# Irreductible Representations of the Simple Jordan Superalgebra of Grassmann Poisson bracket 

Olmer Folleco Solarte*<br>Universidad del Cauca, Calle 5, no.4-Popayán - Colombia<br>E-mail: olmer@unicauca.co<br>and<br>and Ivan Shestakov ${ }^{\dagger}$<br>Instituto de Matemática e Estatística, Universidade de São Paulo,<br>Rua do Matão, 1010-CEP 05508-090 - São Paulo - SP - Brasil and<br>Sobolev Institute of Mathematics, Novosibirsk - 630090 - Russia E-mail: shestak@ime.usp.br


#### Abstract

We obtain classification of the irreducible bimodules over the Jordan superalgebra $\operatorname{Kan}(n)$, the Kantor double of the Grassmann Poisson superalgebra $G_{n}$ on $n$ odd generators, for all $n \geq 2$ and an algebraically closed field of characteristic $\neq 2$. This generalizes the corresponding result of C.Martínez and E.Zelmanov announced in [MZ2] for $n>4$ and a field of characteristic zero.


Keywords: Jordan superalgebra, Grassmann algebra, Poisson superalgebra, irreducible bimodule

MSC: 17C70, 17B63, 17C40

## 1 Introduction

An algebra $J$ over a field $F$ of characteristic $\neq 2$ is called a Jordan algebra if it satisfies the identities

$$
\begin{aligned}
x y & =y x \\
\left(x^{2} y\right) x & =x^{2}(y x) .
\end{aligned}
$$

[^0]These algebras were introduced in [JNW] as an algebraic formalism of quantum mechanics. Since then, they have found various applications in mathematics and theoretical physics and now form an intrinsic part of modern algebra. We refer the reader to the books [Jac, Mc, ZSSS] and the survey $[\mathrm{KS}]$ for principal results on the structure theory and representations of Jordan algebras.

Jordan superalgebras appeared in 1977-1980 [Kap, Kac]. A Jordan superalgebra is a $\mathbb{Z}_{2}$-graded algebra $J=J_{0}+J_{1}$ satisfiying the graded identities:

$$
\begin{gather*}
x y=(-1)^{|x| y \mid} y x, \\
((x y) z) t+(-1)^{|y||z|+|y||t|+|z||t|}((x t) z) y+(-1)^{|x| y|+|x|| z|+|x|| t|+|z|| t \mid}((y t) z) x= \\
=(x y)(z t)+(-1)^{|y||z|}(x z)(y t)+(-1)^{|t|(|y|+|z|}(x t)(y z), \tag{1}
\end{gather*}
$$

where $|x|=i$ if $x \in J_{i}$. The subspaces $J_{0}$ and $J_{1}$ are referred as the even and the odd parts of $J$, respectively. The even part $J_{0}$ is a Jordan subalgebra of $J$, and the odd part $J_{1}$ is a Jordan bimodule over $J_{0}$.

In [Kac] (see also [Kan]), the simple finite dimentional Jordan superalgebras over an algebraically closed field of zero characteristic were classified. The only superalgebras in this classification whose even part is not semisimple are the Jordan superalgebras of Grassmann Poisson brackets $\operatorname{Kan}(n)$, defined below.

A dot-bracket superalgebra $A=\left(A_{0}+A_{1}, \cdot,\{\},\right)$ is an associative supercommutative superalgebra $(A, \cdot)$ together with a super-skew-symmetric bilinear product $\{$,$\} . One can constract$ the Kantor superalgebra $J(A)$ via the Kantor doubling process as follows [KMc]: Consider the vector space direct sum $J=A \oplus \bar{A}$, where $\bar{A}$ is just $A$ labelled, multiplication in $J(A)$ is given by:

$$
\begin{gathered}
f \bullet g=f \cdot g, \\
f \bullet \bar{g}=\overline{f \cdot g}, \\
\bar{f} \bullet g=(-1)^{|g|} \overline{f \cdot g}, \\
\bar{f} \bullet \bar{g}=(-1)^{|g|}\{f, g\},
\end{gathered}
$$

for $f, g \in A_{0} \cup A_{1}$. Then, we have the $\mathbb{Z}_{2}$-grading $J(A)=J_{0}+J_{1}$, where $J_{0}=A_{0}+\overline{A_{1}}$ and $J_{1}=A_{1}+\overline{A_{0}}$, and $J(A)$ is a supercommutative superalgebra under this grading.

Theorem ([KMc1]). If $A=A_{0}+A_{1}$ is a unital dot-bracket superalgebra, then $J(A)$ is a Jordan superalgebra if and only if the following identities hold:

$$
\begin{gather*}
\{f,(g \cdot h)\}=\{f, g\} \cdot h+(-1)^{|f||g|} \mid g \cdot\{f, h\}-D(f) \cdot g \cdot h,  \tag{2}\\
\{f,\{g, h\}\}-\{\{f, g\}, h\}-(-1)^{|f||g|}\{g,\{f, h\}\}= \\
D(f) \cdot\{g, h\}+(-1)^{|g|(|f|+|h|)} D(g) \cdot\{h, f\}+(-1)^{|h|(|f|+|g| \mid)} D(h) \cdot\{f, g\}  \tag{3}\\
\{\{x, x\}, x\}=-\{x, x\} \cdot D(x) \tag{4}
\end{gather*}
$$

where $D(f)=\{f, 1\}, f, g, h \in A_{0} \cup A_{1}$ and $x \in A_{1}$. The last identity is needed only in characteristic 3 case.

A dot-bracket superalgebra $P$ is called a Poisson superalgebra if it satisfies the identities of the above theorem with $D \equiv 0$. The above construction was first introduced by I.Kantor [Kan] for the Grassmann Poisson superalgebras.

Let $G_{n}$ be the Grassman superalgebra generated by $n \geq 2$ odd generators $e_{1}, e_{2}, \ldots, e_{n}$ over a field $F$, such that $e_{i} e_{j}+e_{j} e_{i}=0$ and $e_{i}^{2}=0$. Define on $G_{n}$ an odd superderivation $\frac{\partial}{\partial e_{j}}$ for $j=1,2, \ldots, n$ by the equalities

$$
\begin{aligned}
\frac{\partial e_{i}}{\partial e_{j}} & =\delta_{i j} \\
\frac{\partial(u v)}{\partial e_{j}} & =\frac{\partial u}{\partial e_{j}} v+(-1)^{|u|} u \frac{\partial v}{\partial e_{j}},
\end{aligned}
$$

and then define the superbracket

$$
\{f, g\}=(-1)^{|f|} \sum_{i=1}^{n} \frac{\partial f}{\partial e_{i}} \frac{\partial g}{\partial e_{j}}
$$

One can check that the dot-bracket superalgebra $G_{n}$ is a Poisson superalgebra, and it was proved in [Kan] that the superalgebra $\operatorname{Kan}(n)=J\left(G_{n}\right)$ is a simple Jordan superalgebra for all $n \geq 2$.

A Jordan (super)bimodule over a Jordan superalgebra $J$ is defined in a usual way: a $\mathbb{Z}_{2}$-graded $J$-bimodule $V=V_{0}+V_{1}$ is called a Jordan $J$-bimodule if the split null extention $E(J, V)=J \oplus V$ is a Jordan superalgebra. Recall that the multiplication in the split null extention extends the multiplication in $J$ and the action of $J$ on $V$, while the product of two arbitrary elements in $V$ is zero.

The first main problem of the representation theory for any class of algebras is the classification of irreducible bimodules. The description of unital irreducible finite dimensional Jordan bimodules is practically finished for simple finite dimensional Jordan superalgebras over an algebraically closed field of characteristic zero [MS, MSZ, MZ1, MZ2, MZ3, T1, T2, Sht1, Sht2]. One of main tools used in these papers was the famous Tits-Kantor-Koecher functor (TKK-functor) which associates with a Jordan (super)algebra $J$ a certain Lie (super)algebra $T K K(J)$. Using the known classification of irreducible Lie bimodules over $T K K(J)$, the authors recovered the structure of irreducible bimodules over $J$. Observe that this method may be used only in the characteristic zero case since classification of irreducible Lie supermodules is not known for positive characteristic.

The classification of irreducible bimodules over the Kantor superalgebra $\operatorname{Kan}(n)$ was first obtained in [Sht1] via TKK-functor. In [MZ2], the authors pointed out that the using of the $T K K$-functor in [Sht1] was not quite correct, and the classification obtained there was not complete. They announced a new classification of irreducible bimodules over $\operatorname{Kan}(n)$ for all $n>4$ and an algebraically closed field $F$ of characteristic zero.

In this paper, we classify the irreducible bimodules for the superalgebra $\operatorname{Kan}(n)$ over an algebraically closed field $F$ of characteristic $\neq 2$ and $n \geq 2$. Our proof is direct and does not use the structure of Lie modules over the Lie superalgebra $L=T K K(\operatorname{Kan}(n))$. In order to prove that the constructed bimodule is Jordan, we give a new construction of a Jordan bracket on the tensor product of a Poisson superalgebra $P$ with a certain generalized derivation and an associative commutative algebra with a derivation.

## 2 Some Properties

Recall that the Grassmann algebra $G_{n}$ has a base formed by 1 and the products $e_{i_{1}} e_{i_{2}} \cdots e_{i_{n}}$, where $1 \leq i_{1}<i_{2}<\cdots<i_{n} \leq n$.

For an ordered subset $I=\left\{i_{1}, i_{2}, \ldots, i_{k}\right\} \subseteq I_{n}=\{1,2, \ldots, n\}$, we denote

$$
e_{I}:=e_{i_{1}} e_{i_{2}} \cdots e_{i_{k}}
$$

so

$$
\overline{e_{I}}=\overline{e_{i_{1}} e_{i_{2}} \cdots e_{i_{k}}}, \quad e_{\phi}=1, \text { and } \overline{e_{\phi}}=\overline{1}
$$

Now, as $e_{i} e_{j}=-e_{j} e_{i}$, for $i, j \in I_{n}, i \neq j$, if $\sigma$ is a permutation of the set $I$, we have

$$
e_{I}=\operatorname{sgn}(\sigma) e_{\sigma(I)}
$$

where $\operatorname{sgn}(\sigma)$ is the sign of the permutation $\sigma$.
For ordered subsets $I=\left\{i_{1}, \ldots i_{k}\right\}$ and $J=\left\{j_{1}, \ldots j_{s}\right\}$, denote by $I \cup J$ the ordered set

$$
I \cup J=\left\{i_{1}, \ldots i_{k}, j_{1}, \ldots j_{s}\right\}
$$

Then the multiplication in $\operatorname{Kan}(n)$ is given by:

$$
\begin{gathered}
e_{I} \bullet e_{J}=e_{I} e_{J}=\left\{\begin{array}{ccc}
e_{I \cup J} & \text { if } & I \cap J=\phi, \\
0 & \text { if } & I \cap J \neq \phi,
\end{array}\right. \\
e_{I} \bullet \overline{e_{J}}=\overline{e_{I} e_{J}}=\left\{\begin{array}{ccc}
\overline{e_{I \cup J}} & \text { if } & I \cap J=\phi, \\
0 & \text { if } & I \cap J \neq \phi,
\end{array}\right. \\
\overline{e_{I}} \bullet e_{J}=(-1)^{s} \overline{e_{I} e_{J}}=\left\{\begin{array}{ccc}
(-1)^{s} \overline{e_{I \cup J}} & \text { if } & I \cap J=\phi, \\
0 & \text { if } & I \cap J \neq \phi,
\end{array}\right. \\
\overline{e_{I}} \bullet \overline{e_{J}}=(-1)^{s}\left\{e_{I}, e_{J}\right\}=\left\{\begin{array}{cl}
(-1)^{s+k+p+q} e_{I^{\prime} \cup J^{\prime}} & \text { if } \quad I \cap J=\left\{i_{p}\right\}=\left\{j_{q}\right\} \\
0 & \text { otherwise },
\end{array}\right.
\end{gathered}
$$

where $I^{\prime}=\left\{i_{1}, \ldots, i_{p-1}, i_{p+1}, \ldots, i_{k}\right\}$ and $J^{\prime}=\left\{j_{1}, \ldots, j_{q-1}, j_{q+1}, \ldots, j_{s}\right\}$.
We will use the notation $\bullet$ only in the presence of other multiplications.
Let $V$ be a Jordan bimodule over $\operatorname{Kan}(n)$. For $a \in \operatorname{Kan}(n)$ we denote by $R_{a}$ the action of $a$ on $V: R_{a}(v)=v \cdot a$. The Jordan superidentity (1) implies the following operator relations:

$$
\begin{align*}
& R_{y} R_{z} R_{t}+(-1)^{|y||z|+|y||t|+|z||t|} R_{t} R_{z} R_{y}+(-1)^{|z||t|} R_{(y t) z} \\
= & R_{y} R_{z t}+(-1)^{|y||z|} R_{z} R_{y t}+(-1)^{|t||y z|} R_{t} R_{y z}  \tag{5}\\
& {\left[R_{x y}, R_{z}\right]_{s}+(-1)^{|y||z|}\left[R_{x z}, R_{y}\right]_{s}+(-1)^{|x||y z|}\left[R_{y z}, R_{x}\right]_{s}=0, } \tag{6}
\end{align*}
$$

where $\left[R_{x}, R_{y}\right]_{s}=R_{x} R_{y}-(-1)^{|x||y|} R_{y} R_{x}$ denotes the supercomutator of the operators $R_{x}, R_{y}$.
It is well known (see, for instance, [Jac, MZ1]) that every Jordan bimodule $V$ over a unital Jordan (super)algebra $J$ is decomposed into a direct sum of three subbimodules

$$
V=V(0) \oplus V(1) \oplus V(1 / 2)
$$

where $V(0)$ is a trivial bimodule, $V(1)$ is a unital bimodule, and $V(1 / 2)$ is a semi-unital or one-sided bimodule, that is, where the unit 1 of $J$ acts as $\frac{1}{2}$. Moreover, for a semi-unital bimodule $V$, the mapping $a \mapsto 2 R_{a}$ is a homomorphism of a Jordan (super)algebra $J$ into the special Jordan (super)algebra $(E n d V)^{+}$. Therefore, a simple exceptional unital Jordan (super)algebra admits only unital irreducible bimodules.

It was shown in [Sh] that the Kantor double $J(P)$ for a Poisson superalgebra $P$ is special if and only if it satisfies the identity $\{\{P, P\}, P\}=0$. Evidently, the superalgebra $G_{n}$ does not satisfy this condition, hence the superalgebra $\operatorname{Kan}(n)=J(G)$ is exceptional. In particular, every irreducible Jordan bimodule over $\operatorname{Kan}(n)$ is unital.

Below $V$ denotes a unital Jordan bimodule over the superalgebra $\operatorname{Kan}(n)$.
The next Lemma gives the first properies of the right operators over $V$.
Lemma 2.1. Given index sets $I=\left\{i_{1}, \ldots, i_{k}\right\}$ and $J=\left\{j_{1}, \ldots, j_{s}\right\}$ contained in $I_{n}=$ $\{1, \ldots, n\}$, we have

1. $\left[R_{e_{I}}, R_{e_{J}}\right]_{s}=0$, for all I and $J$.
2. $\left[R_{e_{I}}, R_{\overline{\bar{U}_{J}}}\right]_{s}=0$, if $|J \cap I| \geq 2$.
3. $\left[R_{e_{I}}, R_{\overline{1}}\right]_{s}=0$, for all $I \neq\{1,2, \ldots, n\}$.
4. $\left[R_{\overline{e_{I}}}, R_{\overline{e_{J}}}\right]_{s}=0$, if $I \cap J \neq \phi$.

Proof. We will leave the proof of item 1 to the end.
For item 2, the set $I \cap J$ has at least two elements, and we can assume, without loss of generality, that these elements are $j_{1}$ and $j_{s}$. Let

$$
x=e_{j_{1}}, y=\overline{e_{j_{2}} \cdots e_{j_{s}}}, \text { and } z=e_{I},
$$

then

$$
x y=e_{J} \text { and } x z=y z=0,
$$

and relation (6) finishes the proof.
For item 3 , as $I \neq\{1,2, \ldots, n\}$, there is $p \notin I$, so if

$$
x=\overline{e_{p}}, y=\overline{e_{p} e_{I}} \text { and } z=\overline{1},
$$

we have

$$
x y=(-1)^{k} e_{I} \text { and } x z=y z=0,
$$

and again by (6) the item is shown.
For item 4, we take

$$
x=e_{I}, y=\overline{1} \text { and } z=\overline{e_{J}},
$$

then

$$
x y=\overline{e_{I}} \text { and } x z=y z=0,
$$

and one more time using (6) we obtain the result.
For item 1, first we suppose that $e_{I} \neq e_{J}$, so there exists $e_{j_{1}}$ such that $e_{j_{1}} \notin I$. Therefore, taking

$$
x=\overline{e_{j_{1}}}, y=\overline{e_{j_{1}} e_{I}} \text { and } z=e_{J},
$$

we have

$$
x y=(-1)^{k} e_{I} \text { and } x z=y z=0,
$$

and (6) proves the item.
Now, if $I=J=\left\{e_{i}\right\}$, we take $e_{j} \neq e_{i}$, and

$$
x=\overline{e_{j}}, y=\overline{e_{j} e_{i}} \text { and } z=e_{i},
$$

then

$$
x y=e_{i}, x z=-\overline{e_{j} e_{i}} \text { and } y z=0,
$$

hence by (6) and item 4,

$$
\left[R_{e_{i}}, R_{e_{i}}\right]_{s}=\left[R_{x y}, R_{z}\right]_{s}=\left[R_{y}, R_{x z}\right]_{s}=\left[R_{\bar{e}_{j} e_{i}}, R_{\bar{e}_{j e_{i}}}\right]_{s}=0 .
$$

Finally, if $I=J$ and $|I| \geq 2$, we take

$$
x=e_{i_{1}}, y=e_{i_{2}} \cdots e_{i_{k}}, \text { and } z=e_{I},
$$

then

$$
x y=e_{I}, x z=y z=0
$$

and (6) finishes the proof.
As a corollary, we obtain the next lemma.
Lemma 2.2. The following statements hold:

1. If $a \in \operatorname{Kan}(n)_{1}, a=e_{I}$ or $\overline{e_{I}}$ and $a \neq \overline{1}$, then $R_{a}^{2}=0$.
2. If $a \in \operatorname{Kan}(n)_{0}, a=e_{I}$ or $\overline{e_{I}}$ and $a \neq 1, \overline{e_{i}}$, then $R_{a}^{3}=0$.
3. $R_{\overline{e_{i}}}^{3}=R_{\overline{e_{i}}}$, for all $i \in\{1, \ldots, n\}$.
4. If $V$ is irreducible and $F$ is algebrically closed then $R_{\overline{1}}^{2}=\alpha$ for some $\alpha \in F$.

Proof. By items 1 and 4 of the previous lemma, for $a \in \operatorname{Kan}(n)_{1}, a=e_{I}$ or $a=\overline{e_{I}}$, and $a \neq \overline{1}$ we have

$$
\left[R_{a}, R_{a}\right]_{s}=2 R_{a}^{2}=0
$$

which proves item 1.
Now, if $a \in \operatorname{Kan}(n)_{0}$, by superidentity (5) we have

$$
2 R_{a}^{3}+R_{a^{3}}-3 R_{a} R_{a^{2}}=0
$$

If $a=e_{I}$ or $\overline{e_{I}}$ and $a \neq 1, \overline{e_{i}}$, then $a^{2}=0$ and $R_{a}^{3}=0$, proving item 2 .
On the other hand, if $a=\overline{e_{i}}$ then $a^{2}=1$, and since $V$ is unital, the same identity implies $2 R_{a}^{3}=2 R_{a}$, proving item 3 .

For item 4, we recall the following identity which holds in Jordan algebras [Jac]:

$$
(a, d, b) c-(a, d c, b)+d(a, b, c)=0
$$

where $(a, b, c)=(a b) c-a(b c)$ is the associator of the elements $a, b, c$. For Jordan superalgebras, the super-version of this identity holds:

$$
(a, d, b) c-(-1)^{|b||c|}(a, d c, b)+(-1)^{|a||d|} d(a, b, c)=0
$$

Now, if we take $c \in \operatorname{Kan}(n), a=b=\overline{1}$, and $d=v \in V$, is easy to see that $(a, c, b)=0$, hence

$$
(\overline{1}, v, \overline{1}) c=(-1)^{|c|}(\overline{1}, v c, \overline{1})
$$

Therefore, $U=(\overline{1}, V, \overline{1})$ is a subbimodule of $V$, and as $V$ is irreducible, we have $U=0$ or $U=V$ 。

If $U=0$, it is clear that $R_{\overline{1}}^{2}=0 \in F$. Otherwise $R_{\overline{1}}^{2}$ is an authomorphim of $V$, and by the Schur lemma, $R_{\overline{1}}^{2}=\alpha \in F$.

## 3 Special Element in $V$

Lemma 3.1. If $V$ is an unital Jordan bimodule over $\operatorname{Kan}(n)$, then there exists $0 \neq v \in V_{0} \cup V_{1}$ such that

$$
v e_{I}=v \overline{e_{I}}=0
$$

for all $\phi \neq I \subseteq I_{n}=\{1, \ldots, n\}$.

Proof. For $w \in V$, denote $N_{w}=\{a \in \operatorname{Kan}(n) \mid w a=0\}$. We want to find $0 \neq v \in V$ such that $e_{I}, \overline{e_{I}} \in N_{v}$ for all $\phi \neq I \subseteq I_{n}$.

As $\left[R_{e_{I}}, R_{e_{J}}\right]_{s}=0$ for all $I, J \subseteq I_{n}$, and $R_{e_{I}}^{3}=0$ for all $I \neq \phi$, the subsuperalgebra of End $V$ generated by the set $\left\{R_{e_{I}} \mid \phi \neq I \subseteq I_{n}\right\}$ is nilpotent. Therefore, there exists $0 \neq u \in V_{0} \cup V_{1}$ such that

$$
e_{I} \in N_{u}, \text { for all } \phi \neq I \subseteq I_{n} .
$$

If $\overline{e_{I_{n}}} \notin N_{u}$, consider $u_{1}=u \overline{{I_{n}}_{n}}$. Since $\left[R_{e_{I}}, R_{\overline{e_{I_{n}}}}\right]_{s}=0$ for $|I| \geq 2$, for these $I$ 's we have $e_{I} \in N_{u_{1}}$. In order to show that $e_{i} \in N_{u_{1}}$ for all $i \in I_{n}$, we first substitute in the main Jordan superidentity (1) $x=\overline{e_{i}}, y=e_{I_{n}^{\prime}}, z=u$, and $t=e_{i}$, where $I_{n}^{\prime}=\{1, \ldots, i-1, i+1, \ldots, n\}$. Then we obtain

$$
\left(u \overline{{I_{n}}_{n}}\right) e_{i}=\left(u \overline{e_{i}}\right) e_{I_{n}} .
$$

Substituting now again in (1) $x=u, y=e_{I_{n}^{\prime}}, z=\overline{e_{i}}$, and $t=e_{i}$, we get

$$
\left(u \overline{e_{i}}\right) e_{I_{n}}=0,
$$

hence $u_{1} e_{i}=0$, for all $i \in I_{n}$. Therefore,

$$
e_{I} \in N_{u_{1}} \text {, for all } \phi \neq I \subseteq I_{n} .
$$

If $\overline{e_{I_{n}}} \notin N_{u_{1}}$, we consider the element $u_{2}=u_{1} \overline{e_{I_{n}}}$ and again get

$$
e_{I} \in N_{u_{2}}, \text { for all } \phi \neq I \subseteq I_{n} .
$$

Since $R_{\bar{e}_{I_{n}}}^{3}=0$, we conclude that there exists $0 \neq w \in\left\{u, u_{1}, u_{2}\right\}$ such that

$$
e_{J}, \overline{e_{I_{n}}} \in N_{w} \text { for all } \phi \neq I \subseteq I_{n} .
$$

For elements $\overline{e_{I}}$ with $2 \leq|I|<n$, substitute in (1) $x=e_{i_{1}}, y=e_{I^{\prime}}, z=\overline{1}$, and $t=w$, where $I=\left\{i_{1}, \ldots, i_{k}\right\}$ and $I^{\prime}=\left\{i_{2}, \ldots, i_{k}\right\} ;$ then we get

$$
w \overline{e_{I}}=(-1)^{k+1}(w \overline{1}) e_{I} .
$$

Since $\left[R_{\overline{1}}, R_{e_{I}}\right]_{s}=0$ and $w e_{I}=0$, this implies

$$
\overline{e_{I}} \in N_{w} \text { for all } I \text { with }|I| \geq 2 .
$$

At this point, we need to incorporate the elements $\overline{e_{i}}$ for $i \in I_{n}$. First we show that

$$
\left(w \overline{e_{i}}\right) \overline{e_{i}}=\left(w \overline{e_{j}}\right) \overline{e_{j}}, \text { for all } i \neq j
$$

Substituting in (1) $x=w, y=\overline{e_{i}}, z=\overline{1}$, and $t=\overline{e_{j}}$, we obtain

$$
\left(\left(w \overline{e_{i}}\right) \overline{1}\right) \overline{e_{j}}=-\left(\left(w \overline{e_{j}}\right) \overline{1}\right) \overline{e_{i}},
$$

and continuing with $x=w \overline{e_{i}}, y=\overline{1}, z=\overline{e_{j}}$, and $t=\overline{e_{i} e_{j}}$, we get

$$
\left(\left(\left(w \overline{e_{i}}\right) \overline{1}\right) \overline{e_{j}}\right) \overline{e_{i} e_{j}}-\left(\left(\left(w \overline{e_{i}}\right) \overline{e_{i} e_{j}}\right) \overline{e_{j}}\right) \overline{1}=\left(\left(w \overline{e_{i}}\right) \overline{\overline{1}}\right) e_{i} .
$$

Since $\left[R_{\overline{e_{i}}}, R_{\overline{e_{i} e_{j}}}\right]_{s}=0$ we have

$$
\left(\left(\left(w \overline{e_{i}}\right) \overline{e_{i} e_{j}}\right) \overline{e_{j}}\right) \overline{1}=\left(\left(\left(w \overline{e_{i} e_{j}}\right) \overline{e_{i}}\right) \overline{e_{j}}\right) \overline{1}=0,
$$

so

$$
\left(\left(\left(w \overline{e_{i}}\right) \overline{1}\right) \overline{e_{j}}\right) \overline{e_{i} e_{j}}=\left(\left(w \overline{e_{i}}\right) \overline{1}\right) e_{i} .
$$

Substituting again in (1) $x=w, y=\overline{e_{i}}, z=\overline{1}$, and $t=e_{i}$, we obtain

$$
\begin{equation*}
\left(\left(w \overline{e_{i}}\right) \overline{1}\right) e_{i}=-\left(w \overline{e_{i}}\right) \overline{e_{i}} \tag{7}
\end{equation*}
$$

hence

$$
\left(\left(\left(w \overline{e_{i}}\right) \overline{1}\right) \overline{e_{j}}\right) \overline{e_{i} e_{j}}=-\left(w \overline{e_{i}}\right) \overline{e_{i}} .
$$

Similarly,

$$
\left(\left(\left(w \overline{e_{j}}\right) \overline{1}\right) \overline{e_{i}}\right) \overline{e_{i} e_{j}}=-\left(\left(w \overline{e_{j}}\right) \overline{1}\right) e_{j}=\left(w \overline{e_{j}}\right) \overline{e_{j}}
$$

and finally

$$
\left.\left.-\left(w \overline{e_{i}}\right) \overline{e_{i}}=\left(w \overline{e_{i}}\right) \overline{1}\right) \overline{e_{j}}\right) \overline{e_{i} e_{j}}=-\left(\left(\left(w \overline{e_{j}}\right) \overline{1}\right) \overline{e_{i}}\right) \overline{e_{i} e_{j}}=-\left(w \overline{e_{j}}\right) \overline{e_{j}},
$$

what we wanted to prove.
Now, since $R_{\overline{e_{i}}}^{3}=R_{\overline{e_{i}}}$, we have

$$
\left(\left(w \overline{e_{i}}\right) \overline{e_{i}}\right) \overline{e_{j}}=\left(\left(w \overline{e_{j}}\right) \overline{e_{j}}\right) \overline{e_{j}}=w \overline{e_{j}} .
$$

Therefore, if there exists $k \in I_{n}$ such that $w \overline{e_{k}}=0$, then $w \overline{e_{i}}=0$ for all $i \in I$, and we finish the proof taking $v=w$.

Suppose then that $w \overline{e_{i}} \neq 0$ for all $i \in I_{n}$, then we show that

$$
\left(w \overline{e_{i}}\right) e_{i} \neq 0, \text { for all } i \in I_{n}
$$

In fact, by item 3 of Lemma 2.1, $R_{\overline{1}} R_{e_{i}}=-R_{e_{i}} R_{\overline{1}}$, hence by (7)

$$
\left(w \overline{e_{i}}\right) \overline{e_{i}}=\left(\left(w \overline{e_{i}}\right) e_{i}\right) \overline{1}
$$

and if $\left(w \overline{e_{i}}\right) e_{i}=0$ for some $i \in I_{n}$, then

$$
0 \neq w \overline{e_{i}}=\left(\left(w \overline{e_{i}}\right) \overline{e_{i}}\right) \overline{e_{i}}=\left(\left(\left(w \overline{e_{i}}\right) e_{i}\right) \overline{1}\right) \overline{e_{i}}=0
$$

a contradiction. Therefore,

$$
\left(w \overline{e_{i}}\right) e_{i} \neq 0 \text { for all } i \in I_{n}
$$

Furthermore, for $i, j \in I_{n}$ with $i \neq j$ we substitute in (1) $x=w, y=\overline{e_{i}}, z=\overline{e_{i} e_{j}}$, and $t=\overline{e_{j}}$, then in view of the relations $\left[R_{e_{i}}, R_{e_{i} e_{j}}\right]_{s}=\left[R_{e_{j}}, R_{e_{i} e_{j}}\right]_{s}=0$, we obtain

$$
\left(w \overline{e_{i}}\right) e_{i}=\left(w \overline{e_{j}}\right) e_{j} .
$$

We now show that the element $v=\left(w \overline{e_{1}}\right) e_{1}$ satisfies the statement of lemma. Let $i \in I_{n}$, then

$$
v e_{i}=\left(\left(w \overline{e_{1}}\right) e_{1}\right) e_{i}=\left(\left(w \overline{e_{i}}\right) e_{i}\right) e_{i}=0, \text { since } R_{e_{i}}^{2}=0
$$

Now, let $I=\left\{i_{1}, \ldots, i_{k}\right\} \subseteq I_{n}$ be, with $k \geq 2$, then in view of item 1 of Lemma 2.1

$$
v e_{I}=\left(\left(w \overline{e_{i_{1}}}\right) e_{i_{1}}\right) e_{I}= \pm\left(\left(w \overline{e_{i_{1}}}\right) e_{I}\right) e_{i_{1}}
$$

Substituting in (1) $x=w, y=e_{I^{\prime}}, z=\overline{e_{i_{1}}}$, and $t=e_{i_{1}}$, where $I^{\prime}=\left\{i_{2}, \ldots, i_{k}\right\}$, we obtain

$$
\left(w \overline{e_{i_{1}}}\right) e_{I}=0
$$

hence

$$
v e_{I}=0, \text { for all } \phi \neq I \subseteq I_{n}
$$

Analogously as we showed that $w \overline{e_{I}}=0$, for $I \subseteq I_{n}$ with $2 \leq|I|=k<n$, we can show that $v \overline{e_{I}}=0$ for these $I$ 's. Furthermore, substituting in (1) $x=w, y=\overline{e_{1}}, z=e_{1}$, and $t=\overline{e_{I_{n}}}$, we have

$$
v \overline{e_{I_{n}}}=\left(\left(w \overline{e_{1}}\right) e_{1}\right) \overline{e_{I_{n}}}=0
$$

Finally, substituting in (1) $x=w, y=\overline{e_{i}}, z=e_{i}$, and $t=\overline{e_{i}}$, we obtain

$$
v \overline{e_{i}}=\left(\left(w \overline{e_{i}}\right) e_{i}\right) \overline{e_{i}}=0
$$

ending the proof.

## 4 Action of $\operatorname{Kan}(n)$ on $V$.

In this section, we will assune that the bimodule $V$ is irreducible. We will find a finite set that generates $V$ as a vector space and will determine the action of the superalgebra $\operatorname{Kan}(n)$ on this set.

Let us begin with notation. If $I=\left\{i_{1}, \ldots, i_{k}\right\} \subseteq I_{n}=\{1, \ldots, n\}$ and $w \in V$, we denote

$$
w(I):=w \overline{\overline{1}} \overline{e_{1}} \overline{1} \cdots \overline{1} \overline{e_{i_{k}}}:=\left(\cdots\left(\left((w \overline{1}) \overline{e_{i_{1}}}\right) \overline{1}\right) \cdots \overline{1}\right) \overline{e_{i_{k}}},
$$

and

$$
\left.\overline{w(I)}:=w \overline{1} \overline{e_{i_{1}}} \overline{1} \cdots \overline{1} \overline{e_{i_{k}}} \overline{1}:=\left(\left(\cdots\left((w \overline{1}) \overline{e_{i_{1}}}\right) \overline{1}\right) \cdots \overline{1}\right) \overline{e_{i_{k}}}\right) \overline{1} .
$$

In particular, $w(\phi)=w$ and $\overline{w(\phi)}=w \overline{1}$.
It follows from (5) that

$$
\begin{equation*}
R_{\bar{e}_{i}} R_{\overline{1}} R_{\bar{e}_{i}}=0, \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
R_{\bar{e}_{i}} R_{\overline{1}} R_{\bar{e}_{j}}=-R_{\bar{e}_{j}} R_{\overline{1}} R_{\bar{e}_{i}}, \quad \text { for } i \neq j, \tag{9}
\end{equation*}
$$

so if $\sigma$ is a permutation of $I$,

$$
w(I)=\operatorname{sgn}(\sigma) w(\sigma(I)),
$$

where $\operatorname{sgn}(\sigma)$ is the sign of $\sigma$.
We want to show that the subspace of $V$ generated by the elements $v(I)$ and $\overline{v(I)}$, where $I$ runs all the subsets of $I_{n}$ and $v$ is the element from the previous section, is closed under the action of $\operatorname{Kan}(n)$ and hence coincides with $V$.

Lemma 4.1. If $I, J \subseteq I_{n}$, with $J \nsubseteq I$, then

$$
v(I) e_{J}=v(I) \overline{e_{J}}=\overline{v(I)} e_{J}=0 .
$$

Moreover, if $|J \backslash I| \geq 2$, then

$$
\overline{v(I)} \overline{e_{J}}=0 .
$$

Proof. Let $I=\left\{i_{1}, \ldots, i_{k}\right\}$ and $J=\left\{j_{1}, \ldots, j_{s}\right\}$. We use induction on $|I|=k$. If $k=0$, then by the properties of the element $v$ we have

$$
v e_{J}=v \overline{e_{J}}=0, \text { if }|J| \geq 1 .
$$

Moreover, by item 3 of Lemma 2.1, $\left[R_{\overline{1}}, R_{e_{J}}\right]_{s}=0$ for $J \neq I_{n}$, hence

$$
(v \overline{1}) e_{J}= \pm\left(v e_{J}\right) \overline{1}=0 \text { for } J \neq I_{n} .
$$

For $J=I_{n}$, we substitute in (1) $x=e_{1}, y=e_{I^{\prime}}, z=\overline{1}$, and $t=v$, where $I^{\prime}=\{2, \ldots, n\}$, then $(v \overline{1}) e_{I_{n}}= \pm v \overline{e_{I_{n}}}=0$.

Finally, substituting in (1) $x=\overline{1}, y=e_{j_{1}}, z=v$, and $t=\overline{e_{J^{\prime}}}$, where $J^{\prime}=\left\{j_{2}, \ldots, j_{s}\right\}$, we obtain

$$
(v \overline{1}) \overline{e_{J}}=0, \text { if }|J| \geq 2 .
$$

Now, suppose that the lemma is true for $|I|=m<k$. Let $I^{\prime}=I \backslash\left\{i_{k}\right\}$, then we have by (1) and induction on $|I|$

$$
\begin{aligned}
v(I) e_{J} & =\left(\left(v\left(I^{\prime}\right) \overline{1}\right) \bar{e}_{i_{k}}\right) e_{J} \\
& = \pm\left(\left(v\left(I^{\prime}\right) e_{J}\right) \bar{e}_{i_{k}}\right) \overline{1} \pm v\left(I^{\prime}\right)\left(\bar{e}_{J} \bar{e}_{i_{k}}\right)+\left(v\left(I^{\prime}\right) \overline{1}\right)\left(\bar{e}_{i_{k}} e_{J}\right) \pm\left(v\left(I^{\prime}\right) \bar{e}_{i_{k}}\right) \bar{e}_{J} \\
& = \pm v\left(I^{\prime}\right)\left(\overline{e_{J}} \overline{e_{i_{k}}}\right) \pm \overline{v\left(I^{\prime}\right)}\left(\overline{e_{i_{k}}} e_{J}\right) .
\end{aligned}
$$

Consider the two cases. If $i_{k} \in J$, then $\overline{e_{J}} \overline{e_{i_{k}}}= \pm e_{J \backslash\left\{i_{k}\right\}}, \overline{e_{i_{k}}} e_{J}=0$. Since $J \nsubseteq I$, we have $J \backslash\left\{i_{k}\right\} \nsubseteq I^{\prime}$. Therefore, by induction on $|I|, v\left(I^{\prime}\right) e_{J \backslash\left\{i_{k}\right\}}=0$. Finally, if $i_{k} \notin J$ then $\overline{e_{J}} \overline{e_{i_{k}}}=0, \overline{e_{i_{k}}} e_{J}= \pm \overline{e_{J \cup\left\{i_{k}\right\}}}$. Clearly, $\left|\left(J \cup\left\{i_{k}\right\}\right) \backslash I^{\prime}\right| \geq 2$ hence by induction on $|I|$ we have $\overline{v\left(I^{\prime}\right)} \overline{e_{J \cup\left\{i_{k}\right\}}}=0$. Therefore, in both cases $v(I) e_{J}=0$, proving first equality of the lemma.

Similarly,

$$
\begin{aligned}
v(I) \overline{e_{J}} & =\left(\left(v\left(I^{\prime}\right) \overline{1}\right) \overline{e_{k}}\right) \overline{e_{J}}= \pm\left(\left(v\left(I^{\prime}\right) \overline{e_{J}}\right) \overline{e_{k}}\right) \overline{1} \pm\left(v\left(I^{\prime}\right) \overline{1}\right)\left(\overline{e_{i_{k}}} \overline{e_{J}}\right) \\
& =\text { (by induction on }|I|)= \pm v\left(I^{\prime}\right)\left(\overline{e_{i_{k}}} \overline{e_{J}}\right) .
\end{aligned}
$$

As in the previous case, we have $\overline{v\left(I^{\prime}\right)}\left(\overline{e_{i_{k}}} \overline{e_{J}}\right)=0$, proving second equality of the lemma.
Since $\left[R_{\overline{1}}, R_{e_{J}}\right]_{s}=0$ for $J \neq I_{n}$, we have $\overline{v(I)} e_{J}=(v(I) \overline{1}) e_{J}= \pm\left(v(I) e_{J}\right) \overline{1}=0$, with $J \neq I_{n}, \quad J \nsubseteq I$. For $J=I_{n}$ we have by (1)

$$
\begin{aligned}
\overline{v(I)} e_{I_{n}} & =\left(\left(\overline{v\left(I^{\prime}\right)} \overline{e_{i_{k}}}\right) \overline{1}\right) e_{I_{n}}= \pm\left(\left(\overline{v\left(I^{\prime}\right)} e_{I_{n}}\right) \overline{1} \overline{e_{e_{k}}}+(-1)^{n}\left(\overline{v\left(I^{\prime}\right)} \overline{e_{i_{k}}}\right) \overline{e_{I_{n}}}\right. \\
& =(\text { by induction on }|I|)=(-1)^{n} v(I) \overline{e_{I_{n}}},
\end{aligned}
$$

where $I^{\prime}=I \backslash\left\{i_{k}\right\}$. Therefore, for any $I \subsetneq I_{n}$ we have $\overline{v(I)} e_{I_{n}}= \pm v(I) \overline{e_{I_{n}}}=0$. We will also need later the following equality for $I=I_{n}$ :

$$
\begin{equation*}
\overline{v\left(I_{n}\right)} e_{I_{n}}=(-1)^{n} v\left(I_{n}\right) \overline{e_{I_{n}}} . \tag{10}
\end{equation*}
$$

Finally, we have by (1) and Lemma 4.1 for $J^{\prime}=J \backslash\left\{j_{1}\right\}$, with $e_{j_{1}} \notin I$ :

$$
\overline{v(I)} \overline{e_{J}}=(v(I) \overline{1})\left(e_{j_{1}} \overline{e_{J^{\prime}}}\right)= \pm \overline{e_{j_{1}}}\left(v(I) \overline{e_{J^{\prime}}}\right) \pm\left(\left(\overline{1} e_{j_{1}}\right) v(I)\right) \overline{e_{J^{\prime}}} \pm \overline{1}\left(v(I) \overline{e_{J}}\right) .
$$

By the previous cases, since $j_{1} \notin I$ and $J^{\prime} \nsubseteq I$, we have

$$
\begin{gathered}
\left(\left(\overline{1} e_{j_{1}}\right) v(I)\right) \overline{e_{J^{\prime}}}= \pm\left(v(I) \overline{e_{j_{1}}} \overline{\overline{e_{J^{\prime}}}}=0,\right. \\
v(I) \overline{e_{J}}=v(I) \overline{e_{J^{\prime}}}=0,
\end{gathered}
$$

hence

$$
\overline{v(I)} \overline{e_{J}}=0,
$$

proving the lemma.
Lemma 4.2. Let $J=\left\{j_{1}, \ldots, j_{s}\right\} \subseteq I=\left\{i_{1}, \ldots, i_{k-s}, j_{s}, j_{s-1}, \ldots, j_{1}\right\}$. Then

- $v(I) e_{J}=v(I \backslash J)$,
- $v(I) \overline{e_{J}}=\overline{v(I \backslash J)}$,
- $\overline{v(I)} e_{J}=(-1)^{|J|} \overline{v(I \backslash J)}$,
- $\overline{v(I)} \overline{e_{J}}=(-1)^{|J|-1} \alpha(|J|-1) v(I \backslash J)$,
where $\alpha=R_{1}^{2}$. Furthermore, if $|J \backslash I|=1, I=\left\{i_{1}, \ldots, i_{k-s+1}, j_{s-1}, \ldots, j_{1}\right\}, J=\left\{j_{1}, \ldots, j_{s}\right\}$, then

$$
\overline{v(I)} \overline{e_{J}}=(-1)^{s-1} \overline{v(I \backslash J)} \overline{e_{j_{s}}}=(-1)^{s-1} v\left((I \backslash J) \cup\left\{j_{s}\right\}\right)=(-1)^{s-1} v\left(\left\{i_{1}, \ldots, i_{k-s+1}, j_{s}\right\}\right) .
$$

Proof. We will use induction on $|J|=s$. If $s=0$, we have $e_{J}=1$ and all the claims are clear. For $s=1$, consider first $v(I) e_{j_{1}}$. Let $I^{\prime}=I \backslash\left\{j_{1}\right\}$, then by (1) and Lemma 4.1 we have

$$
\begin{aligned}
v(I) e_{j_{1}} & =\left(\left(v\left(I^{\prime}\right) \overline{1}\right) \bar{e}_{j_{1}}\right) e_{j_{1}} \\
& =\left(\left(v\left(I^{\prime}\right) e_{j_{1}}\right) \bar{e}_{j_{1}}\right) \overline{1}+v\left(I^{\prime}\right)\left(\bar{e}_{j_{1}} \bar{e}_{j_{1}}\right)-\left(v\left(I^{\prime}\right) \bar{e}_{j_{1}}\right) \bar{e}_{j_{1}}=v\left(I^{\prime}\right)
\end{aligned}
$$

which proves first equality for $s=1$. Similarly,

$$
\begin{aligned}
v(I) \overline{e_{j_{1}}} & =\left(\left(v\left(I^{\prime}\right) \overline{1}\right) \bar{e}_{j_{1}}\right) \bar{e}_{j_{1}} \\
& =-\left(\left(v\left(I^{\prime}\right) \bar{e}_{j_{1}}\right) \bar{e}_{j_{1}}\right) \overline{1}+\overline{v\left(I^{\prime}\right)}\left(\bar{e}_{j_{1}} \bar{e}_{j_{1}}\right)=\overline{v\left(I^{\prime}\right)}
\end{aligned}
$$

Third equality is true for $s=1$ since

$$
\overline{v(I)} e_{j_{1}}=(v(I) \overline{1}) e_{j_{1}}=-\left(v(I) e_{j_{1}}\right) \overline{1}=-v\left(I^{\prime}\right) \overline{1}=-\overline{v\left(I^{\prime}\right)}
$$

Furthermore, it follows from (8) and (9) that $\overline{v(I)} \overline{e_{j_{1}}}=0$, which proves fourth equality for $s=1$. Finally, if $j \notin I$ then by definition $\overline{v(I)} \overline{e_{j}}=v(I \cup\{j\})$, proving the last equality for $s=1$.

Assume now that the lemma is true if $|J|<s$. Let $I^{\prime}=I \backslash\left\{j_{1}\right\}$ and $J^{\prime}=J \backslash\left\{j_{1}\right\}$; then by (1), Lemma 4.1, and induction on $|J|$, we have

$$
\begin{aligned}
v(I) e_{J} & =\left(\left(v\left(I^{\prime}\right) \overline{1}\right) \overline{e_{j_{1}}}\right) e_{J} \\
& = \pm\left(\left(v\left(I^{\prime}\right) e_{J}\right) \overline{e_{j_{1}}} \overline{1}-(-1)^{s} v\left(I^{\prime}\right)\left(\overline{e_{J}} \overline{e_{j_{1}}}\right) \pm\left(v\left(I^{\prime}\right) \overline{e_{j_{1}}}\right) \overline{e_{J}}\right. \\
& =v\left(I^{\prime}\right) e_{J^{\prime}}=v\left(I^{\prime} \backslash J^{\prime}\right)=v(I \backslash J)
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
v(I) \overline{e_{J}} & =\left(\left(v\left(I^{\prime}\right) \overline{1}\right) \overline{e_{j_{1}}}\right) \overline{e_{J}} \\
& = \pm\left(\left(v\left(I^{\prime}\right) \overline{e_{J}}\right) \overline{e_{j_{1}}}\right) \overline{1}+\left(v\left(I^{\prime}\right) \overline{1}\right)\left(\overline{e_{J}} \overline{e_{j_{1}}}\right) \\
& =(-1)^{s-1} \overline{v\left(I^{\prime}\right)} e_{J^{\prime}}=\overline{v\left(I^{\prime} \backslash J^{\prime}\right)}=\overline{v(I \backslash J)}
\end{aligned}
$$

Furthermore, if $J \neq I_{n}$ then

$$
\overline{v(I)} e_{J}=(v(I) \overline{1}) e_{J}=(-1)^{|J|}\left(v(I) e_{J}\right) \overline{1}=(-1)^{|J|} v(I \backslash J) \overline{1}=(-1)^{|J|} \overline{v(I \backslash J)},
$$

and for $J=I_{n}$ we have by (10) $\overline{v\left(I_{n}\right)} e_{I_{n}}=(-1)^{n} v\left(I_{n}\right) \overline{e_{I_{n}}}=(-1)^{n}(v \overline{1})$, which proves third equality.

To prove fourth equality, observe first that

$$
\begin{aligned}
v(I) \overline{e_{J^{\prime}}} & =v\left(\left\{i_{1}, \ldots, i_{k-s}, j_{s}, \ldots, j_{2}, j_{1}\right\}\right) \overline{e_{\left\{j_{2}, \ldots, j_{s}\right\}}} \\
& =(-1)^{s-1} v\left(\left\{i_{1}, \ldots, i_{k-s}, j_{1}, j_{s}, \ldots, j_{2}\right\}\right) \overline{e_{\left\{j_{2}, \ldots, j_{s}\right\}}} \\
& =(-1)^{s-1} \overline{v\left(\left\{i_{1}, \ldots, i_{k-s}, j_{1}\right\}\right)}=(-1)^{s-1} \overline{v\left(I \backslash J^{\prime}\right)}
\end{aligned}
$$

Now, applying again (1), Lemma 4.1, and induction on $|J|$, we get

$$
\begin{aligned}
\overline{v(I)} \overline{e_{J}} & =(v(I) \overline{1})\left(e_{j_{1}} \overline{e_{J^{\prime}}}\right) \\
& =-\left(v(I) \overline{e_{J^{\prime}}}\right)\left(\overline{1} e_{j_{1}}\right)+\left((v(I) \overline{1}) e_{j_{1}}\right) \overline{e_{J^{\prime}}}-\left(\left(v(I) \overline{e_{J^{\prime}}}\right) e_{j_{1}}\right) \overline{1} \\
& =\overline{v\left(I \backslash J^{\prime}\right.} \overline{e_{j_{1}}}+\left(\overline{v(I)} e_{j_{1}}\right) \overline{e_{J^{\prime}}}-(-1)^{s-1}\left(\overline{v\left(I \backslash J^{\prime}\right)} e_{j_{1}}\right) \overline{\overline{1}} \\
& =-\overline{v\left(I^{\prime}\right)} \overline{e_{J^{\prime}}}+(-1)^{s-1} \overline{v(I \backslash J)} \overline{1} \\
& =-(-1)^{s-2} \alpha(s-2) v\left(I^{\prime} \backslash J^{\prime}\right)+(-1)^{s-1} \alpha v(I \backslash J) \\
& =(-1)^{s-1} \alpha(s-1) v(I \backslash J) .
\end{aligned}
$$

Finally, let $I=\left\{i_{1}, \ldots, i_{k-s+1}, j_{s-1}, \ldots, j_{1}\right\}, J=\left\{j_{1}, \ldots, j_{s}\right\}, J^{\prime}=J \backslash\left\{j_{s}\right\}$. Arguing as above, we get by Lemma 4.1

$$
\begin{aligned}
\overline{v(I)} \overline{e_{J}} & =(v(I) \overline{1})\left(e_{J^{\prime}} \overline{e_{j_{s}}}\right) \\
& \left.=-\left(v(I) \overline{e_{j_{s}}}\right) \overline{\overline{1}} e_{J^{\prime}}\right)+\left((v(I) \overline{1}) e_{J^{\prime}}\right) \overline{e_{j_{s}}}-\left(\left(v(I) \overline{e_{j_{s}}}\right) e_{J^{\prime}}\right) \overline{1} \\
& =\left(\overline{v(I)} e_{J^{\prime}}\right) \overline{e_{j_{s}}}=(-1)^{s-1} \overline{v\left(I \backslash J^{\prime}\right)} \overline{e_{j_{s}}}=(-1)^{s-1} v\left(\left(I \backslash J^{\prime}\right) \cup\left\{j_{s}\right\}\right) .
\end{aligned}
$$

This finishes the proof of the lemma.
Lemmas 3-5 imply the next theorem:
Theorem 4.3. Let $V$ be a unital irreducible bimodule over the superalgebra $\operatorname{Kan}(n)$ and $v \in V$ be a special element from Lemma 3.1, then $V$ is generated as a vector space by elements of the type

$$
\begin{equation*}
v(I), \overline{v(I)} \text {, where } I \subseteq I_{n}=\{1, \ldots, n\} \tag{11}
\end{equation*}
$$

Furthermore, let $I, J \subseteq I_{n}, J=\left\{j_{1}, \ldots, j_{s_{1}}, j_{s_{1}+1}, \ldots, j_{s_{1}+s_{2}}\right\}, I=\left\{i_{1}, \ldots, i_{k-s_{1}}, j_{s_{1}}, \cdots, j_{1}\right\}$. Then the action of $\operatorname{Kan}(n)$ on $V$ is defined, up to permutations of the index sets $I$ and $J$, as follows:

$$
\begin{aligned}
& v(I) e_{J}=\left\{\begin{array}{lll}
v(I \backslash J) & \text { if } & \left.s_{2}=0 \text { (or, equivalently, } J \subseteq I\right), \\
0 & \text { otherwise; }
\end{array}\right. \\
& v(I) \overline{e_{J}}= \begin{cases}\overline{v(I \backslash J)} & \text { if } \\
s_{2}=0, \\
0 & \text { otherwise; }\end{cases} \\
& \overline{v(I)} e_{J}= \begin{cases}(-1)^{s} \overline{v(I \backslash J)} & \text { if } \\
0 & s_{2}=0, \\
0 & \text { otherwise; }\end{cases} \\
& \overline{v(I)} \overline{e_{J}}= \begin{cases}(-1)^{s_{1}} \overline{v\left(I \backslash J_{1}\right)} \overline{e_{J_{2}}} & \text { if } \\
(-1)^{s-1} \alpha(s-1) v(I \backslash J) & \text { if } \\
s_{2}=0, \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

where $\alpha=R_{1}^{2}$, and $s=s_{1}+s_{2}=|J|$.
Proof. Let $W$ be the vector subspace of $V$ spanned by the set (11). It follows from Lemmas 4.1 and 4.2 that $W \operatorname{Kan}(n) \subseteq W$, that is, $W$ is a subbimodule of $V$. Clearly, $W \neq 0$, hence $W=V$. The rest of the theorem follows directly from Lemmas 4.1 and 4.2.

Since the action of $\operatorname{Kan}(n)$ on $V$ depends on the choise of a special element $v \in V$ and a parameter $\alpha=R_{1}^{2} \in F$, we will denote the bimodule $V$ as $V(v, \alpha)$.

## 5 Linear independence, Irreducibility, and Isomorphism problem

In this section, we will prove that the set (11), when $I$ runs all different (non-ordered) subsets of $I_{n}$, is in fact linearly independent and hence forms a base of the bimodule $V$. Furthermore, we will prove that $V(v, \alpha)$ is irreducible for any $\alpha \in F$ and that the bimodules $V(v, \alpha)$ and $V\left(v^{\prime}, \alpha^{\prime}\right)$ are isomorphic if and only if $|v|=\left|v^{\prime}\right|, \alpha=\alpha^{\prime}$.

Lemma 5.1. Given $I \subseteq I_{n}$, there exists an element $W=W(I)$ of the form $W=R_{a_{1}} \cdots R_{a_{p}}$ for some $a_{i} \in \operatorname{Kan}(n)$ such that

$$
\begin{aligned}
v(I) W & =v \\
\overline{v(J)} W & =0 \quad \text { for all } J \subseteq I_{n} \\
v(J) W & =0 \quad \text { for all } J \subseteq I_{n} \text { such that } J \neq I \text { as sets. }
\end{aligned}
$$

Similarly, there exists $W^{\prime}=W^{\prime}(I)$ of the form $W^{\prime}=R_{b_{1}} \cdots R_{b_{s}}$ for some $b_{i} \in \operatorname{Kan}(n)$ such that

$$
\begin{aligned}
\overline{v(I)} W^{\prime} & =v, \\
v(J) W^{\prime} & =0 \text { for all } J \subseteq I_{n}, \\
\overline{v(J)} W^{\prime} & =0 \quad \text { for all } J \subseteq I_{n} \text { such that } J \neq I \text { as sets. }
\end{aligned}
$$

Proof. Assume, for simplicity, that $I=\{1, \ldots, k\}$. Consider $W_{1}=R_{e_{I}} R_{\overline{1}} R_{\bar{e}_{k+1}} \cdots R_{\overline{1}} R_{\bar{e}_{n}}$; then we have

$$
\begin{aligned}
v(I) W_{1} & =v R_{\overline{1}} R_{\bar{e}_{k+1}} \cdots R_{\overline{1}} R_{\bar{e}_{n}}=v(\{k+1, \ldots, n\}), \\
\overline{v(I)} W_{1} & = \pm(v \overline{1}) R_{\overline{1}} R_{\bar{e}_{k+1}} \cdots R_{\overline{1}} R_{\bar{e}_{n}}=\cdots= \begin{cases}0 & \text { if } I \neq I_{n} \\
\pm v \overline{1} & \text { if } I=I_{n}\end{cases} \\
v(J) W_{1} & =\left\{\begin{array}{ll}
0 & \text { if } I \nsubseteq J, \\
v(J \backslash I) R_{\overline{1}} R_{\bar{e}_{k+1}} \cdots R_{\overline{1}} R_{\bar{e}_{n}} & \text { otherwise }
\end{array}=\cdots=0 \text { if } J \neq I,\right. \\
\overline{v(J)} W_{1} & = \begin{cases}0 & \text { if } I \nsubseteq J, \\
\pm \alpha v(J \backslash I) R_{\bar{e}_{k+1}} \cdots R_{\overline{1}} R_{\bar{e}_{n}} & \text { otherwise }\end{cases} \\
& = \begin{cases} \pm \alpha v(\{k+2, \ldots, n\}) & \text { if } I \subseteq J \text { and } J \backslash I=\{k+1\} \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

Now, if $I \neq I_{n}$, we can take $W(I)=W_{1} R_{e_{\left\{I_{n} \backslash I\right\}}}$, and for $I=I_{n}$ we can take $W(I)=$ $W_{1} R_{\overline{1}} R_{\bar{e}_{1}} R_{e_{1}}$. It is easy to check that in both cases $W(I)$ satisfies the conclusions of the first claim of lemma.

For the second claim, if $\alpha \neq 0$, it suffices to take $W^{\prime}(I)=R_{\overline{1}} W(I)$. Nevetherless, we will give a general proof. Assume first that $I \neq I_{n}$ and let $i \notin I$. Consider $\overline{v(I)} \bar{e}_{i}= \pm v(I \cup\{i\})$, then the element $W^{\prime}=R_{\bar{e}_{i}} W(I \cup\{i\})$, up to sign, satisfies the needed conditions. Finally, for $I=I_{n}$ one can take $W^{\prime}\left(I_{n}\right)=-R_{e_{n}} W^{\prime}\left(I_{n} \backslash\{n\}\right)$.

Lemma 5.1 implies several corollaries.
Corollary 5.2. Let $V=V(v, \alpha)$ be the bimodule over $\operatorname{Kan}(n)$ with the action defined in Theorem 4.3. Then the set of elements (11), when I runs all different (non-ordered) subsets of $I_{n}$, is a base of the vector space $V$.

Proof. We have already seen that the set (11) generates $V$. Assume that there exists a linear combination

$$
\sum_{I \subseteq I_{n}} \beta_{I} v(I)+\sum_{J \subseteq I_{n}} \bar{\beta}_{J} \overline{v(J)}=0
$$

where $\beta_{I}, \bar{\beta}_{J} \in F$. Applying the operators $W(I)$ and $W^{\prime}(J)$, we get that all $\beta_{I}=\bar{\beta}_{J}=0$.

Corollary 5.3. A special element $v \in V(v, \alpha)$ is defined uniquely up to a nonzero scalar.

Proof. Let $v^{\prime}$ be another special element in $V=V(v, \alpha)$ :

$$
v^{\prime}=\sum_{I \subseteq I_{n}} \beta_{I} v(I)+\sum_{J \subseteq I_{n}} \bar{\beta}_{J} \overline{v(J)}
$$

for some $\beta_{I}, \bar{\beta}_{J} \in F$. Observe that the operators $W, W^{\prime}$ in Lemma 5.1 do not depend on choose of the element $v$, and have the same form for elements $v, v^{\prime}$. Applying the operator $W(\phi)$ to both parts of the above equality, we get $v^{\prime}=\beta_{\phi} v$. Clearly, $\beta_{\phi} \neq 0$.

Corollary 5.4. The bimodule $V(v, \alpha)$ is irreducible for any $\alpha \in F$.
Proof. Suppose that $M$ is a non-zero sub-bimodule of $V=V(v, \alpha)$, and choose $0 \neq x \in M$ :

$$
x=\sum_{I \subseteq I_{n}} \beta_{I} v(I)+\sum_{J \subseteq I_{n}} \bar{\beta}_{J} \overline{v(J)}, \quad \beta_{I}, \bar{\beta}_{J} \in F
$$

Since $x \neq 0$, there is some $\beta_{I} \neq 0$ or $\bar{\beta}_{J} \neq 0$. Applying operators $W(I)$ or $W^{\prime}(J)$ from Lemma 5.1, we get in both cases that $v \in M$ and hence $M=V$.

Remark 5.5. It is easy to check that $V(v, \alpha)$ for $\alpha=0$ is isomorphic to the regular bimodule $\operatorname{Reg}(\operatorname{Kan}(n))$, hence this corollary gives an alternative proof that the superalgebra $\operatorname{Kan}(n)$ is simple.

Corollary 5.6. Bimodules $V(v, \alpha)$ and $V\left(v^{\prime}, \alpha^{\prime}\right)$ are isomorphic if and only if $|v|=\left|v^{\prime}\right|$ and $\alpha=\alpha^{\prime}$.

Proof. Denote $V=V(v, \alpha)$ and $V^{\prime}=V\left(v^{\prime}, \alpha^{\prime}\right)$. Observe that the operators $W, W^{\prime}$ in Lemma 5.1 have the same form for elements $v, v^{\prime}$. Assume that $\varphi: V \rightarrow V^{\prime}$ is an isomorphism of bimodules over $\operatorname{Kan}(n)$, then we have in $V^{\prime}$

$$
\varphi(v)=\sum_{I \subseteq I_{n}} \beta_{I} v^{\prime}(I)+\sum_{I \subseteq I_{n}} \bar{\beta}_{I} \overline{v^{\prime}(I)}, \text { for some } \beta_{I}, \overline{\beta_{I}} \in F
$$

Applying to both parts of this equality the operator $W=W(\phi)$, we get $\varphi(v)=\beta_{\phi} v^{\prime}$, with $0 \neq \beta_{\phi} \in F$. Since $\varphi$ maintains parity, this is impossible if $|v| \neq\left|v^{\prime}\right|$. Therefore, $|v|=\left|v^{\prime}\right|$, and we have

$$
\alpha \beta_{\phi} v^{\prime}=\alpha \varphi(v)=\varphi(\alpha v)=\varphi\left(v R_{\overline{1}}^{2}\right)=\varphi(v) R_{\overline{1}}^{2}=\alpha^{\prime} \varphi(v)=\alpha^{\prime} \beta_{\phi} v^{\prime}
$$

hence $\alpha=\alpha^{\prime}$.
Since, for a given $\alpha \in F$, the bimodule $V(v, \alpha)$ is defined, up to isomorphism, by the parity of $v$, we will denote by $V(\alpha)$ the bimodule $V(v, \alpha)$ with $|v|=|n|$.

Recall that, for a superalgebra $A=A_{0} \oplus A_{1}$, an $A$-superbimodule $V^{\mathrm{op}}=V_{0}^{\mathrm{op}}+V_{1}^{\mathrm{op}}$ is called opposite to an $A$-superbimodule $V=V_{0} \oplus V_{1}$, if $V_{0}^{\mathrm{op}}=V_{1}, V_{1}^{\mathrm{op}}=V_{0}$ and $A$ acts on it by the following rule: $a \cdot v=(-1)^{|a|} a v, v \cdot a=v a$, where $v \in V^{\mathrm{op}}, a \in A_{0} \cup A_{1}$.

It is easy to check that, for any superbimodule $V$, the identical application $V \rightarrow V^{o p}, v \mapsto$ $v$, is an odd isomorphism between $V$ and $V^{o p}$. In particular, if $V$ is Jordan, the opposite superbimodule $V^{\text {op }}$ is Jordan as well. We sometimes will say that the bimodule $V^{o p}$ is obtained from $V$ by changing of parity.

Corollaries 5.3 and 5.6 imply
Proposition 5.7. Every unital irreducible bimodule over $\operatorname{Kan}(n)$ is isomorphic to a bimodule $V(\alpha)$ or to its opposite $V(\alpha)^{\mathrm{op}}$. Moreover, the bimodules $V(\alpha)$ and $V(\alpha)^{\mathrm{op}}$ are not isomorphic.

Proof. It suffices to note that, for $\left|v^{\prime}\right|=|v|+1$, the mapping

$$
\sum_{I \subseteq I_{n}} \beta_{I} v(I)+\sum_{J \subseteq I_{n}} \bar{\beta}_{J} \overline{v(J)} \mapsto \sum_{I \subseteq I_{n}} \beta_{I} v^{\prime}(I)+\sum_{J \subseteq I_{n}} \bar{\beta}_{J} \overline{v^{\prime}(J)}
$$

defines an isomorphism of the bimodules $V(v, \alpha)^{o p}$ and $V\left(v^{\prime}, \alpha\right)$.

## $6 \quad V(\alpha)$ is Jordan

Finally, we will show that $V(\alpha)$ is a Jordan bimodule over $\operatorname{Kan}(n)$ for all $\alpha$. For this, we will embedd it into a Jordan superalgebra.

Recall than a linear operator $E$ on a unital algebra $A$ is called a generalized derivation of $A$ if it satisfies the relation

$$
E(a b)=E(a) b+a E(b)-a b E(1)
$$

Let $P=\left\langle P_{0} \oplus P_{1}, \cdot,\{\},\right\rangle$ be a unital Poisson superalgebra, $E: P \rightarrow P$ be a generalized derivation of $P$ which satisfies also the condition

$$
\begin{equation*}
E(\{p, q\})=\{E(p), q\}+\{p, E(q)\}+\{p, q\} E(1) \tag{12}
\end{equation*}
$$

Furthermore, let $(A, D)$ be a commutative associative algebra with a derivation $D$. Define the following bracket on the tensor product $P \otimes A$ :

$$
\begin{equation*}
\langle p \otimes a, q \otimes b\rangle=\{p, q\} \otimes a b+E(p) q \otimes a D(b)-(-1)^{|p||q|} E(q) p \otimes D(a) b \tag{13}
\end{equation*}
$$

where $p, q \in P, a, b \in A$.
Theorem 6.1. The bracket (13) is a Jordan bracket on the commutative and associative superalgebra $P \otimes A=\left(P_{0} \otimes A\right) \oplus\left(P_{1} \otimes A\right)$.

Proof. Observe first that a commutative associative superalgebra $P \otimes A$ with a superanticommutative bracket $<,>$ satisfies graded identities (2)-(4) if and only if the Grassmann envelope $G(P \otimes A)=G_{0} \otimes\left(P_{0} \otimes A\right)+G_{1} \otimes\left(P_{1} \otimes A\right)$, with the bracket $\langle a \otimes g, b \otimes h\rangle=\langle a, b\rangle \otimes g h$, satisfies the nongraded versions of these identities. It is easy to check the isomorphism

$$
G(P \otimes A) \cong G(P) \otimes A
$$

where $G(P)=G_{0} \otimes P_{0}+G_{1} \otimes P_{1}$ is the Grassmann envelope of the superalgebra $P$. So, passing to the Grassmann envelope, we see that it sufficient to prove nongraded identities (2)-(4) for the case when $P$ is a Poisson algebra (not a superalgebra).

Let us first check identity (2):

$$
\begin{gathered}
\langle(p \otimes a)(q \otimes b), r \otimes c\rangle=\langle p q \otimes a b, r \otimes c\rangle \\
=\{p q, r\} \otimes a b c+E(p q) r \otimes a b D(c)-E(r) p q \otimes c D(a b) \\
=(p\{q, r\}+q\{p, r\}) \otimes a b c+(E(p) q+p E(q)-p q E(1)) r \otimes a b D(c)-E(r) p q \otimes c D(a b) \\
=(p \otimes a)(\{q, r\} \otimes b c+E(q) r \otimes b D(c)-q E(r) \otimes c D(b)) \\
+(q \otimes b)(\{p, r\} \otimes a c+E(p) r \otimes a D(c)-p E(r) \otimes c D(a))-p q E(1) r \otimes a b D(c) \\
=(p \otimes a)\langle q \otimes b, r \otimes c\rangle+(q \otimes b)\langle p \otimes a, r \otimes c\rangle-(p \otimes a)(q \otimes b)\langle 1, r \otimes c\rangle,
\end{gathered}
$$

so (2) is satisfied.

Furthermore, the nongraded version of identity (3) has form

$$
J(a, b, c)=S(a, b, c)
$$

where $J(a, b, c)=\langle\langle a, b\rangle, c\rangle+\langle\langle b, c\rangle, a\rangle+\langle\langle c, a\rangle, b\rangle$ and $S(a, b, c)=\langle a, b\rangle\langle 1, c\rangle+\langle b, c\rangle\langle 1, a\rangle+$ $\langle c, a\rangle\langle 1, b\rangle$.

Consider

$$
\begin{gathered}
\langle\langle p \otimes a, q \otimes b\rangle, r \otimes c\rangle=\langle\{p, q\} \otimes a b+E(p) q \otimes a D(b)-E(q) p \otimes b D(a), r \otimes c\rangle \\
=\{\{p, q\}, r\} \otimes a b c+E(\{p, q\}) r \otimes a b D(c)-E(r)\{p, q\} \otimes c D(a b) \\
+\{E(p) q, r\} \otimes a D(b) c+E(E(p) q) r \otimes a D(b) D(c)-E(r) E(p) q \otimes D(a D(b)) c \\
-\{E(q) p, r\} \otimes b D(a) c-E(E(q) p) r \otimes b D(a) D(c)+E(r) E(q) p \otimes D(b D(a)) c .
\end{gathered}
$$

By the properties of the bracket $\{$,$\} and the generalized derivation E$, we have further

$$
\begin{gathered}
\langle\langle p \otimes a, q \otimes b\rangle, r \otimes c\rangle=\{\{p, q\}, r\} \otimes a b c+(\{E(p), q\}+\{p, E(q)\}+\{p, q\} E(1)) r \otimes a b D(c) \\
-E(r)\{p, q\} \otimes c(D(a) b+a D(b))+(E(p)\{q, r\}+q\{E(p), r\}) \otimes a D(b) c \\
+\left(E^{2}(p) q+E(p) E(q)-E(p) q E(1)\right) r \otimes a D(b) D(c) \\
-E(r) E(p) q \otimes\left(D(a) D(b) c+a D^{2}(b) c\right)-(E(q)\{p, r\}-p\{E(q), r\}) \otimes b D(a) c \\
-\left(E^{2}(q) p+E(q) E(p)-E(q) p E(1)\right) r \otimes b D(a) D(c) \\
+E(r) E(q) p \otimes\left(D(b) D(a)+b D^{2}(a)\right) c
\end{gathered}
$$

Calculating the cyclic sum, we get
$J(p \otimes a, q \otimes b, r \otimes c)=(E(1) \otimes 1)(\{p, q\} r \otimes a b D(c)+\{q, r\} p \otimes b c D(a)+\{r, p\} q \otimes c a D(b))$.
Consider now

$$
\begin{gathered}
\langle p \otimes a, q \otimes b\rangle\langle 1 \otimes 1, r \otimes c\rangle=(\{p, q\} \otimes a b+E(p) q \otimes a D(b)-E(q) p \otimes D(a) b)(E(1) r \otimes D(c)) \\
=(E(1) \otimes 1)(\{p, q\} r \otimes a b D(c)+E(p) q r \otimes a D(b) D(c)-E(q) p r \otimes D(a) b D(c)) .
\end{gathered}
$$

Therefore, the cyclic sum
$S(p \otimes a, q \otimes b, r \otimes c)=(E(1) \otimes 1)(\{p, q\} r \otimes a b D(c)+\{q, r\} p \otimes b c D(a)+\{r, p\} q \otimes c a D(b))$

$$
=J(p \otimes a, q \otimes b, r \otimes c)
$$

proving (3).
Finally, observe that all partial linearizations of (4) follow from identity (3), hence to prove (4) it suffices for us to prove that for any $p \in P_{1}$ and $a \in A$ holds

$$
\langle\langle p \otimes a, p \otimes a\rangle, p \otimes a\rangle=\langle p \otimes a, p \otimes a\rangle\langle 1 \otimes 1, p \otimes a\rangle .
$$

We have

$$
\begin{aligned}
\langle p \otimes a, p \otimes a\rangle & =\{p, p\} \otimes a a+E(p) p \otimes a D(a)+E(p) p \otimes D(a) a \\
& =\{p, p\} \otimes a^{2}+E(p) p \otimes D\left(a^{2}\right)
\end{aligned}
$$

and, furthermore,

$$
\begin{gathered}
\langle\langle p \otimes a, p \otimes a\rangle, p \otimes a\rangle=\left\langle\{p, p\} \otimes a^{2}+E(p) p \otimes D\left(a^{2}\right), p \otimes a\right\rangle \\
=\{\{p, p\}, p\} \otimes a^{3}+E(\{p, p\}) p \otimes a^{2} D(a)-E(p)\{p, p\} \otimes D\left(a^{2}\right) a \\
+\{E(p) p, p\} \otimes D\left(a^{2}\right) a+E(E(p) p) p \otimes D\left(a^{2}\right) D(a)-E(p) E(p) p \otimes D^{2}\left(a^{2}\right) a .
\end{gathered}
$$

We have $\{\{p, p\}, p\}=p^{2}=E(p)^{2}=0$, therefore by (12)

$$
\begin{gathered}
\langle\langle p \otimes a, p \otimes a\rangle, p \otimes a\rangle=(2\{E(p), p\}+E(1)\{p, p\}) p \otimes a^{2} D(a)-E(p)\{p, p\} \otimes D\left(a^{2}\right) a \\
+(E(p)\{p, p\}-p\{E(p), p\}) \otimes D\left(a^{2}\right) a=E(1)\{p, p\} p \otimes a^{2} D(a) .
\end{gathered}
$$

On the other hand,

$$
\begin{aligned}
\langle p \otimes a, p \otimes a\rangle\langle 1 \otimes 1, p \otimes a\rangle & =\left(\{p, p\} \otimes a^{2}+E(p) p \otimes D\left(a^{2}\right)\right)(E(1) p \otimes D(a)) \\
& =E(1)\{p, p\} p \otimes a^{2} D(a) .
\end{aligned}
$$

Hence (4) is true, and the theorem is proved.

Corollary 6.2. Let $P=\oplus_{i=0}^{\infty} P_{i}$ be a $\mathbf{Z}$-graded Poisson superalgebra such that $\left\{P_{i}, P_{j}\right\} \subseteq$ $P_{i+j-2}$. Then the application $E: P \rightarrow P, E: p_{i} \mapsto(i-1) p_{i}, p_{i} \in P_{i}$, is a generalized derivation of $P$ which satisfies relation (12). In particular, for any associative and commutative algebra $(A, D)$ with a derivation $D$, the tensor product superalgebra $P \otimes A$ has a Jordan bracket given by (13).

The Grassmann superalgebra $G_{n}$ has a natural $\mathbf{Z}$-grading given by degrees of monomials: $e_{I} \in\left(G_{n}\right)_{i}$ if and only if $|I|=i$. Clearly, $\left\{\left(G_{n}\right)_{i},\left(G_{n}\right)_{j}\right\} \subseteq\left(G_{n}\right)_{i+j-2}$, hence $G_{n}$ satisfies the previous corollary. Consider the polynomial algebra $A=F[t]$ with a derivation $D_{\alpha}$ defined by the condition $D_{\alpha}(t)=-\alpha t$, then the superalgebra $G_{n}[t] \cong G_{n} \otimes F[t]$ has a Jordan bracket defined by (13) with $D=D_{\alpha}$. Therefore, we have

Corollary 6.3. The Kantor double $J\left(G_{n}[t]\right)_{\alpha}$ with respect to the bracket defined on $G_{n}[t]=$ $G_{n} \otimes F[t]$ according to (13) with the derivation $D_{\alpha}$, is a Jordan superalgebra.

Now, we will find in the superalgebra $J\left(G_{n}[t]\right)_{\alpha}$ a $\operatorname{Kan}(n)$-subbimodule isomorphic to the bimodule $V(\alpha)$. Since $\langle a, b\rangle=\{a, b\}$ for $a, b \in G_{n}$, the superalgebra $\operatorname{Kan}(n)=J\left(G_{n}\right)$ is a subsuperalgebra of $J\left(G_{n}[t]\right)_{\alpha}$. Consider in $J\left(G_{n}[t]\right)_{\alpha}$ the subspace $W=G_{n} \otimes t+\overline{G_{n} \otimes t}$. Clearly, $W \bullet G_{n} \subseteq G_{n}$, and for $a, b \in G_{n}$ we have

$$
\begin{aligned}
\overline{a \otimes 1} \bullet \overline{b \otimes t} & =(-1)^{|b|}\langle a \otimes 1, b \otimes t\rangle=(-1)^{|b|}(\{a, b\} \otimes t+E(a) b \otimes \alpha t) \\
& =(-1)^{|b|} \alpha\{a, b\} E(a) b \otimes t \in W .
\end{aligned}
$$

Therefore, $W$ is a unital Jordan bimodule over $\operatorname{Kan}(n)=J\left(G_{n}\right)$. Let $w=e_{I_{n}} \otimes t$, then it is clear that $w$ is a specal element in $W$ that satisfies the properties of Lemma 3.1. Moreover, one can easily check that $W=V(w, \alpha)$, in notation of Section 5; the exact isomorphism is given by the mapping

$$
v(I) \mapsto(-1)^{\operatorname{sgn} \sigma} e_{\left\{I_{n} \backslash I\right\}} \otimes t, \overline{v(I)} \mapsto(-1)^{\operatorname{sgn} \sigma} \overline{e_{\left\{I_{n} \backslash I\right\}} \otimes t},
$$

where, for $I=\left\{i_{1}, \ldots, i_{k}\right\}, \sigma$ is a permutation $\sigma: I_{n} \mapsto\left(I_{n} \backslash I\right) \cup\left\{i_{k}, \ldots, i_{1}\right\}$.
Resuming, we can formulate our main theorem:
Theorem 6.4. The bimodule $V_{\alpha}$ is a unital Jordan irreducible bimodule over the superalgebra $\operatorname{Kan}(n)$, and every such a bimodule over $\operatorname{Kan}(n)$ for $n \geq 2$ over an algebraically closed field of characteristic not 2 is isomorphic to $V_{\alpha}$ or to its opposite bimodule.

## 7 Acknowledgements

The paper is a part of the PhD thesis of the first author done at the University of São Paulo. He acknowledges the support by the CAPES and CNPq grants. The second author acknowledges the support by the FAPESP and CNPq grants.

## References

[Jac] N. Jacobson, Structure and Representation of Jordan Algebras, Amer. Math. Soc. Providence, R.I.,(1969).
[JNW] P. Jordan, J. V. Neumann e E. Wigner, On an Algebraic Generalization of the Quantum Mechanical Formalism, Ann. of Math. (2)35 no.1, 29-64, (1934).
[Kac] V. G. Kac, Classification of simple $\mathbb{Z}$-graded Lie superalgebras and simple Jordan superalgebras, Comm. in Algebra 5 no. 13, 1375-1400, (1977).
[KMZ] V. G. Kac, C. Martínez and E. Zelmanov, Graded simple Jordan superalgebras of growth one, Memoris of the AMS 150 , 1-140, (2001).
[Kap] I. Kaplansky, Superalgebras, Pacific J. Math. 86 no.1, 93-98, (1980).
[Kan] I. Kantor, Jordan and Lie superalgebras defined by Poisson algebras, Algebra and Analysis (Tomsk, 1989), 55-79, Amer. Math. Soc. Transl. Ser. (2), 151, Amer. Math. Soc., Providence, RI, 1992.
[KMc] D. King and K. McCrimmon, The Kantor construction of Jordan superalgebras, Comm. in Algebra 20 no.1, 109-126, (1992).
[KMc1] D. King and K. McCrimmon, The Kantor doubling process revisited, Comm. in Algebra 23 no.1, 357-372, (1995)
[KS] E.N. Kuzmin and I.P. Shestakov, Non-associative structures [MR1060322 (91i:17001)]. Algebra, VI, 197-280, Encyclopaedia Math. Sci., 57, Springer, Berlin, 1995.
[MS] C. Martínez and I. Shestakov, Unital irreducible bimodules over $M_{1+1}$, Preprint.
[MSZ] C. Martínez, I. Shestakov and E. Zelmanov, Jordan bimodules over the superalgebras $P(n)$ and $Q(n)$, Trans. Amer. Math. Soc. 362, 2037-2051, (2010).
[MZ1] C. Martínez and E. Zelmanov, Representation theory of Jordan superalgebras I, Trans. Amer. Math. Soc. 362 no.2, 815-846, (2010).
[MZ2] C. Martínez and E. Zelmanov, Representation theory of Jordan superalgebras, Contem. Math. 483, 179-194, (2009).
[MZ3] C. Martínez and E. Zelmanov, Unital bimodules over the simple Jordan superalgebras $D(t)$, Trans. Amer. Math. Soc. 358 no.8, 3637-3649, (2006).
[Mc] K. McCrimmon, A taste of Jordan algebras, Universitext, Springer-Verlag, New York, 2004.
[Sh] I.P. Shestakov, Quantization of Poisson superalgebras and speciality of Jordan Poisson superalgebras, Algebra i Logika, 32 (1993), no.5, 571-584; English transl, in Algebra and Logic, 32 (1993), no. 5, 309-317.
[Sht1] A.S. Shtern, Representations of finite-dimensional Jordan superalgebras of Poisson brackets, Comm. in Algebra 23 no.5, 1815-1823, (1995).
[Sht2] A.S. Shtern, Representations an exepcional Jordan superalgebras, Funktzional Annal. i Prilozhen 21, 93-94, (1987).
[T1] M. N. Trushina, Irreducible representations of a certain Jordan superalgebras, J. Algebra Appl. 4 no. 1, 1-14, (2005).
[T2] M. N. Trushina, Modular representations of the Jordan superalgebras $D(t)$ and $K_{3}, J$. of Algebra. 320 no. 4, 1327-1343, (2008).
[W] C.T.C. Wall, Graded Brauer groups, J. Reine Angew Math. 213, 187-199,(1964).
[ZSSS] K.A. Zhevlakov, A.M. Slinko, I.P. Shestakov, A.I. Shirshov, Rings that are nearly associative [in Russian], Nauka, Moscow (1978), English transl.: Academic Press, New York - London (1982).


[^0]:    *Supported by CAPES grant and CNPq grant
    †Supported by FAPESP grant and CNPq grant

