification 2000. 47D03, 58G32, 46L50, 46L70, 35J05, 31C05.

