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Abstract

The Hom functor is used to construct various algebras and coalgebras,
including the continuous dual of a Hopf algebra with a residually finitely
generated projective linear topology. The dual is used to construct a
k-group scheme. The results are applied to the study of algebraic groups
associated with Jordan pairs.

1 Introduction

In [2], we developed a strong connection between certain Hopf algebras and
Jordan pairs. The Hopf algebras involved are cocommutative, so by taking a
suitable dual one obtains commutative Hopf algebras which can serve as coor-
dinate algebras for algebraic groups. In developing the results, we need to use
different ways of forming the dual of a Hopf algebra for different purposes. We
present here a unified approach based on a topological formulation. This de-
velopment gives quite general results about Hopf algebras and algebraic groups
with the applications to Jordan pairs delayed until the final section.

The obstacle to endowing the dual H* of a Hopf algebra H with a Hopf
algebra structure is that, in general, (H ® H)* 2 H* ® H*. The multiplication
map H ® H — H induces a map H* — (H ® H)*, but we need a coproduct
H* — H* @ H*. The usual remedy for this problem is to use only part of H*;
e.g., all f € H* which vanish on a subspace of finite codimension. There are
several other ways of choosing which part of the dual to use, but they can be
unified by specifying a topology 7 on H and taking the continuous dual H;
i.e., all continuous linear functions on H.

A more general formulation of the obstacle described above is

Hom(V1 @ Vo, W1 @ Wh) 2 Hom(V1, Wh) @ Hom(Va, Ws).

In §2, we observe that we have an isomorphism if each V; is a finitely generated
projective module. More generally, in Lemma 1, we show that if we equip
V; with a linear topology which is residually finitely generated projective, and
consider only continuous homomorphisms, then we still have an isomorphism.



In Theorem 3, we show, among other things, that if Hs is a residually finitely
generated projective Hopf algebra and H’ is a Hopf algebra, then Hom(Hz, H')
is a Hopf algebra. In particular, we can take H' = k to see that H’ is a Hopf
algebra. The remainder of §2 is devoted to special examples giving the standard
methods of taking a dual of Hopf algebra and to various consequences of the
construction including a double dual.

In §3, we construct group schemes with k[G] = H%. We also show how the
construction of the distribution algebra (hyperalgebra) of a group scheme fits
into our framework. In §4, we relate vector groups to binomial divided power
maps. We also look at modules for group schemes. In particular, we give the
equivalence of k,,-modules and Z-gradings and examine the dual of a G-module.
In §5, we make the applications to Jordan pairs. On one hand, in Theorem
19, we construct an algebraic group G from a finite dimensional Jordan pair V
over a field k. We also construct a subgroup H acting as automorphisms of V.
In Theorem 20, we use our methods to prove a result of Loos [5] constructing a
Jordan pair from a group with an elementary action.

2 A Hopf algebra construction

We first set some notation and recall a few results. Let Modj, be the category
of a modules over a commutative associative ring k. Recall the functor

Hom : (Mody)? x Mody, — Mody,

has Hom(a,3)(¢) = Bo¢oa for « € Hom(V',V), B € Hom(W,W'), and
¢ € Hom(V,W). We view V in Modj, as either a right or left module and note
that the multiplication maps

p VR®k—YV,
A E®QRV -V

are isomorphisms. If V =k, then p = A = p,,, the multiplication map for &.
The evaluation map f — f(1) is also an isomorphism

&yt Hom(k, V) — V.

Let V* = Hom(V, k) denote the linear dual of V. If f € V* and w € W, let
wf € Hom(V, W) with (wf)(v) = wf(v) for v € V. We also let

(w1 @ w2)(f1 @ f2) = w1 f1 @ wafo.

Recall that V is a finitely generated projective module if and only if there are
dual generating sets; i.e., generators {v; : 1 <i<n}of Vand {f;: 1 <i<n}
of V* with

ivifi = Idy.
i=1



If ¢, € Hom(V;, W;), we shall need to distinguish between
D1 ® Py € Hom(V1, W1) @ Hom(Va, Wa)

and

¢ ® ¢y € Hom(Vy @ Vo, W1 @ Wh)
given by

(61 @ o) (v1 @ v2) = d1(v1) ® Py(v2).
Clearly,

X101 ® by — ¢y & ¢y
defines a homomorphism. Moreover, if «; € Hom(V!,V;) and 8; € Hom(W;, W),
then
Hom(on & az, 8 @ By)(dy @ ¢3) = (81 & Ba) 0 (¢1 & ;)0 (a1 & )
= Hom(ay,81)(¢1) @ Hom(az, B5)(¢),

ie.
Hom(ar @ as, B & By) o x = x o Hom(ax, B;) @ Hom(az, B;). (1)
This shows that x gives a morphism (natural transformation) of functors
X :Hom(—,—)® Hom(—,—) - Hom(—® —, — ® —).

If V; and Vs are finitely generated projective modules, then x is an isomor-
phism. Indeed, using dual generating sets v;, f; for Vi and u;, g; for Vs, we
have

XHo) =D blvi @ uy)(fi @ gy).
(2]
In general, x is not an isomorphism, but we can get a more general isomorphism
result by expanding the category.

Let V7 be a linear topological k-module; i.e., V is a topological k-module
whose topology 7 has a linear base B of neighborhoods of 0 consisting of sub-
modules of V. We let Hom(V7, Ws) consist of the continuous linear maps from
VY to W, giving a category LTopMod). We can view Hom as a functor

Hom : (LTopMody,)°? x LTopMody, — Mody,.

We view V as a topological module with the discrete topology (with linear base
{0}), so Mody, is a full subcategory of LTopMody. If B is a linear base for Vr,
we note that

Hom(Vz, W) ={¢ € Hom(V,W) : ¢(I) = 0 for some I € B}.



If I is a submodule of V, let 7y : V — V/I be the canonical homomorphism.
If I CV and J C W are submodules, set

IxJ=ker(r;@ m5) CVQW.

We note that I+ J is the sum K of the images of I @ W and V® J in VW,
since we can map V/IQW/J — (VOW)/K with (v+I)Q(w+J) — v@w+ K.

Given V7 with linear base B and Ws with linear base C, it is easy to see
that

BxC={I«J:1e€B,JeC}

is a linear base for a topology U on V ® W. Moreover, U does not depend on
the choice of linear bases for 7 and S, so we may write V7 ® Ws for (V @ W)y.
If ¢; € Hom(ViT,, Wis, ), then ¢, @' ¢, is continuous; i.e.,

1 @ ¢y € Hom(Vi7, @ Vog,, Wis, @ Whas,).
If W is a submodule of V7 with linear base B, then
{Ww(f) : 1 e B}

is a linear base for a topology U on V/W. Again, U does not depend on the
choice of linear base for 7 and we write V7 /W for (V/W)y.

If V7 has a linear base B such that V/I is a finitely generated projective
module for each I € B, we say that V7 is a residually finitely generated projective
module (or simply an r.f.g.p. module). We can now generalize the previous
isomorphism result.

Lemma 1 If Vi7; are residually finitely generated projective modules, then so
s Vi, ® Vo, and

x : Hom(Wip, W) @ Hom(Vag,, Wa) —
Hom(VlTl Vo, , W1 ® WQ).

is an isomorphism.

Proof. Let B; be linear base for V;z; such that V;/I is a finitely generated
projective module for each I € B;. If I; € B;, then

V1 @Va)/(I1 % 12) 2V /11 @ VoI5

is a finitely generated projective module. Thus, Vi1, ® Va7, is residually finitely
generated projective. We also have by (1) that

Hom(mp, & m1,,1d)ox =xo (Hom(ry,,Id) ® Hom(ny,,Id) (2)
on Hom(V1/Ii, W1) @ Hom(Va /I3, Wa). If

¢ = fj©g; € Hom(Viz;, W1) ® Hom(Var,, Wa),
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then there are I; € B; with f;(11) = g;(I2) = 0 for all j. Writing f; = fj1, omp,
and g; = gj1, 0 Tr,, with fj;, € Hom(V1 /11, W) and g;1, € Hom(Va/I2, Ws),
we have

¢ = (Hom(ry,,1d) @ Hom(rr,, Id)(¢)

where ¢ = > y fir, ® gjr,. The isomorphism result for finitely generated pro-
jective modules shows the left side of (2) is injective. Thus, x(¢) = 0 implies
¢ =0and ¢ = 0, so x is injective on Hom(V17;,, W1) @ Hom(Vaz,, Wa).

If 0 € Hom(Vi1; ® Vag,, W1 @ Wh), then 0(I x Iz) = 0 for some I; € B; and
we can write

f=0o (7T]1 ®/7T[2) :HOm(ﬂ'Il ®/7T[2,Id)(é)

with @ € Hom(V1 /Iy @V /1o, W1 @W5). Again, the result for finitely generated
projective modules shows that 6 is in the image of the left side of (2) for some
I; € B;. Thus, x is surjective to Hom(Vi7; @ Vo, W1 @ Wh). R

We need to consider a formal expression P(aj,... ,ay,) which can be eval-
uated for various choices of the homomorphisms «y, ... ,«,. To this end, we
consider variables M; for modules and variables «; for homomorphisms with
each o; mapping a m;-fold tensor product of the M, to an [;-fold tensor prod-
uct of the M;. We can formally build expressions a;, ®...®" a;, and formally
compose them provided the appropriate tensor products match. We say that a

resulting formal expression P(aq, ..., q,) from a m-fold tensor product to an
[-fold tensor product has type (m,l). Let B; be the homomorphism variable
obtained by reversing the domain and codomain of «; and let P°P(8,,...,0,)

denote the expression formed by replacing a; by 8; and composing in the reverse
order. Clearly, P°P has type (I,m). Let

Xp Q1 Q... Qa, > a1 ® ...Q ap,
so x; = Id and x5 = x.
Lemma 2 If P is a formal expression of type (m,l), if 0;, ¢;, and w; are
homomorphisms such that P(04,...,0,) and P°P(¢,,... ,d,) make sense, and
if
Hom((bja 9J) O Xm; = Xi; ©Wj»
then P(wi,... ,wy,) makes sense and

Hom(PP(¢q, .- y¢,), P(O1,...,00)) 0 X, = X; 0 Plwi, ... ,wn).

mj l;

3 lj my
Proof. If 0; € Hom(Q Vi,, ® V) and ¢; € Hom(Q Wi, @ Wi,),
k=1 k=1

k=1 k=1
then
m lJ'
wj € Hom(® I{OWL(VVUC s Vik), ® Hom(ij s ij))
k=1 k=1



so P(wi,...,wy,) makes sense. For the second claim, it suffices to consider a
single factor of

Hom(PP(¢q, ... ,¢,), P(01,...,0)).
To simplify notation, we write this factor as
Hom(p, @ ... @ ¢,,00 @ ...&"0,)

with m = > m; and I = > [;. Since x is a morphism, so is x,,; i.e.,

Hom(¢p; @ ... ® ¢,,00 @ ...0"0,)0x, (3)
= Xn© (HOm(¢1,91) ®/ s ®/ Hom(¢n79n))
Since
X = Xn© (Xmy @ @ X))
Xi = Xnolx,®...9x,),

we see that

Hom(¢; @ ... ® ¢,,01 @ ... Q" 0,)0x,,
= Xpo(Hom(¢y,01)0x,,, @ ...@ Hom(¢,,0,) 0 x,,.)
Xn © (Xll o w1 Q... Xl Own)
= xo(W®...0 wn).

|

If A is a unital (associative) algebra over k, the multiplication map defined
by u(a ® b) = ab and the unit map defined by 7(t) = 1 satisfy the associative
and unit conditions

po(d® p) = po(p® Id), (A)
po(Id® n) = p, R)
po(n&'Id) = A (L)

Similarly, a coalgebra C has linear maps A : ¢ — C ® C (coproduct) and
e : C — k (counit) satisfying

(Id®&' A)oA = (A Id)oA, (A%)
(Id®' e)oA = p 1 (R*)
(e@' Id)oA = X' (L*)

A is commutative if

poT=p (C)



and C is cocommutative if
ToA=A (C*)

where 7(z ® y) =y ® . A Hopf algebra H is both an algebra and a coalgebra
such that A and ¢ are algebra homomorphisms; i.e.,

Aop = (p@ p)o(ld®' 7 Id)o (AR A), (PP*)
gop = pole®e), (PU*)
Aon = (n&'n)ou, (UP¥)
gon = 1Id (UU*)

and S : H — H is an antipode; i.e.,
po(S® Id)oA=po(ld® S)oA=noec. (S)

An algebra, a coalgebra, or a Hopf algebra is linear topological if it has a linear
topology such that the defining maps are continuous. Here we take k with
discrete topology. An r.f.g.p. algebra is a linear topological algebra which is a
residually finitely generated projective module, and similarly for a coalgebra or
a Hopf algebra.

Theorem 3 The Hom functor for LTopMody, induces a functor
Hom :CP x 0 — 2

for each of the following pairs of categories:

(i) € = linear topological k-coalgebras, ® = k-algebras,

(ii) € = r.f.g.p. k-algebras, ® = k-coalgebras,

(iti) € = r.f.g.p. k-Hopf algebras, © = k-Hopf algebras,

(iv) the (co)commutative subcategories of € and ® in (i), (ii), or ().
The maps on Z = Hom(XT,Y) are (where applicable)

pz = Hom(Ax,py)ox,
772 = Hom(EX777y)O£kjl7
Az = x 'oHom(uy,Ay),
€z = EkOHom(UX753/)7

SZ = HOm(Sx,Sy).
Proof. Each identity I has the form
P(917 79n) = Q(917 >9n)

where P and @ are formal expressions of type (m,l) and each 6; is one of the
maps

,u‘77]7A7€7S7 Id7T7p7 p717A7)\_17ﬂk7ﬂ]:1'



Each 0; for Y is paired with a “dual” map ¢, for X7 and we can take
Wi = Xl_il o Hom((bz'? 91) O Xm;

for all pairs with ;. invertible. This covers all pairs in (ii) and (iii) by Lemma
1 and any pair with [; = 1. The only remaining pair is (7x,7y) for which we
take w; = 7z. If ) satisfies I and X7 satisfies the “dual” identity

POP(¢17"' 7¢n) = QOP(¢17"' 7¢n)7

then Lemma 2 shows that

P(W1,... 7wn) - Q(wly--' 7wn)

since x; is invertible in each case. This gives I for Z after replacing Hom/(k, k)
with k£ and making suitable adjustments to w; using &,. Similarly, we can

express the conditions that § € Hom(Y,)’) is a homomorphism in © in the
form

P(0,04,...,0,)=Q(0,04,...,0,)

for suitable P, Q. Moreover, ¢ € Hom(X},, Xr) is a homomorphism in € pro-
vided

Pop(¢7 (bl? e >¢n) = Qop(¢7 (bl? e >¢n)
As before we get

P(Hom(¢,0),w1,... ,wy) = Q(Hom(p,0), w1, ... ,wn),
so Hom(¢,0) is a homomorphism in ©. m

Corollary 4 For € and ®© as in Theorem 3, x gives a morphism of the func-
tor Hom(—, —) ® Hom(—, —) to the functor Hom(— ® —, — ® —) which is an
equivalence in (i) and (iii).

Proof. The maps on 5) =Y ® ) are given by

= (u' py)o(Id®' & Id),
= (&' n)ou",

(Id®' 7@ 1d)o (AR A),
= wo(e®e),

= §=5®95.

o Pt =
|

Let 0 = 0 except ] = n®'n and &€ = e®e’. Each 0 is of the form 6 = P(6,6',...)
where P is a formal expression of type (2m,2l) if 6 has type (m,[). Also, the
corresponding map for /’\;f = X7 ®X), is ¢ with ¢ = PP(¢,¢’,...). Choosing
w (and w’) as in the proof of Theorem 3, we can use Lemma 2 to get

Hom(a)v é) © Xom = X21 © P(w,w’, s )



Since x; is invertible in these cases, we can set & = x; * o Hom(¢,0) o x,, and
@ = P(w,u',...) to get

m l

wo(x®...@ x)=(x® ...®" x)ow.

After adjusting Hom(k,k) and k ® k to k, & gives the map for Hom(X1 ®
X, Y ®Y') and @ gives the map for Hom(X7,Y) ® Hom(X%,,Y’). Thus, x
is a homomorphism in ® and an isomorphism in the cases (ii) and (iii). m

We now consider some special cases of Theorem 3.

Example 1. If A is an algebra and C is a coalgebra, then we have the
well-known result that Hom(C,.A) is an algebra with product

¢0 =po(p® 0)oA

and unit 7 oe. More generally, if C7 is a linear topological coalgebra, then
Hom(Cr, A) is a subalgebra of Hom(C, A).

Example 2. We can view k as an object in © in Theorem 3 with A = u,:l
and ¢ =S = Id. If X7 is in €, then the continuous dual

X5 = Hom (X7, k)
isin ®.
Corollary 5 For each of the pairs of categories in Theorem 3 (ii) or (iii), the
maps

Cxy: X7 ®Y — Hom(XT,))

with Cx y(f @ y)(x) = f(x)y gives an equivalence of the functor (X7,Y) —
X7 ® Y with Hom.

Proof. By Corollary 4,
X : Hom(Xr, k) @ Hom(k,Y) — Hom(XT @ k,k® ))
and hence
Cxy = Hom(py', Ay) o xo Idy: ® 551

are isomorphisms in ©®. =
Example 3. If [ is an ideal in an algebra A, then

Tropa=paso(rr® )

shows that p (I *«I) C I. Thus, if A has a linear topology 7 with a linear
base B consisting of ideals, then 1 4 is continuous and A7 is a linear topological
algebra. If A ="H is a Hopf algebra, we now determine additional conditions
on B to make H7 a linear topological Hopf algebra. If I, J are submodules, let

INT =AY IxJ)=ker((m; @ 7;)0A).



The maps €, A, and S for H7 are continuous provided

there is K € B with K C ker(e), 4)
for I,J € B, there is K € B with K C I A J, (5)
for I € B, there is J € B with J ¢ S7!(I). (6)

We say that a linear base B of ideals satisfying the above conditions and
with each H/I a finitely generated projective module is a Hopf dualizing base.
Clearly, in this case, H7 is an r.f.g.p. Hopf algebra.

For later use, we record some basic properties of A.

Lemma 6 If I, J, K are submodules of a Hopf algebra H, then

(i) INJ)ANK =IA(JAK),
(ii) STYIANJ)=8S"YJ)ASTHI),
(i) INJCINJ, ife(I)=¢e(J)=0.

If I,J are algebra ideals, then I A J is an ideal.

Proof. Using (A*), we have (i). Using the Hopf algebra identity (see [1],
Theorem 2.1.4)

AoS=70(5@S5)0A
we see
ker((m; @ mj)oAoS)=ker(ro((ryj08)® (r108))0A)
showing (ii). If e(I) =e(J) = 0, then by (R*)

INT = (po(Id® e)oA)YIAJ)
(po(Id® e))(I+J)
C Ie(H)+He(J)=1

N

and similarly, I AJ C J. If I, J are algebra ideals, then I A J is an ideal, since
A is an algebra homomorphism. m

Corollary 7 If B is a family of algebra ideals of a Hopf algebra 'H such that
forI,J € B,

(i) there is K € B with K C I A J,

(ii) there is K € B with K ¢ S™(I),
(iii) e(I) = 0,

(iv) H/I is a finitely generated module,

then B is a Hopf dualizing base.
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Proof. Clearly, (4) holds and B is a linear base since IAJ CINJ. ®

The conditions of Corollary 7 are similar to Kostant’s definition of an ad-
missible family of ideals in a Hopf algebra over Z ( [4], p. 91).

Example 4. If k is a field, it is easy to verify that B consisting of all ideals
of finite codimension is a Hopf dualizing base with topology 7. We call

Hy ={¢p € H": $(I) = 0 for some ideal of finite codimension},

the finite dual of H.
Example 5. Let

H= ém
n=0

be a Z-graded Hopf algebra with each H,, a finitely generated projective module
oo

over k. Let I, = @ Hnso
n=m-+1

H/I & Gma']‘(n
n=0

It is easy to see that

I, C ker(e),
Isn C In NI,
I, c S '(I,).

Thus, by Corollary 7, B = {I,,, : m > 0} is a Hopf dualizing base. In this case,
the continuous dual - is also the graded dual HY9. In general, the graded dual
of V=@,V is VI =@, V;, where we view V; C V* with V(V;) =0 for j # i.
A direct calculation shows that the identification (H})* = H; gives (H9)Y = H
as Hopf algebras.

Example 6. Let I be a Hopf ideal of the Hopf algebra H. We have
e(I)=0,5()cCI,and A(J) C I«I. Since S is an antihomomorphism and A
is a homomorphism, we see that

s c I,
AN (IxDMmTh It I
Thus, if H/I™ is a finitely generated projective module for each n > 0, then

B = {I":n> 0} is a Hopf dualizing base.
In view of Lemma 6, we can define

n

———
AN T=IN...NIL

11



Theorem 8 Let F be a family of algebra ideals in a Hopf algebra H such that
forall J,K € F, we have JAK € F and the image of (mj® wx)o A is a direct
summand of H/J @ H/K. IfI € F is such that e(I) =0, S(I) C I, and H/I
is a finitely generated projective module, then

B(I) = {A"I:n>1}

is a Hopf dualizing base with topology T. Moreover, H% is generated as an
algebra by

Zye(I) ={f €N : f(I) =0}
and is therefore finitely generated as an algebra.

Proof. In general, let Zy+(J) = {f € H* : f(J) = 0}. We shall first
show if J, K € F and H/J, H/K are finitely generated projective modules, then
H/(J A K) is a finitely generated projective module and

Zye (J) 23 (K) = Zp+(J N K). (7)

Indeed, let C be the image of H under (75 ® 7r)oA, so H/(JAK) =C. Since
C is a direct summand of the finitely generated projective module H/J Q@ H/K,
it is also a finitely generated projective module.

For arbitrary g = gjony € Zn+(J) and h = hg o € Zp+(K), we see
that

gh = ppo(g® h)oA
= ppo(gs® hg)o(ry® mg)oA

vanishes on J A K, so Zp(J)Z1+(K) C Zx(J A K).  Conversely, we can
write f € Zp«(JAK) as f = f o ((wy ® 7k) o A) with f/ € C*, and then
/' as the restriction to C of f” € (H/J ® H/K)*. Since (H/J ® H/K)* =
(H/J)* ® (H/K)*, we can write

f" =m0 ZQU & hir

with g;; € (H/J)* and h;x € (H/K)*. For g; = gijomy and h; = hix o Tk,
we have

f= Mk-OZ(QiJ@'hz'K)O(WJ@'wK)oA
= > gihi € Zy-(J) 23 (K),

showing (7).
We have H/(A™I) is a finitely generated projective module,

e(A"I) C e(I) =0,
AT C A"STHI) = STHAM),

12



by Lemma 6(ii), so B(I) is a Hopf dualizing base by Corollary 7. Moreover,
(7) shows that Zy«(A"I) = (Zp+(I))", so Hk is generated as an algebra by
Zy(I) =2 (H/I)*, and hence by a finite number of elements of Zy«(I). ®

For later use, we now describe a double dual if & is a field.

Lemma 9 If Hz is an r.f.g.p. Hopf algebra over a field k, then the closure
{0} of {0} in H7 is a Hopf ideal. If S is the topology on Hi with linear base
consisting of all

Zr; W) ={f e HT : f(W) =0}

where W is a finite dimensional subspace of H, then (H7)s is an r.f.9.p. Hopf
algebra, and (H%)s = H/{0} as Hopf algebras.

Proof. Let B be a linear base for H7 with /I finite dimensional for each
I € B. 1t is easy to see that

We also note that Zyx (W1 + Wa) = Zpz (W1) N 2945 (Wa), so the Zy: (W)
form a linear base. -

If W is a finite dimensional subspace, we can write W = W' @& (WnN{0}) and
get 2y, (W) = 29 (W), since f({0}) =0 for f € HZ. Thus, we may assume
that WN {0} = 0. Let I € B with minimal dim(WN1I). If0#z e WnNI,
we can choose J C I with z ¢ J to get dim(W N 1I) > dim(W N J). Thus,
WNI =0 Write H=W@V with I CV. We can view W* C H* with
W (V) = 0. Since W*(I) = 0, we have W* C ‘H% and HF = Zy: (W) © W™
In particular, H7/Z3 (W) = W™ is finite dimensional. To show that (H7)s is
an r.f.g.p. Hopf algebra, it remains to show that the operations are continuous
relative to S.

If W; is a subspace of H, we can identify W ® W, with its image in H ® H,
since k is a field. Given a finite dimensional subspace W, there are finite
dimensional W; with A(W) C Wi @ Ws. Thus,

X(Z4; W) * 23, (W2))(AOWV)) = 0,
tags (21 L) * Zp, W2)) - C 0 Zz (W),

SO fhpgx is continuous. Trivially, N is continuous. Given finite dimensional
Wi with HZ = 23 (W;) © Wy as above, we have

Hy @ Hy = 23z Wh) * 25 (Wo) @ W @ W

sou € Hy ® HE is in Zys (W) * 23z (Wa) if and only if x(u) vanishes on
W) @ Wy, Let W = W) Ws, a finite dimensional space. We see that

X(A3ez (23 V)WL @ W) = i (B, (V) (n(WL @ W2))) =0,
Ay (24 W) T 2 W1) % 2945 (WV2),

13



so Ay is continuous. Since e (Z4z (k1)) = 235 (k1)(1) = 0, we see that
£ is continuous. Finally,

Stz (Zrz (SOW))) = 24z (SOW)) 0 S C 2342 (W)

shows that Sy is continuous.

For x € H, define 0, € (H%)* by 0.(f) = f(z). Since 0,'(0) = Zy (kx),
we see that o, is continuous; i.e. 0 : H — (H%)5. Now z € ker(o) if and only
if fr(mr(z)) = 0 for all f; € (H/I)* and all I € B. Equivalently, 7;(z) = 0
for all I € B. Thus, ker(o) = {0}. Also, a straightforward calculation shows
that o is a Hopf algebra homomorphism. Hence, it suffices to show that o is
surjective.

If ¢ € (H7)%, there is a finite dimensional subspace W of H with Z3,: (W) C
¢~(0) and Hi = Zy (W) @ W*. Now ¢ restricted to W* is in W*, so there
is x € W with ¢(g) = g(x) for all g € W*. If f € Zy2 (W), then

o(f+9) =o(9) = (f +9)(x)

SO p=0,. N

3 Group schemes

We recall a few facts about affine schemes, particularly k-group schemes. See
[3] for details. A functor on commutative k-algebras is a k-functor. A k-
functor X is an affine scheme if there is a commutative k-algebra k[X] such
that X is equivalent to Alg(k[X], —), the subfunctor of Hom(k[X], —) of algebra
homomorphisms. We generally identify X with Alg(k[X], —). An affine scheme
X is algebraic if k[X] = k[T},...,T,]/I where I is a finitely generated ideal in
the polynomial ring k[T4,... ,T,]. In particular, if k is a field, X is algebraic
if k[X] is finitely generated as an algebra. A k-functor to groups is a k-group
functor. A k-group scheme is a k-group functor and an affine scheme. An
algebraic k-group is a k-group scheme which is algebraic as an affine scheme.

If G is a k-group scheme, then k[G] is a Hopf algebra and the product on
G(K) is given by

fg=ngo(f® g)oA;

i.e., G(K) is a subgroup of the group of units of the k-algebra Hom/(k[G], K).
Clearly, any commutative Hopf algebra gives a k-group scheme in this way. If
Hr is a cocommutative r.f.g.p. Hopf algebra, then Theorem 3 shows that H% is
a commutative Hopf algebra, so that Gy, = Alg(H%,—) is a k-group scheme.
For ‘H, F, and I as in Theorem 8, we denote G4, by G ;. In particular, if £
is a field, then we can take F to be all ideals in H.

Lemma 10 If I is an algebra ideal of finite codimension in a cocommutative
Hopf algebra H over a field k with I C ker(e) and S(I) C I, then Gy 1 is an
algebraic k-group. If H' is a Hopf subalgebra of H and I' = IN'H', then Gy 1
is an algebraic k-subgroup of Gy, 1.
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Proof. The first statement is clear by Theorem 8. For any ideal J of H
of finite codimension, let J' = JNH'. The monomorphism H'/J — H/J
shows J’ has finite codimension. Also, H'/J' @ H'/K' — H/J ® H/K is a
monomorphism, so J' A K’ in H’ coincides with (J A K)'. This shows that
B(I'y={J :J e B(I)}. Now the inclusion ¢ : H,, — Hr is continuous, so the
restriction map

= Hom(u, Id) : Hy — HY,

is a Hopf algebra homomorphism by Theorem 3. It is easy to see that .* is
surjective, so Hom(.*,Id) gives a monomorphism of Gy p(K) into Gy, 1(K).
[

Lemma 11 If H in Theorem 8 is cocommutative and K is a commutative k-
algebra, then Gy 1(K) is isomorphic to a subgroup of the group of units of
H/I®K.

Proof. Since 7y : Hy — H/I is continuous, Theorem 3 shows that
77 = Hom(mwy,Id) : (H/I)" — H%
is a coalgebra homomorphism and that
Hom(n7,Id) : Hom(Hy, K) — Hom((H/I)*, K)

is an algebra homomorphism for any commutative k-algebra K. Since H/I is
a finitely generated projective module, we can identify ((H/I)*)* with H/I and
use Corollary 5 to see that

C:H/I® K— Hom((H/I)*,K)
is an algebra isomorphism. The algebra homomorphism
¢ Yo Hom(n}, Id) : Hom(Hy, K) — H/I ® K

restricts to a group homomorphism 1 of G4 (K) into the group of units of
H/I® K.
If ¢ € ker(v)), then

Hom(ni,Id)(¢) = Hom(r},Id)(e)

where e = 1y 0 3= is the identity of Gy, 1 (K). Since Hom(7y, Id)(¢) = pony
and Zy+ (1) = 75((H/I)*), we see that ¢ agrees with e on Zy+(I). Now ¢ =e
follows from the fact that H% is generated as an algebra by Z3+(I) (see Theorem
8). m

We now consider a dual of the Hopf algebra k[G] for a k-group scheme G.
Let I = ker(e) and assume that each k[G]/I", n > 0, is a finitely generated
projective (equivalently, finitely presented flat) module. By Example 6, B =
{I™ : n > 0} is a Hopf dualizing base. Following [3] p. 113, we say that
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G is infinitesimally flat, and we write Dist(G) = k[G]%, the distribution or
hyperalgebra of G. 1t is easy to see that the Lie algebra of G

Lie(G) = {f € Dist(G) : f(1) = f(I*) = 0}.
coincides with the set of primitive elements in Dist(G), namely
{feDist(G): A(f)=f1+1® f}.

We remark that any algebraic k-group G over a field k is infinitesimally flat.
Indeed, since k[G] = k1 & I is finitely generated as an algebra, we can choose
generators 1,1, ... , &, with ; € I. Now 1 and the monomials in x; span k[G].
Moreover, I is spanned by all monomials, so I" is spanned by all monomials of
length at least n. Thus, k[G]/I" is finite dimensional.

4 Vector groups, G-modules, and toral actions

If V is a k-module, let V, denote the k-group functor with V,(K) being the
additive group V ® K. More generally, if V7 is a linear topological module,
(V1)a is the topological k-group functor with (Vr).(K) = Vr @ K. We say
that (V). is a topological vector group. The symmetric algebra S(V*) is a
commutative and cocommutative Hopf algebra with

A(f) = fol1+1®f,
e(f) = 0,

for f € V*. Moreover, S(V*) is graded with So(V*) = k and S;(V*) =
V*.  The k-group scheme Alg(S(V*),—) has Alg(S(V*),K) = Hom(V*, K)
via the restriction map. If V is finitely generated projective, the isomorphism
Hom(V*, K) 2 V®K shows that V, is an algebraic k-group with k[V,] = S(V*).

We recall the following definition from [2]. If V is a k-module and A is a
k-algebra, then p, : V — A, n > 0, is a sequence of binomial divided power
(b.d.p.) maps if

e p, is homogeneous of degree n,
i pO(v) = 17
o (u,v) — p;(u)p;(v) is the (i, j)-linearization of p, for n =i+ j.

Given V, we can form the unital, associative and commutative algebra V(°°)
generated by symbols v(™ for v € V and n > 0 subject to the relations

@ = 1,
(av)™ = g™,
to)® = 3 o),
i+j=n
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It is easy to see that V(°°) is a universal object for sequences of b.d.p. maps;
ie., v — v is a sequence of b.d.p. maps and given a sequence p : V — A
of b.d.p. maps there is a unique algebra homomorphism p : V() — A with
p(v™) = p (v). The algebra V() has an obvious Z-grading with v(® &
VSLOO) = V. Moreover, V() is a Z-graded Hopf algebra with coproduct
A =pfor p:V — V) @Y defined by

palt) = Y o000,

i+j=n

counit € = p for p : V — k defined by py(v) = 1, p,(v) = 0 for n > 0, and
antipode S = p for p : V — V() defined by p,(v) = (—v)™. Recall that a
divided power sequence 1 = xg,xq,... of elements in a coalgebra C is a sequence
satisfying

Azy,) = Z T ®xj,

i+j=n

and that the sequence is homogeneous if C is Z-graded and z; € C;. Clearly,
v (M is a homogeneous divided power sequence in V().
Lemma 12 If V is a finitely generated projective module over k, then V, is
infinitesimally flat and Dist(V,) = S(V*)9 is isomorphic to V(*) as Z-graded
Hopf algebras.

Proof. We eventually will show that S(V*)9 is a universal object for
sequences of b.d.p. maps. In anticipation of this, for v € V, we define

v = Id € Sy(V*)* and v(™ € S, (V*)* by
v (g1...90) = 1 (v) ... gn(v).

Note that by the definition of S(V*)9, we have v (S,,(V*)) = 0 for m # n.
Let {v; : 1 <i<m} and {f; : 1 <i < m} be dual generating sets for V and V*
SO

m

9= 9w)f;
=1

for g € V*. We can find a set dual to the generating set { f"* ... fiim : > n; = n}
of S,,(V*) as follows. The m-fold coproduct for S(V*) has

a---gn — Z Hgi ®...0 ng‘ )
P(n,m) iePy i€Py,

for g; € V*, where P(n,m) is the set of ordered partitions (Pi,...,P,) of
{1,... ,n} with P; = () allowed. Thus,

(’U%nl)vfa,?m))(glgn) — Z U%”l)( H gi)...Ug:LLm)( H gz)

P(n,m) S 51 1€Pm
= > Tl gw)... I gi(vm)

P(n,m) i€P) 1€Pm

|Pj|=n;
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and

groogn = > giloa) - gn(oa)fr - P
AEM™
= > (}H gi(w)... 11 m(vm)) (I
P(n,m) i€P 1€P,

= S @M TGy )

N

where M = {1,...,m} and where
N={(n1,...,nm): Zni =n}.

This shows that {vgm) o) : >.nm; = n} is dual to the generating set
{ff .. fm > n; = n} of S, (V*), and that S,,(V*) is a finitely generated
projective module.

Since §;(V*)S;(V*) = Si1j(V*), we see that

Jm = é Sn(v

for I := ker(e); i.e., I™ = I,,_1 as in Example 5. Thus, V, is infinitesimally
flat and Dist(V,) = S(V*)9 as Hopf algebras. Moreover, S(V*)9 is a Z-graded
as Hopf algebra and generated as an algebra by all v(™), v € V.

Clearly, (av)™ = a™v(™ and

(Wi +w2) (g1 gn) = D gi(wy,).. gn(ws,)
Ae{1,2}n
(|P1] P.
= > WM 9™V 95)
P(n2) ZEPl JEP>

SO

(w1 + wa) ”)— Z w w(J).
i+j=n

Thus, v — v™ is a sequence of b.d.p. maps. Given a sequence of b.d.p. maps
p:V — A we define p by

= S 1) )
for ¢ € S, (V*)*. If ¢’ € S, (V*)* and 72 = n + n/, we can use

i1 o\ _ n Ny, T n!
A(fP ey = > (7;)(” ) me L

ni+ni=n;
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and

peon() = ("))
to compute
§66) = 0N L), (1), )
— )
Also,

p™M) = AWM (©) 7, (01) -, (0m)
N

= pn(z fi(v)vi) = p,(v).

Thus, S(V*)9 is a universal object for b.d.p. maps, so S(V*)9 = V(™) as 7Z-
graded algebras. Since for i +j =n

1, (0D & 09N (g1 gi @ gigrgn)) =0 (g1 gn),

we have

AS(V*)g(v(”)) = Z Q) ®U(j),

i+j=n
so the isomorphism respects coproducts. Similarly,
ese (V) =o"(1) =0
for n > 0 and
Ssas (™) (fr- - fn) = @ (Ssey(fr - fa)) = (=)0 (f1. .. fn)

show that S(V*)9 =2 V() as Z-graded Hopf algebras. m

We now turn our attention to group actions. A k-group functor G has a
right action on a k-functor X if there is a morphism X x G — X giving a group
action of each group G(K) on X(K). If G is a k-group scheme and X is an
affine scheme, there is a corresponding coproduct 6 : k[X] — k[X] ® k[G] with
r-g=pugo(x® g)ob for g€ G(K) and x € X(K). Moreover, k[X] is a right
k[G]-comodule and § is an algebra homomorphism.

If G is a k-group functor, we say that V7 is a G-module if G acts on (Vr),
and each G(K) acts via maps in Homg (V7 @ K, V7 ® K). In other words, each
g € G(K) acts as a continuous K-linear map. If G is a k-group scheme and V1
is a left G-module, then there is a continuous coproduct 6y : Vr — V7 ® Ek[G]
with

g-(v®1g) = (Idy & g)(8v(v))
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for g € G(K) and v € V7. Moreover, V7 is a right k[G]-comodule.

If G is a k-group scheme with a right action on an affine scheme X, then
the coproduct § makes k[X] a left G-module. Moreover, since 6 is an algebra
homomorphism, each G(K) acts by automorphisms of the K-algebra k[X]® K.
If X is itself a k-group scheme and each G(K) acts by group automorphisms
on X (K), then the multiplication and inversion maps commute with the action
of G. Thus, the coproduct and counit maps for k[X] are G-module homomor-
phisms; i.e., G acts on k[X] by Hopf algebra automorphisms.

The k-torus k,, is the k-group scheme with k[k,,] = k[T, T~!] and

AT) = T®T,
e(T) = 1,
STy = 1774

50 ky, (K) is isomorphic to the group of units of K. We shall be interested in
toral actions.

Lemma 13 A k-module V is a left ky,-module if and only if V is Z-graded with
g- (i ®1g) =t'(v; @ 1)

for g € kn(K) with g(T) =t and v; € V;.  Moreover, ky,-homomorphisms
coincide with graded homomorphisms. A Hopf algebra H is Z-graded as a
Hopf algebra if and only if k,, acts by automorphisms on H. Also, k., acts as
automorphisms of a k-group scheme G if and only if k|G| is Z-graded as a Hopf
algebra.

Proof. We know that V is a left k,,-module if and only if V is a right
k[T, T~1]-comodule. If § € Hom(V,V ® k[T, T~1]), define e; € Hom(V, V) by

5(v) = Zei(v) ® T

The coassociative condition for § is
((5 ®l Idk[T,Tfl]) 0= (Idv ®l A) ob

or

D eilei@) TV RT = () @T' @ T"

i

i.e., the e; are orthogonal idempotent maps. The counit condition
py © (Idy ®’ 5k[T,T*1]) 06 =Idy

is just

Zei(v) =w.

20



Thus, V is a comodule via ¢ if and only if V is Z-graded with
6(’01) =1; X T!

for v; € V;. This corresponds to g- (v; ® 1x) = v; @t Clearly, ¢ € Hom(V, V')
commutes with the action of k,, if and only if ¢(V;) C V.

The torus k,, acts by automorphisms on H if and only if the defining maps
are graded homomorphisms; i.e., H is Z-graded as a Hopf algebra. We have
already noted that k,, acts on G by automorphisms if and only if k,, acts on
k[G] by automorphisms. m

For later use, we now examine the action of k., on V, given by the grading
on S(V*). We have

(w-9)(f) = (ugo(ue ¢)od)(f)
= u(f)o(T)

for ¢ € kp(K), u € Alg(V,K), and f € V*, so ¢ acts by multiplication by
t=¢(T) € K.
We now look at the transfer of group actions to duals.

Theorem 14 If G is a k-group scheme, then Hom(—, k) induces a functor from
r.f.g.p. left G-modules to right G-modules with the action given by

T ((f@1) - g)(v®s) =7 (f @) (g (v&s))
for feVi veV, ge G(K), and s,t € K where

Yr(f@t)(ves) = f(v)ts.

Moreover,
Hom(Idygy, ) o X : VI @ Ws — (Vr @ Ws)"
18 a G-module isomorphism.

Proof. We shall show that the three K-modules Vi ® K, (Vr ® K)* =
Homyg(Vr® K, K), and Hom(Vr, K) are isomorphic. It is easiest to verify the
group action for (V7 ® K)* and the other properties for Hom(Vr, K) and trans-
fer the results to V; ® K via the isomorphisms. We first get the isomorphisms.
We note that

QK Hom(VT,K) — (VT(X)K)*

given by ax (f)(v® s) = f(v)s has inverse ax'(h)(v) = h(v ® 1x). Also, by
Corollary 5, ¢y, i (f ®t)(v) = f(v)t gives an equivalence (V7 )q — Hom(Vr, —)
of k-functors. We see that v, = ax o (y k-

Clearly, G(K) acts on (Vr @ K)* with (h-g)(u) = h(g-u) for h € VrK)*,
g€ G(K),and u € Vr® K. Note h-g is continuous since g acts on Vr ® K via
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a continuous map. The specified action on Vi ® K is obtained by transferring
the action via . The action transferred to Hom(Vr, K) via ax has an easy
description. If 6y : V7 — Vr®k[G] is the coproduct for Vr as a k[G]-comodule,
then for f € Hom(V7, K), we have

(ax(f)-9)(v@lr) = (ax(f)o(Idy & g)ody)(v)
= (ugo(f® g)ody)(v)
fg=pro(f® g)ody. (8)

We next show that Hom x G — Hom is morphism of functors. If ¢ €
Homg(Ws, Vr) and 6 € Alg(K, K'), then ¢ is also a comodule homomorphism,
SO

(fofog)-(0og) = pgo((Bofop)® (0og)odw
= Oopugo(f® g)o(¢p® Idyg)obw
= Oopugo(f@ glodyod
= fo(f-g)o¢

In particular, Hom(Vr, —) x G — Hom(V7, —) is a morphism, so (V5 ), X G —
(VX)q is a morphism and V3 is a G-module. Moreover,

Hom(¢,Idk) : Hom(Vr, K) — Hom(Ws, K)
and hence
Hom(¢, Idy) @ Idg : V7 @ K = W@ K

are G(K)-module homomorphisms. Thus, Hom(—, k) is a functor of G-modules.
Finally, we consider tensor products. The comodule map dypg)y is given by

Syew (v ® w) sz®w1®al

where
Z’Ui X a;
ij ® bj.
J
Thus, for f € Hom(Vr, K) and h € Hom(Ws, K), we have
(a0 (f&' ) - g)vow) = vaz aib;)

= vaz (a;) Zth b;))

= (K (f-9¢ h~9))(v®w)
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SO

Hom(Idyew, ) o x : Hom(Vr, K) @ x Hom(Ws, K) — Hom(Vr @ Ws, K)

is a G(K)-module isomorphism. It is easy to see that the corresponding map
is

(Hom(Idvgw, i) o x) © Idk : (V7 @ W5) @ K — (Vr @ Ws)" @ K
so Hom(Idygw, i) © x is a G-module isomorphism. m

Corollary 15 If G is a k-group scheme acting on itself by the right regular, left
reqular, or conjugation action and if T is a r.f.g.p. topology on k|G| compatible
with action of G, then

Criar.x * kIGIT ® K — Hom(k[G]T, K)
is a G(K)-module isomorphism.

Proof. Since G(K) = Alg(k[G], K) is a subgroup of the group of units
in Hom(k[G], K), the right multiplication action of G(K) on Hom(k[G], K)
extends the right regular action of G on itself. On the other hand, this action
defines a left G-module structure on k[G]. If T is a r.f.g.p. topology on k[G]
compatible with the action of G; i.e., k[G]7 is a left G-module, then k[G]% is
a right G-module. Now (8) with éy = Ayg) shows that () x is a G(K)-
module isomorphism. Similarly, (4g) x 18 @ G(K)-module isomorphism for the
left regular action or the conjugation action of G on itself. m

Corollary 16 If V7 is a r.f.g.p. left G-module for a k-group scheme G, if W
is a G-submodule of Vr, and if V7 /W is a r.f.g.p. module, then

Zv;W)={feVr: fV) =0}
is a G-submodule of Vi

Proof. It is easy to check that G(K) acts continuously on (Vr/W)® K, so
V1 /W is a G-module and 7y is a homomorphism of r.f.g.p. G-modules. Thus,
Ty is a G-module monomorphism with image Zy: (V). =

Corollary 17 If G is a k-group scheme acting by automorphisms on an r.f.g.p.
Hopf algebra Hr, then G acts by automorphisms on Hx-.

Proof. We see that

tas = Hom(Agy, Idy) o Hom(Idwem, ) © X
My = Hom(er, Idy) o €5,

Apy = x "o Hom(Idyew, 1) o Hom(juy, Idy,),
eny = &g o Hom(nyy, Idy),

Sy = Hom(Sy, Idy)

are G-module homomorphisms. =
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Corollary 18 If Hy is an r.f.g.p. Hopf algebra, if H is Z-graded as Hopf
algebra, and if T has a linear base of graded submodules, then H- is Z-graded
as Hopf algebra. If W is a graded submodule of Hr, then Zy: (W) is a graded
submodule of HX-.

Proof. By Lemma 13, k,,, acts by automorphisms on ‘H. If I is a graded
submodule, then k,,(K) maps I x K to itself. Thus, k,,(K) acts on Hy @ K
by continuous maps, so k,, acts by automorphisms on Hz. Now Corollary 17
and Lemma 13 show that H% is Z-graded as Hopf algebra. The last statement
follows from Corollary 16. m

5 Jordan pairs

We shall presently apply the results of the previous sections to Jordan pairs.
We will freely use the definitions, notation, and results in [2], but recall a few
now. If v — v(™ is a sequence of b.d.p. maps from V to A, then v — adg,n) is
a sequence of b.d.p. maps from V to End(A) where

ad™ (a) = Z vDa(—v).

i+j=n

Let ¥V = (V*,V7) be a Jordan pair. A divided power specialization of V is a
pair p = (pt, p~) of sequences of b.d.p. maps pZ : v — v(™ from V’ to A such
that

W Q) fori=2j,
adw@){ WO fori =2

and all linearizations hold for x € V7, y € V77, We called this a divided power
representation in [2] but will now reserve that terminology for a divided power
specialization into some End(W). In particular, the T K K -representation of
V is a divided power specialization into the endomorphisms of the Tits-Kantor-
Koecher Lie algebra TK K (V,Dy) where Dy = k(Idy+, Idy-) + Inder(V).

The universal divided power specialization U(V) is a cocommutative Z-graded
Hopf algebra with z(™ ¢ UV)on if x € V7.  Let X be the subalgebra
of U(V) generated by all (™ with 2 € V* and ) the subalgebra for z €
V~. The universal property of U(V) gives an algebra homomorphism U(V) —
End(TKK(V,Dp)). The kernel J is a graded ideal and (V7)) N .J = {0}.

If the base ring k is a field, then X and ) are Hopf subalgebras with X 2
(VH)() and Y = (V7)(*).  Moreover, U(V) = YHX where H is a Hopf
subalgebra generated as an algebra by certain elements of degree 0 in the Z-
grading.

Theorem 19 If V is a finite dimensional Jordan pair over a field k, J is the
kernel of the T K K -representation, and

I =ker(e)NJNSJ),
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then G' = Gy (v),1 is an algebraic k-group with algebraic k-subgroups
U+ = GXJJr,Ui = GyJ—,H = GH)IO

where It =X NI, I- =YNI, and I =HNI. Moreover, U° = V7 and
H(K) acts as automorphisms of the Jordan pair Vg = (VT @ K, V™~ @ K).

Proof. Since TKK(V,Dy) is finite dimensional, J and I have finite codi-
mension. Since € 0 S = ¢ in any Hopf algebra and since S? = Id if the Hopf
algebra is cocommutative, we see that S(I) = I. Lemma 10 shows that G is
an algebraic k-group with algebraic k-subgroups U+, U™, and H. We have
X = (V"‘)(OO) as Hopf algebras. Also, if p is the divided power specialization
for the T K K-representation, we have ker(p]) = 0 and p; = 0 for n > 2. Thus,
WHO AT = {0} and (V)™ C J for n > 2. Since (V1)) =0 for n > 0,
since S((V)™) = (V1)) and since J is a graded ideal, we have

13C1+C12

where I, = @ V1), Tt is easy to check that I A I; = Iy, so the linear
n=m-+1

bases {A"I"} and {I,} determine the same topology 7+ on X. Thus, using
Lemma 12, we see that X3, = S(VT*)99 = S(V*), so UT = V' and similarly
U-=~v-.

Let 7 be the topology on U(V) determined by I and let S be the topology
on U(V)% as in Lemma 9. Since J is a graded ideal and U(V) is a graded Hopf
algebra, each A1 is graded and U(V)% is a graded Hopf algebra by Corollary
18. If W is a finite dimensional subspace of U(V), let W; be the projection

of W onto U(V);. Clearly, W = > W; is a finite dimensional graded sub-
space and Zy)x (W) is a graded submodule of U(V)% by Corollary 18. Since

T
Zuw)> W) C Zyv)s (W), we see that S has a linear base of graded subspaces.
Thus,

—

U=UW)/{0} = UV)5)s

1

is a Z-graded Hopf algebra. The conjugation action x — g~ xg of G makes

E[G] = U(V)% a right k[G]-module with
6 = (Idije) @' pgjey) © ((Hdiie @' S) o 7 0 Ayiay) @ Idyay) © Dgjay-

By Lemma 9, (U(V)%)s is a r.f.g.p. Hopf algebra, so § is continuous. Thus,
(UV)%)s is a left G-module and, by Corollary 17, U is a right G-module with
G(K) acting as Hopf algebra automorphisms. Since H C U(V)g, we see that
k,, fixes H, H%,, and H. By Lemma 13, k,, acts by automorphisms on G, so
the action commutes with the conjugation action of H on G. Thus, k,,, and H
commute acting on U; i.e., H(K) acts as graded Hopf algebra automorphisms.

The only properties of U(V) used in the proofs of the results in [2] from
Lemma 24 through Corollary 28 are that U()) is a Z-graded Hopf algebra and
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that the T'K K-representation factors through ¢()). Since J D {0}, U also has
these properties. Thus, we may replace U (V) by U in Corollary 28 of [2] to get

PU) =(vHWePH) e (V)

where P _denotes the primitive elements of a Hopf algebra and H is the  image
of HinU. Since H(K) acts as graded Hopf algebra automorphisms of U ® K,
we see that H(K) stabilizes (V7)) @ K =V @ K. The homogeneous divided
power sequence over x € (V)N @K in U K gives one in UK. Moreover, it is
unique by Lemma 4 of [2]. Since H(K) acts as Hopf algebra automorphisms, we
see that (h(x))(™ = h(z(™) for h € H(K). Using Theorem 5 of [2], we see that
H(K) acts as automorphisms of the Jordan pair V' = (V)Mo K, (V")DeK)
with product

Q:(y) = 2@y — ayz + ya?.

Using the homomorphism of U to End(TKK(V, D)), we see that V' 2~ V. ®

In [5], Loos defines an elementary action of the torus k,, on a separated
k-group sheaf G to be an action of k,, by automorphisms of G with subgroup
sheaves H, U1, U~ such that

(i) H is fixed by kyy,.

(ii) UT and U~ are vector subgroups on which k,, acts by scalar multipli-
cation (respectively, the inverse of scalar multiplication).

(ili) = U~ HU™ is open in G.

(iv) G is generated as a k-group sheaf by H, UT, U~.

Loos ([5], Theorem 4.1) uses the structure of ) to define quasi-invertibility
leading to a Jordan pair. We get a similar result by our methods.

Theorem 20 If G is an infinitesimally flat affine algebraic group scheme, then
every elementary action of ky, on G gives a Z-grading of Dist(G) as a Hopf
algebra such that the induced Z-grading of Lie(G) is

Lie(G) = Lie(U™) @ Lie(H) & Lie(U™)

and there is a homogeneous divided power sequence {x(™ : n > 0} over every
x € Lie(U%). Moreover, (Lie(U"), Lie(U™)) is a Jordan pair with Q,(y) =
2@y — zyx + yz?.

Proof. By Lemma 13, the action of &, on G by automorphisms corresponds
uniquely to a Z-grading of k[G] as a Hopf algebra. Since I = ker(e) is a graded
ideal, each I" is graded and Dist(G) = k[G]% is graded by Corollary 18. Lemma
3.4 of [5] states that the multiplication map

U xHxU' -G
is an open imbedding, so

Lie(G) = Lie(U™) & Lie(H) & Lie(U™).
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Since H is fixed by k,,, we see that

X

[H] = Kk[H]o,
Dist(H) = Dist(H)g, and
Lie(H) C Lie(GQ)o.

Since k,, acts on UT by scalar multiplication, the grading on
kU] = S((Lie(U™))")

is the usual one. Thus, Lie(U") = Dist(U")y so Lie(U") C Lie(G);. On the
other hand, the action on U~ reverses the roles of T and T, so

k[U_]—n = S’n((Lie(U_)*)

and Lie(U™) C Lie(G)—-1. Lemma 12 shows there is a homogeneous divided
power sequence over each element of Lie(UT). Finally, Theorem 5 of [2] gives
the last statement. m

References

[1] E. Abe, Hopf Algebras, Cambridge Univ. Press, Cambridge, UK, 1977.

[2] J. R. Faulkner, Jordan pairs and Hopf algebras, J. Algebra 232 (2000), 152-
196.

[3] J. C. Jantzen, Representations of Algebraic Groups, Academic Press, Inc.,
Boston, 1987.

[4] B. Kostant, Groups over Z, Proc. Symp. Pure Math. IX, Amer Math. Soc.
1966, 90-98.

[5] O. Loos, On algebraic groups defined by Jordan pairs, Nagoya Math. J. 74
(1979), 23-66.

27



