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Abstract

The universal multiplication envelope UME(J) of a Jordan system J (algebra, triple, or
pair) encodes information about its linear actions – all of its possible actions by linear trans-
formations on bimodules M (equivalently, on all larger split null extensions J ⊕ M). In this
paper we study all possible actions, linear and nonlinear, on larger systems. This is encoded
in the universal polynomial envelope UPE(J), which is a system containing J and a set X of
indeterminates. Its elements are generic polynomials in X with coefficients in the system J ,
and it encodes information about all possible multiplications by J on extensions J̃ ⊇ J. The
universal multiplication envelope is recovered as the “linear part”, the elements homogeneous
of degree 1 in some variable x. We are especially interested in generic polynomial identities,
free Jordan polynomials p(x1, . . . , xn; y1, . . . , ym) which vanish for particular aj ∈ J and all
possible xi in all J̃ , i.e., such that the generic polynomial p(x1, . . . , xn; a1, . . . , am) vanishes in
UPE(J). These represent “generic” multiplication relations among elements ai, which will hold
no matter where J is imbedded. This will play a role in the problem of imbedding J in a system
of “fractions” J̃ .

The natural domain for a fraction Q−1
s n is the dominion Ks�n = Φn + Φs + QsV where

the denominator s dominates the numerator n in the sense that Qn, Qn,s are divisible by Qs

on the left and right. We show that by passing to subdomains we can increase the “fractional”
properties of the domain, especially if s generically dominates n in UPE(V).1

Throughout, we consider algebraic systems over an arbitrary ring of scalars Φ. We will work
primarily in the context of Jordan pairs, indicating briefly how the pair results must be modified
for Jordan algebras and triple systems. A Jordan pair is a pair V = (V +, V −) of Φ-modules with
compositions (x, a) 7→ Qx(a) ∈ V σ for (x, a) ∈ V σ × V −σ, σ = ±, which are quadratic in x and
linear in a, and satisfy the following axioms strictly (in all scalar extensions, equivalently, all their
linearizations hold in V itself): for all x, y ∈ V σ, a, b ∈ V −σ

(JP1) Dx,aQx = QxDa,x, (JP2) DQxa,a = Dx,Qa(x), (JP3) QQxa = QxQaQx,

where as usual we set Qx,y := Qx+y − Qx − Qy, which gives the trilinear product {x, a, y} :=
Qx,y(a) =: Dx,a(y) with {V σV −σV σ} ⊆ V σ. Remember that quadratic identities linearize automat-
ically, so it is only identities of degree 3 or more in a variable whose linearizations must be assumed
to hold, and even these hold automatically if the ring of scalars Φ has sufficiently many invertible
elements, or if the identities hold in the particular scalar extension V[t] := V ⊗Φ Φ[t] by the scalar

1Research partially supported by the Spanish Ministerio de Educació y Ciencia MTM2004-06580-C02-01 and
Fondos FEDER.
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polynomial ring in one variable. The only linearizations we need to assume in general are2

(JP1)′ Dx,aQx,y +Dy,aQx = QQxa,y +QQx,ya,x = Qx,yDa,x +QxDa,y,

(JP2)′ Dx,Qay +Dy,Qax = DQx,ya,a, DQxa,b +DQxb,a = Dx,Qa,bx,

(JP3)′ QQxa,Qx,ya = QxQaQx,y +Qx,yQaQx,

(JP3)′′ QQxa,Qya+Q{x,a,y} = QxQaQy+QyQaQx+Qx,yQaQx,y.

We will try to economize on superscripts and use typography instead, denoting, for a fixed τ = ±,
elements of V σ by x, y, z, w and elements of V −σ by a, b, c. Every Jordan pair V = (V +, V −) has a
dual or opposite pair Ṽ = (Ṽ +, Ṽ −) for Ṽ σ := V −σ and operations Q̃x̃ã := Qax, D̃x̃,ãỹ := {a, x, b}
for x̃ = a, ỹ = b ∈ Ṽ σ, ã = x ∈ Ṽ −σ [Loos, p.3]. We could avoid all superscripts by formulating only
positive results for x ∈ V +, a ∈ V −, and applying duality for the corresponding negative results, but
we won’t be quite this parsimonious. Since our alphabet and our attention span are finite, we will
use tildes to denote larger systems (x̃, ã) ∈ Ṽ σ× Ṽ −σ for Ṽ ⊇ V (containing a homomorphic image of
V, not necessarily V itself) and in §2 we will start to use (≈x,≈a) to denote “incipient” larger elements
(generic elements in the universal polynomial envelope, which can be specialized to elements in any
larger system Ṽ ⊇ V).

Jordan triples correspond to Jordan pairs where V + = V − = T, Qxσa−σ = Pxa, {xσ, a−σ, yσ} =
{x, a, y} = Lx,a(y) satisfying analogues (JT1-3) of (JP1-3), and Jordan algebras are triples with
product Uxy and an additional squaring operation x2 with linearization {x, y} = Vx(y) satisfying
several additional axioms (equivalently, which imbed in unital Jordan algebras Φ1⊕ J defined by 3
analogous axioms (QJ1),(QJ3) but (JP2) replaced by U1 = 1).

We will use [?] as reference bible for all results about Jordan pairs. The following formulas are
used frequently enough in the paper for us to display them:
(0.1.1) Dx,aQy +QyDa,x = Q{x,a,y},y,
(0.1.2) Dx,Qay = D{x,a,y},a −Dy,Qax = Dx,aDy,a −Qx,yQa,

DQay,x = Da,{y,a,x} −DQax,y = Da,yDa,x −QaQy,x,
(0.1.3) QQxa,y = Qx,yDa,x −Dy,aQx = Dx,aQx,y −QxDa,y,
(0.1.4) Q{x,a,y} +QQxQay,y = QxQaQy +QyQaQx +Dx,aQyDa,x,
(0.1.5) QQxQay,Dx,ay = QxQaQyDa,x +Dx,aQyQaQx, QxQaDx,b −Dx,aDQxa,b +DQxQax,b = 0,
(0.1.6) Qαx+Qxa = Bα,x,aQx = QxBα,a,x, QBα,x,ay = Bα,x,aQyBα,a,x,

(Bα,x,a := α21 + αDx,a +QxQa),
(0.1.7) DQxa,bQx = QxDa,Qxb.

The first part of (0.1.5) is (JP22) of [?, p.20]; the second part differs from (JP18) QxQaDx,b −
DQxa,bDx,a+Dx,QaQxb, but its difference is [Dx,a, DQxa,b]+Dx,QaQxb−DQxQax,b =

(
−D{Qxa,b,x},a+

Dx,{b,Qxa,a}
)
+

(
−DQxb,Qax +D{x,a,Qxb},a

)
+

(
DQxb,Qax −Dx,{Qax,x,b}

)
[by (0.1.2), (JP2)′], which

vanishes since {Qxa, b, x} = {x, a,Qxb} by (JP1) and {b,Qxa, a} = {Qax, x, b} by (JP2).
Recall that each element a−σ ∈ V −σ turns V σ into a Jordan algebra, the a-homotope (V σ)(a),

via

(0.2) U (a)
x y := QxQay, V

(a)
x,y := Dx,Qay, V

(a)
x := Dx,a, x

(2,a) := Qxa, so x(n+1,a) = Qxa
(n,x).

We will have occasion to use the following formulas relating homotopes (V σ)(a), (V −σ)(x); to avoid
excessive superscripts, we will abbreviate the powers x(n,a), a(m,x) simply by xn, am, and always
assume n ≥ m ≥ 1.

2We throw (JP2)′ in for future reference, though it holds automatically.
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(0.2.1) (Power Shifting): xk+1 = Qxa
k, Qxnak = x2n+k−1, Qxn,xmak = 2xn+k+m−1,

(0.2.2) (Power to Power): x(n,ak) = xnk−k+1,
(0.2.3) (D Power Shifting): Dxn,ak = Dx,an+k−1 = Dxn+k−1,a,
(0.2.4) (Q Power Shifting): QxnQak = QxQan+k−1 = Qxn+k−1Qa, QxQan,am = Qxn,xmQa,
(0.2.5) (Outer Triality): DQyam+2,a −DQy,xam+1,Qay +DQxam,QaQya = 0,
(0.2.6) (Inner Triality): DQxQay,am−1 −DDx,ay,am +Dy,am+1 = 0,

Dam−1,QxQay −Dam,Dx,ay +Dam+1,y = 0.

Proof: (1) holds by induction on k; for k = 1 as Qxna = (xn)2 = x2n, and for k ≥ 2 as
Qxnak = Qxn(Qaxk−1) [by the induction case k − 1 with x, a switched when n = 1] = Uxnxk−1 =
x2n+k−1. (2) is trivial for n = 1, easy for n = 2 [Qx(ak) = xk+1 = x2k−k+1 by (1)], and by induction
xn+2,ak

= QxQakxn,a
k

= Qx
(
Qakxnk−k+1

)
= Qx

(
a2k+(nk−k+1)−1

)
[by (1)] = Qx

(
a(n+2)k−k) =

x(n+2)k−k+1 [by (1) again]. For (3) when k = 1, n = 1 is trivial, for n ≥ 2, Dxn,a = V
(a)
xn = V

(a)
x,xn−1

[in Jordan algebras] = Dx,Qaxn−1 = Dx,an [by (1)], while for k ≥ 2 Dxn,ak = Dxn,Qaxk−1 = V
(a)

xn,xk−1

equals [in Jordan algebras] both V (a)

x,xn+k−2 = Dx,an+k−1 and V (a)

xn+k−1 = Dxn+k−1,a. Similarly, for (4)
by induction on k for k = 1 we have QxnQa = Uxn = UxUxn−1 = QxQaQxn−1Qa = QxQQa(xn−1)

[by (JP3)] = QxQan [by (1)], and similarly for the bilinear version, while for k ≥ 2 QxnQak =
QxnQQaxk−1 [by (1)] = QxnQaQxk−1Qa [by (JP3)] = UxnUxk−1 equals both Uxn+k−1 = Qxn+k−1Qa
and UxUxn+k−1 = QxQaQxn+k−1Qa = QxQQaxn+k−1 [by (JP3)] = QxQan+k . The triality relation (5)
is just the Jordan algebra relation VUzxk+1 − VUz,xxk,z + Vxk+1,z2 read in the a-homotope, and the

first relation in (6) is V (a)
Uxy,xm−1 − V

(a)
Vxy,xm + V

(a)
y,xm+1 . The second relation follows dually; note that

it cannot be immediately expressed in terms of an a-homotope, but we will see it is just a relation
in a “dual homotope”. �

For a subpair V ⊆ Ṽ, the unital outer multiplication algebra of V on Ṽ is denoted by
M(V|Ṽ); it is generated over Φ by the identity operator 1 and all operators of the form Dx,a, Qx
for x, a ∈ V; when V = Ṽ we get the full outer multiplication algebra M(Ṽ). We now turn to the
abstract or “universal” concept of a multiplication algebra.

1 The Universal Multiplication Envelope

An elemental or linear specialization σ = (σ+, σ−) of a Jordan pair V is a homomorphism
V σ−→ V(A) of V into a special pair coming from an associative pair or algebra A : στ (Qxa) =
στ (x)σ−τ (a)στ (x). A multiplication specialization3 of a Jordan pair V in A is a pair of maps
µ = (q, d) = ((q+,−, q−,+), (d+,+, d−,−)) into a unital associative algebra A with 2× 2 matrix grad-
ing i.e., a decomposition A =

⊕
τ,σ∈{±}Aτ,σ satisfying the matrix relations Aτ,σAρ,ν ⊆ δσ,ρAτ,ν

[equivalently, with Peirce decomposition Aτ,σ = eτAeσ relative to e+ ∈ A+,+, e− ∈ A−,− where
1 = e+ + e−], where dσ,σ : (x, a) 7→ Aσ,σ is bilinear in x, a and qσ,−σ : x 7→ Aσ,−σ is quadratic in
x, strictly satisfying the multiplication specialization relations for all τ = ±, x, y ∈ V σ, a, b ∈ V −σ.

3For algebras these were called quadratic specializations [?], but we now adopt the adjective multiplication; linear
and quadratic specializations suggest specializations of linear and quadratic Jordan systems, wheras the real distinction
is between representing the elements of V in an associative algebra, and representing their multiplication operators in
an associative algebra. We will preserve the distinction between specialization (map into an associative algebra) and
representation (map into an associative algebra of linear transformations acting on a space). These multiplication
specializations were called associative representations in [Loos 2.4 p.16-17], leaving out (QS2) since it follows from
(QS4,4∗) via dQxa,a − dx,Qax =

�
d2

x,a − qxqa,a
�
−

�
d2

x,a − qx,xqa
�

= 0. (QS4) in turn usually follows by applying
(QS5) with y, a replaced by m, b, acting on a, and reading the result as an operator on m. But due to the asymmetry
between the pair elements x, y and a, b we cannot derive (QS4) this way and must assume it as an axiom. This

contrasts with the Jordan algebra case [?, p.282] where
≈
U1 = 1,

≈
UUxy =

≈
Ux

≈
Uy

≈
Ux,

≈
UUxy,x =

≈
Ux

≈
V y,x =

≈
V x,y

≈
Ux suffice

to define multiplication specializations.
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For the sake of legibility we promote all subscripts to the main line, writing d(x, a), q(x) in place of
dx,a, qx, and write these relations as

(QS1) dτ,τ (x, a)qτ,−τ (x) = qτ,−τ (Qxa, x) = qτ,−τ (x)d−τ,−τ (a, x),

(QS2) dτ,τ (x,Qax) = dτ,τ (Qxa, a),

(QS3) qτ,−τ (Qxa) = qτ,−τ (x)q−τ,τ (a)qτ,−τ (x),

(QS4) d−τ,−τ (b, x)d−τ,−τ (a, x) = d−τ,−τ (b,Qxa) + q−τ,τ (b, a)qτ,−τ (x),

(QS4)∗ dτ,τ (x, a)dτ,τ (x, b) = dτ,τ (Qxa, b) + qτ,−τ (x)q−τ,τ (a, b),

(QS5) dτ,τ (y, a)qτ,−τ (x) + qτ,−τ (x)d−τ,−τ (a, y) = qτ,−τ ({y, a, x}, x).
These relations imply

(QS6) dτ,τ (Qxb, a)qτ,−τ (x) = qτ,−τ (x)d−τ,−τ (b,Qxa),

(QS7) dτ,τ (Qxb, a)dτ,τ (x, b) = qτ,−τ (x)q−τ,τ (b)dτ,τ (x, a) + dτ,τ (x,QbQxa),

(QS8) qτ,−τ (x, y)d−τ,−τ (a, x) = dτ,τ (y, a)qτ,−τ (x) + qτ,−τ (Qxa, y),

(QS9) qτ,−τ (x)q−τ,τ (a, b) + dτ,τ (x, {a, x, b}) = dτ,τ (Qxb, a) + dτ,τ (x, a)dτ,τ (x, b).

Here (6),(7),(8) are Lemma 2.6 (4),(5),(2) in [Loos, p.17-18] ; (9) is JP6, which was not derived
for specializations in Lemma 2.6, but is equivalent to (QS4) since (QS9) + (QS4) =

(
q(x)q(a, b) +

d(x, {a, x, b})−d(Qxb, a)−d(x, a)d(x, b)
)
+

(
d(x, a)d(x, b)−d(Qxa, b)−q(x)q(b, a)

)
= d(x, {a, x, b})−

d(Qxb, a)− d(Qxa, b) vanishes as a linearization of (QS2).4

Multiplication specializations µ = (p, `) or (u, v) for Jordan triples and algebras are maps into an
ordinary associative triple or algebra A (which can always be enlarged to a unital algebra). The con-
ditions on (p, `) for Jordan triples take the same form as pairs, deleting all superscripts. For unital
Jordan algebras [?, Prop 15,p.298] the three relations u(1) = 1, u(Uxy) = u(x)u(y)u(x), u(Uxy, x) =
u(x)v(y, x) = v(x, y)u(x) suffice to define multiplication specializations (u, v) (recall that in algebras
v(x, y) = v(x)v(y)− u(x, y) are determined by u, v), but for general nonunital algebras the messier
defining relations in terms of u(x), v(x) are

(QA1) v(x2) = v(x, x),

(QA2) v(x3) = v(x, x2) = v(x2, x),

(QA3) u(x2, y) = u(x, y)v(x)− v(y)u(x) = v(x)u(x, y)− u(x)v(y),

(QA4) u(x3, y) = u(x, y)v(x2)− v(y, x)u(x) = v(x2)u(x, y)− u(x)v(x, y),

(QA5) u(x2) = u(x)2,

(QA6) u(x3) = u(x)3.

Multiplication specializations V µ−→ A can be composed with homomorphisms A
ϕ−→ A′ of graded

associative algebras to provide new specializations ϕ ◦ µ.
A multiplication representation or bi-representation is a concrete multiplication special-

ization in an associative algebra A = End(M) for a graded module M = (M+,M−) with grading
determined by eσ = Eσ, the projection on Mσ (thus M is the module M = M+⊕M− together with
a memory of where it came from, i.e., its decomposition via E+, E−). Multiplication representations
of triples or algebras are multiplication specializations in A = End(M) for some Φ-module M . The
archetypal example of a multiplication representation is an outer multiplication representation,

4Similarly, (QS8) is equivalent to (QS5) since (QS8)+(QS5) equals the linearization x → x, y in (QS1) q(x)d(a, x) =
q(Qxa, x). Note that (QS1-3) are (JP1-3), (QS4) is (0.1.2), (QS5) is (0.1.1), (QS8) is (0.1.3). The Bimodule Theorem
below shows that (QS8),(QS9) are more directly involved than (QS4),(QS5) in capturing bimodule structure, but we
prefer (QS5) as a basic result (d(x, a) is a Lie struction), and (QS4)∗since it is the dual of (QS4).
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i.e., a multiplication specialization V →M(V|Ṽ)|M by outer multiplication operators

qτ,−τ (x) := Qx|M−τ , dτ,τ (x, a) := Dx,a|Mτ

for M = (M+,M−) a V-invariant subspace of a Jordan pair Ṽ ⊇ V. The regular outer representation
is the outer multiplication representation of V on itself (M = Ṽ = V). By restriction we obtain a
multiplication representation on any outer ideal I ⊆ V.

A bimodule for a pair V consists of a pairM = (M+,M−) of Φ-modules and a bi-representation
of V on M. A bimodule for a triple or algebra J consists of a bi-representation of J in End(M)
for a single Φ-module M . Any multiplication specialization V µ→ A becomes, via the left regular
representation A → End(A), a multiplication representation of V in End(A), and thus turns A into
a V-bimodule M(A, µ) = M+ ⊕M− (Mσ := Aeτ = Aτ,τ ⊕ A−τ,τ ). This bimodule is cyclic with
generator 1A = e+ ⊕ e− if µ(V) together with e+, e− generate A as algebra. Thus bimodules are
the same as birepresentations (multiplication representations), which are nearly the same thing as
multiplication specializations.

Every elemental specialization V σ→ V(A) gives rise to a multiplication specialization in A via
q(x) := 0, d(x, a) := σ(x)σ(a) (or representation on A via q(x) := 0, d(x, a) := Lσ(x)Lσ(a)) via the
left regular representation of A (turning A into a “left V-module” M = AL via a·m = am, m·a = 0).
In particular, just because Qs is invertible on V −σ does not imply it is injective on all bimodules
(only on “unital” bimodules).

In fact, all V-bimodules for Jordan systems arise as invariant subspaces of some Jordan sys-
tem E ⊇ V, and all birepresentations V → End(M) are outer multiplication representations
V →M(V|E)|M on a split null extension.

Bimodule Theorem [?, 2.7 p. 18] 1.1 Any V-bimodule M gives rise to a split null extension
E = V ⊕M = (V + ⊕M+, V − ⊕M−), which is a Jordan pair under the operations

Q̃x⊕m(a⊕ p) := Qxa⊕
(
q(x)(p) + d(x, a)(m)

)
,

D̃x⊕m,a⊕p(y ⊕ n) := Dx,a(y)⊕
(
d(x, a)(n) + q(x, y)(p) + d(y, a)(m)

)
for all x, y ∈ V σ, m, n ∈Mσ, a ∈ V −σ, p ∈M−σ, and the original birepresentation is the restriction
of the regular outer representation of E to V and M. �

Thus bimodules and birepresentations are essentially the same thing as multiplication representa-
tions. Bimodules are inherently outer modules for V, they have no inner multiplications (∩V (M) =
QMV = 0). Thus they can reflect only outer multiplicative properties of a Jordan pair.

By taking homotopes we can convert a Jordan triple or pair into a Jordan algebra, and special-
izations and bimodules for the pair or triple induce specializations and bimodules for the resulting
homotope algebra [?, 13.8 p. 146]. A little-known fact is that each such homotope bimodule has a
strange dark dual homotope (duotope).

Duotope Theorem 1.2 A multiplication specialization µ = (q, d) of a Jordan pair V in a 2 × 2-
graded associative algebra A together with an element a ∈ V − induce a homotopic multiplication
specialization µ(a) := (u(a), v(a)) of the homotopic Jordan algebra J := (V +)(a) in the associative
subalgebra A+ + via

u(a)(x) := q(x)q(a), v(a)(x) := d(x, a), v(a)(x, y) := d(x,Qay),

and at the same time induce a multiplication representation µ∗(a) := (u∗(a), v∗(a)) of J in the opposite
subalgebra A−− via

u∗(a)(x) := (u(a)(x))∗ = q(a)q(x), v∗(a)(x) := (v(a)(x))∗ = d(a, x),
v∗(a)(x, y) := (v(a)(y, x))∗ = d(Qax, y).
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A Jordan bimodule M induces a homotope bimodule (M+)(a) for the homotopic Jordan algebra
J := (V +)(a) via

U (a)
x (m) := q(x)q(a)m, V (a)

x (m) := {x, a,m}, V (a)
x,y (m) := {x,Qay,m}.

and at the same time a J-bimodule structure (M−)∗(a) in the opposite module M− via

U∗(a)(x)(m) := q(a)q(x)m, V ∗(a)x (m) := {a, x,m}, V ∗(a)x,y (m) := {Qax, y,m}.

If J is a Jordan algebra or triple and z ∈ J, any bimodule M for J, or multiplication specializa-
tion µ = (p, `) of J in A, induces homotopic and duotopic bimodules M (z),M∗(z) or multiplication
specializations µ(z), µ∗(z) for the Jordan algebra J (z) via5

u(z)(x) := p(x)p(z), v(z)(x) = `(x, z), u∗(z)(x) := p(z)p(x), v∗(z)(x) = `(z, x).

Proof: The result for µ(z) is well-known; in the bimodule case E = V ⊕M is again a Jordan
pair, so E∗(a) = (V + ⊕M+)(a) = (V +)(a) ⊕ (M+)(a) is a Jordan algebra, and thus (M+)(a) is a
Jordan algebra bimodule for (V +)(a). The dual bimodule situation is a special case of the multipli-
cation specialization case, so we verify only the latter. Omitting all the superscripts on q, d (which
are clear from the context x, y ∈ V +, a, b ∈ V −), we check the conditions (QA1-6). (QA1) is
v∗(a)(x2) = d(a,Qxa) = d(Qax, x) = v∗(a)(x, x) by (JP2). (QA2) is v∗(a)(x(3,a)) = d(a,QxQax) =
d(Qax,Qxa) [= v∗(a)(x, x(2,a))] = d(QaQxa, x) [= v∗(a)(x(2,a), x)] by D-Power Shifting (0.2.2).
(QA3) is u∗(a)(x(2,a), y) = q(a)q(Qx(a), y) equals by (0.1.3) both q(a)

(
q(x, y)d(a, x)−d(y, a)q(x)

)
=

q(a)q(x, y)d(a, x) − d(a, y)q(a)q(x)
)

[by (JP1)] = u∗(a)(x, y)v∗(a)(x) − v∗(a)(y)u∗(a)(x) and dually
q(a)

(
d(x, a) q(x, y) − q(x )d(a, y)

)
= d(a, x) q(a) q(x, y) − q(a) q(x) d(a, y) = v∗(a)(x)u∗(a)(x, y)

−u∗(a)(x)v∗(a)(y). Similarly, the condition (QA4) is u∗(a)(x(3,a), y) = q(a)q(QxQax, y) equals by
(0.1.3) both q(a)

(
q(x, y)d(Qax, x) − d(y,Qax)q(x)

)
= q(a)q(x, y)d(a,Qxa) −d(Qay, x)q(a)q(x) [by

(JP2), (0.1.7)] = u∗(a)(x, y)v∗(a)(x(2,a)) − v∗(a)(y, x)u∗(a)(x) and equals also q(a)
(
d(x,Qax) q(x, y)

−q(x)d(Qax, y)
)

= q(a)
(
d(Qxa, a)q(x, y) − q(x) d(Qax, y)

)
[by (JP2)] = d(a,Qxa) q(a) q(x, y)

−q(a)q(x)d(Qax, y) [by (JP1)] = v∗(a)(x(2,a))u∗(a)(x, y)−u∗(a)(x)v∗(a)(x, y). (QA5) is u∗(a)(x(2,a)) =
q(a)q(Qxa) = q(a)

(
q(x)q(a)q(x)

)
[by (JP3)] = (q(a)q(x))2 = u∗(a)(x)2, analogously (QA6) is

u∗(a)(x(3,a)) = q(a)q(QxQax) = q(a)
(
q(x)q(a)q(x)q(a)q(x)

)
[by (JP3)] = (q(a)q(x))3 = u∗(a)(x)3.

A similar calculation shows that when J is a Jordan algebra or triple, any multiplication spe-
cialization of J induces one of J (z) as stated; alternately, the multiplication specialization of J in A
induces one of V(J) in M2,2(A) and then of (V +)(z) ∼= J (z) in A+ + ∼= A by the pair result [?, §13.8,
p. 146]. �

Notice that the J-bimodules have duals, but not the Jordan algebra J itself: the definitions
U∗x := QaQx, V

∗
x = Da,x definitely do not yield a quadratic Jordan algebra structure (V −)(a), since

in the pair case x ∈ V + but the maps U∗x , V
∗
x map V − to V −, and even in Jordan algebras and

triples where V + = V − = J the axiom (QJ3) = (JP3) fails flagrantly (as is easily seen for special
algebras), though (QJ2) = (JP1) holds.

Example 1.3 If J ⊆ A+ is a special Jordan system, any J-invariant subspace M of the regular
A-bimodule becomes a Jordan bimodule for J via the compound-linear multiplication specialization
Ux := LxRx, Vx = Lx + Rx, Vx,y = LxLy + RxRy of J on M . The maps La, Ra : A(a) −→ A
are commuting homomorphisms of associative algebras, and hence induce commuting linear special-
izations `(x) := (L ◦ La)(x) = Lax, r(x) := (R ◦ Ra)(x) = Rxa : A(a) → A → End(A), yielding
a compound-linear multiplication specialization u∗(a)(x) := `(x)r(x) = LaxRxa = UaUx, v

∗(a)(x) =
5The existence of dual bimodules for Jordan algebras and pairs has been a closely guarded secret, and we wish to

thank Deep Throat for permission to reveal their existence.
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`(x)+r(x) = Lax+Rxa = Va,x, v
∗(a)(x, y) = `(x)`(y)+r(x)r(y) = LaxLay+RxaRya = Vaxa,y. Thus

the dual homotope multiplication specialization and module in this case are have clear associative
backgrounds. �

Universal gadgets for multiplication specializations of Jordan algebras and triples are well known.
Jordan pairs too have a universal gadget for multiplication specializations, the universal multi-
plication envelope UME(V) (introduced by Loos [?, §13, pp. 141-143] as U(V), compare [?, p.
289-290] for the algebra case), a unital associative U with 2 × 2 matrix grading, together with a
universal multiplication specialization µu : V → U , having the universal property that every
multiplication specialization V µ−→ A factors through the universal one

(1.4)
V µ−−−−→ A

µu ↘ ↗ µ̂
UME(V)

via a unique homomorphism µ̂ of unital 2×2-graded associative algebras. This implies, in particular,
that UME is unique up to isomorphism and is generated by the universal elements ≈e+,

≈
e−,

≈
qτ,−τ (x) ∈

Uτ,−τ ,
≈
dτ,τ (x, a) ∈ Uτ,τ for x ∈ V σ, a ∈ V −σ. The elements of UME(V) are to be thought of as

generic outer multiplications by V acting linearly on all possible V-bimodules, in particular, on all
extensions Ṽ ⊇ V.

The universal property is always a two-way street: since composing the universal multiplication
specialization µu of V in UME(V) with any graded homomorphism UME(V)

ϕ−→ A yields a multi-
plication specialization V ϕ◦µu−→ A with ϕ̂ ◦ µu = ϕ, we see that the multiplication specializations µ of
V are in 1-1 correspondence with the graded associative homomorphisms ϕ of the universal gadget
UME(V). The universal multiplication specialization µu turns the universal envelope U = UME(V)
into a universal cyclic bimodule M(U , µu); every cyclic V-bimodule is a homomorphic image of
M(U , µu).

The standard model of UME is F/I for F the free unital associative Φ-algebra generated by all
≈
eσ (≈e+ + ≈

e− = 1), ≈qτ,−τ (x),
≈
dτ,τ (x, a) and I is the ideal generated by (≈e+)2 = ≈

e+ and all elements

needed to make
≈
d linear in x, a and ≈

q quadratic in x [all
≈
d(αx+x′, a)−α

≈
d(x, a)−

≈
d(x′, a),

≈
d(x, αa+

a′)− α
≈
d(x, a)−

≈
d(x, a′), ≈q(αx)− α2≈q(x), ≈q(αx+ x′, a)− α≈q(x, a)− ≈

q(x′, a)], and insure that (QS1-
5), hence also (QS6-9), and their linearizations hold [all elements LHS − RHS in (QS1-5), plus
the x-linearizations of the cubic relations (QS1),(QS6),(QS7) and the quartic relation (QS3)]. The
defining relations (JP1-3), (0.1.1-6) show that if {xi} is a set of graded generators xi ∈ V τ(i) for V,

then the operators ≈
q(xi),

≈
q(xi, xj),

≈
d(xi, xj) is a set of generators for UME(V).

Since the set of generators for both U and I are homogeneous and invariant under the rever-

sal involution [?, 13.2d p. 142] of F (determined by (≈qτ,−τ (x))∗ := ≈
qτ,−τ (x), (

≈
dτ,τ (x, a))∗ :=

≈
d−τ,−τ (a, x)), the quotient UME inherits the matrix grading and involution. This leads to the Du-
ality Principle [?, Prop. 2.9, p.19]: if a Jordan pair operator ≈

m ∈ UME(V) is an identity, ≈
m = 0

in UME , then its reversal ≈
m∗ is also an identity, ≈

m∗ = 0 in UME . We have tacitly used this reversal
involution in the second part of (0.2.6); alternately, we now can recognize this part when m ≥ 4 as
V
∗(a)
xm−4,Uxy

− V
∗(a)
xm−3,{x,y} + V

∗(a)
xm−2,y, which vanishes on the split null extension (V +)(a) ⊕ (A−,−)∗(a)

of the duotope.
The involution ∗ leads naturally to dual specializations. If A is an associative algebra with 2× 2

matrix grading, then its opposite algebra Aop has an opposite grading given by (Aop)σ,τ := A−τ,−σ.
When A = End(M1⊕M−1) with matrix grading given by e1, e−1, this opposite grading is that given
by eσ∗ := e−σ, since eσ∗ ·op A ·op eτ∗ = e−σ ·op A ·op e−τ = e−τAe−σ = A−τ,−σ. The involution
on U = UME(V) is an isomorphism U ∗−→ Uop, and since (Aσ,τ )∗ = (eσAeτ )∗ = (eτ )∗A(eσ)∗ =
e−τAe−σ = A−τ,−σ this is an isomorphism of graded algebras. Any multiplication specialization
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V µ−→ A induces a graded homomorphism U bµ−→ A and hence a graded homomorphism of their

opposite algebras Uop bµop

−→ Aop. Thus we obtain a dual multiplication specialization (cf. [?,

2.5 p.17]) µ∗ of V in Aop via the composition U ∗−→ Uop bµop

−→ Aop. The dual has the action

µ∗(≈qσ,−σ(x)) = q(x), µ∗(
≈
dσ,σ(x, a)) = d(a, x), with µ̂∗ = µ̂op ◦ ∗. In fact, from this action one

verifies directly that µ∗ = (q∗, d∗) satisfies the axioms (QS1-5) in Aop. Note that the dual is a
specialization into the opposite matrix-graded algebra. For Jordan triples or algebras, the dual µ∗

of µ = (p, `) or (u, v) has (p∗(x), `∗(x, y)) = (p(x), `(y, x)) or (u∗(x), v∗(y)) = (u(x), v(y)) [but note
v∗(x, y) := v∗(x) ·op v∗(y)−u∗(x, y) = v∗(y) ·v∗(x)−u(x, y) = v(y, x)]. If M is a bimodule for V the
opposite module Mop (M regarded as a right Aop-module with opposite grading (Mop)σ := M−σ)
becomes a dual right V-bimodule under the dual representation.

We will rapidly get tired of writing ≈
qτ,−τ (x),

≈
dτ,τ (x, a) for the generators of U and simply write

≈
q(x),

≈
d(x, a) when the indices are understood, keeping the ≈ to remind us of universality. In fact,

we sometimes omit ≈ and just write Qx, Dx,a in place of their preimages (Qx = µ̂r(
≈
q(x)), Dx,a =

µ̂r(
≈
d(x, a))) under the regular representation µr, and say “in the universal envelope”, “in U”, or just

“universally”.
If V is a subalgebra of Ṽ, we denote by UME(V|Ṽ) the subalgebra of UME(Ṽ) generated by 1 and

all d̃(x, a), q̃(x) for x, a ∈ V, and we have natural epimorphisms UME(V) → UME(V|Ṽ) →M(V|Ṽ)
via d(x, a), q(x) → d̃(x, a), q̃(x) → D̃x,a, Q̃x ∈ End(Ṽ). In particular, Ṽ becomes a left UME(V)-
module, and we can form ≈

m(x̃) for any ≈
m ∈ UME(V) and any x̃ ∈ Ṽ. We also have the Action

Principle: If a Jordan pair operator ≈
m ∈ UME(V) is zero as a bimodule operator, ≈m = 0 ∈ End(M)

for all V-bimodules M, then ≈
m = 0 in UME(V); indeed if ≈

m is zero on the universal cyclic module
M(U , µu) then 0 = ≈

m(1U ) = µ̂u(
≈
m)1U = ≈

m implies ≈
m = 0 in U [note that µ̂u = 1U by uniqueness in

(1.2)].
Another formulation of the Action Principle is that an operator ≈

m ∈ U is zero iff it is zero as
an operator in all extensions Ṽ ⊇ V: if ≈

m = 0 on Ṽ = V ⊕M(U , µu) then ≈
m = 0 on M(U , µu), so

≈
m = 0 in U . Conversely, if ≈

m vanishes in U then it vanishes on all m̃ ∈ Ṽ since M = M(V |Ṽ)m̃ is a
Jordan bimodule, and ≈

m = 0 on M implies ≈
m = 0 on m̃.

2 Universal Polynomial Envelope

Jordan algebras and pairs have linear outer multiplications ∪x : a → Uxa,Qxa and Vx,a, Dx,a :
y → {x, a, y} which are linear operators, but they also have inner multiplications ∩x : a → Qax
mapping V −σ → V −σ which are quadratic rather than linear operators. We can interpret these as
mappings on the associated polarized Jordan triple system Vp := V + ⊕ V − by setting ∩V σ (V σ) =
{V σ, V σ, V } = 0. The full polynomial multiplication algebra PM(V) ⊆ Pol(V) is the associative
algebra of polynomial maps in several variables on V generated by the Qx, Dx,a,∩x.6 The easiest
approach to these polynomials is through the free product of V with a free pair.

Recall from your subconscious that the free Jordan pair FJPΦ[X] over Φ on nonempty sets
X = X+ ] X− of graded generators is the quotient of the free Φ-module on the free pair monad
FPMΦ[X] on the generators X, divided out by the ideal IΦ(X) generated by the Jordan pair
identities (JP1-JP3) as well as their linearizations (JP1)′, (JP3)′, (JP3)′′.7 We call it the free Jordan

6It is not true that UPE(V) is generated by q(xi), q(xi, xj), d(xi, xj),∩xi for generators {xk} of V (∩Qxi
xj

: a →
QaQxixj is not directly expressible in terms of these).

7If we used this collection of relations, it would suffice to consider only those relations where x, y, a are themselves
monomials. The full list of linearizations would involve further linearizing all the quadratic relations: replacing
x → x + λ1x1 + λ2x2 + λ3x3, a → a + λ4a1, we would have to add for (JP1) the coefficients of λ1λ2, for (JP2) those
of λ1, λ4, λ1λ4, and for (JP3) those of λ1λ2, λ1λ2λ3, λ4, λ1λ4, λ2

1λ4, λ1λ2λ4, λ1λ2λ3λ4. But that’s too steep a price
to pay!
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pair Φ〈X〉 on the free graded variables X+]X− over Φ, using pointy brackets to distinguish it from
the scalar polynomial ring Φ[X] in ungraded scalar variables. Here the free pair monad consists of all
pair monomials in the generators, constructed recursively by taking in degree 1 the generators x±i ,
and if pσ, qσ, a−σ of degrees d, e, f have been constructed, then mσ = Qpa, {p, a, q} = {q, a, p} are
monomials of degrees 2d+f, d+e+f . The ideal IΦ(X) is generated by the relations (JP1-3),(JP1)′,
(JP3)′, (JP3)′′. The quotient Φ-module FJPΦ[X] := FPMΦ[X]/IΦ(X) becomes a Jordan pair by
defining QP

i pi
(
∑
j aj) =

∑
i,j Qpi

aj +
∑
i<k,j{pi, aj , pk}. We will speak of THE free Jordan pair

Φ〈X〉 over Φ when Xσ = {xσ1 , xσ2 , . . .} (τ = ±) are both countably infinite sets of indeterminates; its
elements may be thought of as universal Jordan pair polynomials in any (necessarily finite) number
of variables.

The free pair on X is graded by degree in each variable, and agrees with the free monad up
to degree 4 (the lowest-degree Jordan identities are (JP1), (JP2) of degree 5), in particular has a
natural imbedding X in−→ Φ〈X〉. It enjoys the usual universal property, that every set-theoretic map

X± ϕ−→ V ± extends uniquely to a homomorphism Φ〈X〉 eϕ−→ V of Jordan pairs over Φ. The universal
property leads by universal nonsense to the usual properties of the free object and yields a functor
from sets to Jordan pairs over Φ.

In defining the generic polynomial envelope we make a further useful but unusual move: since
the generic polynomials are supposed to act on all Ṽ ⊇ V, in particular all scalar extensions, we will
include in the construction the universal scalar extension 8 V≈

Φ
by the universal scalars

≈
Φ := Φ[Λ] := Φ[

≈
λ1,

≈
λ2, . . .]

for countably many independent indeterminates
≈
λi. For the generic Jordan polynomial envelope

for a particular Jordan pair V and set X we will adopt the notation V〈X〉, using pointy brackets
to distinguish it from the scalar polynomial extension V[X] = V ⊗Φ Φ[X]. We construct V〈X〉
as the free product over

≈
Φ of V≈

Φ
= V[Λ] with

≈
Φ〈X〉 to get V〈X〉, the polynomials in the graded

free variables X+ ]X− and the free scalar variables Λ with coefficients in V [note that we do not
mention

≈
Φ explicitly in the notation, the variables

≈
λi will be tacitly understood]. One advantage of

this convention is that if p(x1, . . . , xn) = 0 ∈ V〈X〉 of degree di in the variables xi then automatically
all its linearizations also vanish [due to the endomorphism of V〈X〉 sending xi →

∑N
j=1 λNi+jxNi+j ,

choosing an N > n and N ≥ di for all i].
There is no transparent way to view this algebra of Jordan polynomials as there is in the cat-

egory of associative algebras, where the elements of A〈X〉 are just linear combinations of strings
a0m1a1m2 · · · anmnan+1, n ≥ 0, for nonzero ai ∈ A (allowing a0, an+1 to be absent) and nontrivial
free noncommutative monomials mi = mi(X) in the free associative algebra Φ〈X〉 (with the obvi-
ous multiplication and linearity in the variables ai).9 The elements of V〈X〉 can be thought of as
generic polynomials in the sense of Martindale (see, for example, [?, p.111f]): noncommutative
nonassociative Jordan polynomials in indeterminates xi with coefficients from V[Λ]. In this paper we
will not be concerned with generalized polynomial identities in the sense of Martindale and Amitsur,
nonzero elements of V〈X〉 which vanish on V or related pairs, but rather generic polynomial identi-
ties, the zero elements themselves. These are polynomials p(x1, . . . xn, a1, . . . am) = 0 ∈ V〈X〉 where
p(x1, . . . xn, y1, . . . ym) 6= 0 ∈ Φ〈Y ] X〉 is a nontrivial Jordan polynomial which vanishes for the
particular substitutions yi → ai ∈ V and all possible substitutions xj → b̃j for all pairs Ṽ containing

8While it is not true that every scalar extension VΩ is a homomorphic image of V≈
Φ

= V[Λ], every finite set of

elements of VΩ lies in such a homomorphic image, and VΩ itself is such an image if Ω is countably generated as
Φ-algebra.

9As pair theorists, we can blithely ignore the complications in the category of unital algebras, where we would
want 1 ∈ A to remain the unit in A〈X〉 and therefore must face the sort of collapse am11m2b − a(m1m2)b familiar
from the case of free groups. Indeed, associative ring theory wants the entire center C of A to remain the center of
A〈X〉, forming the free product over C instead of Φ.
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a homomorphic image of V. In this case we will say p(x1, . . . xn, a1, . . . am) vanishes universally or
generically in the xi, and to emphasize this genericity will write p(≈x1, . . .

≈
xn, a1, . . . am) = 0.

The easiest way to form this free Jordan product is to present V in the most egregious way (take
indeterminates Y σ = V σ and write V ∼= Φ〈X〉/K induced from the natural inclusion Y in−→ V), and

then form V〈X〉 :=
≈
Φ〈X ] Y 〉/K (dividing out by the Φ-relations K in the variables Y defining V,

but no further relations in the variables X other than those I≈
Φ
(X ] Y ) imposed in the formation

of
≈
Φ〈X ] Y 〉). There are natural inclusions X σu−−→ V〈X〉, V ιu−→ V〈X〉. This has the universal

property that any (graded) set-theoretic map Xσ σ−→ Ṽ σ together with Φ-homomorphisms Λ → Ω
of Φ-algebras and V ϕ−→ Ṽ of Jordan pairs for an Ω-algebra Ṽ, extends uniquely to a Jordan pair

homomorphism V〈X〉 (̃ϕ,σ)−−−→ Ṽ of Φ-pairs.
When X is countably infinite we call V〈X〉 THE universal polynomial envelope UPE(V) of

V over Φ. The universal property leads by universal nonsense to standard properties of the free
object: it determines a functor from Jordan-pairs-and-sets to Jordan pairs, distinct variables can be
adjoined one-by-one or in one fell swoop,

(2.1) V〈X〉〈Y 〉 ∼= V〈X ] Y 〉,

that a bijection of sets induces an isomorphism of polynomial envelopes

(2.2) X1
∼= X2 =⇒ V〈X1〉 ∼= V〈X2〉,

in particular that the universal polynomial envelope is indifferent to countable extensions,

(2.3) UPE(V) ∼= UPE(V〈Y 〉) (Y countable).

We have the Action Principle that p = 0 in V〈X〉 iff the map induced by p vanishes on
all Jordan algebras Ṽ with homomorphism (not necessarily an imbedding) V ϕ−→ Ṽ. Certainly if

p(x1, . . . , xn) = 0 in V〈X〉 then for any b̃1, . . . b̃n ∈ Ṽ and σ(xi) = b̃i we have 0 = (̃ϕ, σ)(p) =
p(b̃1, . . . , b̃n) and p vanishes on Ṽ. Conversely, if p vanishes on all pairs Ṽ it certainly vanishes on

the pair V〈X〉 itself, so p = ˜(ιu, σu)(p) = 0.
Any generic polynomial envelope V〈X〉 is again X-graded, with the elements in degree 0 being

precisely V. We have a graded decomposition V〈X〉 = V ⊕
⊕

x∈X Vx⊕V2 into homogeneous parts of
degree 0,1, and ≥ 2. Importantly, the homogeneous polynomials of degree 1 are naturally isomorphic
to the universal multiplications of the universal multiplication envelope.

Quadratic Envelope Imbedding 2.4 Fix an even and odd variable x±0 ∈ X±, set x0 := x+
0 ⊕x

−
0 .

Then the cyclic V-sub-bimodule M = M(V)x0 = Vx+
0
⊕ Vx−0 ⊆ V〈X〉 is naturally isomorphic to the

universal cyclic bimodule M(U , µu) = U(1U ) = U via the inverse linear maps U ψ−→M given by ≈
m →

evalx0(
≈
m) = ≈

m(x0) and M
ϕ0−→ U by p(x0) → p(1U ). Under this isomorphism UME(V) ∼= Vx+

0
⊕Vx−0

and UME(V)±,τ ∼= Vxτ
0

as spaces.

Proof: We have a multiplication representation V →M(V|Vx0), so by the universal property of
U this induces an algebra homomorphism U →M(V|Vx0), which can be followed by the evaluation
map evalx0 . Since evaluation is a V-bimodule map, the resulting composite ψ : ≈

m 7→ ≈
m(x0) is a

homomorphism of cyclic V-bimodules.
The recursive construction shows the polynomials in Vx0 have the form p(x0) = ≈

m(x0) for a
multiplication operator ≈

m: in degree 1 there is just xσ0 = eσ(x0), if true for degrees less than n then
in degree n any homogeneous degree 1 monomial must be Qpq (where p must be constant and by
recursion q = ≈

m(x0) for a multiplication operator ≈
m) or {p, q, r} (where we must have two constant
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factors and one an operator on x0 by recursion) so {p, q, ≈m(x0)} = (Dp,q
≈
m)(x0) or {p, ≈m(x0), r} =

(Qp,r
≈
m)(x0). The specializations xi → 0, x0 → 1U (i.e., xσ0 → eσ) induce a homomorphism V〈X〉 ϕ−→

V ⊕M sending f(x0, x1, . . . , xn) → f(1U , 0, . . . , 0) by the universal property, which restricts to a
V-bimodule homomorphism Vx0

ϕ0−→ U1U = U sending p(x0) → p(1U ) = p.

These two homomorphisms are inverses since (ϕ0 ◦ ψ)(≈m) = ϕ0(
≈
m(x0)) = ≈

m(1U ) = ≈
m and

(ψ ◦ ϕ0)(
≈
m(x0)) = ψ(≈m(1U )) = ψ(≈m) = ≈

m(x0). Thus the two bimodules are isomorphic. It is clear
that under this bimodule isomorphism UME(V)σ,τ = eσUME(V)eτ = eσMeτ corresponds to eσVxτ

0

and UME(V)±,τ to Vxτ
0

as spaces. �

We remark that V〈X〉 has no involution corresponding to the powerful reversal involution on
UME(V). Nevertheless some traces of duality remain. For example, making our first use of the

notation ≈ for generic variables, if ≈
x,

≈
y,

≈
a,

≈
b are distinct free variables and for some elements

x, y ∈ V +, a, b, c ∈ V − the quadratic polynomial D+
x,aQ

+
y Q

−
b Q≈

x
c vanishes generically in ≈

x (in

all Ṽ over V, equivalently in V〈≈x,≈a〉), then its linearization D+
x,aQ

+
y Q

−
b Q≈

x,
≈
y
c vanishes generi-

cally as a bilinear function of ≈
x,

≈
y in V〈≈x,≈y,≈a,

≈
b〉 = V〈≈x,≈a〉〈≈y,

≈
b〉, so

(
D+
x,aQ

+
y Q

−
b D

+
≈
x,c

)≈
y = 0 in

V〈≈x,≈a〉≈
y
, and under the isomorphism D+

x,aQ
+
y Q

−
b D

+
≈
x,c

= 0 in UME(V〈≈x,≈a〉)+,+. But then its re-

verse D−
c,
≈
x
Q−b Q

+
y D

−
a,x also vanishes in UME

(
V〈≈x,≈a〉

)−,−
, leading (via the isomorphism, this time of

UME(V)±,− with V〈≈x,≈a〉≈
b
) to D−

c,
≈
x
Q−b Q

+
y D

−
a,x(

≈
b) = 0 in V〈≈x,≈a,≈y,

≈
b〉 and hence (via the homomor-

phism V〈≈x,≈a,≈y,
≈
b〉 → V〈≈x,≈a〉 induced by ≈

x → ≈
x,

≈
y → 0,≈a → ≈

a,
≈
b → ≈

a) to an unexpected relation
D−
c,
≈
x
Q−b Q

+(y){a, x,≈a} = 0 back in V〈≈x,≈a〉. Notice that vanishing of a function of ≈
x,

≈
y has led to

vanishing of a function of ≈x,≈a (which is exactly what happens in the universal multiplication enve-
lope, where a relation like d(x, a) = 0 as a universal map on ≈

x in modules Mσ leads to d(a, x) = 0
universally on ≈

a in M−σ). One suspects that vanishing of the original quadratic function of x implies
some “dual” quadratic function vanishes, but I have been unable to find examples. At any rate,
universal vanishing of a generic Jordan pair polynomial has powerful unexpected consequences.

In the construction of algebras of fractions [?], [?], [?] it is important to know whether cer-
tain multiplicative relations, such as a multiplication operator T being a structural transformation
QTx(y) = TQxT ∗ (y), hold generically on all extensions J̃ rather than just on J itself.

Injection Question 2.5 If J is a subsystem of J̃ , or more generally if J
ϕ−→ J̃ is injective, is

UPE(J)
U(ϕ)−→ UPE(J̃) also injective? �

Though no counterexamples seem to be known, one expects the answer to be negative. It is rea-
sonable to assume that if Ṽ is obtained from V by adjoining some inverses s−1, but in such a way
that no elements of V die under the imbedding, there still might be some polynomials ≈

m ∈ UPE(V)
which vanish on V itself, but not in some extension V ′, yet vanish on all extensions Ṽ ′ of Ṽ due to
the restriction imposed by invertibility of s−1 ∈ Ṽ ′.

3 Dominions

An inner ideal I−σ Cin V −σ is a subspace closed under inner multiplication, QI−σV σ ⊆ I−σ;
then V(I−σ) := (I−σ, V σ) forms a subpair of V. By (JP3) and (0.1.6), every element s−σ ∈ V −σ

determine closed and open principal inner ideals K−σ
s := Φs + QsV

σ and I−σs := QsV
σ. In the

theory of Jordan fractions an important role is played by a sesqui-principal inner ideal determined
by a dominating pair. We say that an element s dominates the element n, written s � n, if there
are pairs Ns,n = (N−σ, Nσ), Ss,n = (S−σ, Sσ) of globally-defined operators Mτ ∈ End(V τ ), τ = ±,
such that



12

(3.1) (Domination): Qn = N−σQs = QsN
σ, Qn,s = S−σQs = QsS

σ.

Such pairs arise in the consideration of Jordan fractions Q−1
s n with “reduced” numerator n and

denominator s. In practice (see 3.4.12 below, [2]) both S and N can be built from multiplica-
tions entirely within the original pair V. We say the domination is inner if for σ = ±τ both
Sσ ∈ DV σ,V −σ , Nσ ∈ QV σQV −σ are given as multiplications, and is generic (or that s generically
dominates n, s �gen n) if Sσ ∈ dV σ,V −σ ⊆ UME(V)σ,σ and Nσ ∈ qV σqV −σ ⊆ UME(V)σ,σ are
given as generic multiplication operators with S− = (S+)∗, N− = (N+)∗ and (3.1) holding generi-
cally in UPE(V). In both cases Nσ, Sσ act on V as inner multiplications. Note that s automatically
generically dominates all n = αs+Qsa in the principal inner ideal Ks by (0.1.6), (JP1). In fact, any
n dominated by s is already halfway in Ks, because such a pair (s, n) of dominator and dominatee
determines an inner ideal which is almost principal.

Dominion Theorem 3.2 If the element s dominates n, then the dominion

(3.2.1) K−σ
s�n := Φn+ Φs+QsV

σ

is an inner ideal satisfying

(3.2.2) QK−σ
s�n

V σ ⊆ QsV
σ = I−σs ⊆ K−σ

s ⊆ K−σ
s�n.

The elements x := γn + αs + Qsa, y := αs + Qsa, z := Qsa of the dominion have Q-operators
which can be “divided by Qs”,

(3.2.3) Qn = N−σQs = QsN
σ,

(3.2.4) Qn,s = S−σQs = QsS
σ,

(3.2.5) Qz = QsQaQs,
(3.2.6) Qy = B−σQs = QsB

σ (B−σ = Bα,s,a, B
σ = Bα,a,s),

(3.2.7) Qn,z = M−σ
a Qs = QsM

σ
a , (M−σ

a =S−σDs,a−Dn,a, M
σ
a=(M−σ)∗),

(3.2.8) Qn,y = G−σQs = QsG
σ (Gτ = αSτ +Mτ

a ),
(3.2.9) Qx = X−σQs = QsX

σ (Xτ = γ2Nτ + γGτ +Bτ )

where τ = ±σ.
If s dominates n generically, then the generic dominion

≈
K−σ
s�n :=

≈
Φn+

≈
Φs+Qs

≈
V σ is likewise

an inner ideal in UPE(V) satisfying Q≈
K−σ

s�n

(
≈
V σ) ⊆ Qs(

≈
V σ) =

≈
I−σs ⊆

≈
K−σ
s�n, and (3.2.3-9) hold in

UME(V) for generic ≈
γ,

≈
α ∈

≈
Φ and ≈

a ∈
≈
V σ, with T−σ = (T σ)∗ for all T = N,S,B,Ma, G,X.

Proof: We will omit all indices in the following arguments, since they are clear by context
from the statements in the theorem. (2) will show that the dominion as defined in (1) is indeed
an inner ideal, and (2) will follow from (9) since QxV σ = QsX

σV σ ⊆ QsV
σ. So all that remains

is to establish the formulas (3)-(9). (3),(4) are the definition (3.1) of domination s � n. The
formula (5) is just (JP3), the Bergmann formula (6) is (0.1.6). For (7), we have Qn,z = Qn,Qsa =
Ds,aQs,n −QsDa,n [by (0.1.3)] = Ds,a(QsSσ) −QsDa,n [by (3.1)] = Qs(Mσ

a ) [by (JP1)] = QsM
σ
a ,

and dually Qn,Qsa = Qs,nDa,s −Dn,aQs = S−σQsDa,s −Dn,aQs = M−σ
a Qs = M−σ

a Qs. Then (8)
follows immediately from (3.1),(4),(7) since Qn,y = αQn,s + Qn,z, and (9) follows similarly from
(3),(8),(6) since Qx = Qγn+y = γ2Qn + γQn,y +Qy.

In the case of generic domination, (3.1) holds generically in UME(V); then Mσ
a , S

σ, Gσ exist in
UME(V) (Bσ already does), and satisfy (3.2.3-9) for z = Qs

≈
a, y = ≈

αs+z, x = ≈
γn+y ∈ UPE(V). By

definition of generic dominations we have N−σ = (Nσ)∗, S−σ = (Sσ)∗, and automatically B−σ =
(Bσ)∗, so the recipes in (3.7-9) guarantee that T−σ = (T σ)∗ for T = Ma, G,X too. �
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This inner ideal Ks�n is not bi-principal, since the formulas indicate that n is already “half in
Ks”, so a fraction Q−1

s n is really of degree −1 in s, not −2. The operator G provides important
“glue” binding the two structural transformations N and B into a new structural X [?].

Note that T = N,S,Ma, G,X are not uniquely determined by (3.4.3-9), though the T σ are unique
if Qs is injective and T−σ are unique if Qs is surjective or Qs is generically injective and s generically
dominates n. At the opposite extreme, if Qs = Qn = Qs,n = 0 then any Nσ, Sσ will work, and
need not satisfy any reasonable relation (see (3.3.1) below). Domination is thus a rather impersonal
relation. A much closer relation, for forming properly “reduced” fractions [?],[?] is that of tight
domination: we say s tightly dominates n if

(3.3.1a) Qn = N−σQs = QsN
σ for an inner multiplication N ∈ QVQV ,

(3.3.1b) Qn,s = S−σQs = QsS
σ for S ∈ DV,V an inner Lie struction, i.e.,

Qsτ (w),w = SτQw +QwS
−τ for all w ∈ V τ ,

(3.3.2) there are q2, q3 ∈ V σ so that s1 := s, s2 := n, s3 := Qsq2, s4 := Qsq3 ∈ V −σ satisfy

(Power Shifting): S−σ(si) = 2si+1, N
−σ(si) = si+2, N

σ(qi) = qi+2,

(3.3.3) (Two N): (S−σ)2 = 2N−σ +Ds,q2 , (Sσ)2 = 2Nσ +Dq2,s.

Multiplying (3.3.3) on the right and left by Qs yields, via (3.3.1) and (JP1), the consequence

(3.3.4) (Two Q): S−σQs,n = 2Qn +Qs3,s = Qs,nS
σ.

These conditions insure that when 1
2 ∈ Φ the domination is completely determined by the Lie

struction S. We have the obvious notion of generic tight domination.
Life improves the smaller our dominions get. It is easy to construct more tightly dominated

subdominions inside a given dominion Ks�n.

Subdominion Theorem 3.4 If s dominates n in V −σ, then for any c ∈ V σ the element s′ := Qsc
more tightly dominates n′ := QsQcn, inducing a subdominion

(3.4.1) K−σ
s′�n′ = Φn′ + Φs′ +Qs′V

σ = Qs
(
Φc+Qc(Φn+QsV

σ)
)
⊆ QsK

σ
c .

(I) If we set

(3.4.2)

z′ := Qs′a = QsQcQsa, y′ := αs′ + z′ = Qs(αc+QcQsa)),

x′ := γn′ + y′ = Qs(γQcn+ αc+QcQsa) ∈ K−σ
s′�n′ ⊆ I−σs ,

q′2 := Nσ(c), q′3 := N(Qcn), qk+1 := N(c(k,n)) ∈ V σ (k ≥ 1),

s′1 = s′, s′2 = n′, s′3 := QsQcQnc, sk := Qs′q
′
k = Qsc

(k,n) ∈ Ks′�n′ (k ≥ 1),

then all elements x′ of the subdominion have Q-operators which can be divided by Qs′ ,

(3.4.3) Qn′ = Qs′N
′σ = N ′ −σQs′ , (N ′ −σ := QsQcN

−σ, N ′σ := NσQcQs),
(3.4.4) Qn′,s′ = Qs′S

′σ = S′ −σQs′
(
S′ −σ := Ds,S(c)−Dn,c, S

′σ := DS(c),s−Dc,n

)
,

(3.4.5) Qz′ = Qs′QaQs′ ,
(3.4.6) Qy′ = Qs′B

σ
α,a,s′ = B−σα,s′,aQs′ ,

(3.4.7) Qn′,z′ = M ′ −σ
a Qs′ = Qs′M

′σ
a ,

(
M ′ −σ
a := QsQcM

−σ
a , M ′σ

a := Mσ
aQcQs

)
,

(3.4.8) Qn′,y′ = G′ −σQs = QsG
′σ (

G′ τ := αSτ +M ′ τ
a

)
(3.4.9) Qx′ = Qs′X

′σ = X ′ −σQs′
(
X ′ τ := γ2N ′ τ + γG′ τ +B′ τ

)
.

Whenever s dominates n generically, any generic ≈
c induces a generic n′ := QsQ≈

c
n and a corre-

sponding generic subdomain K−σ
s′�n′ = Φn′ + Φs′ +Qs′

≈
V −τ satisfying (3.4.3-9) generically.
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(II) Automatically S′, N ′ of the derived dominion satisfy

• S′ ∈ DV,V ⊆ UME(V) is an inner Lie struction (3.3.1b);
• Power Shifting (3.3.2) holds;
• Two Q (3.3.4) holds.

(III) Whenever S is already a Lie struction, the above operators Mσ
a for the subdominion

coincide generically with those guaranteed by (3.2.5),

M ′ −σ
a := QsQcM

−σ
a = S′ −σDs′,a −Dn′,a, M ′σ

a := Mσ
aQcQs = Da,s′S

′σ −Da,n′ in UME(V).

(IV) Whenever S is already a Lie struction satisfying Power Shifting (3.3.2) and Two Q (3.3.4),
and in addition satisfies the weak “gluing” identities

(3.4.10) NσQc +QcN
−σ + SσQcS

−σ = QSσ(c) +QNσ(c),c,
(3.4.11a) ∆ := Ds,Nσ(c) −Dn,Sσ(c) +Ds3,c = 0,
(3.4.11b) ∆∗ := DNσ(w),s −DSσ(w),n +Dw,s3 = 0 for all w = c(2k−1,s),

then s′ tightly dominates n′ in the new subdominion K−σ
s′�n′ : besides (3.3.1b), (3.3.2) it satisfies Two

N (3.3.3) and innernress (3.3.1a) since the new N ′ is inner in QVQV (though perhaps The Innner
Multiplication from the Black Lagoon!):

(3.4.12)

N ′ −σ = QnQc+Qs3,sQc −Qs,nQSσ(c),c+QsQS(c)+QsQNσ(c),c

∈ QΦn+Φs+ΦN−σ(s)+ΦS−σ(s)QΦc+ΦS−σ(c)+N−σ(c) ⊆ QK−σ
s�n

QV σ ⊆ UME(V),

N ′σ = QcQn+QcQs3,s −QSσ(c),cQs,n+QS(c)Qs+QNσ(c),cQs ∈ QV σQK−σ
s�n

.

Moreover, in this case (3.4.10-11) for S′, N ′, s′, n′ are inherited from S,N taking the same c′ = c.
(IV) In particular, in the presence of (3.4.10-11) and (3.3.4) the element s′′ := Qs′c always

tightly dominates n′′ := Qs′Qcn
′ and the sub-subdominion K−σ

s′′�n′′ is tight satisfying (3.4.10-11).

Proof: (I): (1) follows from (3.2.1) and the definitions of s′, n′. (3) follows from (JP3), (3.1) by
Qn′ = QQsQcn = QsQcQnQcQs = QsQc(QsN−τ )QcQs = Qs′

(
N−τQcQs

)
, so N ′ −τ = N−τQcQs,

and dually N ′ τ = QsQcN
−τ . For (4) we first note that generically we have

(3.4.13)
S′ −σ := Ds,S(c) −Dn,c, S′σ := DS(c),s −Dc,n

satisfy Dn,cQs = QsS
′σ, QsDc,n = S′ −σQs in UME(V)

since in UME(V) the element S(c) satisfies QsDc,n + Dn,cQs = Q{n,c,s},s [by (0.1.1)] = QQsS(c),s

[by (3.1)] = QsDS(c),s = Ds,S(c)Qs [(by (JP1)]. Then Qn′,s′ = QQsQcn,Qsc = QsQQcn,cQs =
Qs

(
QcDn,c

)
Qs = QsQcQsS

′ −τ [by (JP1) and (13)] = Qs′S
′ −τ [by (JP3)], and dually, yielding (4)

generically.
Once (3-4) hold we know s′ � n′ and by (3.2.3-9) that (3-9) hold for operators B, Ma, G, X. By

the above, (4) holds generically, and (5), (6) clearly hold generically by (JP3), (0.1.6).
For the operators M ′

a of (7), we compute Qn′,Qs′a = QQsQcn,QsQcQsa = QsQcQn,QsaQcQs =
QsQc

(
QsM

−τ
a

)
QcQs [by (3.2.7)] = Qs′

(
M−τ
a QcQs

)
= Qs′M

′ −τ
a , and dually. As in (3.2), (8) follows

immediately from (3),(7) and (9) from (3),(7),(6).
If the domination is generic, all the formulas (3.4.1-9) thake place in UME(V).
(II) By (3.4.4) and (0.1.1), automatically S′ ∈ DV,V is inner Lie structural as in (3.3.1b), and

Power Shifting (3.3.2) automatically follows: for k ≥ 1 the elements q′k+1, s
′
k of (2) satisfy the

relations

(3.4.14) S′ −σ(s′k) = 2s′k+1, N ′ −σ(s′k) = s′k+2, N ′σ(q′k+1) = q′k+3, s′k+2 = Qs′(q′k+1).
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Indeed, S′(s′k) = (S′Qs)c(k,n) = (QsDn,c)c(k,n) [by (13)] = QsV
(n)
c (c(k,n)) = Qs2c(k+1,n) =:

2sk+1 and N ′(s′k) = (QsQcN)(s′k) = QsQcN(Qsc(k,n)) = QsQcQn(c(k,n)) = QsU
(n)
c (c(k,n)) =

Qsc
(k+2,n) =: s′k+2.On V σ we haveN ′σ(q′k+1) = (NQcQs)N(c(k,n)) = N(QcQnc(k,n)) = N(c(k+2,n)) =:

q′k+3. We have the alternate expression s′k+2 := Qsc
(k+2,n) = QsQcQnc

(k,n) = QsQcQsN(c(k,n)) =
Qs′q

′
k+1. Here s′1 = Qsc

(1,n) = Qsc = s′, s′2 = Qsc
(2) = QsQcn = n′, and s′3 = Qsc

(3,n) =
QsQcQnc.

10

Furthermore, V ′ automatically satisfies Two Q (3.3.4) sinceQs′,n′ = QQsc,QsQcn = QsQc,QcnQs =
QsQcDn,cQs by (JP3), (JP1), so S′Qs′,n′ = S′QsQcDn,cQs = (QsDc,n)QcDn,cQs [by (13)] =
QsQcD

2
n,cQs = QsQc

[
DQnc,c + 2QnQc

]
Qs = 2QsQcQnQcQs + QsQQcQnc,cQs [by (0.1.2), (JP1)]

= 2QQsQcn +QQsQcQnc,Qsc = 2Qn′ +Qs′3,s [by (JP3)], and dually Qs′,n′S′ = 2Qn′ +Qs′3,s.
If N is already an inner multiplication, so is N ′. In case N is already principal, so is N ′: if

N−σ = QsQq (with Qsq = n) then N ′ −σ = QsQc(QsQq) = QQscQq = Qs′Qq, and dually.

(III): To help the reader through the labyrinth of verifications of the for some of the following
formulas, we indicate the migration of terms via numeric-alphabetic superscripts;11 a superscript
N,H, •,� denotes a term which about to die, cancelled out by its evil twin. If S is Lie-structural,
then the two versions of Mσ

a agree, since

S−σDs′,a −Dn′,a =
[
D

(1)
s,S(c) −D

(2)
n,c

]
DQsc,a −D

(3)
QsQcn,a

= Ds,S(c)

[
Ds,cD

(1a)
s,a −QsQ

(1b)
c,a

]
−Dn,c

[
Ds,cD

(2a)
s,a −QsQ

(2b)
c,a

]
−

[
Ds,QcnD

(3a)
s,a −QsQ

(3b)
Qcn,a

]
[by (0.1.2) on (1), (2), (3)]

=
[
M

(1a1)
QsS(c) +QsQ

(1a2)
S(c),c

]
Ds,a −QQsS(c),sQ

(1b)
c,a −

[
D

(2a1)
n,Qcs

+Qn,sQ
(2a2)
c

]
Ds,a +Dn,cQsQ

(2b)
c,a

−Ds,QcnD
(3a)
s,a +QsQ

(3b)
Qcn,a

[by (0.1.2) on (1a),(2a), (JP1) on (1b)]

= D
(1a1)
Qs,n(c),c +Qs

[
S−σQ

(1a2a)
c +QcS

−τ (1a2b)
]
Ds,a −QQs,n(c),sQ

(1b)
c,a −D(2a1)

n,Qcs
Ds,a −Qn,sQ(2a2)

c Ds,a

+Dn,cQsQ
(2b)
c,a −Ds,QcnD

(3a)
s,a +QsQ

(3b)
Qcn,a

[by (3.1) on (1a1),(1b), Lie struction on (1a2)]

=
[
D

(1a1a)N
s,Qcn

+D
(1a1b)J
n,Qcs

]
Ds,a +Qs,nQcD

(1a2a)H
s,a +QsQcS

−τ (1a2b)•Ds,a −QsDc,nQ
(1b/2b)
c,a

−D(2a1)J
n,Qcs

Ds,a −Qs,nQ
(2a2)H
c Ds,a −Ds,QcnD

(3a)N
s,a +QsQ

(3b)
Qcn,a

[by (JP2)′ on (1a1), (3.1) on (1a2a), (0.1.1) on (1b/2b)]

= −Qs
[
Q

(1b/2b1)�
Qcn,a

+QcD
(1b/2b2)
n,a

]
+QsQ

(3b)�
Qcn,a

+QsQcS
−σD

(1a2b)
s,a [by (0.1.2) on (1b/2b)]

= QsQc
[
S−σD

(1a2b)
s,a −D

(1b/2b2)
n,a

]
= QsQcM

−σ
a =: M ′−σ

as claimed. The result for M−τ
a follows by a dual argument [or by the involution in the generic case,

in which case the equalities hold generically].

(IV): Now assume S is Lie-structural and Two Q (3.3.2,4), (3.4.10) hold; innerness (12) of N−σ

follows from N ′ −σ = QsQcN
−σ = Qs

[
QcN

−σ +NσQc
]
−QnQc [by (3.1)] = Qs

[
−SQcS +QS(c) +

QN(c),c

]
−QnQc [by (10)] = Qs,n

[
SQc −QS(c),c

]
+QsQS(c) +QsQN(c),c −QnQc [by (3.1) and Lie

structurality of S] =
[
2Qn + Qs3,s

]
Qc − Qs,nQS(c),c + QsQS(c) + QsQN(c),c − QnQc [by (3.3.4)]

= QnQc +Qs3,sQc −Qs,nQS(c),c +QsQS(c) +QsQN(c),c, and dually for Nσ.

If also triality (11) holds (in addition to (10), (3.3.4), and Lie structionality), then Two N (3.3.3)
10Note that we have not required S′(q′k+1) = 2q′k+2 in our definition of Power Shifting, primarily because we have

been unable to establish it here (not even S′(q′2) = 2q′3). The missing ingredient is a formula S′σNσ = NσDc,n,
which holds in the case of fractions.

11These serve much the same function as ear-tags to track migrating wildlife.
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holds for S′, N ′ as well: for −σ we have

S′ −σS′ −σ −
[
2N ′ −σ +Ds′,q′2

]
=

[
Ds,S(c) −Dn,c

][
Ds,S(c) −Dn,c

]
−

[
2QsQcN−σ +DQsc,Nσ(c)]

= (D(1)
s,S(c))

2 + (D(2)
n,c)2 −Dn,cD

(3)
s,S(c) −Ds,S(c)D

(4)
n,c − 2Qs

[
−NQ(5)

c −SQ(6)
c S+Q(7)

S(c)+Q
(8)
N(c),c

]
−

[
−D

(9)
QsN(c),c +D

(10)
s,{c,s,N(c)}

]
[by (3.4.10), (JP2)′]

=
[
D

(1a)
QsS(c),S(c) + 2QsQ

(1b)N
S(c)

]
+

[
Q

(2a)
Qnc.c

+ 2QnQ
(2b)
c

]
−

[
−Dn,S(c)D

(3a)
s,c +D(3b)

n,{S(c)s,c}+Qn,sQ
(3c)
c,S(c)

]
−

[
−Dn,S(c)D

(4a)
s,c +D(4b)

{s,S(c),n},c+Qn,sQ
(4c)
S(c),c

]
+2QnQ

(5)
c + 2Qs,nQcS(6) − 2QsQ

(7)N
S(c) − 2

[
Ds,N(c)D

(8a)
s,c −D

(8b)
QsN(c),c

]
+D

(9)
Qnc,c

−D
(10)
s,DN(c),s(c)

[by (0.1.2) on (1),(2),(8); linearized (0.1.2) on (3),(4); (3.1) on (5),(6),(9)]

=
[
D

(1a)I
QsS(c),S(c) +Q

(2a)
Qnc,c

+ 2QnQ
(2b)
c + 2Dn,S(c)D

(3a/4a)H
s,c − 2Qs,nQ

(3c/4c)
c,S(c) −D

(4b)
Qs,nS(c),c

−
[
−D

(3b1)J
s,QS(c),cn

+D
(3b2)
Qn,sS(c),c +D

(3b3)I
Qn,sc,S(c)

]
+ 2QnQ

(5)
c + 2Qs,nQcS(6)

−2
[
D

(8a1)H
n,S(c) −D

(8a2)
s3,c

]
Ds,c + 2D(8b)

Qnc,c
+D

(9)
Qnc,c

−
[
D

(10a)J
s,DS(c),n(c) −D

(10b)
s,Dc,s3 (c)

]
[by (3.1) on (1a), (JP2)′ on (3b); (3.4.11a,b) for w = c on (8a),(10); (3.1) on (8)]

= 4D(2a/8b/9)
Qnc,c

+ 4QnQ
(2b/5)
c − 2Qs,n

[
SQ

(3c1)
c +Q

(3c2)N
c S

]
− 2D(4b/3b2)

Qs,nS(c),c + 2Qs,nQ
(6)N
c S

+2
[
D

(8a2a)
s3,Qcs

+Q
(8a2b)
s3,s Qc

]
+ 2D(10b)

s,Qcs3

[by Lie structurality on (3c), (0.1.2) on (8a2); (3.1) on (1a),(3b3)]

= 4D(2a/8b/9)J
Qnc,c

+ 4QnQ
(2b/5)H
c − 2

[
2Q(3c1a)H

n +Q
(3c1b)N
s3,s

]
Qc − 2

[
D

(4b1)J
2Qnc,c

+D
(4b2)I
Qs3,s(c),c

]
+2D(8a2a/10b)I

{s3,c,s},c + 2Qs3,sQ
(8a2b)N
c = 0 [by (3.3.4) on (3c1),(4b); (JP2)′ on (8a2a),(10b)].

A dual argument [or the involution in the generic case] establishes the case σ.
It is not trivial to show that the conditions (10-11) are inherited by a subdominon. For (10) we

use (10-11), (3.3.4) for the original dominion to compute (using the same c′ = c)

N ′Qc +QcN
′ + S′QcS

′ −QS′(c) −QN ′(c),c

= (NQcQs)Q
(1)
c +Q

(2)
c (QsQcN) +

[
DS(c),s −Dc,n

]
Q

(3)
s

[
Ds,S(c) −Dn,c

]
−Q(4)

{S(c),s,c}−2Qcn
−Q

(5)
NQcQsc,c

= NQcQsQ
(1)�

√
c +Q

(2)�
√

c QsQcN) +DS(c),sQsD
(3a)◦

√

s,S(c) +c,n QsD
(3b)♦

√
n,c

−DS(c),sQcD
(3c)�

√
n,c −Dc,nQcD

(3d)�
√

s,S(c) −Q{S(c),s,c}DS(c),sQcD
(4a)N
n,c −4QcQnQ

(4b)�
c +2Q(4c)F

{S(c),S,c},Qcn

+Q(5a)I
QcQnc,c

+Q
(5b)4

√

SQcS(Qsc),c
−Q

(5c)J
QS(c)(Qsc),c

−Q
(5d)4

√

QN(c),c(Qsc),c

using (JP3) on (4b), (3.1) on (5a).

We now expand out certain of these terms marked by a
√

, indicating by N,J,I etc. where they
cancel out terms above or in other expansions. We have from (0.1.4)

(3a)◦ = −QS(c)QsQ
(3a1)�
c −QcQsQ

(3a2)�
S(c) +Q

(3a3)N
{S(c),s,c} +Q

(3a4)J
QS(c)Qsc,c

,

and similarly Dc,nQcDn,c = −2Qc)QnQc−Q{c,n,c}+QQcQnc,c=−2QcQ[nQc + 4QQcn +QQcQnc,c so
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(3b)♦ = QI
QcQnc,c

+ 2QcQnQ�
c .

We have

(5b)4 = QFF
{S(c),s,Qcn},c +Q•{S(c),n,Qcs},c −2QI

QcQnc,c
−Q••QcQs3,sc,c

(5d)4 = −Q•{S(c),n,Qcs},c +Q••QcQs3,sc,c

since for (5b) QSQcQs,nc,c = Q{S(c),Qs,nc,c},c − QQcSQsc,c [by Lie struction] = Q{S(c),s,Qcn},c
+Q{S(c),n,Qcs},c − 2QQcQnc,c − QQcQs3,sc,c [by (JP2)′, (3.3.4)], while for (5b) we have (elevating
subscripts Qc,d to Q(c, d))

−Qc,[Qc,N(c)Qs]c = −Q(c,
[
Dc,sDN(c),sc−Dc,QsN(c)c

]
) [by (0.1.2)]

= Q(c,
[
−Dc,s(DS(c),n −Dc,s3)c+Dc,Qncc

]
) [by (3.4.11b) for w = c, (3.1)]

= Q(c,
[
−Dc,sDc,nS(c) +

(
DQcs,s3 +QcQs3,sc

)
+ 2QcQnc

]
) [by (0.1.2)]

= Q(c,
[
−

(
DQcs,n +QcQs,n

)
S(c) +DQcs,s3c+QcQs3,sc+ 2QcQnc

]
) [by (0.1.2)]

= Q(c,
[
− {S(c), n,Qcs} −Qc

(
2Q•n +Q••s3,s]

)
c+DQcs,s3c+QcQ

••
s3,sc+ 2QcQ•nc

]
) [by (3.3.4)].

By far the most complicated are the expansions of terms (1) and (2):

(1) + (3a1) + (3d) = QcQnQc +DQcs3,sQc +QQcQnc,c −Dc,nQ{S(c),s,c},c

(2) + (3a2) + (3c) = QcQnQc +QcDs,Qcs3 +Qc,QcQnc −Q{S(c),s,c},cDn,c

(1)� + (2)� + (3a1)� + (3a2)� + (3c)� + (3d)� = 2QcQnQ�
c −QFF

{S(c),s,Qcn},c − 2QF
{S(c),s,c},Qcn

.

For the expansion of (1), the three terms become

=
[
NQc −QS(c)

]
QsQc

]
−Dc,nQcDs,S(c)

=
[
−QcN (1)−SQ(2)

c S+Q(3)
N(c),c

]
QsQc −Dc,nQ

(4)
{S(c),s,c},c +Dc,nDS(c),sQ

(5)
c [by (3.4.10),(0.1.1)]

= −QcQnQ(1)
c − SQcQs,nQ

(2)
c +

[
Dc,sD

(3a)
N(c),s −D

(3b)
c,QsN(c)

]
Qc −Dc,nQ

(4)
{S(c),s,c},c

+Dc,nDS(c),sQ
(5)
c [by (JP3) on (1), (3.1) on (2), (0.1.2) on (3),]

= −QcQnQ(1)
c −QS(c),cQs,nQ

(2a)
c +Qc(SQs,n)Q

(2b)
c +Dc,s

[
D

(3a1)
S(c),n −D

(3a2)
c,s3

]
Qc

−Dc,Qn
Q

(3b)
c −Dc,nQ

(4)
{S(c),s,c},c +Dc,nDS(c),sQ

(5)
c

[by Lie struction on (2), (3.4.11b) for w = c on (3a), (3.1) on (3b)]

= −QcQnQ(1)
c +Qc(2Q

(2b1)
n +Q

(2b2)•
s3,s )Qc −

[
D

(3a2a)
Qcs,s3

+QcQ
(3a2b)•
s3,s

]
Qc

+
[
Dc,sD

(3a1)
S(c),n +Dc,nD

(5)
S(c),s −QS(c),cQ

(2a)
s,n

](6)
Qc −Q

(3b)
QcQnc,c

−Dc,nQ
(4)
{S(c),s,c},c

[by (3.3.4) on (2b), (0.1.2) on (3a2), (JP1) on (3b)]

= +QcQnQ
(1)/(2b1)
c −D

(3a2a)
Qcs,s3

Qc +
[
Dc,Qs,nS(c)

](6)
Qc −Q

(3b)
QcQnc,c

−Dc,nQ
(4)
{S(c),s,c},c

[by linearized (0.1.2) on (6)]

= QcQnQ
(1)/(2b1)
c −D

(3a2a)
Qcs,s3

Qc +
[
2D(6a)

c,Qnc
+D

(6b)
c,Qs3,sc

]
Qc −Q

(3b)
QcQnc,c

−Dc,nQ
(4)
{S(c),s,c},c
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[by (3.3.4) on (6)]

= QcQnQ
(1)/(2b1)
c −DQcs,s3Q

(3a2a)
c + 2Q(6a)

QcQnc,c
+Dc,Qs3,scQ

(6b)
c −Q

(3b)
QcQnc,c

−Dc,nQ
(4)
{S(c),s,c},c

[by (JP1) on (6a)]

= QcQnQ
(1)/(2b1)
c +DQcs3,sQ

(3a2a/6b)
c +Q

(3b/6a)
QcQnc,c

−Dc,nQ
(4)
{S(c),s,c},c

[by (JP2) on (3a2a),(6b)] as claimed. A dual argument establishes the expansion of (2). Adding
the two together yields the combined expansion of (1)+(2) since[
QcQnQ

(1)/(2b1)
c +DQcs3,sQ

(3a2a/6b)
c +Q

(3b/6a)
QcQnc,c

−Dc,nQ
(4)
{S(c),s,c},c

]
+

[
QcQnQ

(1)/(2b1)
c +QcD

(3a2a/6b)
s,Qcs3

+Q
3b/6a
c,QcQnc

−Q{S(c),s,c},cD
(4)
n,c

]
= 2QcQnQ

(1)/(2b1)
c +Q

(3a2a/6b)
{Qcs3,s,c},c + 2Q(3b/6a)

QcQnc,c
−Q

(4a)
Dc,n{c,s,S(c)},c −Q

(4b)
{S(c),s,c},Dn,c(c)

[by (0.1.1) on (3a2a/6b), (4)]

= 2QcQnQ
(1)/(2b1)
c +Q

(3a2a/6b)
Qc{s3,c,s},c + 2Q(3b/6a)

QcQnc,c
− 2Q(4b)

{S(c),s,c},Qcn) −
[
Q

(4a1)
{Qcn,s,S(c)},c +Q

(4a2)
QcQs,nS(c),c

]
[by (0.1.2) on (4a), (JP1) on (3a2a/6b)]

= 2QcQnQ
(1)/(2b1)
c +Q

(3a2a/6b)•
QcQs3,sc,c

+ 2Q(3b/6a)••
QcQnc,c

− 2Q(4b)
{S(c),s,c},Qcn) −Q

(4a1)
{Qcn,s,S(c)},c

−
[
2Q(4a2a)••

QcQnc,c
+Q

(4a2)•
QcQs3,s](c),c

]
[by (3.3.4) on (4a2)]

= 2QcQnQ
(1)/(2b1)
c − 2Q(4b)

{S(c),s,c},Qcn) −Q
(4a1)
{Qcn,s,S(c)},c

as claimed. In view of these expansions of (3a), (3b), (5b), (5d), (1)+(2)+(3a1)+(3a2)+(3c)+(3d),
all the terms in our expansion of the new (3.4.10) cancel, and the identity holds.

The verification that the subdominion inherits (11) is also quite involved. For the new ∆′ we
compute, for an arbitrary w ∈ V σ,

∆′ = Ds′,N ′(w) −Dn′,S′(w) +Ds′3,w

= DQsc,NQcQs(w) −DQsQcn,S′(w) +DQsQcQnc,w

=
(
−DQsNQcQs(w),c +Ds,{c,s,NQcQs(w)}

)
+

(
DQsS′(w),Qcn −Ds,{Qcn,s,S′(w)}

)
+

(
−DQs(w),QcQnc +Ds,{QcQnc,s,w}

)
[by (0.1.2)]

so that we have an expression

∆′ = Ds,∆1(w) −∆2(y) for

∆1(w) = {c, s,N(QcQsw)} − {Qcn, s, S′(w)}+ {QcQnc, s, w},

∆2(y) = DQnQcy,c −DDn,cy,Qcn +Dy,QcQnc (y := Qsw)

[using (13) QsS′(w) = Dn,cQs(w) = Dn,cy]. A completely dual calculation (this is one reason we
have kept w arbitrary, since it plays different roles in ∆ and ∆∗),

∆∗′ = D∆1(w),s −∆∗
2(y)

where ∆1(w) takes the alternate form {N(QcQs(w), s, c} − {S′(w), s,Qcn} + {w, s,QcQnc} and
∆∗

2 = Dc,QnQcy − DQcn,Dn,cy + DQcQnc,y with y := Qsw again is precisely the dual of ∆2 in
UME(V). But ∆2(y) = ∆∗

2(y) = 0 for arbitrary y (hence arbitrary w) by m = 2 in Inner Triality
(0.2.6) [replacing x, a→ n, c].
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We have reduced the vanishing (11a) of ∆′ for the element w = c to the vanishing of ∆1(c),12

and the vanishing of ∆∗′ for all odd powers w′ = c(2n−1,s′) to the vanishing of ∆1(w) for all such w′;
but by Power Shifting (0.2.1) w′ = c(m,s

′) = c(m,Qsc) = c(m,s
2) = c(2m−1,s) remains an odd s-power

of c, as does c = c(1,s), thus it will suffice to prove ∆1(w) = 0 for all odd s-powers of c.
At this point we establish two further formulas before proceeding. The first formula holds auto-

matically for all w,

(3.4.15) {c, s, S′(w)} = {Qcn, s, w}+ S(QcQsw),

since

{c, s, S′(w)} = {c, s{S(c), s, w}} − {c, s, {c, n, w}} [by definition (4)]

=
(
{c,QsS(c), w}+QS(c),cQsw

)
−

(
{Qs, n, w}+QcQs,nw

)
[by (0.1.2)]

= {c,Qs,n(c), w} − {Qcs, n, w}+
(
S(QcQsw) +QcSQ

N
sw

)
−QcQs,nw

N [by Lie struction]

= {Qcn, s, w}+ S(QcQsw). [by (JP2)′]

The second formula also holds for all w, but depends on (11a):

(3.4.16) S({n, c,Qsw) = {s3, c, Qsw}+Qn{c, s, w}},

since

S({n, c,Qsw}) = {S(n), c, Qsw}(1) + n, c, S(Qsw)(2) − {n, S(c), Qsw}(3) [by Lie struction]

= 2{s3, c, Qsw}(1) + {n, c, {n,w, s}}(2) −
[
D

(3a)
s,N(c) +D

(3b)
s3,c

]
Qsw

[by (3.1) on (1), (14) on (2), (11a) in (3)]

= {s3, c, Qsw}(1/3b) + {Qnc, w, s}(2a)N +QnQc,ws
(2b) − {QsN(c), w, s}(3a)N

[by (0.1.2) on (2), (JP1) on (3a)]

= {s3, c, Qsw}(1/3b) +QnQc,ws
(2b).

With these out of the way, we can attack ∆1 for all w = c(2n−1,s) :

∆1(w) = {N(QcQsw), s, c}(1) − {S′(w), s,Qcn}(2) + {w, s,QcQnc}(3)

=
[
{S(QcQsw), n, c}(1a) − {QcQsw, s3, c}(1b)

]
−

[
{{S′(w), s, c}, n, c}(2a) −QcQn,sS

′(w)(2b)
]

+{w, s,QcQnc}(3) [by (11b) on (1) for w′ = QcQsc
(2n−1,s) = c(2n+1,s), (0.1.2) on (2)]

= {S(QcQsw), n, c}(1a)N −Qc{Qsw, c, s3}(1b) −
[
{
(
S(QcQsw), n, c}(2a1)N + {{w, s,Qcn}, n, c}(2a2)

]
+Qc(SQs)S′(w)(2b) + {w, s,QcQnc}(3) [by (JP1) on (1b), (15) on (2a), (3.1) on (2b)]

= −Qc{Qsw, c, s3}(1b) −Dc,n{w, s,Qcn}(2a2) +QcS(Dn,cQsw)(2b) + {QcQnc, s, w}(3)

12A careful examination of the proof reveals that in (11a) we only need that ∆ vanish on 2V −σ and QsV σ ;
the vanishing of Ds,∆1(c)Qs = QQs∆1,s is automatic since Qs∆1 = {QsN(QcQsw), c, s} − {QsS′(w), Qcn, s} +

{Qsw, QcQnc, s} [by (JP1)] =
�
DQnQcy,c −DDn,cy,Qcn + Dy,QcQnc

�
(s) [by (13) with y := Qsw] vanishes by Inner

Triality (0.2.6) with m = 2, x, a → n, c. However, we couldn’t derive 2∆1(c) = 0 and more easily than ∆1(c) = 0.
Similarly, we only need the vanishing (11b) of ∆∗ on the space Φc + QcV −σ , but that didn’t simplify matters either.
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[by (13) on (2b)]

= −Qc{Qsw, c, s3}(1b) −
[
QcQn{c, s, w}(2a2a) + {QcQnc, s, w}(2a2b)H

]
+QcS({n, c,Qsw})(2b)

+{QcQnc, s, w}(3)H [by (0.1.5) on (2a2) with x, a, b→ c, n, s acting on w]

= −Qc
[
{s3, c, Qsw}(1b) +Qn{c, s, w}(2a2a) − S({n, c,Qsw})(2b)

]
= 0. [by (16)]

(IV): Thus the presence of (3.3.2,4) and (10-11) guarantees that S′, N ′ are both inner as in
(3.3.1), Squaring (3.3.3) holds, and (3.3.2) still holds, so s′ tightly dominates n′. For any S,N
satisfying (10-11),(3.3.4) we know that S′ is inner and (10-11),(3.3.2,4) still hold for S′, N ′; applying
these results to S′, N ′ we see S′′, N ′′ are both inner as in (3.3.1), (3.3.2,4) always holds, and now
(3.3.3) holds in addition, so s′′ is tight over n′′. �

Remark 3.5 It is not hard to check that if we take c = q2 then with relations such as those in
Example 3.4, the resulting subdominion has N ′σ = Qq2Qn, N

′ −σ = QnQq2 a principal struction.
However, in the theory of fractions we want only injective denominators, and s′ = Qsq2 is usually
not injective, so we must take some other c. The derived N ′, S′ of (3.4) have more cohesion. �
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