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ABSTRACT. We prove a Jordan version of Dorofeev’s boundedness theorem for completely
additive measures and use it to show that every (not necessarily linear nor continuous) 2-local
triple derivation on a continuous JBW∗-triple is a triple derivation.

1. INTRODUCTION AND BACKGROUND

Let P(M) denote the lattice of projections in a von Neumann algebra M. Let X be a
Banach space. A mapping µ : P(M)→ X is said to be finitely additive when

(1.1) µ

(
n∑
i=1

pi

)
=

n∑
i=1

µ(pi),

for every family p1, . . . , pn of mutually orthogonal projections inM.A mapping µ : P(M)→
X is said to be bounded when the set

{‖µ(p)‖ : p ∈ P(M)}
is bounded.

The celebrated Bunce-Wright-Mackey-Gleason theorem ( [10], [11]) states that if M has
no summand of type I2, then every bounded finitely additive mapping µ : P(M) → X
extends to a bounded linear operator from M to X .

Answering a question posed by George Mackey, Gleason’s original theorem [21] char-
acterizes quantum mechanical states on a separable Hilbert space in terms of density op-
erators, and thus plays an important role in the foundations of quantum mechanics. The
interdisciplinary nature of the Bunce-Wright-Mackey-Gleason theorem makes this result
very useful in a wide range of topics. Applications can be found in quantum physics and
quantum information (cf. [18], [43], [37], [36], [22, Chapter 7], and [16], among many oth-
ers), and in functional analysis with studies on vector-valued measures on von Neumann
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algebras and 2-local maps on von Neumann algebras, JBW∗-algebras and JBW∗-triples
(see [20], [3], [4], [13] [14] and [32]).

According to the terminology employed in [39] and [17], a completely additive mapping
µ : P(M)→ C—that is, (1.1) holds with X = C for an arbitrary set of mutually orthogonal
projections, is called a charge. The Dorofeev–Sherstnev theorem ( [39, Theorem 29.5] or
[17, Theorem 2]) states that any charge on a von Neumann algebra with no summands of
type In is bounded.

The Dorofeev-Shertsnev theorem was used in [32] in order to apply the Bunce-Wright-
Mackey-Gleason theorem to prove the main result of that paper, namely, that a 2-local triple
derivation on a von Neumann algebra is a triple derivation (see the next subsection). In
section 3 of this paper, we shall establish the first main result of this paper, namely, a Jordan
version of Dorofeev’s boundedness theorem (Theorem 3.1). This will be used in section 4 to
show that 2-local triple derivations on certain continuous JW∗-algebras are triple derivations
(Theorem 4.6). Combined with the main result of section 2 (Theorem 2.4), this will prove the
second main result of this paper, namely, that every 2-local triple derivation on an arbitrary
continuous JBW∗-triple is a triple derivation (Theorem 4.7).

Having described the contents and potential impact of this paper, we shall now present
more background and some preliminary material.

We shall use the term measure to denote a complex valued finitely additive function µ on
the projections of a von Neumann algebra or a JBW∗-algebra. If µ is positive (resp. real)
valued, we call it a positive (resp. signed) measure. If countable additivity or complete
additivity is assumed, it will be explicitly stated.

Let us recall that a derivation is a linear map D from an algebra A to a two sided A-
module M over the algebra satisfying the Leibniz identity: D(ab) = a ·D(b) +D(a) · b for
all a, b ∈ A.

Local derivations were introduced simultaneously in 1990 by Kadison [28] and by Larson-
Sourour [33]. A local derivation from an algebra into a module is a linear mapping whose
value at each point in the algebra coincides with the value of some derivation at that point.
Kadison proved that every continuous local derivation of a von Neumann algebra into a dual
Banach module is in fact a derivation. Johnson [27] extended Kadison’s result to C∗-algebras,
and moreover showed that the continuity assumption was not necessary. Larson and Sourour
showed that a local derivation on the algebra of all bounded linear operators on a Banach
space is a derivation.

Let us also recall that a triple derivation is a linear map D from a triple system E to
an E-module N over the triple system satisfying the triple Leibniz identity: D({abc}) =
{D(a)bc}+{aD(b)c}+{abD(c)} for all a, b, c ∈ E, where {abc} denotes the triple product.
(Jordan triple systems are defined later in this section.)

Local triple derivations were introduced in 2013 by Michael Mackey [34]. A local triple
derivation on a triple system is a linear mapping whose value at each point in the triple
system coincides with the value of some triple derivation at that point. Mackey showed
that a continuous local triple derivation on a JBW∗-triple (to itself) is a triple derivation, an
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exact analog of Kadison’s result mentioned above. This result was extended to JB∗-triples
in 2014 by Burgos, Fernandez-Polo, and Peralta [12], who also showed that the continuity
assumption was redundant, an exact analog of Johnson’s result also mentioned above.

Since 1997 there has been much interest in the notion of 2-local derivation and more
recently, in the notion of 2-local triple derivation. The application of the main theorem of
this paper concerns 2-local triple derivations. A 2-local derivation (respectively, 2-local
triple derivation) from an algebra (respectively, triple system) into itself is a mapping (not
necessarily linear) whose values at each pair of points in the algebra (respectively, triple
system) coincides with the values of some derivation (respectively, triple derivation) at those
two points. 2-local derivations were introduced in 1997 by Semrl [38] and 2-local triple
derivations were introduced in 2014 by Kudaybergenov, Oikhberg, Peralta, and Russo [32]
although the concept was mentioned by Michael Mackey in a lecture in 2012 at a conference
in Hong Kong celebrating the 65th birthday of Cho-Ho Chu. It is now known that, for
von Neumann algebras, a 2-local derivation is in fact a derivation (Ayupov-Kudaybergenov
[3]) and, as noted above, a 2-local triple derivation is a triple derivation (Kudaybergenov-
Oikhberg-Peralta-Russo [32]).

For an elaboration of the above summary, see the forthcoming survey of Ayupov, Ku-
daybergenov, and Peralta, [4]. Local and 2-local derivations have also been considered on
algebras of measurable operators associated with von Neumann algebras. For more details
on this, see the forthcoming survey of Ayupov and Kudaybergenov [2].

A complex Jordan triple is a complex vector space E equipped with a non-trivial triple
product

E × E × E → E

(x, y, z) 7→ {x, y, z}
which is bilinear and symmetric in the outer variables and conjugate linear in the middle one
satisfying the so-called “Jordan Identity”:

L(a, b)L(x, y)− L(x, y)L(a, b) = L(L(a, b)x, y)− L(x, L(b, a)y),

for all a, b, x, y in E, where L(x, y)z := {x, y, z}.
A subspace F of a Jordan triple E is said to be a subtriple if {F, F, F} ⊆ F and an ideal

if {E,E, J}+ {E, J,E} ⊆ J.

A (complex) JB∗-triple is a complex Jordan Banach triple E satisfying the following ax-
ioms:

• For each a in E the map L(a, a) is an hermitian operator on E with non negative
spectrum;
• ‖{a, a, a}‖ = ‖a‖3 for all a in A.

A JB∗-algebra is a complex Jordan Banach algebra (A, ◦) equipped with an algebra involu-
tion ∗ satisfying ‖ {a, a∗, a} ‖ = ‖a‖3, a ∈ A. (Recall that {a, a∗, a} = 2(a◦a∗)◦a−a2◦a∗.)
JB-algebras are precisely the self adjoint parts of JB∗-algebras, and a JBW-algebra is a JB-
algebra which is a dual space.
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Every C∗-algebra (resp., every JB∗-algebra) is a JB∗-triple with respect to the product
{a, b, c} = 1

2
(ab∗c+ cb∗a) (resp., {a, b, c} := (a ◦ b∗) ◦ c+ (c ◦ b∗) ◦ a− (a ◦ c) ◦ b∗).

For the theory of C∗-algebras and von Neumann algebras, we shall refer to the monographs
[29] and [40]. For the theory of JB∗-algebras and JBW∗-algebras we refer to [23] and [41].
For basic facts about abstract Jordan triple systems, consult [15, section 1.2]. However, the
Jordan triple systems we consider in this paper are concrete, so statements about them can
usually be verified directly. For example, a tripotent (defined in the next section) is nothing
but a partial isometry.

A complex JBW∗-triple is a complex JB∗-triple which is also a dual Banach space. The
structure of JBW∗-triples is fairly well understood. Every JBW∗-triple is a direct sum of a
JBW∗-triple of type I and a continuous JBW∗-triple (defined below). JBW∗-triples of type I
have been classified in [25] and continuous JBW∗-triples have been classified in [26]. Since
it is the continuous JBW∗-triples that concern us here, we shall not define type I, but we shall
state their classification theorem from [25]: A JBW∗-triple of type I is an `∞-direct sum of
JBW∗-triples of the form A⊗ C, where A is a commutative von Neumann algebra and C is
a Cartan factor (for Cartan factors, see [15, Theorem 2.5.9 and page 168]).

A JBW ∗-triple A is said to be continuous if it has no type I direct summand. In this case it
is known that, up to isometry, A is a JW ∗-triple, that is, a subspace of the bounded operators
on a Hilbert space which is closed under the triple product xy∗z + zy∗x and closed in the
weak operator topology. More importantly, it has a unique decomposition into weak∗-closed
ideals, A = H(W,α) ⊕ pV, where W and V are continuous von Neumann algebras, p is a
projection in V , α is an involution on W commuting with ∗, that is, a ∗-antiautomorphism of
W order 2, which we shall call henceforth aC-linear ∗-involution, andH(W,α) = {x ∈ W :
α(x) = x} (see [26, (1.20)]). Notice that the triple product in pV is given by (xy∗z+zy∗x)/2
and that H(W,α) is a JBW∗-algebra with the Jordan product x ◦ y = (xy + yx)/2.

We shall show in section 4 that for continuous JBW∗-triples, every 2-local triple derivation
is a derivation. (We are leaving the study of 2-local triple derivations on the JBW∗-triples of
type I as one of the problems at the end of this paper—see Problem 4.9(a).)

2. 2-LOCAL TRIPLE DERIVATIONS ON RIGHT IDEALS OF VON NEUMANN ALGEBRAS

Recall that a (not necessarily linear) mapping ∆ on a Jordan triple E is said to be a 2-local
triple derivation if, given two points x, y ∈ E, there is a triple derivation Dx,y on E such
that ∆(x) = Dx,y(x) and ∆(y) = Dx,y(y). Every 2-local triple derivation ∆ : E → E
is homogeneous. Indeed, for each a ∈ E, t ∈ C consider a triple derivation Da,ta. Then
∆(ta) = Da,ta(ta) = tDa,ta(a) = t∆(a).

An element e in a Jordan triple E is called a tripotent if {e, e, e} = e. Each tripotent e in
E induces a decomposition of E (called Peirce decomposition) in the form:

E = E0(e)⊕ E1(e)⊕ E2(e),

where Ek(e) = {x ∈ E : L(e, e)x = k
2
x} for k = 0, 1, 2 (compare [15, page 32]).
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Lemma 2.1. Let ∆ : A → A be a 2-local triple derivation on a JB∗-triple. Suppose v is a
tripotent in A such that ∆(v) = 0. Then ∆(Ak(v)) ⊆ Ak(v), for every k = 0, 1, 2.

Proof. Let x ∈ Ak(v) with k = 0, 1, 2, that is, {v, v, x} = k
2
x. Since

{v, v,∆(x)} = {v, v,Dv,x(x)} = Dv,x ({v, v, x})− {Dv,x(v), v, x} − {v,Dv,x(v), x} =

= Dv,x

(
k

2
x

)
− {∆(v), v, x} − {v,∆(v), x} =

k

2
Dv,x(x) =

k

2
∆(x).

The proof is complete. �

We recall the following result (see [32, Theorem 2.14]).

Theorem 2.2. [32] Let M be an arbitrary von Neumann algebra and let T : M → M
be a (not necessarily linear nor continuous) 2-local triple derivation. Then T is a triple
derivation.

Throughout this section A will denote the JBW ∗-triple pM where M is a von Neumann
algebra and p is a projection in M . The following is the main result of this section. The
proof will be carried out in the next subsections.

Theorem 2.3. Let M be a von Neumann algebra and let p be a projection in M. Then any
2-local triple derivation ∆ on the JBW ∗-triple A = pM is a triple derivation.

Let a and b be skew-hermitian elements in pMp and M, respectively. Let La and Rb be
the left and right multiplication operators, i.e.

(2.1) La(x) = ax, x ∈ A

and

(2.2) Rb(x) = xb, x ∈ A.

It is clear that La and Rb both are triple derivations on M , and in particular on A.

Let u be a tripotent in the JBW ∗-triple A = pM , and let (A2(u), ·u,∗u ) denote the von
Neumann algebra whose underlying Banach space is the Pierce-2-space A2(u) = uu∗Mu∗u,
and whose product and involution are given by x ·u y = xu∗y and x∗u = ux∗u, respectively.

Let {., ., .}1 denote the triple product associated to A2(u), i.e. {x, y, z}1 = 1
2
(x ·u y∗u ·u

z + z ·u y∗u ·u x). By direct calculation, {x, y, z}1 = {x, y, z}. This also follows since the
identity map is a linear isometry, and therefore an isomorphism ( [31, Proposition (5.5)]).
Therefore a linear mapping D : A2(u) → A2(u) is a triple derivation (resp. 2-local triple
derivation) for the product {., ., .} if and only if it is a triple derivation (resp. 2-local triple
derivation) for the product {., ., .}1.

2.1. Properly infinite case. In this subsection we will consider 2-local triple derivations
on JBW ∗-triples of the form A = pM, where p is a properly infinite projection in a von
Neumann algebra M.
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Let q be a projection in M and let D be a triple derivation on A = pM. It is easily seen
that an operator D(q) on the JBW ∗-subtriple pMq defined by

D(q)(x) = D(x)q, x ∈ pMq

is a triple derivation on pMq. Thus, if ∆ is a 2-local triple derivation on A = pM, then the
operator ∆(q) on the JBW ∗-subtriple pMq defined by

(2.3) ∆(q)(x) = ∆(x)q, x ∈ pMq

is a 2-local triple derivation on pMq.

The following is the main result of this subsection.

Theorem 2.4. Let M be a von Neumann algebra and let p be a properly infinite projection
in M. Then any 2-local triple derivation ∆ on A = pM is a triple derivation.

Proof. Since p is properly infinite, by using the halving Lemma five times (see for example
[29, Lemma 6.3.3]) we can find mutually orthogonal projections e1, . . . , e6 in M such that
p ∼ e1 ∼ . . . ∼ e6 and p = e1 + · · ·+ e6.

Denote by r(x) and l(x) the right and left supports in M of the element x from M, respec-
tively. Since r(x) ∼ l(x) (see [40, Proposition V.1.5]) and l(x) ≤ p, it follows that r(x) � p
for all x ∈ A.

Let x, y ∈ A. Denote by q1, . . . , q6 the right supports of elements x, y, x + y, ∆(x),
∆(y) and ∆(x + y), respectively. Then qi � p for all i ∈ {1, . . . , 6}. Since p ∼ ei for

all i, it follows that qi � ei for all i ∈ {1, . . . , 6}. Therefore
6∨
i=1

qi � e1 + . . . + e6 = p

(see [30, Exercise 6.9.3]).

Let us show the existence of a projection q ∈M such that
6∨
i=1

qi ≤ q ∼ p = e1 + · · ·+ e6.

Since p is properly infinite by [30, Exercise 6.9.4] it follows that(
6∨
i=1

qi

)
∨ p ∼ p.

Then it suffices to take q =

(
6∨
i=1

qi

)
∨ p.

Since p ∼ q there exists a partially isometry u ∈ M such that uu∗ = p, u∗u = q. As was
mentioned before this subsection, pMq = uu∗Mu∗u is a von Neumann algebra with respect
to product and involution given by x ·u y = xu∗y and x∗u = ux∗u, respectively.

Let ∆(q) be the 2-local triple derivation on pMq defined by (2.3). Then by Theorem 2.2,
∆(q) is a triple derivation. By the construction of q it follows that x, y, x+y,∆(x),∆(y),∆(x+
y) all belong to pMq. Therefore

∆(x+ y) = ∆(x+ y)q = ∆(q)(x+ y) = ∆(q)(x) + ∆(q)(y) =

= ∆(x)q + ∆(y)q = ∆(x) + ∆(y).
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Thus ∆ is additive and hence linear. Since every (linear) local triple derivation on a JB*-
triple is automatically continuous and hence a triple derivation (see [12, Theorem 2.8]), the
proof is complete. �

2.2. Finite case. In this subsection we will consider 2-local triple derivations on JBW ∗-
triples of the form A = pM, where p is a finite projection in a von Neumann algebra M.

Let D be a triple derivation on A. Set, for a tripotent u ∈ A,

(2.4) D(u)(x) = {u, {u,D(x), u}, u} = uu∗D(x)u∗u, x ∈ A2(u).

It is easily seen that D(u) is a triple derivation on A2(u).

Let ∆ be a 2-local triple derivation on A and let u be a tripotent in A. Then

(2.5) uu∗∆(u)u∗u = −u∆(u)∗u.

Indeed, take a triple derivation D on A with ∆(u) = D(u). From the equality {u, u, u} =
u, we have that

(2.6) uu∗D(u)u∗u = −uD(u)∗u,

which implies (2.5).

Lemma 2.5. Let ∆ be a 2-local derivation on A. There exist skew-hermitian elements a1 in
pMp and b1 in M such that

∆(p) = La1(p) +Rb1(p).

Proof. Set

a1 = ∆(p)p and b1 = ∆(p)p⊥ − p⊥∆(p)∗,

where p⊥ = 1 − p. From (2.5) it follows that a1 is skew-hermitian. It is clear that b1 is also
skew-hermitian. We have

La1(p) +Rb1(p) = a1p+ pb1 = ∆(p)p+ p∆(p)p⊥ = ∆(p)p+ ∆(p)p⊥ = ∆(p).

�

Lemma 2.6. Let ∆ be a 2-local derivation on A. Suppose that ∆(p) = 0. Then there exists a
skew-hermitian element a2 in pMp such that ∆(x) = La2(x)− Ra2(x) for all x ∈ A2(p) =
pMp.

Proof. Since ∆(p) = 0, Lemma 2.1 implies that ∆ maps A2(p) = pMp into itself.
Let x, y ∈ A2(p). Take a triple derivation Dx,y on A such that

∆(x) = Dx,y(x), ∆(y) = Dx,y(y).

Let D(p)
x,y be the triple derivation defined by (2.4). Then

∆(x) = D(p)
x,y(x), ∆(y) = D(p)

x,y(y).

This means that the restriction ∆|A2(p) is a 2-local triple derivation on the von Neumann
algebra A2(p). By Theorem 2.2, ∆|A2(p), is a triple derivation. Since ∆(p) = 0, there exists
a skew-hermitian element a2 in pMp such that ∆(x) = a2x− xa2 for all x ∈ A2(p) = pMp
(see [32, beginning of section 2]). �
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Let D be an arbitrary triple derivation (or a 2-local triple derivation) on A. Then D can be
decomposed in the form

(2.7) D = D1 +D2,

where D1 = La +Rb, with a, b skew-hermitian and D2|A2(p) ≡ 0.

Indeed, by Lemma 2.5, there exist skew-hermitian elements a1 ∈ pMp and b1 ∈ M such
that (D − La1 − Rb1)(p) = 0. By Lemma 2.6, there is a skew-hermitian element a2 ∈ pMp
such that (D − La1 −Rb1)(x) = La2x−Ra2x for all x ∈ pMp. Now it suffices to set

D1 = La1+a2 +Rb1−a2 and D2 = D −D1.

Lemma 2.7. Let D be a triple derivation on A such that D|A2(p) ≡ 0. Then

(2.8) D(x)y∗ + xD(y)∗ = 0

for all x, y ∈ A.

Proof. Let us first consider a case x, y ∈ A1(p) = pM(1− p).
Since D|A2(p) ≡ 0, it follows from Lemma 2.1 that D maps A into A1(p). Taking into

account these properties we have

xD(y)∗ = xD(y)∗p+ pD(y)∗x = 2{x,D(y), p} =

= 2D ({x, y, p})− 2{D(x), y, p} − 2{x, y,D(p)} =

= D(xy∗p+ py∗x)−D(x)y∗p− py∗D(x) =

= D(xy∗)−D(x)y∗ = −D(x)y∗,

i.e. D(x)y∗ + xD(y)∗ = 0 for x, y ∈ A1(p).

Let now x, y ∈ A be arbitrary and let x = x2 + x1, y = y2 + y1 ∈ A = A2(p) + A1(p).
We have

D(x)y∗ + xD(y)∗ = D(x2 + x1)(y2 + y1)∗ + (x2 + x1)D(y2 + y1)∗ =

= D(x1)y∗2 + x1D(y1)∗ +D(x1)y∗1 + x2D(y1)∗

= D(x1)y∗2 + x2D(y1)∗ = 0,

because D(x1)y∗2 = (D(x1)(1 − p))(y2p)
∗ = 0 and x2D(y1)∗ = x2p(D(y1)(1 − p))∗ = 0.

The proof is complete. �

Since pMp is finite, there exists a faithful center-valued trace τ on pMp, that is, a linear
map from pMp into the center, Z(pMp), of pMp such that

(i) τ(xy) = τ(yx) for all x, y ∈ pMp;
(ii) τ(z) = z for all z ∈ Z(pMp);

(iii) τ(xx∗) = 0 implies x = 0.

Define a Z(pMp)-valued sesquilinear form on A by

〈x, y〉 = τ(xy∗), x, y ∈ A.

Since τ is faithful it follows that the form 〈·, ·〉 is non-degenerate, i.e. 〈x, y〉 = 0 for all
y ∈ A implies that x = 0.
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Lemma 2.8. Let D be an arbitrary triple derivation on A. Then

〈D(x), y〉 = −〈x,D(y)〉
for all x, y ∈ A.

Proof. Let D = D1 +D2 be a decomposition of D in the form (2.7). For x, y ∈ A, we have
a∗ = −a ∈ pMp and b∗ = −b ∈M such that

D1(x)y∗ + xD1(y)∗ = (ax+ xb)y∗ + x(ay + yb)∗ =

= axy∗ + xby∗ + xy∗a∗ + xb∗y∗ =

= axy∗ + xby∗ − xy∗a− xby∗ =

= axy∗ − xy∗a,
i.e.

D1(x)y∗ + xD1(y)∗ = axy∗ − xy∗a.
Since a center-valued trace annihilates commutators we have that

τ (D1(x)y∗ + xD1(y)∗) = 0.

Thus
〈D1(x), y〉 = −〈x,D1(y)〉.

On the other hand, by Lemma 2.7 it follows that

〈D2(x), y〉 = −〈x,D2(y)〉.
The proof is complete. �

The following is the main result of this subsection.

Theorem 2.9. Let M be a von Neumann algebra and let p be a finite projection in M. Then
any 2-local triple derivation ∆ on A = pM is a triple derivation.

Proof. Let us first show that
〈∆(x), y〉 = −〈x,∆(y)〉

for all x, y ∈ A.

Take a triple derivation D on A such that

∆(x) = D(x) and ∆(y) = D(y).

By Lemma 2.8, we have

〈∆(x), y〉 = 〈D(x), y〉 = −〈x,D(y)〉 = −〈x,∆(y)〉.
Let now x, y, z be arbitrary elements in A. Then

〈∆(x+ y), z〉 = −〈x+ y,∆(z)〉 = −〈x,∆(z)〉 − 〈y,∆(z)〉 =

= 〈∆(x), z〉+ 〈∆(y), z〉 = 〈∆(x) + ∆(y), z〉,
i.e.

〈∆(x+ y)−∆(x)−∆(y), z〉 = 0.
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Since z is an arbitrary and the sesquilinear form is non-degenerate it follows that ∆(x+y) =
∆(x) + ∆(y), so ∆ is additive, hence linear, hence a triple derivation by [12, Theorem 2.8]
(compare the proof of Theorem 2.4). �

2.3. General case. We need the following two Lemmata.

Lemma 2.10. Let D be a triple derivation on pM. Then D is P(Z(M))-homogeneous, i.e.

D(cx) = cD(x)

for any central projection c ∈ P(Z(M)) and x ∈ pM.

Proof. Let c ∈ P(Z(M)). Take x, y, z ∈ pM. We have

c{x,D(cy), z} = cD ({x, cy, z})− c{D(x), cy, z} − c{x, cy,D(z)} =

= cD ({x, cy, z})− c{cD(x), y, z} − c{x, y,D(z)}
and

c{x,D(cy), z} = c{cx,D(cy), z} =

= cD ({cx, cy, z})− c{D(cx), cy, z} − c{cx, cy,D(z)} =

= cD ({x, cy, z})− c{D(cx), y, z} − c{x, y,D(z)}.
Thus c{cD(x), y, z} = c{D(cx), y, z}. Since c is a central projection we obtain that

{cD(x), y, z} = {cD(cx), y, z}.
Since y, z are arbitrary, it follows that

(2.9) cD(x) = cD(cx).

Thus
cD((1− c)x) = 0.

Replacing c by 1− c in the last equality we obtain that

(2.10) (1− c)D(cx) = 0.

Thus

D(cx) = (c+ (1− c))D(cx) = cD(cx) + (1− c)D(cx)
(2.10)
= cD(cx)

(2.9)
= cD(x).

The proof is complete. �

Lemma 2.11. Let ∆ be a 2-local triple derivation on pM. Then ∆ is P(Z(M))-homogeneous,
i.e.

∆(cx) = c∆(x)

for any central projection c ∈ P(Z(M)) and x ∈ pM.

Proof. Let c ∈ P(Z(M)) and x ∈ pM. Let Dcx,x : pM → pM be a triple derivation
satisfying ∆(cx) = Dcx,x(cx) and ∆(x) = Dcx,x(x). By Lemma 2.10, we have

∆(cx) = Dcx,x(cx) = cDcx,x(x) = c∆(x).

�
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Now we are in position to prove Theorem 2.3.

Proof of Theorem 2.3. Let M be a von Neumann algebra, p be a projection in M and ∆ be a
2-local triple derivation on the JBW ∗-triple A = pM.

Take mutually orthogonal central projections z1 and z2 in M with z1 + z2 = 1 such that
z1p is finite and z2p is properly infinite. Lemma 2.11 implies that ∆ maps each ziA into
itself and hence induces a 2-local triple derivation ∆i = ∆|ziA on ziA = zipM for i = 1, 2.
Theorems 2.4, 2.9 imply that both ∆1 and ∆2 are triple derivations. Since

∆(x) = z1∆(x) + z2∆(x) = ∆1(z1x) + ∆2(z2x)

for all x ∈ A, it follows that ∆ is also a triple derivation. The proof is complete. �

A Cartan factor of type 1 is the JBW∗-triple B(H,K) of all bounded operators from a
Hilbert space H to a Hilbert space K. We thus have:

Corollary 2.12. Every 2-local triple derivation on a Cartan factor of type 1 is a triple deriva-
tion.

3. BOUNDEDNESS OF COMPLETELY ADDITIVE MEASURES ON CONTINUOUS
JW*-ALGEBRAS

In this section we shall establish one of the main results of this note, namely a Jordan
version of Dorofeev’s boundedness theorem (compare [39, Theorem 29.5] or [17, Theorem
1]). The latter states that any completely additive signed measure on the projections of a
continuous von Neumann algebra is bounded.

Theorem 3.1 provides the key tool for the proof of Theorem 4.6, which together with
Theorem 2.3 leads to the second main conclusion of this note in Theorem 4.7, namely, that
a 2-local triple derivation on a continuous JBW*-triple is a triple derivation.

Assume that M is a continuous von Neumann algebra and β : M → M is a C-linear
∗-involution (i.e. a ∗-antiautomorphism of order 2). The subspace H(M,β), of all β-fixed
points in M , is not, in general, a subalgebra of M . However, H(M,β) is a weak∗ closed
Jordan ∗-subalgebra of M , whenever the latter is equipped with its natural Jordan product

x ◦ y :=
1

2
(xy + yx).

In particular, the self-adjoint part, H(M,β)sa, of H(M,β) is a JBW-subalgebra of Msa.

Theorem 3.1. Let M be a continuous von Neumann algebra and let β : M → M be a C-
linear ∗-involution. Let ∆ : P(H(M,β))→ C be a completely additive (complex) measure.
Then ∆ is bounded.

The authors do not know if Theorem 3.1 remains valid when H(M,β) is replaced by an
arbitrary JBW∗-algebra containing no summands of type In. See Problem 4.8. However,
Theorem 3.1 is sufficient for the purposes of this paper.

We shall show how the arguments in [17] can be adapted to prove the above result. For
completeness reasons, we shall present here a draft of the original arguments employed in
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the proof of [17, Theorem 1], making the adjustments, some of which are non-trivial, for the
Jordan case. The proof of Theorem 3.1 will occupy us throughout this section.

The following Jordan version of the Bunce-Wright-Mackey-Gleason theorem is an in-
stance of a theorem due to Matveĭchuk and has been borrowed from [35]

Theorem 3.2. [35, Theorem 1] Let M be a continuous von Neumann algebra and let β :
M → M be a C-linear ∗-involution. Let ∆ : P(H(M,β)) → C be a bounded finitely
additive measure. Then there exists a functional ϕ in H(M,β)∗ such that ∆(p) = ϕ(p), for
every p ∈ P(H(M,β)). Furthermore, when ∆ is completely additive the functional ϕ can
be assumed to be in H(M,β)∗. 2

Suppose thatM acts on a complex Hilbert spaceH . Following [17], given two projections
p, q ∈ P(M), the distance between p and q is defined by

d(p, q) = inf{‖ξ − η‖ : ξ ∈ p(H), η ∈ q(H), ‖ξ‖ = ‖η‖ = 1}.

Let us take ξ ∈ p(H), η ∈ q(H) with ‖ξ‖ = ‖η‖ = 1. In this case

‖ξ − η‖ ≥ ‖ξ − q(ξ)‖ − ‖q(ξ − η)‖ ≥ ‖ξ − q(ξ)‖ − ‖ξ − η‖,

which gives 2‖ξ − η‖ ≥ ‖ξ − q(ξ)‖. Therefore

2‖ξ − η‖ ≥ inf{‖ζ − q(ζ)‖ : ζ ∈ p(H), ‖ζ‖ = 1},

and thus

(3.1) d(p, q) ≥ 1

2
inf{‖ζ − q(ζ)‖ : ζ ∈ p(H), ‖ζ‖ = 1}.

Following standard notation, given two projections p, q in a von Neumann algebra M ,
the symbols p ∨ q and p ∧ q will denote the supremum and the infimum of p and q in M ,
respectively. Let β be a C-linear ∗-involution on M . It is clear that β(1) = 1. Furthermore,
β(p ∨ q) = β(p) ∨ β(q) and β(p ∧ q) = β(p) ∧ β(q). So, if p, q ∈ H(M,β), then p ∨ q and
p ∧ q both belong to H(M,β). Having these comments in mind, the arguments in the proof
of [17, Lemma 2] can be slightly adapted to obtain:

Lemma 3.3. Let M be a continuous von Neumann algebra and let β : M → M be a C-
linear ∗-involution. Let ∆ : P(H(M,β)) → C be a completely additive measure. Suppose
there exists a constant C > 0 and an increasing sequence (qn) of projections in H(M,β)
such that (qn) ↑ 1 and

sup{|∆(q)| : q ∈ P(H(M,β)) : q ≤ qn} ≤ C,

for every natural n. Then ∆ is bounded.

Proof. Let us observe that ∆ being a completely additive measure implies that for every in-
creasing (respectively, decreasing) sequence (rn) in P(H(M,β)) with (rn) ↑ r (respectively,
(rn) ↓ r), where r ∈ P(H(M,β)), then ∆(rn)→ ∆(r).

We shall show that the set {|∆(p)| : p ∈ P(H(M,β))} is bounded. Let us fix p ∈
P(H(M,β)). Since (pn) = (1− qn) ↓ 0 and pn ∧ (1− p) ≤ pn, we deduce that (|∆(pn)|),
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and (|∆(pn∧(1−p))|) tend to 0. We can therefore assume that |∆(pn)|, |∆(pn∧(1−p))| ≤ 1,
for each natural n.

We claim that for each natural n and every projection r ∈ P(H(M,β)) we have

(3.2) |∆(r ∨ pn)| ≤ 1 + C.

Indeed, since r ∨ pn ≥ pn, it follows that r ∨ pn = r ∨ pn − pn + pn with r ∨ pn − pn ⊥ pn.
Therefore ∆(r∨pn) = ∆(r∨pn−pn)+∆(pn). Since pn(r∨pn−pn) = 0 = (r∨pn−pn)pn,
we deduce that r∨pn−pn ≤ 1−pn = qn. It follows from the assumptions that |∆(r∨pn)| ≤
|∆(r ∨ pn − pn)|+ |∆(pn)| ≤ C + 1, as desired.

With p as above, let us denote q = p+(1−p)∧p1. It is easy to check that (1−q)∧p1 = 0,
therefore Remark 1 in [17] proves that q = r(qp1q)+q∧(1−p1) with r(qp1q) ⊥ q∧(1−p1).
Since p ⊥ (1−p)∧p1, we deduce from the finite additivity of ∆ that ∆(q) = ∆(p)+∆((1−
p) ∧ p1) and ∆(q) = ∆(r(qp1q)) + ∆(q ∧ (1− p1)), and hence

|∆(p)| ≤ |∆(q)|+ |∆((1− p) ∧ p1)| ≤ |∆(r(qp1q))|+ |∆(q ∧ (1− p1))|+ 1

≤ |∆(r(qp1q))|+ C + 1.

The sequence (Gn) = (1(0,1− 1
n

)(qp1q)) ⊆ P(H(M,β))} grows to the range projection
r(qp1q). We deduce that (∆(Gn)) ↑ ∆(r(qp1q)), and thus, there exists n1 ∈ N such that
|∆(Gn1)−∆(r(qp1q))| < 1, and consequently,

(3.3) |∆(p)| ≤ 2 + C + |∆(Gn1)|.

We claim thatG = Gn1 is “separated” from p1 in the sense of [17], that is, d(p1, Gn1) > 0.
Considering the von Neumann subalgebra generated by the element qp1q and the functional
calculus it is easy to see that qp1q ≤ (1 − 1

n1
)G + 1[1− 1

n1
,1](qp1q), with (1 − 1

n1
)G ⊥

1[1− 1
n1
,1](qp1q). Then for each normal state ϕ ∈ M∗ with ϕ(G) = 1 = ‖ϕ‖, we have

ϕ(qp1q) ≤ 1− 1
n1

. Consequently, for each ξ ∈ G(H) with ‖ξ‖ = 1, we have 〈qp1q(ξ)/ξ〉 ≤
1 − 1

n1
. Having in mind that G ≤ r(qp1q) ≤ q, we deduce that q(ξ) = ξ, and hence

〈p1(ξ)/ξ〉 ≤ 1 − 1
n1
, for every ξ as above. This shows that ‖ξ − p1(ξ)‖ ≥ 1√

n1
, for every ξ

satisfying the above conditions. The inequality in (3.1) shows that d(G, p1) ≥ 1
2
√
n1

, proving
that G is separated from p1. Therefore, d(G, pn) ≥ 1

2
√
n1

, for every n ∈ N. Lemma 1(b)

in [17] shows that

G ∨ pn ≤
16

d(G, pn)2
(G+ pn) ≤ 64n1(G+ pn),

for every natural n. We deduce that lim
n
G∨pn ≤ lim

n
64n1(G+pn) = 64n1G, which implies

that G ∨ pn ↓ G. We can find n2 ∈ N satisfying |∆(G)| ≤ 1 + |∆(G ∨ pn2)|. Combining
(3.3) and (3.2) we obtain

|∆(p)| ≤ 3 + C + |∆(G ∨ pn2)| ≤ 4 + 2C.

The conclusion of the lemma follows from the arbitrariness of p. �
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The following result for projections in von Neumann algebras is part of the folklore (cf.
[17, Lemma 3] or [22, Lemma 6.1.10]. Let us observe that in the latter results the normal
state should have been assumed to be faithful). By using the halving lemma for JBW-algebras
the same proof holds in the case of JBW∗-algebras.

Lemma 3.4. Let M be a continuous von Neumann algebra and let β : M → M be a C-
linear ∗-involution. Suppose p is a projection in H(M,β), ϕ is a faithful normal state in
H(M,β)∗ and 0 < δ < 1. Then there exists a family of pairwise orthogonal projections
(pi)i=1,...,n in H(M,β) satisfying:
(a) p =

∑n
i=1 pi;

(b) ϕ(pi) ≤ δ, for every i = 1, . . . , n;
(c) n ≤ 2/δ. 2

The following result is a crucial point in the proof of the main theorem of this section.

Proposition 3.5. Let W be a JW-algebra containing no finite Type I part. Then W contains
a JW-subalgebra B of Type II1. Furthermore, if M is a (properly infinite) continuous von
Neumann algebra and β : M → M is a C-linear ∗-involution, then there exists a type II1

von Neumann subalgebra N of M satisfying β(N) = N .

The proof of the above proposition will follow from a technical lemma. First, we recall
that a real flip α on B(H) is a ∗-antiautomorphism of order 2 given by

α(x) = Jx∗J ,

where J is a conjugation on H . In this setting

B(H)αsa = {x ∈ B(H) : α(x) = x = x∗}
is a Type I JW-algebra factor. Since any two conjugations on the same complex Hilbert space
are unitarily equivalent (see [23, Lemma 7.5.6]) all factor JW-algebras arising from a real flip
on a fixed Hilbert space are isomorphic.

Lemma 3.6. Let α be a real flip on B(H), where H is a separable and infinite dimensional
complex Hilbert space. Then there exists a factor von Neumann algebra N of type II1,
such that N is an α-invariant subalgebra of B(H). In particular, H(N,α)sa = {x ∈ N :
α(x) = x∗ = x} is a finite Type II1 JW-factor contained in B(H)αsa. Moreover, H(N,α)sa
is not isomorphic to the self-adjoint part of a von Neumann algebra and the enveloping von
Neumann algebra of H(N,α)sa coincides with N .

Proof. Let Π be the group of all permutations of natural numbers leaving all but finite inte-
gers fixed. Π is infinite and countable and so we can suppose that H = `2(Π). Denote by ξt
an element in `2(Π) that takes value 1 at t ∈ Π and zero otherwise. Then (ξt)t∈Π forms an
orthonormal basis of H . By the remark preceding this lemma, there is no loss of generality
in assuming that the real flip α is induced by a conjugation J of the form:

J

(∑
t∈Π

αtξt

)
=
∑
t∈Π

αtξt ,
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where (αt) ∈ `2(Π). Let LG be the (left) group von Neumann algebra generated by the
unitaries ut (t ∈ Π), where

utξs := ξts .

Since
α(ut)ξs = Ju∗tJξs = Ju∗t ξs = Jut−1ξs = ξt−1s = ut−1ξs = u∗t ξs,

α(ut) = u∗t
and consequently, LG is α-invariant, and hence α(LG) = LG.

By [29, Example 6.7.7, page 438 and Theorem 6.7.5] LG is a Type II1 factor (see also [29,
Theorem 6.7.2]).

Now, since LG is a continuous von Neumann factor, we conclude, by Theorem 1.5.2
in [5], that the algebra H(LG, α)sa := {x ∈ LG : α(x) = x = x∗} is a continuous JW-
algebra factor which is not isomorphic to the self-adjoint part of a von Neumann algebra and
the enveloping von Neumann algebra ofH(LG, α)sa coincides with LG. Moreover, Theorem
1.3.2 in [5] implies that H(LG, α) is finite. �

Proof of Proposition 3.5. Let us suppose first that W is infinite and homogeneous Type In,
where n is an infinite cardinal number. Then, according to the structure theory (see [23,
Definition 5.3.3(ii)]), we can find an infinite system (pj)j∈Λ of mutually orthogonal abelian
projections such that

∑
j pj = 1, the central support projection of each pj coincides with the

unit ofW and card(Λ) = n. We can also conclude that the pj’s are mutually exchangeable by
a symmetry (compare [23, Lemma 5.3.2]). Clearly, we can restrict to a countable subfamily.
Then, there is a unital JW-subalgebra of W containing (pj) that is isomorphic to B(H)αsa,
where α is a real flip andH has infinite countable dimension (see [23, Theorem 7.6.3 (iii)⇔
(iv)]). The desired conclusion follows, in this case, from Lemma 3.6.

By [41, Theorem 16] (alternatively, [23, Theorem 5.3.5]) any properly infinite Type I
JW-algebra W can be decomposed into a direct sum of infinite homogeneous ones. We
can obtain the desired finite type II1 continuous JW-subalgebra B by taking the sum of all
type II1 JW-subfactors given by Lemma 3.6 in the corresponding homogeneous summand.
Actually it is enough to consider a non-zero type II1 JW-subfactor in any of the corresponding
homogeneous summands.

We assume now thatW contains no type I part. Let p be a non-zero projection inW . If p is
modular then B = {p,W, p} is a JW-algebra of type II1, which proves the desired statement.
If p is not modular, then {p,W, p} contains a copy of B(H)αsa, where H is separable and
infinite dimensional, and α is a real flip (see Theorem 7.6.3 (i)⇔ (iv) in [23]). Lemma 3.6
implies the existence of a type II1 JW-subfactor of B(H)αsa. This finishes the proof of the
first statement in Proposition 3.5.

We consider now the second statement in the proposition. Let M be a continuous von
Neumann algebra and suppose β : M → M is a C-linear ∗-involution. We may assume,
without loss of generality, that the type II1 part of M is zero. We consider the JW-algebra
H(M,β)sa = {a ∈M : β(a) = a = a∗}.

We claim that H(M,β)sa contains a central projection which is not modular. Let z be
a central projection in H(M,β)sa. If z is not modular the claim is obvious, otherwise
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zH(M,β)saz is modular. Let R(M,β) = {x ∈ M : β(x) = x∗}. Clearly, R(M,β) is a real
von Neumann algebra andH(M,β)sa = {x ∈ R(M,β) : x = x∗} coincides with the hermit-
ian part ofR(M,β). We also haveM = R(M,β)+iR(M,β), via x = (x+β(x∗))/2+i(x−
β(x∗))/2i). We observe that z is a projection in M with β(z) = z∗ = z, zMz is β-invariant,
and zH(M,β)saz = H(zMz, β)sa = R(zMz, β)sa. We deduce from Proposition 1.3 in [1]
that R(zMz, β) is finite. Theorem 2.2 in [1] implies that zMz = R(zMz, β) + iR(zMz, β)
(and hence z) is finite in M . Let c(z) denote the central support projection of z in M , that is,
c(z) is the smallest central projection in M majorizing z. Since β is a C-linear ∗-involution,
we deduce that β(c(z)) = c(β(z)) = c(z), and thus c(z) lies in H(M,β)sa. Since the type
II1 part of M is zero and M is continuous, we deduce that c(z) must be an infinite central
projection in M (compare [40, Definition V.1.17]). Thus c(z) must be a non-modular central
projection in H(M,β)sa, which proves the claim. Indeed, if c(z)H(M,β)sa were modular,
then as shown above, c(z)M would be finite.

Finally, let p be a non-modular central projection in H(M,β)sa. A new application of [23,
Theorem 7.6.3 (i) ⇔ (iv)] implies that {p,H(M,β)sa, p} = Up (H(M,β)sa) contains a
copy of B(H)αsa, where H is separable and infinite dimensional, and α is a real flip. By
Lemma 3.6 there exists a von Neumann algebra N of type II1 such that N is an α-invariant
von Neumann subalgebra of B(H), H(N,α)sa is a JBW-subalgebra of H(M,β)sa and the
enveloping von Neumann algebra ofH(N,α)sa coincides withN . ClearlyN is a subalgebra
of M . Since every x ∈ H(N,α)sa satisfies β(x) = x = x∗ and β is a C-linear ∗-involution,
the enveloping von Neumann algebra of H(N,α)sa, namely N , must be β-invariant, which
concludes the proof. �

The remaining results in this section are appropriate adaptations of the corresponding
lemmas in [17] and [22, §6.1], they are included here for completeness reasons.

Let us observe a simple property.

Remark 3.7. Let M be a von Neumann algebra, let β be a C-linear ∗-involution on M ,
and let ∆ : P(H(M,β)) → C be a completely additive measure. Suppose we can decom-
pose M as finite direct sum of mutually orthogonal β-invariant von Neumann subalgebras
M1, . . . ,Mk, that is M = M1 ⊕∞ . . . ⊕∞ Mk with β(Mj) = Mj , for every j. Then ∆ is
bounded if and only if ∆|P(H(Mj ,β)) : P(H(Mj, β))→ C is bounded for every j = 1, . . . , k.

Let us briefly recall some basic notions on σ-finite projections in JBW∗-algebras. As in
the setting of von Neumann algebras, a JBW∗-algebra M is said to be σ-finite if every family
of mutually orthogonal non-zero projections in M is at most countable. A projection p in M
is called σ-finite if the JBW∗-algebra Up(M) is σ-finite, where Up is the operator onM given
by Up(x) = {p, x∗, p} = 2(p ◦ x) ◦ p− p ◦ x. A projection p in M is σ-finite if and only if it
is the support projection of a normal state in M∗ (cf. [19, Theorem 3.2]). The supremum of
countably many σ-finite projections is again σ-finite, and every projection in a JBW∗-algebra
can be written as a sum of mutually orthogonal σ-finite projections (see [19, Theorem 3.4]).
These facts can be derived from [19] and are explicitly developed in [7].

The following two results will be applied in several arguments (compare [17, Lemma 4]).
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Proposition 3.8. Let M be a continuous von Neumann algebra and let β : M → M be a
C-linear ∗-involution. Suppose that ∆ : P(H(M,β)) → C is an unbounded completely ad-
ditive measure. Then there exists a σ-finite projection p ∈ H(M,β) such that ∆|P(H(pMp,β))

is unbounded.

Proof. Since ∆ is unbounded, there exists a sequence (qn) in P(H(M,β)) satisfying that
lim
n→∞

|∆(qn)| = ∞. Each qn can be written as the sum of a family of mutually orthogonal

σ-finite projections in H(M,β) (compare [19, Theorem 3.4 (ii)]). Therefore, there exists
a family (p

(n)
λ )λ∈Λn of mutually orthogonal σ-finite projections in H(M,β) such that qn =∑

λ∈Λn

pnλ. By the complete additivity of ∆, there exists a finite subset Fn ⊆ Λn such that

∣∣∣∣∣∆(qn)−∆

(∑
λ∈Fn

p
(n)
λ

)∣∣∣∣∣ < 1

n
.

Clearly, pn =
∑
λ∈Fn

pnλ is a σ-finite projection in P(H(M,β)) and lim
n→∞

|∆(pn)| = ∞. Let

p =
∨
n pn ∈ P(H(M,β)). Since the supremum of countably many σ-finite projections is

again σ-finite (compare [19, Theorem 3.4 (i)]), the projection p is σ-finite, and obviously,
∆|P(H(pMp,β)) is unbounded, which finishes the proof. �

Proposition 3.9. LetM be a von Neumann algebra of type II1, II∞ or III, and let β aC-linear
∗-involution on M . Suppose ∆ : P(H(M,β)) → C is a completely additive unbounded
measure. Then there exists a projection p0 ∈ P(H(M,β)) such that p0Mp0 is σ-finite and of
type II1, II∞ or III, and the measure ∆0 = ∆|P(H(p0Mp0,β)) : P(H(p0Mp0, β))→ C satisfies
the following property

(3.4) for each p ∈ P(H(p0Mp0, β)) with |∆0(p)| > 1 the measure

∆0|P(H((p0−p)M(p0−p),β)) : P(H((p0 − p)M(p0 − p), β))→ C is bounded.

Proof. If the pair (H(M,β),∆) satisfies the desired property then the proof is concluded by
taking p0 = 1. Otherwise, there exists a projection p1 ∈ P(H(M,β)) with |∆(p1)| > 1
satisfying that the measure ∆|P(H((1−p1)M(1−p1),β)) : P(H((1 − p1)M(1 − p1), β)) → C
is unbounded. Since (1 − p1)M(1 − p1) doesn’t contain type I part, we can decompose
(1− p1)M(1− p1) as a direct sum of von Neumann subalgebras of type II1, II∞ or III. We
also observe that each summand in the above decomposition must be β-invariant. Therefore,
by Remark 3.7, there exists a subprojection q1 ≤ 1 − p1 such that q1Mq1 is of type II1, II∞
or III and ∆|P(H(q1Mq1,β)) is unbounded.

If the pair (H(q1Mq1, β),∆|P(H(q1Mq1,β))) satisfies property (3.4) we obtain the desired
statement. Otherwise, applying the above argument, there exists p2 ≤ q1 in H(q1Mq1, β)
such that |∆(p2)| > 1 and ∆|P(H((q1−p2)M(q1−p2),β)) : P(H((q1 − p2)M(q1 − p2), β)) → C
is unbounded. Thus, there exists q2 ≤ q1 − p2 such that q2Mq2 is of type II1, II∞ or III and
∆|P(H(q2Mq2,β)) is unbounded.



18 HAMHALTER, KUDAYBERGENOV, PERALTA, AND RUSSO

By repeating the above arguments, we find a pair (qnMqn,∆|P(H(qnMqn,β))) (with β(qn) =
qn, for every n ∈ N) satisfying the desired statement, or there exists an infinite sequence
(pn) of mutually orthogonal β-symmetric projections in M satisfying |∆(pn)| > 1, for every
natural n, which contradicts the complete additivity of ∆. �

Henceforth, up to and including Lemma 3.14, M will denote a σ-finite von Neumann
algebra of type II1, II∞ or III, β aC-linear ∗-involution onM , andN a type II1 von Neumann
subalgebra of M satisfying β(N) = N (compare Proposition 3.5). We observe that H(N, β)
is a JBW∗-subalgebra ofH(M,β). From now on, τ will stand for a faithful normal norm-one
finite trace on N , whose restriction to H(N, β) will be also denoted by τ .

First, we recall some facts about the strong∗ topology. For each normal positive functional
ϕ in the predual of a von Neumann algebra M , the mapping

x 7→ ‖x‖ϕ =

(
ϕ(
xx∗ + x∗x

2
)

) 1
2

(x ∈M)

defines a prehilbertian seminorm onM . The strong∗ topology ofM , denoted by S∗(M,M∗),
is the locally convex topology on M defined by all the seminorms ‖.‖ϕ, where ϕ runs in the
set of all positive functionals in M∗

Lemma 3.10. Let ∆ : P(H(M,β)) → C be a completely additive unbounded measure.
Suppose that the pair (H(M,β),∆) satisfies property (3.4) in Lemma 3.9. Let N a type II1

von Neumann subalgebra of M satisfying β(N) = N , and let τ denote the unital normal
faithful finite trace on N . Then there exist a positive constant K and 0 < δ < 1 satisfying
the following property:
(3.5)

For each q ∈ H(N, β) with τ(q) ≤ δ, we have sup{|∆(p)| : p ∈ H(M,β), p ≤ q} ≤ K.

Proof. (compare [17, Lemma 5]) Arguing by reduction to the absurd, we suppose that the
desired property does not hold. Then there exists a sequence (qn) in H(N, β) such that
|τ(qn)| ≤ 1

2n
and

sup{|∆(p)| : p ∈ H(M,β), p ≤ qn} > n,

for every natural n. Set Gn := ∨∞k=nqk. Since every qn is β-symmetric, we deduce that Gn

also is β-symmetric for all n ∈ N (i.e., (Gn) ⊂ H(N, β)). Considering strong∗-limits of
growing sequences, we deduce that τ(Gn) ≤

∑∞
k=n τ(qk) ≤

∑∞
k=n

1
2k

, which implies, by
the faithfulness of τ on N , that (Gn) ↘ 0 in the strong∗-topology of N (and also in the
strong∗-topology of M ). Since Gn ≥ qn and Gn ↓ 0, we have for every m ≥ n,

sup{|∆(p)|; p ≤ Gn} ≥ sup{|∆(p)|; p ≤ Gm} ≥ sup{|∆(p)|; p ≤ qn} > m,

and ∆|P(H(GnMGn,β)) is unbounded. Since the pair (H(M,β),∆) satisfies property (3.4), we
deduce that sup{|∆(p)| : p ∈ H(M,β), p ≤ 1 − Gn} ≤ 1, for every natural n. Since
1 − Gn ↗ 1 in the strong∗-topology, Lemma 3.3 implies that ∆ is bounded, which is
impossible. �
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The automatic boundedness of completely additive measure on P(H(M,β)) actually re-
lies on the appropriate Jordan version of the Mackey-Gleason theorem stated in Theorem
3.2.

Lemma 3.11. Let ∆ : P(H(M,β)) → C be a completely additive unbounded measure.
Suppose that the pair (H(M,β),∆) satisfies the property (3.4) in Lemma 3.9. Let N a
type II1 von Neumann subalgebra of M satisfying β(N) = N and let τ be the unital faithful
normal trace onN . Then there exists a positive constantC0 satisfying that if q ∈ P(H(N, β))
and ∆|P(H(qMq,β)) is bounded then

sup{|∆(p)| : p ∈ P(H(qMq, β))} ≤ C0.

Proof. The proof given in [17, Lemma 6] or in [22, Lemma 6.1.13] remains valid here when
we replace [17, Lemma 5] with our previous Lemma 3.10 and the Bunce-Wright-Mackey-
Gleason theorem [10] with Theorem 3.2. We include some details for completeness reasons.

Let C0 = 32K
δ

, where K and δ are given by Lemma 3.10. Take a projection q in H(N, β)
with ∆|P(H(qMq,β)) bounded. Theorem 3.2 implies the existence of a (normal) continuous
linear functional ϕ : H(qMq, β)→ C such that ϕ(p) = ∆(p), for every p ∈ P(H(qMq, β)).
By Lemma 3.4 there exists a family of pairwise orthogonal projections (qi)i=1,...,n inH(N, β)
such that q =

∑n
i=1 qi, τ(qi) ≤ δ

2
, for every i = 1, . . . , n, and n ≤ 4/δ.

Let us pick an arbitrary projection p ∈ H(qMq, β). We need to show that |∆(p)| ≤ C0. If
we write p =

∑n
i,j=1{qi, p, qj} =

∑n
i,j=1

1
2
(qipqj + qjpqi), we observe that, for i 6= j, qi + qj

is a projection in H(N, β) and τ(qi + qj) ≤ δ. Lemma 3.10 implies that

sup{|∆(r)| : r ∈ P(H(M,β)), r ≤ qi + qj} ≤ K,

and hence that
sup{|ϕ(r)| : r ∈ P(H(M,β)), r ≤ qi + qj} ≤ K.

Considering spectral resolutions, we deduce that sup{|ϕ(a)| : a ∈ H((qi + qj)M(qi +
qj), β), ‖a‖ ≤ 1} ≤ 2K. Similarly, sup{|ϕ(a)| : a ∈ H(qjMqj, β), ‖a‖ ≤ 1} ≤ 2K, for
every j = 1, . . . , n. Therefore, having in mind that qipqj + qjpqi lies in H((qi + qj)M(qi +
qj), β), we deduce that

|∆(p)| = |ϕ(p)| ≤
n∑

i,j=1

1

2
|ϕ(qipqj + qjpqi)| ≤ n22K ≤ 16

δ2
2K = C0.

�

In a similar fashion, replacing [17, Lemmas 2 and 6] with Lemmas 3.3 and 3.11, respec-
tively, the proof of [17, Lemma 7] holds to prove the following result.

Lemma 3.12. Let ∆ : P(H(M,β)) → C be a completely additive unbounded measure,
where H(M,β) is a σ-finite JBW∗-algebra. Suppose that the pair (H(M,β),∆) satisfies
the property (3.4) in Lemma 3.9. Let N a type II1 von Neumann subalgebra of M satisfying
β(N) = N . Then there exists a projection q0 in H(N, β) satisfying the following properties:
(a) ∆|P(H(q0Mq0,β)) is bounded;
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(b) if q ∈ P(H(N, β)), q � q0 then ∆|P(H(qMq,β)) is unbounded.

Proof. Let B denote the set of all families (qi)i∈I of mutually orthogonal projections in
H(N, β) such that for each finite subset F ⊂ I , the projection qF :=

∑
i∈F qi satisfies

that ∆|P(H(qFMqF ,β)) is bounded. The set B is an inductive set when it is equipped with
the order given by inclusion (by Proposition 3.9, B 6= ∅). By Zorn’s lemma there exists a
maximal element (q0

i )I ∈ B. The set I is at most countable because H(M,β) is σ-finite.
We claim that the projection q0 =

∑
i∈I q

0
i ∈ H(N, β) satisfies the desired property. Indeed,

defining qn :=
∑n

i=1 q
0
i , we have qn ↗ q0. Since (q0

i )I ∈ B, the measure ∆|P(H(qnMqn,β))

is bounded for every n. Lemma 3.11 implies the existence of a constant C0 > 0 such that
sup{|∆(p)| : p ∈ H(M,β), p ≤ qn} ≤ C0, for every natural n. Lemma 3.3 proves that
∆|P(H(q0Mq0,β)) is bounded.

Finally, the second property follows from the maximality of the element (q0
i )I ∈ B. �

We shall see now that the arguments in the proof of [22, Lemma 6.1.15] are also valid in
the Jordan setting. Actually, the proof follows the arguments we gave in Lemma 3.10.

Lemma 3.13. Let ∆ : P(H(M,β)) → C be a completely additive unbounded measure.
Suppose that the pair (H(M,β),∆) satisfies the property (3.4) in Lemma 3.9. Let us assume
that H(M,β) is σ-finite and let ϕ be a faithful normal state on H(M,β). Then there exists
a projection p0 in H(M,β) and δ > 0 such that ∆|P(H(p0Mp0,β)) is unbounded and the
following property holds:

(3.6) If p ∈ P(H(M,β)), p ≤ p0 and ϕ(p) ≤ δ, then ∆|P(H(pMp,β)) is bounded.

Proof. If the desired property holds for p0 = 1 and some δ, then the Lemma is proved. Oth-
erwise, there exists a projection p1 in P(H(M,β)) such that ϕ(p1) ≤ 1

2
and ∆|P(H(p1Mp1,β)) is

unbounded. If p1 satisfies the desired property the statement is proved. If that is not the case,
there exists a projection p2 in P(H(M,β)) such that p2 ≤ p1, ϕ(p2) ≤ 1

3
and ∆|P(H(p2Mp2,β))

is unbounded. Repeating the above argument, we obtain the desired conclusion for a suitable
projection, or there exists a decreasing sequence of projections (pn) in H(M,β) satisfying
ϕ(pn) ≤ 1

n
and ∆|P(H(pnMpn,β)) is unbounded. The faithfulness of ϕ implies that pn ↘ 0 in

the strong∗-topology.
Since the pair (H(M,β),∆) satisfies property (3.4) in Lemma 3.9, we conclude that

sup{|∆(p)| : p ∈ P(H(M,β)), p ≤ 1− pn} ≤ 1,

for all n. Recalling that 1 − pn ↗ 1 in the strong∗-topology, Lemma 3.3 implies that ∆ is
bounded, which contradicts the hypothesis of the lemma. �

Lemma 3.14. Let ∆ : P(H(M,β)) → C be a completely additive unbounded measure.
Let p0 be a projection in H(M,β) satisfying that ∆|P(H(p0Mp0,β)) and ∆|P(H((1−p0)M(1−p0),β))

are bounded. Let Kn → ∞. Then for each natural n, there exists a projection q = qn ∈
H(M,β) such that |∆(q)| > Kn and d(q, p0) ≥ 1

8
.

Proof. (compare [17, Lemma 9]) Let us takeC > 0 satisfying sup{|∆(p)| : p ∈ H(M,β), p ≤
p0 or p ≤ 1− p0} ≤ C. Given n, by the unboundedness of ∆, we can find a projection p in



BOUNDEDNESS OF MEASURES AND 2-LOCAL TRIPLE DERIVATIONS 21

H(M,β) such that |∆(p)| > 2Kn+6C. The projection r = p+(1−p)∧p0 ∈ H(M,β) sat-
isfies (1−r)∧p = 0 and |∆(r)| ≥ |∆(p)|−|∆((1−p)∧p0)| > 2Kn+5C. By [17, Remark
1] we have

r = r(rp0r) + r ∧ (1− p0)

inM , as well as inH(M,β). The proof of [17, Lemma 9] shows that taking r1 = 1(0, 1
2

](rp0r) ∈
H(M,β) and r2 = 1( 1

2
,1](rp0r) ∈ H(M,β) we have d(r1, p0) ≥ 1

2
and r1 +r2 = r−r∧(1−

p0). It is further seen that for r′2 = r2∨ (1−p0)−r2 ∈ H(M,β) the inequality d(r′2, p0) ≥ 1
8

holds.
It is also clear that r1 ⊥ r2, and since r − r ∧ (1− p0) ⊥ r ∧ (1− p0). Therefore

|∆(r1)|+ |∆(r2)| ≥ |∆(r1) + ∆(r2)| = |∆(r1 + r2)| = |∆(r − r ∧ (1− p0))|

= |∆(r)−∆(r ∧ (1− p0))| ≥ |∆(r)| − |∆(r ∧ (1− p0))| > 2Kn + 4C.

It follows that |∆(r1)| > Kn+2C or |∆(r2)| > Kn+2C. In the first case the projection q =
r1 satisfies the desired statement; otherwise, the projection q = r′2 satisfies the conclusion of
the lemma. Indeed,

|∆(r2 ∨ (1− p0))| ≤ |∆(p0)|+ |∆(r2 ∨ (1− p0)− (1− p0))| ≤ 2C,

because (r2 ∨ (1− p0)− (1− p0)) ⊥ (1− p0). Thus, we get

|∆(q)| = |∆(r′2)| ≥ |∆(r2)| − |∆(r2 ∨ (1− p0))| > Kn.

�

We complete now the proof of our Jordan version of Dorofeev’s theorem. The arguments
are based on appropriate Jordan adaptations of the proofs in [17, Theorem 1] and [22, Theo-
rem 6.1.16].

Proof of Theorem 3.1. Arguing by contradiction, we shall assume that ∆ : P(H(M,β)) →
C is an unbounded completely additive measure. By Proposition 3.8 there exists a σ-finite
projection p ∈ H(M,β) such that ∆|P(H(pMp,β)) is unbounded.

We can therefore assume that H(M,β) is σ-finite. Let ϕ be a faithful normal state on
H(M,β). Furthermore, by Remark 3.7, we can also assume that M is of type II1, II∞ or III.

Having in mind Proposition 3.9, we can assume that the pair (H(M,β),∆) satisfies prop-
erty (3.4) for p0 = 1 in that proposition (otherwise we replace M with p0Mp0). Applying
Lemma 3.13, we may assume that ∆ satisfies property (3.6) for p0 = 1, the faithful normal
state ϕ fixed in the above paragraph, and a suitable δ > 0. By Proposition 3.5 there exists a
type II1 subalgebra N of M such that β(N) = N .

Let q0 be the projection inH(N, β) given by Lemma 3.12, that is, q0 satisfies the following
properties:

(a) ∆|P(H(q0Mq0,β)) is bounded;
(b) if q ∈ P(H(N, β)), q � q0 then ∆|P(H(qMq,β)) is unbounded.
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The unboundedness of ∆ implies that q0 6= 1. By the Halving lemma (see [23, Theo-
rem 5.2.14]) there exists an infinite sequence (qn) of mutually orthogonal nonzero projec-
tions in H(N, β) such that qn ≤ 1 − q0, for every n ∈ N. Property (b) above implies that
∆|P(H((q0+qn)M(q0+qn),β)) is unbounded for all natural n.

We claim that ∆|P(H((1−q0)M(1−q0),β)) is bounded. Indeed, let (rn) be a sequence of pro-
jections in H(N, β) such that (rn) ↘ 0 and rn ≤ 1 − q0. The above property (b) of
q0 also implies that ∆|P(H((q0+rn)M(q0+rn),β)) is unbounded for all natural n. Since the pair
(H(M,β),∆) satisfies property (3.4) for p0 = 1 in Proposition 3.9, it follows that

sup{|∆(p)| : p ≤ 1− q0 − rn} ≤ 1, (n ∈ N).

The boundedness of the previous set together with the condition 1− q0− rn ↗ 1− q0 imply,
via Lemma 3.3 that ∆|P(H((1−q0)M(1−q0),β)) is bounded, which proves the claim.

We have shown that ∆|P(H(q0Mq0,β)) and ∆|P(H((1−q0)M(1−q0),β)) are bounded measures.
Applying Lemma 3.14 to (q0+qn)M(q0+qn) and the projection p0 = q0, we find a projection
pn in (q0 + qn)M(q0 + qn) satisfying |∆(pn)| > n212n

δ
and d(pn, q0) ≥ 1

8
(let us observe that

since qn ≤ 1 − q0, ∆|P(H(qnMqn,β)) is bounded). We define in this way a sequence (pn) in
P(H(M,β)).

We shall prove next that, for each natural n, d(pn,∨i 6=npi) ≥ 1
8
. To this end, let us pick

norm-one elements ξ ∈ pn(H) and η ∈ ∨i 6=npi(H) (we regard M as a von Neumann subal-
gebra of some B(H)). Having in mind that pn ≤ q0 + qn with qn ⊥ q0 (n ∈ N), we deduce
that ∨i 6=npi(H) ⊂ q0(H) +

(∑
i 6=n qi

)
(H), and thus, we can write

η = αu1 + βu2,

where α, β ≥ 0, α2 + β2 = 1, u1 ∈ q0(H) and u2 ∈
(∑

i 6=n qi

)
(H). The images of q0 and(∑

i 6=n qi

)
are orthogonal in the Hilbert sense, and hence

‖ξ − η‖2 = ‖ξ − αu1 − βu2‖2 = ‖ξ − αu1‖2 + ‖βu2‖2

≥ (‖ξ − u1‖ − ‖(1− α)u1‖)2 + β2 = (‖ξ − u1‖ − 1 + α)2 + 1− α2.

The last expression in the above inequality defines a function f(α), α ∈ [0, 1], whose extreme
values are attained at α = 0 or α = 1. Taking α = 0, we have ‖ξ−η‖2 ≥ (‖ξ − u1‖ − 1)2 +
1 ≥ 1. In the case α = 1, we have ‖ξ − η‖2 = ‖ξ − u1‖2 ≥ 1

82
, because u1 ∈ q0(H) and

d(q0, pn) ≥ 1
8
.

We apply now Lemma 3.4. For each natural n, we can find a finite set {pni : i = 1, . . . , kn}
of mutually orthogonal projections in H(M,β) satisfying pn =

∑kn
i=1 p

n
i , ϕ(pni ) ≤ δ

211n
, and

kn ≤ 2211n

δ
. The projections in {pni : i = 1, . . . , kn} are mutually orthogonal, so

n212n

δ
< |∆(pn)| =

∣∣∣∣∣
kn∑
i=1

∆(pni )

∣∣∣∣∣ ≤
kn∑
i=1

|∆(pni )| ,

and therefore there exists in ∈ {1, . . . , kn} such that |∆(pnin)| > n. So, replacing pn with
pnin , it may be assumed that ϕ(pn) ≤ δ

211n
and |∆(pn)| > n.
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Now, we take ε = 1
210

. Lemma 1(b) in [17] asserts that

p1 ∨ . . . ∨ pn ≤
1

ε
(p1 + p2 ∨ . . . ∨ pn) ≤ 1

ε
p1 +

1

ε2
(p2 + p3 ∨ . . . ∨ pn) ≤ . . . ≤

n∑
k=1

1

εk
pk.

Therefore,

ϕ(p1 ∨ . . . ∨ pn) ≤
n∑
k=1

1

εk
ϕ(pk) ≤

n∑
k=1

1

εk
δ

211k
=

n∑
k=1

210k δ

211k
< δ.

This shows that for r = ∨∞n=1pn, ϕ(r) ≤ δ and ∆|P(H(rMr,β)) is unbounded, which contradicts
that ∆ satisfies property (3.6) for p0 = 1 and δ > 0. �

4. 2-LOCAL TRIPLE DERIVATIONS ON CONTINUOUS JBW∗-TRIPLES

Recall that a JBW ∗-triple A is said to be continuous if it has no type I direct summand,
and that in this case, up to isometry, A is a JW ∗-triple with unique decomposition, A =
H(W,α) ⊕ pV, where W and V are continuous von Neumann algebras, p is a projection
in V , α is a ∗-antiautomorphism of W of order 2, and H(W,α) = {x ∈ W : α(x) = x}
(see [26, (1.20)]).

We have shown in section 2 that every 2-local triple derivation on pV is a triple derivation.
In this section we show that every 2-local triple derivation on H(W,α) is a triple deriva-
tion, and hence that every 2-local triple derivation on a continuous JBW∗-triple is a triple
derivation.

4.1. Triple derivations onH(M,β). Assume thatM is a continuous von Neumann algebra
and β : M → M is a C-linear ∗-involution (i.e. a ∗-antiautomorphism of order 2). In this
subsection we shall show that every 2-local triple derivation on the subspace H(M,β) of all
β-fixed points in M is a triple derivation.

We begin by taking advantage of the Jordan structure of H(M,β) (see the beginning of
section 3) to provide a precise description of triple derivations on it.

Let δ : H(M,β)→ H(M,β) be a triple derivation. By [24, Lemma 1 and its proof],

(4.1) δ(1)∗ = −δ(1), and Mδ(1) = δ

(
1

2
δ(1),1

)
is a triple derivation.

This implies that D = δ − Mδ(1) = δ − δ
(

1
2
δ(1),1

)
is a triple derivation satisfying

D(1) = 0. Lemma 2 in [24] implies that D is a Jordan ∗-derivation on H(M,β). Thus,
D|H(M,β)sa : H(M,β)sa → H(M,β)sa is a Jordan derivation on the continuous JBW-algebra
H(M,β)sa. Theorem 3.5 in [42] assures that D|H(M,β)sa is an inner derivation, that is, there
exist a1, . . . , am b1, . . . , bm in H(M,β)sa satisfying

(4.2) D(x) =
m∑
j=1

[
Maj ,Mbj

]
(x) =

m∑
j=1

aj ◦ (bj ◦ x)− bj ◦ (aj ◦ x)
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=
1

4

m∑
j=1

(ajbj−bjaj)x−x(ajbj−bjaj) =
m∑
j=1

[
(ajbj − bjaj)

4
, x

]
=

[
m∑
j=1

(ajbj − bjaj)
4

, x

]
,

for every x ∈ H(M,β)sa. If we denote a =
m∑
j=1

(ajbj − bjaj)
4

∈ M , then β(a) = −a and

a∗ = −a (just observe that β(aj) = aj , a∗j = aj , β(bj) = bj , and b∗j = bj , for every j), and,
by (4.2),

δ(x) = [a, x] + δ(1) ◦ x,
for every x ∈ H(M,β)sa. The following proposition summarizes the above facts.

Proposition 4.1. Let M be a continuous von Neumann algebra and let β : M → M be
a C-linear ∗-involution. Then for every triple derivation δ on the JBW∗-algebra H(M,β),
of all β-fixed points in M , there exist a, b ∈ M with a∗ = −a, b∗ = −b, β(a) = −a and
β(b) = b = δ(1), satisfying

δ(x) = [a, x] + b ◦ x,
for every x ∈ H(M,β). Consequently, every triple derivation on H(M,β) admits an exten-
sion to a triple derivation on M . 2

4.2. 2-local triple derivations on H(M,β). Let J be a JBW∗-subalgebra of a von Neu-
mann algebra M . Suppose that J contains the unit of M . Given a self-adjoint element
z ∈ J , the JBW∗-subalgebra, W∗(z), of J generated by z and the unit element is an as-
sociative JBW∗-algebra isometrically isomorphic to a commutative von Neumann algebra
(cf. [23, Lemma 4.1.11]). It is known that W∗(z) coincides with the abelian von Neumann
subalgebra of M generated by the element z and the unit element.

Let ∆ : H(M,β) → H(M,β) be a (not necessarily linear nor continuous) 2-local triple
derivation. By (4.1) we deduce that ∆(1)∗ = −∆(1) and M∆(1) = δ

(
1
2
∆(1),1

)
is a triple

derivation. Replacing ∆ with ∆−δ
(

1
2
∆(1),1

)
we can assume that our 2-local triple deriva-

tion satisfies ∆(1) = 0. Having in mind the description provided by the above Proposition
4.1, the arguments given in [32, Lemmas 2.2, 2.3, and 2.6] can be literally adapted to prove
the following:

Lemma 4.2. Let M be a continuous von Neumann algebra and let β : M → M be a C-
linear ∗-involution. Suppose that ∆ : H(M,β) → H(M,β) is a (not necessarily linear nor
continuous) 2-local triple derivation. Then the following statements hold:
(a) If ∆(1) = 0, then ∆(x) = ∆(x)∗ for all x ∈ H(M,β)sa;
(b) If ∆(1) = 0, then for every x, y ∈ H(M,β)sa there exists a skew-hermitian element

ax,y ∈M with β(ax,y) = −ax,y such that ∆(x) = [ax,y, x], and ∆(y) = [ax,y, y];
(c) Let z ∈ H(M,β) be a self-adjoint element and let W∗(z) = {z}′′ be the abelian von

Neumann subalgebra of M generated by the element z and the unit element. Then there
exist skew-hermitian elements az, bz ∈M , depending on z, such that

∆(x) = [az, x] + bz ◦ x = azx− xaz +
1

2
(bzx+ xbz)

for all x ∈W∗(z) ⊆ H(M,β). In particular, ∆ is linear and continuous on W∗(z).
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2

The results in Lemma 4.2 will be now applied to obtain a Jordan version of [32, Propo-
sition 2.7]. Given a JBW∗-algebra J whose lattice of projections is denoted by P(J), and a
Banach space X , a finitely additive X-valued measure on P(J) is defined in the same way
as in the case of a von Neumann algebra, namely, a mapping µ : P(J)→ X satisfying

µ

(
n∑
i=1

pi

)
=

n∑
i=1

µ(pi),

for every family p1, . . . , pn of mutually orthogonal projections in J.
Let (pi)i∈I be a family of mutually orthogonal projections in a JBW∗-algebra J . The se-

ries
∑

i∈I pi is summable with respect to the strong∗ topology of J , and we further know
that the limit p = strong∗-

∑
i∈I

pi is another projection in J (cf. [23, remark 4.2.9]). In par-

ticular,
∑

i∈I pi is summable with respect to the weak∗ topology of J and strong∗-
∑
i∈I

pi =

weak∗-
∑
i∈I

pi.

Let J1 and J2 be JBW∗-algebras, and let τ denote the norm, the weak∗ or the strong∗

topology of J1. As in the case of von Neumann algebras, a mapping µ : J1 → J2 is said to
be τ -completely additive (respectively, countably or sequentially τ -additive) when

(4.3) µ

(∑
i∈I

pi

)
= τ -

∑
i∈I

µ(pi)

for every family (respectively, sequence) {pi}i∈I of mutually orthogonal projections in J1.

We can easily obtain now a Jordan version of [32, Proposition 2.7].

Proposition 4.3. Let M be a continuous von Neumann algebra and let β : M → M be
a C-linear ∗-involution. Let ∆ : H(M,β) → H(M,β) be a (not necessarily linear nor
continuous) 2-local triple derivation. Then the following statements hold:
(a) The restriction ∆|P(J) is sequentially strong∗-additive, and consequently sequentially

weak∗-additive;
(b) ∆|P(J) is weak∗-completely additive, i.e.,

(4.4) ∆

(
weak∗-

∑
i∈I

pi

)
= weak∗-

∑
i∈I

∆(pi)

for every family (pi)i∈I of mutually orthogonal projections in J.

Proof. (a) Let (pn)n∈N be a sequence of mutually orthogonal projections in H(M,β). Let
us consider the element z =

∑
n∈N

1
npn. Let W∗(z) be the JBW∗-subalgebra of H(M,β)
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generated by z. By Lemma 4.2(c), there exist skew-hermitian elements az, bz ∈ M with
β(az) = −az and β(bz) = bz, satisfying

T (x) = [az, x] + bz ◦ x,
for all x ∈W∗(z).

The elements
∞∑
n=1

pn, and pm belong to W∗(z), for allm ∈ N. The reader should be warned

that az might not belong to H(M,β). In any case, the product of M is jointly strong∗ contin-
uous on bounded sets, and by [8, Corollary] S∗(M,M∗)|H(M,β) ≡ S∗(H(M,β), H(M,β)∗).
Therefore,

∆

(
S∗(M,M∗)-

∞∑
n=1

pn

)
=

[
az, S

∗(M,M∗)-
∞∑
n=1

pn

]
+ bz ◦ S∗(M,M∗)-

(
∞∑
n=1

pn

)

= S∗(M,M∗)-
∞∑
n=1

[az, pn] + S∗(M,M∗)-
∞∑
n=1

bz ◦ pn = S∗(M,M∗)-
∞∑
n=1

∆(pn),

i.e. ∆|P(M) is a countably or sequentially strong∗ additive mapping.

(b) As we have commented above, the strong∗-topology of the JBW∗-algebra H(M,β)
coincides with the restriction to H(M,β) of the strong∗-topology of M . When in the proof
of [32, Proposition 2.7](b), we replace [32, Lemmas 2.2 and 2.3] with Lemma 4.2 (and
having in mind the conclusion of Proposition 4.1), the arguments remaind valid to obtain the
desired statement here. �

Let ∆ : H(M,β) → H(M,β) be a (not necessarily linear nor continuous) 2-local triple
derivation, where M is a continuous von Neumann algebra and β : M → M is a C-linear
∗-involution. For each normal state φ ∈ H(M,β)∗ (or φ ∈M∗), Proposition 4.3 implies that
the mapping φ ◦∆|

P(H(M,β))
: P(H(M,β)) → C is a completely additive measure. We con-

clude from Theorem 3.1, and from the arbitrariness of φ together with the uniform bounded-
ness principle, that ∆|

P(H(M,β))
: P(H(M,β)) → C is a bounded weak∗-completely additive

measure. An appropriate Jordan version of the Bunce-Wright-Mackey-Gleason theorem (see
Theorem 3.2) implies the existence of a bounded linear operator G : H(M,β) → H(M,β)
satisfying that G(p) = ∆(p) for every p ∈ P(H(M,β)).

Let us pick a self-adjoint element z in H(M,β). By Lemma 4.2(c), there exist skew-
hermitian elements az, bz ∈ M , with β(az) = −az and β(bz) = bz, such that ∆(x) =
[az, x]+bz◦x, for every x ∈W∗(z), the JBW∗-subalgebra ofH(M,β) generated by z. Since
G|W∗(z) and ∆|W∗(z) are bounded linear operators from W∗(z) to M , which coincide on the
set of projections of W∗(z), and every self-adjoint element in W∗(z) can be approximated in
norm by finite linear combinations of mutually orthogonal projections in W∗(z), we conclude
that ∆(x) = G(x) for every x ∈W∗(z), and hence

∆(z) = G(z), for every z ∈ H(M,β)sa,

in particular, ∆ is additive on H(M,β)sa. This proves the following Proposition.
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Proposition 4.4. Let ∆ : H(M,β)→ H(M,β) be a (not necessarily linear nor continuous)
2-local triple derivation, where M is a continuous von Neumann algebra and β : M → M
is a C-linear ∗-involution. Then the restriction ∆|H(M,β)sa is additive. 2

Lemma 4.5. Let ∆ : H(M,β) → H(M,β) be a (not necessarily linear nor continuous)
2-local triple derivation, where M is a continuous von Neumann algebra and β : M → M
is a C-linear ∗-involution. Suppose ∆(1) = 0. Then there exists a skew-hermitian element
a ∈M such that β(a) = −a, and ∆(x) = [a, x], for all x ∈ H(M,β)sa.

Proof. Let x ∈Msa. By Lemma 4.2(c) there exist a skew-hermitian element ax,x2 ∈M such
that β(ax,x2) = −ax,x2 , and ∆(x) = [ax,x2 , x], ∆(x2) = [ax,x2 , x

2].
Thus,

(4.5) ∆(x2) = [ax,x2 , x
2] = [ax,x2 , x]x+ x[ax,x2 , x] = 2∆(x) ◦ x.

By Proposition 4.4 and Lemma 4.2(a), ∆|H(M,β)sa : H(M,β)sa → H(M,β)sa is a real
linear mapping. Now, we consider the linear extension ∆̂ of ∆|H(M,β)sa to H(M,β) defined
by

∆̂(x1 + ix2) = T (x1) + iT (x2), x1, x2 ∈ H(M,β)sa.

Taking into account the homogeneity of ∆, Proposition 4.4 and the identity (4.5), we de-
duce that ∆̂ is a Jordan ∗-derivation (and hence, a triple derivation) on H(M,β). Proposition
4.1 implies the existence of a skew-symmetric element a ∈ M such that β(a) = −a and
∆̂(x) = [a, x] for all x ∈ H(M,β). In particular, ∆(x) = [a, x] for all x ∈ H(M,β)sa,
which completes the proof. �

We now prove the main result of this section.

Theorem 4.6. Let ∆ : H(M,β) → H(M,β) be a (not necessarily linear nor continuous)
2-local triple derivation, where M is a continuous von Neumann algebra and β : M → M
is a C-linear ∗-involution. Then ∆ is a linear and continuous triple derivation.

Proof. From (4.1) we know that ∆(1)∗ = −∆(1), and M∆(1) = δ
(

1
2
∆(1),1

)
is a triple

derivation. Replacing ∆ with ∆− δ
(

1
2
∆(1),1

)
we can assume that ∆(1) = 0. By Lemma

4.5 there exists a skew-hermitian element a ∈ M such that β(a) = −a, and ∆(x) = [a, x],

for all x ∈ H(M,β)sa. Observe that the mapping ∆̂ = ∆− [a, .] is a 2-local triple derivation
on H(M,β)sa satisfying ∆̂|H(M,β)sa ≡ 0.

We shall finally prove that ∆̂ = 0. This result follows from a direct adaptation of the
arguments in [32, Lemma 2.16], we include here a sketch of the proof for completeness
reasons.

Let x ∈ H(M,β) be an arbitrary element and let x = x1+ix2,where x1, x2 ∈ H(M,β)sa.

Since ∆̂ is homogeneous, by passing to the element (1 + ‖x2‖)−1x if necessary, we can
suppose that ‖x2‖ < 1. In this case the element y = 1 + x2 is positive and invertible. Take
skew-hermitian elements ax,y, bx,y ∈M such that β(ax,y) = −ax,y, β(bx,y) = bx,y, and

∆̂(x) = [ax,y, x] + bx,y ◦ x, and ∆̂(y) = [ax,y, y] + bx,y ◦ y.
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Since ∆̂(y) = 0, we get [ax,y, y] + bx,y ◦ y = 0. Lemma 2.4 in [32] implies that [ax,y, y] = 0
and ibx,y ◦ y = 0. Having in mind that y is positive and invertible, and that ibx,y is hermitian,
[32, Lemma 2.5] proves that bx,y = 0.

The condition 0 = [ax,y, y] = [ax,y,1 + x2] = [ax,y, x2], implies

∆̂(x) = [ax,y, x] + bx,y ◦ x = [ax,y, x1 + ix2] = [ax,y, x1],

which shows that

∆̂(x)∗ = [ax,y, x1]∗ = [x1, a
∗
x,y] = [x1,−ax,y] = [ax,y, x1] = ∆̂(x).

The arbitrariness of x ∈ H(M,β) implies that ∆̂(x) = 0, as desired. �

Since every element in a closed ideal of a JB∗-triple can be written as a cube of an element
in that ideal, it is clear that a triple derivation leaves closed ideals invariant. Hence the same
is true for 2-local triple derivations. Thus, by invoking the structure theorem of continuous
JBW∗-triples stated at the beginning of this section, and combining Theorems 2.3 and 4.6,
we obtain the second main result of this paper.

Theorem 4.7. Let ∆ : A → A be a (not necessarily linear nor continuous) 2-local triple
derivation, where A is a continuous JBW∗-triple. Then ∆ is a linear and continuous triple
derivation.

Problem 4.8. Does Theorem 3.1 remain valid when H(M,β) is replaced by an arbitrary
JBW∗-algebra without summands of type In?

Problem 4.9. Is Theorem 4.7 valid for
(a): JBW∗-triples of type I? (See Corollary 2.12)
(b): reversible JBW∗-algebras?
(c): 2-local triple derivations with values in a Jordan triple module?
(d): 2-local triple derivations on various algebras of measurable operators?
(e): real JBW∗-triples?
(f): complex and real JB∗-triples?
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[38] P. Šemrl, Local automorphisms and derivations on B(H), Proc. Amer. Math. Soc. 125, 2677-2680 (1997).
[39] A. N. Sherstnev, Methods of bilinear forms in noncommutative theory of measure and integral, Moscow,

Fizmatlit, 2008, 256 pp.
[40] Takesaki, M., Theory of operator algebras I, Springer Verlag, New York, 1979.
[41] D. M. Topping, Jordan algebras of self-adjoint operators, Mem. Amer. Math. Soc., 53, 1965. 48pp
[42] H. Upmeier, Derivations of Jordan C∗-algebras, Math. Scand. 46, 251-264 (1980).
[43] J.D.M. Wright, Decoherence functionals for von Neumann quantum histories: boundedness and countable

additivity, Comm. Math. Phys. 191, no. 3, 493-500 (1998).
E-mail address: hamhalte@math.feld.cvut.cz

CZECH TECHNICAL UNIVERSITY, FACULTY OF ELECTRICAL ENGINEERING, TECHNICKA 2, 166 27,
PRAGUE 6, CZECH REPUBLIC

E-mail address: karim2006@mail.ru

CH. ABDIROV 1, DEPARTMENT OF MATHEMATICS, KARAKALPAK STATE UNIVERSITY, NUKUS 230113,
UZBEKISTAN

E-mail address: aperalta@ugr.es
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