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Abstract

The Martinez construction of fractions from a Jordan algebra requires a
Jordan derivation involving certain quadratic multiplications on the original
algebra. We study a general Bergmann construction of such structural trans-
formations (structions) in the context of Jordan pairs, whose natural setting
is a universal polynomial envelope (with a universal representation of polyno-
mial operators) generalizing the universal quadratic envelope (with its universal
representation of linear operators). The Bergmann structions corresponding to
fractions are defined only on a subpair determined by a sesqui-principal inner
ideal determined by an element s and an element n dominated by s. We study
these inner ideals and the criterion for a creating structions on them, which will
be applied to the creation of Jordan algebras of fractions. The methods should
have future application to the problem of creating fractions for Jordan pairs.

Throughout, we consider algebraic systems over an arbitrary ring of scalars Φ. A
Jordan pair, a pair V = (V +, V −) of Φ-modules with compositions (x, a) 7→ Qx(a) ∈
V τ for (x, a) ∈ V τ × V −τ , τ = ±,1 which are quadratic in x and linear in a, and
satisfy the following axioms strictly (in all scalar extensions, equivalently, all their
linearizations hold in V itself): for all x, y ∈ V τ , a, b ∈ V −τ

(JP1) Dx,aQx = QxDa,x, (JP2) DQxa,a = Dx,Qa(x), (JP3) QQxa = QxQaQx,

where as usual we set Qx,y := Qx+y − Qx − Qy, which gives the trilinear product
{x, a, y} := Qx,y(a) =: Dx,a(y) with {V τV −τV τ} ⊆ V τ .

We will try to economize on superscripts and use typography instead, denoting,
for a fixed τ = ±, elements of V τ by x, y, z, w and elements of V −τ by a, b, c. Every

1We will use τ instead of the usual σ as our generic superscript±, since we are especially interested
in multiplications by an incipient element q̃ of a fixed degree σ and focus on the important space
V −σ where Qq̃ is defined. Instead of saying “in our earlier formulas replace all σ’s by −σ” we will
say “set τ = −σ”.
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Jordan pair V = (V +, V −) has a dual or opposite pair Ṽ = (Ṽ +, Ṽ −) for Ṽ τ := V −τ

and operations Q̃x̃ã := Qax, D̃x̃,ãỹ := {a, x, b} for x̃ = a, ỹ = b ∈ Ṽ τ , ã = x ∈ Ṽ −τ

[Loos, p.3]. We could avoid all superscripts by formulating only positive results for
x ∈ V +, a ∈ V −, and applying duality for the corresponding negative results, but we
won’t be quite this parsimonious.

We will use [Loos] as reference bible for all results about Jordan pairs. The
following formulas are used frequently enough in the paper for us to display them:

(0.1.1) Dx,aQy + QyDa,x = Q{x,a,y},y,
(0.1.2) Dx,Qay = D{x,a,y},a −Dy,Qax = Dx,aDy,a −Qx,yQa,

DQay,x = Da,{y,a,x} −DQax,y = Da,yDa,x −QaQy,x,
(0.1.3) QQxa,y = Qx,yDa,x −Dy,aQx = Dx,aQx,y −QxDa,y,
(0.1.4) Q{x,a,y} + QQxQay,y = QxQaQy + QyQaQx + Dx,aQyDa,x,
(0.1.5) QQxQay,Dx,ay = QxQaQyDa,x + Dx,aQyQaQx,
(0.1.6) Qαx+Qxa = Bα,x,aQx = QxBα,a,x,

(Bα,x,a := α21 + αDx,a + QxQa).

1 The Universal Quadratic Envelope

For a subpair V ⊆ Ṽ , the unital outer multiplication algebra of V on Ṽ is denoted by
M(V|Ṽ); it is generated over Φ by the identity operator 1 and all operators of the

form Dx,a, Qx for x, a ∈ V ; when V = Ṽ we get the full outer multiplication algebra

M(Ṽ).
Though seldom mentioned in polite company, Jordan pairs have a universal gad-

get for quadratic representations. If A is a unital associative algebra with 2× 2 ma-
trix grading, i.e., a decomposition A =

⊕
τ,σ∈{±}Aτ,σ satisfying the matrix relations

Aτ,σAρ,ν ⊆ δσ,ρAτ,ν [equivalently, with Peirce decomposition Aτ,σ = eτAeσ relative
to e+ ∈ A+,+, e− ∈ A−,− where 1 = e+ + e−], then a quadratic specialization2 of
a Jordan pair V in A is a pair of maps Q = (q, d) = ((q+,−, q−,+), (d+,+, d−,−)) for
mτ,σ : V → Aτ,σ strictly satisfying the quadratic specialization relations for pairs: for
all τ = ±, x, y ∈ V τ , a, b ∈ V −τ

2This was called an associative representation in [Loos 2.4 p.16-17], leaving out (QS2) since it
follows from (QS4,4∗) via dQxa,a − dx,Qax =

(
d2

x,a − qxqa,a

) − (
d2

x,a − qx,xqa

)
= 0. (QS4) in turn

usually follows by applying (QS5) with y, a replaced by m, b, acting on a, and reading the result as
an operator on m. But due to the asymmetry between the pair elements x, y and a, b we cannot
derive (QS4) this way and must assume it as an axiom. This contrasts with the Jordan algebra
case [me, p.282] where µ1 = 1, µUxy = µxµyµx, µUxy,x = µxνy,x = νx,yµx suffice to define quadratic
specializations.
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(QS1) dτ,τ
x,aq

τ,−τ
x = qτ,−τ

Qxa,x = qτ,−τ
x d−τ,−τ

a,x ,

(QS2) dτ,τ
x,Qax = dτ,τ

Qxa,a,

(QS3) qτ,−τ
Qxa = qτ,−τ

x q−τ,τ
a qτ,−τ

x ,

(QS4) d−τ,−τ
b,x d−τ,−τ

a,x = d−τ,−τ
b,Qxa + q−τ,τ

b,a qτ,−τ
x ,

(QS4)∗ dτ,τ
x,ad

τ,τ
x,b = dτ,τ

Qxa,b + qτ,−τ
x q−τ,τ

a,b ,

(QS5) dτ,τ
y,aq

τ,−τ
x + qτ,−τ

x d−τ,−τ
a,y = qτ,−τ

{y,a,x},x.

These relations imply

(QS6) dτ,τ
Qxb,aq

τ,−τ
x = qτ,−τ

x d−τ,−τ
b,Qxa ,

(QS7) dτ,τ
Qxb,ad

τ,τ
x,b = qτ,−τ

x q−τ,τ
b dτ,τ

x,a = dτ,τ
x,QbQxa,

(QS8) qτ,−τ
x,y d−τ,−τ

a,x = dτ,τ
y,aq

τ,−τ
x + qτ,−τ

Qxa,y,

(QS9) qτ,−τ
x q−τ,τ

a,b + dτ,τ
x,{a,x,b} = dτ,τ

Qxb,a + dτ,τ
x,ad

τ,τ
x,b .

Here (6),(7),(8) are Lemma 2.6 (4),(5),(2) in [Loos, p.16] ; (9) is JP6, which was not
derived for specializations in Lemma 2.6, but is equivalent to (QS4) since (QS9) +
(QS4) =

(
qxqa,b +dx,{a,x,b}−dQxb,a−dx,adx,b

)
+

(
dx,adx,b−dQxa,b− qxqb,a

)
= dx,{a,x,b}−

dQxb,a − dQxa,b vanishes as a linearization of (QS2).3

The archetypal example of a quadratic specialization is an outer multiplication
representation, i.e., a quadratic specialization V → M(V|Ṽ)|M by outer multipli-
cation operators

qτ,−τ
x := Qx|M−τ , dτ,τ

x,a := Dx,a|Mτ

for M = (M+,M−) a V-invariant subspace of a Jordan pair Ṽ ⊇ V . The regular outer

representation is the outer multiplication representation of V on itself (M = Ṽ = V).
By restriction we obtain a multiplication representation on any outer ideal I ⊆ V .

A V-bimodule consists of a pair M = (M+,M−) of Φ-modules and a bi-
representation of V on M, i.e., a quadratic specialization of V in End(M) =⊕

τ,σ eτEeσ for eτ the projection of M on Mσ. In fact, all V-bimodules are in-
variant subspaces of some E ⊇ V , and all birepresentations V → End(M) are outer
multiplication representations V →M(V|E)|M on a split null extension.

Bimodule Theorem 1.1 Any V-bimodule M gives rise to a split null extension
E = V ⊕M = (V + ⊕M+, V − ⊕M−), which is a Jordan pair under the operations

Q̃x⊕m(a⊕ p) := Qxa⊕
(
qx(p) + dx,a(m)

)
,

D̃x⊕m,a⊕p(y ⊕ n) := Dx,a(y)⊕ (
dx,a(n) + qx,y(p) + dy,a(m)

)

3Similarly, (QS8) is equivalent to (QS5) since (QS8)+(QS5) equals the linearization x → x, y in
(QS1) qxda,x = qQxa,x. Note that (QS1-3) are (JP1-3), (QS4) is (0.1.2), (QS5) is (0.1.1), (QS8)
is (0.1.3). The Bimodule Theorem below shows that (QS8),(QS9) are more directly involved than
(QS4),(QS5) in capturing bimodule structure, but we prefer (QS5) as a basic result (dx,a is a Lie
struction), and (QS4)∗ since it is the dual of (QS4).
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for all x, y ∈ V τ , m, n ∈ M τ , a ∈ V −τ , p ∈ M−τ , and the original birepresentation is
the restriction of the regular outer representation of E to V and M.

Proof: We must verify that the axioms (JP1-3) hold in all extensions of V .
Since the relations (QS1-5) hold strictly, it suffices to show they imply (JP1-3) in V
itself.

For (JP1), the LHS is D̃x+m,a+pQ̃x+m(b+r) = {x, a,Qxb}⊕
(
dx,aqx(r)+qQxb,x(p)+

(dx,adx,b+dQxb,a)(m)
)
, and the RHS is Q̃x+mD̃a+p,x+m(b+r) = Qx{a, x, b}⊕(

qxda,x(r)+
qxdb,x(p) + (qxqa,b + dx,{a,x,b})(m)

)
, which agree by (JP1) in V , (QS1) on r and p, and

(QS9) on m.

For (JP2), the LHS is D̃ eQx+m(a+p),a+p(y+n) = {Qxa, a, y}⊕(
dQxa,a(n)+dy,adx,a(m)+

(qQxa,y+dy,aqx)(p)
)
, and the RHS is D̃x+m, eQa+p(x+m)(y+n) = {x,Qax, y}⊕(

dx,Qax(n)+

qx,yda,x(p) + (dy,Qax + qx,yqa

)
(m), which agree by (JP2) in V , (QS2) on n, (QS8) on

p, and (QS4)∗ on m.

Finally, for (JP3) the LHS is Q̃ eQx+m(b+r)(a+p) = QQxb(a)⊕(
qQxb(p)+dQxb,aqx(r)+

dQxb,adx,b(m)
)
, and the RHS is Q̃x+mQ̃b+rQ̃x+m(a + p) = QxQbQx(a) ⊕ (

qxqbqx(p) +
qxdb,Qxa(r) + dx,QbQxa(m), which agree by (JP3) in V , (QS3) on p, (QS6) on r, and
(QS7) on m. ¥
Bimodules are inherently outer modules for V , they have no inner multiplications
(∩V (M) = QMV = 0). Thus they can reflect only outer multiplicative properties of
a Jordan pair.

The universal gadget for quadratic specializations is the universal quadratic
envelope UQE(V) (cf. [me, p. 289-290] for the algebra case), a unital associative
U with 2× 2 matrix grading, together with a universal quadratic specialization

Qu : V → U , having the universal property that every quadratic specialization V Q−→
A factors through the universal one

(1.2)
V Q−−−→ A

Qu ↘ ↗ Q̂
UQE(V)

via a unique homomorphism Q̂ of unital 2 × 2-graded associative algebras. This
implies, in particular, that UQE is unique up to isomorphism and is generated by
the universal elements e+, e−, qτ,−τ

x ∈ U τ,−τ , dτ,τ
x,a ∈ U τ,τ for x ∈ V τ , a ∈ V −τ . The

standard model of UQE is F/I for F the free unital associative Φ-algebra generated
by all eτ (e+ + e− = 1), qτ,−τ

x , dτ,τ
x,a and I is the ideal generated by (e+)2 = e+ and

all elements needed to make d linear in x, a and q quadratic in x [all dαx+x′,a −
αdx,a − dx′,a, dx,αa+a′ − αdx,a − dx,a′ , qαx − α2qx, qαx+x′,a − αqx,a − qx′,a], and insure
that (QS1-5), hence also (QS6-9), and their linearizations hold [all elements LHS −
RHS in (QS1-5), plus the x-linearizations of the cubic relations (QS1),(QS6),(QS7)
and the quartic relation (QS3)]. Since the set of generators for both U and I are
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homogeneous and invariant under the reversal involution of F (determined by
(qτ,−τ

x )∗ := qτ,−τ
x , (dτ,τ

x,a)
∗ := d−τ,−τ

a,x ), the quotient UQE inherits the matrix grading
and involution. This leads to the Duality Principle: if a Jordan pair operator
ω ∈ UQE(V) is an identity, ω = 0 in UQE , then its reversal ω∗ is also an identity,
ω∗ = 0 in UQE .

We will rapidly get tired of writing qτ,−τ
x , dτ,τ

x,a for the generators of U and sim-
ply write qx, dx,a when the indices are understood. In fact, we will often just write

Qx, Dx,a in place of their preimages (Q̂r(qx) = Qx, Q̂r(dx,a) = Dx,a) under the regular
representation Qr, and say “in the universal envelope”, “in U”, or just “universally”.
The defining relations (JP1-3), (0.1.1-6) show that if {xi} is a set of graded generators
xi ∈ V τ(i) for V , then the operators qxi

, qxi,xj
, dxi,xj

is a set of generators for UQE(V).

Any quadratic specialization V Q→ A turnsA into a V-bimoduleM(A,Q) = M+⊕
M− (M τ := Aeτ = Aτ,τ⊕A−τ,τ ) (which is cyclic with generator 1A = e+⊕e− if Q(V)
generates A) via the left regular representation A → End(A), so for ω ∈ UQE(V)

we have ω(a) = Q̂(ω)a as in (1.2). The universal envelope U becomes a universal
cyclic bimodule M(U ,Qu); every cyclic V-bimodule is a homomorphic image of
M(U ,Qu).

If V is a subalgebra of Ṽ , we denote by UQE(V|Ṽ) the subalgebra of UQE(Ṽ)

generated by 1 and all d̃x,a, q̃x for x, a ∈ V , and we have natural epimorphisms

UQE(V) → UQE(V|Ṽ) → M(V|Ṽ) via dx,a, qx → d̃x,a, q̃x → D̃x,a, Q̃x ∈ End(Ṽ).

In particular, Ṽ becomes a left UQE(V)-module, and we can form ω(x̃) for any

ω ∈ UQE(V) and any x̃ ∈ Ṽ . We also have the Action Principle: If a Jordan
pair operator ω ∈ UQE(V) is zero as a bimodule operator, ω = 0 ∈ End(M) for all
V-bimodules M, then ω = 0 in UQE(V); indeed if ω is zero on the universal cyclic

module M(U ,Qu) then 0 = ω(1U) = Q̂u(ω)1U = ω implies ω = 0 in U [note that

Q̂u = 1U by uniqueness in (1.2)].
Another formulation of the Action Principle is that an operator ω ∈ U is zero iff

it is zero as an operator in all extensions Ṽ ⊇ V : if ω = 0 on Ṽ = V ⊕M(U ,Qu) then
ω = 0 on M(U ,Qu), so ω = 0 in U . Conversely, if ω vanishes in U then it vanishes

on all m̃ ∈ Ṽ since M = M(V |Ṽ)m̃ is a Jordan bimodule, and ω = 0 on M implies
ω = 0 on m̃.

2 Universal Polynomial Envelope

Jordan algebras and pairs have linear outer multiplications ∪x : a → Uxa,Qxa and
Vx,a, Dx,a : y → {x, a, y} which are linear operators, but they also have inner mul-
tiplications ∩x : a → Qax mapping V −τ → V −τ which are quadratic rather than
linear operators. We can interpret these as mappings on the associated polarized
Jordan triple system Vp := V +⊕V − by setting ∩V τ (V τ ) = {V τ , V τ , V } = 0. The full
polynomial multiplication algebra PM(V) ⊆ Pol(V) is the associative algebra of
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polynomial maps in several variables on V generated by the Qx, Dx,a,∩x.
4 The easiest

approach to these polynomials is through the free product of V with a free pair.
Recall from your subconscious that the free Jordan pair FJP [X] on a nonempty

sets X = X+ ] X− of graded generators is the free pair monad FPM[X] on the
generators divided out by the ideal I(X) generated by the Jordan pair identities (JP1-
JP3) as well as their linearizations. The free pair monad is the free module spanned
spanned by all pair monomials in the generators, constructed recursively by taking in
degree 1 the generators x±i , and if pτ , qτ , a−τ of degrees d, e, f have been constructed,
then mτ = Qpa, {p, a, q} = {q, a, p} are monomials of degrees 2d + f, d + e + f . The
ideal I(X) is generated by the following relations5

(JP1)′ Dx,aQx,y + Dy,aQx = QQxa,y + QQx,ya,x = Qx,yDa,x + QxDa,y,
(JP3)′ QQxa,Qx,ya = QxQaQx,y + Qx,yQaQx,y,
(JP3)′′ QQxa,Qya+Q{x,a,y} = QxQaQy+QyQaQx+Qx,yQaQx,y.

Remember that quadratic identities linearize automatically, so it is only identities
of degree 3 or more in a variable that must be assumed to hold, and they hold
automatically if the ring of scalars Φ has sufficiently many invertible elements. The
quotient Φ-module FJP [X] := FPM[X]/I(X) becomes a Jordan pair by defining
QP

i pi
(
∑

j aj) =
∑

i,j Qpi
aj +

∑
i<k,j{pi, aj, pk}. We call it the free Jordan pair Φ〈X〉

on the free graded variables X+ ] X− over Φ, using pointy brackets to distinguish
it from the scalar polynomial ring Φ[X] in ungraded scalar variables. We will speak
of THE free Jordan pair Φ〈X〉 over Φ when Xτ = {xτ

1, x
τ
2, . . .} (τ = ±) are both

countably infinite sets of indeterminates; its elements may be thought of as universal
Jordan pair polynomials in any (necessarily finite) number of variables.

The free pair on X is graded by degree in each variable, and agrees with the
free monad up to degree 4 (the lowest-degree Jordan identities are (JP1), (JP2) of

degree 5), in particular has a natural imbedding X
in−→ FJP [X]. It enjoys the usual

universal property, that every set-theoretic map X± ϕ−→ V ± extends uniquely to a

homomorphism FJP [X]
eϕ−→ V of Jordan pairs. The universal property leads by

universal nonsense to the usual properties of the free object and yields a functor from
sets to Jordan pairs.

For generalized Jordan polynomials on a particular Jordan pair V we must take
the free product of V with FJP [X] to get F [V , X], the polynomials with coefficients
in V in the graded free variables X+ ]X−, not to be confused with the scalar poly-
nomials V ⊗Φ Φ[X] in ungraded scalar variables. There is no transparent way to view

4It is not true that PQE(V) is generated by qxi , qxi,xj , dxi,xj ,∩xi for generators {xk} of V (∩Qxi
xj :

a → QaQxixj is not directly expressible in terms of these).
5If we were willing to add the complete linearization of these, namely (JP1)′′ linearizing x → x, z

in (JP1)′, (JP2)′, ′′, ′′′ linearizing x → x, z and a → a, b and both in (JP2), and (JP3) linearizations
x → x, z and x → x, z, w in (JP3)′ and x → x, z, y → y, w, and both in (JP3)′′, plus the linearizations
a → a, b in all of these, it would suffice to consider only those relations where x, y, a are themselves
monomials. But that’s too steep a price to pay!
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this algebra as there is in the category of associative algebras, where the elements of
F [A,X] are just linear combinations of strings a0x

(1)a1x
(2) · · · anx(n)an+1, n ≥ 0, for

nonzero ai ∈ A (allowing a0, an+1 to be absent) and nontrivial free noncommutative
monomials x(i) in the free associative algebra F [X] (with the obvious multiplication
and linearity in the variables ai.)

6 The elements of F [V , X] can be thought of as gen-
eralized polynomials in the sense of Martindale (see, for example, [?, p.111f]): non-
commutative nonassociative Jordan polynomials in indeterminates xi with coefficients
from V . In this paper we will not be concerned with generalized polynomial identi-
ties, nonzero elements of F [V , X] which vanish on V or related pairs, but rather the
zero elements themselves, polynomials p(a1, . . . an, x1, . . . xm) = 0 ∈ F [V , X] where
p(y1, . . . yn, x1, . . . xm) 6= 0 ∈ Φ〈Y ]X〉 is a nontrivial Jordan polynomial which van-
ishes for the particular substitutions yi → ai ∈ V and all possible substitutions xj → b̃j

for all pairs Ṽ containing a homomorphic image of V .
The easiest way to form this free Jordan product is to present V in the most

egregious way (take indeterminates Y τ = V τ and write V ∼= FJP [Y ]/K induced from

the natural inclusion Y
in−→ V , and then form F [V , X] := FJP [X ] Y ]/K (dividing

out by the relations K in the variables Y defining V , but no further relations in the
variables X other than those I(X) imposed in the formation of FJP [X]). There are
natural inclusions X

σu−→ F [V , X], V ιu−→ F [V , X]. This has the universal property that

any set-theoretic map X
σ−→ Ṽ together with a Jordan pair homomoprhism V ϕ−→ Ṽ

extends uniquely to a Jordan pair homomorphism F [V , X]
(̃ϕ,σ)−−−→ Ṽ . (We will leave

it to the TeXnically proficient reader to construct the corresponding commutative
diagram demonstrating the creation and universal diagram for F [V , X] from the those
for FJP [Y ],FJP [X].)

We will adopt the shorthand notation V〈X〉 for the free pair F [V , X], again using
pointy brackets to distinguish it from the scalar polynomial extension V [X] = V ⊗Φ

Φ[X]. When X is countably infinite we call V〈X〉 the free polynomial algebra
F〈V〉 or universal polynomial envelope UPE(V) of V over Φ. The universal
property leads by universal nonsense to standard properties of the free object: it
determines a functor from Jordan-pairs-and-sets to Jordan pairs, distinct variables
can be adjoined one-by-one or in one fell swoop,

(2.1) V〈X〉〈Y 〉 ∼= V〈X ] Y 〉,
that a bijection of sets induces an isomorphism of free pairs

(2.2) X1
∼= X2 =⇒ V〈X1〉 ∼= V〈X2〉,

6As pair theorists, we can blithely ignore the complications in the category of unital algebras,
where we would want 1 ∈ A to remain the unit in F [A,X] and therefore must face the sort of collapse
ax(1)1x(2)b−a(x(1)x(2))b familiar from the case of free groups. Indeed, associative ring theory wants
the entire center C of A to remain the center of F [A,X], forming the free product over C instead
of Φ.
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in particular that the free polynomial algebra is indifferent to countable extensions,

(2.3) F〈V〉 ∼= F〈V〉〈Y 〉 (Y countable).

We have the Action Principle that p = 0 in F〈V〉 iff the map induced by p

vanishes on all Jordan algebras Ṽ with homomorphism (not necessarily an imbedding)

V ϕ−→ Ṽ . Certainly if p(x1, . . . , xn) = 0 in V〈X〉 then for any x̃1, . . . x̃n ∈ Ṽ and σ(xi) =

x̃ we have 0 = (̃ϕ, σ)(p) = p(x̃1, . . . , x̃n) and p vanishes on Ṽ . Conversely, if p vanishes

on all pairs Ṽ it certainly vanishes on the pair F〈V〉 itself, so p = ˜(σu, ιu)(p) = 0.
Any free polynomial algebra V〈X〉 is again X-graded, with the elements in degree

0 being precisely V . We have a graded decomposition V〈X〉 = V⊕⊕
x∈X Vx⊕V2 into

homogeneous parts of degree 0,1, and ≥ 2. Importantly, the homogeneous polynomials
of degree 1 are naturally isomorphic to the universal multiplications of the universal
quadratic envelope.

Quadratic Envelope Imbedding 2.4 Fix an even and odd variable x±0 ∈ X±, set
x0 := x+

0 ⊕ x−0 . Then the cyclic V-sub-bimodule M = M(V)x0 = Vx+
0
⊕ Vx−0

⊆ V〈X〉
is naturally isomorphic to the universal cyclic bimodule M(U ,Qu)) = U(1U) = U via

the inverse linear maps U ψ−→ M given by ω → evalx0(ω) = ω(x0) and M
ϕ0−→ U by

p(x0) → p. Under this isomorphism UQE(V) ∼= Vx+
0
⊕ Vx−0

and UQE(V)±,τ ∼= Vxτ
0

as
spaces.

Proof: We have a multiplication representation V → M(V|Vx0), so by the
universal property of U this induces an algebra homomorphism U →M(V|Vx0), which
can be followed by the evaluation map evalx0 . Since evaluation is a V-bimodule map,
the resulting composite ψ : ω 7→ ω(x0) is a homomorphism of cyclic V-bimodules.

The specializations xi → 0, x0 → 1U (i.e., xτ
0 → eτ ) induce a homomorphism

V〈X〉 ϕ−→ V ⊕M by the univeral property, which restricts to a V-bimodule homomor-

phism Vx0

ϕ0−→ U1U = U . The recursive construction shows the only polynomials in
Vx0 have the form p(x0) = ω(x0) for a muliplication operator ω: in degree 1 there
is just xτ

0 = eτ (x0), if true for degrees less than n then in degree n any homoge-
neous degree 1 monomial must be Qpq (where p must be constant and by recursion
q = ω(x0) for a multiplication operator ω) or {p, q, r} (where we must have two con-
stant factors and one an operator on x0 by recursion, so {p, q, ω(x0)} = Dp,qω(x0) or
{p, q(x0), r} = Qp,rω(x0).

These two homomorphisms are inverses since (ϕ0◦ψ)(ω) = ϕ0(ω(x0)) = ω(1U) = ω
and (ψ◦ϕ0)(ω(x0)) = ψ(ω(1U)) = ψ(ω) = ω(x0). Thus the two bimodules are isomor-
phic. It is clear that under this bimodule isomorphism UQE(V)σ,τ = eσUQE(V)eτ =
eσMeτ corresponds to eσVxτ

0
and UQE(V)±,τ to Vxτ

0
as spaces. ¥

We remark that V〈X〉 has no involution corresponding to the powerful reversal
involution on UQE(V). Nevertheless some traces of duality remain. For example, if
x+, x−, y+ are distinct variables and for some elements z, w, a, b, c in a pair V the
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quadratic polynomial D+
z,aQ

+
wQ−

b Qx+c vanishes universally (as a function of x+ on all

Ṽ over V , equivalently in F(V)), then its linearization D+
z,aQ

+
wQ−

b Qx+,y+c vanishes

universally as a bilinear function of x+, y+, so
(
D+

z,aQ
+
wQ−

b D+
ỹ+,c

)
(x+) = 0 in F(V)x+ ,

and under the isomorphism D+
z,aQ

+
wQ−

b D+
ỹ+,c = 0 in UQE(V)±,+. But then its reverse

D−
c,ỹ+Q−

b Q+
wD−

a,z also vanishes, leading (via the isomorphism, this time of UQE(V)±,−

with Vx−) to an unexpected relation Dc,y+QbQw{a, z, x−} = 0 back in V〈X〉. Notice
that vanishing of a function of x+, y+ has led to vanishing of a function of x−, y+

(which is exactly what happens in the universal quadratic envelope, where dx,a = 0 as
a universal map on modules M τ leads to da,x = 0 universally on M−τ ). One suspects
the original quadratic function of x vanishing implies some “dual” quadratic function
vanishes, but I have been unable to find examples. At any rate, universal vanishing
of a generalized Jordan pair polynomial has powerful unexpected consequences.

3 Dominions

An inner ideal Iτ Cin V τ is a subspace closed under inner multiplication, QIτ V −τ ⊆
Iτ ; then V(Iτ ) := (Iτ , V −τ ) forms a subpair of V . By (JP3)and (0.1.6), every element
sτ ∈ V τ determine closed and open principal inner ideals Kτ

s := Φs + Qτ
sV

−τ

and Iτ
s := Qτ

sV
−τ . In the theory of Jordan fractions an important role is played by a

sesqui-principal inner ideal determined by a dominating pair. We say that an element
s dominates the element n if there are pairs Ns,n = (N τ , N−τ ), Ss,n = (Sτ , S−τ ) of
operators M τ ∈ End(V τ ), τ = ±, such that

(3.1) Qτ
n = N τQτ

s = Qτ
sN

−τ , Qτ
n,s = SτQτ

s = Qτ
sS

−τ .

Note that s automatically dominates all n = αs + Qsa in the principal inner ideal
Ks by (0.1.6), (JP1), and we will see that any y dominated n is already halfway in
Ks. Such a pair (s, n) of dominator and dominatee determines in inner ideal which
is almost principal.

Dominion Theorem 3.2 If the element s dominates n, then the dominion

(3.2.1) Kτ
sÂn := Φn + Φs + Qτ

sV
−τ

is an inner ideal satisfying

(3.2.2) QKsÂnV −τ ⊆ Qτ
sV

−τ = Iτ
s ⊆ Kτ

s ⊆ KsÂn.

The elements x := γn + αs + Qsa, y := αs + Qsa, z := Qsa of the dominion have
Q-operators which can be “divided by Qs”,

(3.2.3) Qτ
z = Qτ

sQ
−τ
a Qτ

s ,

(3.2.4) Qτ
n,z = Dτ

aQ
τ
s = Qτ

sD
−τ
a

(
(Dτ

a , D
−τ
a ) := (SτDs,a−Dn,a, Da,sS

−τ−Da,n)
)
,

(3.2.5) Qτ
n,y = GτQτ

s = Qτ
sG

−τ ( Gσ = αSσ+Dσ
a )

(3.2.6) Qτ
y = BτQτ

s = Qτ
sB

−τ
(
(Bτ , B−τ ) := (Bα,s,a, Bα,a,s)

)
,

(3.2.7) Qτ
x = XτQτ

s = Qτ
sX

−τ ( Xσ = γ2Nσ+γGσ+Bσ).
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where σ = ±τ.

Proof: We will omit all indices in the following arguments, since they are clear
by context from the statements in the theorem. (2) will show that the dominion
is indeed an inner ideal, and (2) will follow from (7) since QxV

−τ = Qτ
sX

−τV −τ ⊆
Qτ

sV
−τ . So all that remains is to establish the formulas (3)-(7). The fundamental

formula (3) is just (JP3), the Bergmann formula (6) is (0.1.6). For (4), we have
Qn,z = Qn,Qsa = Ds,aQs,n − QsDa,n [by (0.1.3)] = Ds,a(QsS

−τ ) − QsDa,n [by (3.1)]
= Qs(Da,sS

−τ −Da,n) [by (JP1)] = QsD
−τ
a , and dually Qn,Qsa = Qs,nDa,s−Dn,aQs =

SτQsDa,s −Dn,aQs = (SτDs,a−Dn,a)Qs = Dτ
aQs. Then (5) follows immediately since

Qn,y = Qn,αs + Qn,z = Qτ
s(αS−τ + Dτ

a) [by (3.1),(3.4)]. The formula for Qy follows
from (0.1.6). For (7) we have Qx = Qγn+y = γ2Qn + γQn,y + Qy = Qs

(
γ2N−τ +

γG−τ + B−τ
α,a,s

)
= QsX

−τ by (3.1), (3.6), and dually. ¥
This inner ideal is not bi-principal, since the formulas indicate that n is already

“half in Ks”, so a fraction Q−1
s n is really of degree −1 in s, not −2. We will see that

the operator G provides important “glue” binding the two structural transformations
N and B into a new structural X.

We will denote the operator pairs by Da,s,n = (Dτ
a , D

−τ
a ), Gα,a,s,n = αSs,n+Da,s,n =

(Gτ , G−τ ), Bα,a,s := (Bα,s,a, Bα,a,s), Xγ,α,a,s,n := γ2Ns,n+γGα,a,s,n+Bα,a,s. The individ-
ual operators N±, S±, D±

a also depend on s, n, but we will always omit these subscripts
from the notation.

We will see that life gets easier the smaller our dominions get. It is easy to
construct subdominions inside a given dominion KsÂn.

Subdominion Theorem 3.3 If s dominates n in V τ , then also for any c ∈ V −τ the
element s′ := Qsc dominates n′ := QsQxn, inducing a subdominion

(3.3.1) Kτ
s′Ân′ = Φn′ + Φs′ + Qs′V

−τ = Qs

(
Φc + Qc(Φn + QsV

−τ )
) ⊆ QsK

−τ
c .

For any element x′ := γn′+αs′+Qs′a = Qs(αc+Qcy
′) ∈ Kτ

s′Ân′ , y′ := γn+Qsa ∈
V τ we have the relations

(3.3.2) {s, c, y′} = Qτ
sa
′′ (a′′ := −γ∆0(c) + {a, s, c}),

(3.3.3) Qτ
y′ = Qτ

sA
−τ = AτQτ

s ,
(Aτ := γ2N τ + γDτ

a + Qτ
sQ

−τ
a , A−τ := γ2N−τ + γD−τ

a + Qτ
aQ

−τ
s ),

(3.3.4) Qτ
n′ = Qτ

s′N
′ −τ = N ′ τQτ

s′ , (N ′ τ := Qτ
sQ

−τ
c N τ , N ′ −τ := N−τQτ

cQ
−τ
s ),

(3.3.5) Qτ
n′,s′ = Qτ

s′(∆
′
0)
−τ = (∆′

0)
τQτ

s′ ,
(∆′ τ

0 := −Ds,∆0(c)−Dn,c, ∆′ −τ
0 := −D∆0(c),c −Dc,n),

(3.3.6) Qτ
n′,Qs′a

= Qτ
s′D

′ −τ
a = D′ τ

a Qτ
s′ , (D′ τ

a := QsQcD
τ
a , D′ −τ

a := D−τ
a QcQs),

(3.3.7) Qx′ = Qτ
s′X

′ −τ = X ′ τQτ
s′ ,

X ′ τ :== α2I + α
(
Ds,a′′ −Dy′,c

)
+ QsQcA

τ ,
X ′ −τ := α2I + α

(
Da′′,s −Dc,y′

)
+ A−τQcQs.
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Thus the sub-derivation ∆′
0 ∈ DV,V is always an inner derivation. If N is a struction,

so is N ′.

Proof: (1) is clear. For (2), {s, c, y′} = γQs,nc + Qs,Qsac = Qs

( − γ∆0(c) +
Da,s(c) [by (5.1.4), (JP1)] = Qsa

′′. For (3), by (3.2.7) [with α = 0] Qy′ = Qγn+Qsa =
QsA

−τ = AτQs for Aσ = γ2Nσ + γDσ
a + Bσ where B0,a,s = QaQs, B0,s,a = QsQa. (4)

follows from (JP3), (5.1.3) by Qn′ = QQsQcn = QsQcQnQcQs = QsQc(QsN
−τ )QcQs =

Qs′
(
N−τQcQs

)
, so N ′ −τ = N−τQcQs, and dually N ′ τ = QsQcN

−τ . For (5) we first
note

Dn,cQs = −Qs∆
′ −τ
0 , QsDc,n = −∆′ τ

0 Qs,
∆′ τ

0 = −Ds,∆0(c) −Dn,c, ∆′ −τ
0 = −D∆0(c),s −Dc,n,

since QsDc,n+Dn,cQs = Q{n,c,s},s [by (0.1.1)] = −QQs∆0(c),s [by (5.1.4)] = −QsD∆0(c),s =
−Ds,∆0(c)Qs [(by (JP1)]. Then Qn′,s′ = QQsQcn,Qsc = QsQQcn,cQs = Qs

(
QcDn,c

)
Qs =

QsQcQs∆
′ −τ
0 [by (JP1) and the above] = Qs′∆

′ −τ
0 [by (JP3)], and dually, yielding

(5).
For the operators D′

a of (6), we compute Qn′,Qs′a = QQsQcn,QsQcQsa = QsQcQn,QsaQcQs =
QsQc

(
QsD

−τ
a

)
QcQs [by (3.2.4)] = Qs′

(
D−τ

a QcQs

)
= Qs′D

′ −τ
a , and dually.

For (7) we need another result,

QsBα,c,y′ = XτQs, Bα,y′,cQs = QsX
−τ ,

Xτ = α2 + α
(
Ds,a′′ −Dy′,c

)
+

(
QsQcA

τ
)
,

X−τ = α2I + α
(
Da′′,s −Dc,y′

)
+

(
A−τQcQs

)
,

which follows from immediately from the separate pieces of the Bergmann opera-
tor: Qs = IQs = QsI, Dy′,cQs + QsDc,y′ = Q{y′,c,s},s [by (0.1.1)] = QQsa′′,s [by
(2)] = QsDa′′,s, and Qy′QcQs = (QsA

−τ )QcQs [by (3)] and dually. Then Qx′ =
QQs(αc+Qcy′) = QsQαc+Qcy′Qs = Qs(QcBα,y′,c)Qs [by (0.1.6)] = QsQcQsQsX

−τ , [by
the above] = Qs′X

−τ as in (7), and dually.
Automatically ∆′

0 is inner in δV,V by (5). If N is already an inner multiplica-
tion, so is N ′. We will see later (Remark 6.2) that N will be a (complicated) inner
multiplication if one small part of the struction condition is satisfied. In case N is
already principal, so is N ′: if N τ = QsQq (with Qsq = n) then N ′ τ = QsQc(QsQq) =
QQscQq = Qs′Qq and dually. ¥

4 Bergmann Triples and Pairs

A structural pair T = (T+, T−), or pair of structural transformations (struc-
tion), on a Jordan pair V consists of two linear transformations T τ ∈ End(V τ ) (the
superscript indicates the domain and range) satisfying

(4.1) Qτ
T τ (x) = T τQτ

xT
−τ .

for all x ∈ V τ and τ = ±. The structural pairs form a submonoid of End(V +) ×
End(V −) under T1T2 := (T+

1 T+
2 , T−

2 T−
1 ).
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An oddstruction T τ ∈ Hom(V −τ , V τ ) (the superscript indicates the range) is a
linear transformation satisfying

(4.2) Qτ
T τ (a) = T τQ−τ

a T τ .

for all a ∈ V −τ . The product of two oddstructions T+, T− gives a struction (T+T−, T−T+).
Each structural pair induces a homotope Jordan pair V(T ) = (V +, V −) under QT τ

x :=
Qτ

xT
−τ , DT τ

x,a := Dσ
x,T−τ (a), any struction S induces a homomorphism V(ST S) → V (T ),

and (I+, I−) = (T+(V +), T−(V −)) is always a pair of inner ideals Qτ
Iτ V −τ ⊆ Iτ . Any

oddstruction T−τ induces a Jordan triple system V τ(T−τ ) via Pxy := Qτ
xT

−τ (y) (and if
T−τ = Q−τ

t for t ∈ V −τ , then V τ(T τ ) becomes a Jordan algebra via x2(T τ ) := Qτ
xt
−τ ),

and Iτ = T τ (V −τ ) is always an inner ideal.
An inner struction (innstruction) is one which is built internally out of mul-

tiplications, not just accidentally, but universally: T τ ∈ U , T−τ = (T τ )∗ and (4.1)
holds in U (i.e. with Q replaced by qτ,−τ ). Similarly, an inner oddstruction (inn-
oddstruction) satisfies (4.2) in U . The basic examples of innoddstructions are the
principal oddstructions Qτ

x, and the basic examples of innstructions are the prin-
cipal structions

Tx,a = (QxQa, QaQx) for x ∈ V τ , a ∈ V −τ

(strictly speaking we should write, more cumbersomely, Tx,a = (qτ,−τ
x q−τ,τ

a , q−τ,τ
a qτ,−τ

x ),
but we won’t).

We say G = (G+, G−) consisting of two linear transformations Gτ : V τ → V τ

is structural glue for two structural pairs T1, T2, and call (T1,G, T2) a Bergmann
triple, if the following two relations hold for all x ∈ V τ :

(4.3.1) T τ
i QxG

−τ + GτQxT
−τ
i = QT τ

i (x),Gτ (x) (i = 1, 2),

(4.3.2) T τ
1 QxT

−τ
2 + T τ

2 QxT
−τ
1 + GτQxG

−τ = QGτ (x) + QT τ
1 (x),T τ

2 (x).

In this case we can glue the two pairs together via G and create a Bergmann struc-
tion

(4.4) XT1,G,T2 : Xτ := T τ
1 + Gτ + T τ

2 .

Indeed, structurality comes from QXτ (x) = QT τ
1 (x)+QT τ

1 (x),Gτ (x)+(QGτ (x)+QT τ
1 (x),T τ

2 (x))+
QT τ

2 (x),Gτ (x) +QT τ
2 (x) = T τ

1 QxT
−τ
1 +(T τ

1 QxG
−τ +GτQxT

−τ
1 )+(T τ

1 QxT
−τ
2 +T τ

2 QxT
−τ
1 +

GτQxG
−τ ) + (T τ

2 QxG
−τ + GτQxT

−τ
2 ) + T τ

2 QxT
−τ
2 = XτQxX

−τ . Notice that for any
α1, α2 ∈ Φ the triple (α2

1T1, α1α2G, α2
2T2) is again a Bergmann triple with Xτ =

α2
1T

τ
1 + α1α2G

τ + α2
2T

τ
2 .

For the special case I = (Id, Id), we say (G, T ) is a Bergmann pair if (I,G, T )
is a Bergmann triple,
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(4.3.1′) GτQx + QxG
−τ = QGτ (x),x,

(4.3.1′′) T τQxG
−τ + GτQxT

−τ = QT τ (x),G(x),

(4.3.2′) T τQx + QxT
−τ + GτQxG

−τ = QGτ (x) + QT τ (x),x.

Thus T is a structural pair and G is a Lie structural pair or Lie struction by
(2.3.1′), and for any α we obtain a Bergmann struction

(4.4′) Bα,G,T = Xα2I,αG,T := α2I + αG + T .

The Lie structions form the structure Lie subalgebra Strl(V) of End(V +)×End(V −)
under [G1,G2] := ([G+

1 , G+
2 ], [G−

2 , G−
1 ]).

We have obvious universal notions of innstructural glue (with (Gτ )∗ = G−τ ),
Lie innstruction, and inner Bergmann triple or pair, which produce a Bergmann
innstruction satisfying (2.3-4) in U .

Principal Example 4.5 The archetypal example of an inner Bergmann triple is the
principal triple (T1,G, T2) = (Tx1,a,Gx1,x2;a, Tx2,a) with glue Gx1,x2;a := (Qx1,x2Qa, QaQx1,x2)
for xi ∈ V τ , a ∈ V −τ . Here the resulting Bergmann operators B(T1,G,T2) = Tx1+x2,a and
Bα2

1T1,α1α2G,α2
2T2

= Tα1x1+α2x2,a are again principal structions.
The archetypal example of an inner Bergmann pair is, of course, the principal

pair Dx,a = (Dx,a, Da,x), Tx,a = (QxQa, QaQx), with Bα,x,a = (Bα,x,a, Bα,a,x) the usual
Bergmann innstruction. If x happens to be invertible, then Bα,x,a reduces to a principal
struction Tx,ã = (QxQαx−1+a, Qαx−1+aQx).

Proof: In the principal triple clearly T1, T2 are structions, and Gx1,x2;a is struc-
tural glue since for σ = ±τ and all z ∈ V σ we have universally in U that

(4.5.1) T σ
i QxG

−σ + GσQxT
−σ
i = QT σ

i (x),Gσ(x),
(4.5.2) T σ

i QxT
−σ
j + T σ

j QxT
−σ
i + GσQxG

−σ = QGσ(x) + QT σ
i (x),T σ

j (x)

which follow directly from the linearizations

(4.5.1′) Qxi
QbQxi,xj

+ Qxi,xj
QbQxi

= QQxi,xj (b),Qxi (b)
,

(4.5.2′) Qxi
QbQxj

+ Qxj
QbQxi

+ Qxi,xj
QbQxi,xj

= QQxi,xj (b) + QQxi (b),Qxj (b)

of (JP3) for all b = Qax (when σ = τ) and b = x (when σ = −τ). ¥
It is clear from the definitions that the restriction to an invariant subpair V ⊆ Ṽ

of a struction, oddstruction, Bergmann triple, or pair on Ṽ remains such on V . More
generally, if the oddstruction does not leave the subpair invariant, we can sometimes
shove it down into the subpair. We say T̃ σ ∈ Hom(Ṽ −σ, Ṽ σ)7 has denominator

s ∈ V −σ if Q−σ
s shoves T̃ down to an endomorphism on V in the sense that S−σ :=

Q−σ
s T̃ σ ∈ End(V −σ), Sσ := T̃ σQ−σ

s ∈ End(V σ) [more precisely, Q−σ
s T̃ σ, T̃ σQ−σ

s leave

V invariant, and S−σ, Sσ are their restrictions to V ]. Then T−σ := Q−σ
s T̃ σQ−σ

s =

7Here we begin our convention that our denominators s and our inner ideals K will always belong
to V −σ.



14

S−σQ−σ
s = Q−σ

s Sσ ∈ Hom(V σ, V −σ), and we say that S−σ, Sσ result by cancelling Qs

from T σ on the right and left. If T̃−σ is an oddstruction, then T−σ is an oddstruction
on Ṽ leaving V invariant, and its s-cancellation (S−σ, Sσ) is a struction on V ,

(4.6) Q−σ
S−σ(x) = S−σQ−σ

x Sσ, Qτ
Sσ(a) = SσQτ

aS
−σ (x ∈ V −σ, a ∈ V σ),

since QQs
eT (x) = QsQeT (x)Qs = QsT̃QxT̃Qs on Ṽ becomes QS−σ(x) = S−σQxS

σ, QSσ(x) =

SσQxS
−σ on V , and dually QeTQsa = T̃QsQaQsT̃ becomes QSσ(a) = SσQaS

−σ.

Pseudo-Principal Example 4.7 The example we are more interested in is the
restriction to V of a principal struction on Ṽ ⊇ V. Let n−σ, y−σ = αs−σ + Q−σ

s aσ ∈
V −σ for some particular α ∈ Φ, a ∈ V σ. Suppose there are elements q̃σ, ũσ ∈ Ṽ such
that Q−σ

s (q̃) = n−σ, Q−σ
s (ũσ) = y where Qq̃, Qũ, Qq̃,ũ have denominator s ∈ V −σ. [For

example, if s−1 ∈ Ṽ σ we may take q̃σ = (Q−σ
s )−1(n−σ) and ũσ = αs−1 + a ∈ Ṽ σ.]

Then s dominates x = γn + y for any γ ∈ Φ : x = Q−σ
s (ṽ) for ṽ = γq̃ + ũ, and

Q−σ
n = N−σQ−σ

s = Q−σ
s Nσ (N−σ := Q−σ

s Qτ
q̃ |V , Nσ := Qτ

q̃Q
−σ
s |V ),

Q−σ
n,s = ∆−σ

0 Q−σ
s = −Q−σ

s ∆σ
0 (∆−σ

0 := Ds,q̃|V , ∆σ
0 := −Dq̃,s|V ),

Q−σ
n,y = G−σQ−σ

s = Q−σ
s Gσ (G−σ := Q−σ

s Qσ
q̃,ũ|V , Gσ := Qσ

q̃,ũQ
−σ
s |V ),

Q−σ
y = B−σQ−σ

s = Q−σ
s Bσ (B−σ := Q−σ

s Qσ
ũ|V , Bσ := Qσ

ũQ
−σ
s |V ),

Q−σ
x = γ2Q−σ

n + γQ−σ
n,y + Q−σ

y = X−σQ−σ
s = Q−σ

s Xσ for

Xτ = γ2N τ + γGτ + Bτ ∈ End(V τ ) (X−σ = Q−σ
s Qσ

ṽ |V , Xσ = Qσ
ṽQ

−σ
s |V ).

Then T̃ = Qq̃, Qũ, Qṽ and T = Qn, Qy, Qx are oddstructions whose s-cancellations
N := (Nσ, N−σ) = Tq̃,s|V , B := (Bσ, B−σ) = Tũ,s|V , X := (Xσ, X−σ) = Tṽ,s|V
are structions induced on V by restriction from principal structions on Ṽ, and G :=
(Gσ, G−σ) = Tq̃,ũ;s |V is structural glue, with resulting Bergmann struction X :=
B(γ2N,γG,B) = γ2N + γG + B.8

Moreover, the following relations with w1 := Qq̃s, w2 := Qq̃n, z1 := Qsw1 =
Nσ(s), z2 := Qsw2 = N−σ(n) are satisfied as linear transformations on W for all

w ∈ W τ for all extensions W ⊇ Ṽ ⊇ V :

8Since already Qz = Qαs+Qsa = QsBα,a,s = Bα,s,aQs by (0.1.6), by hypothesis B−σQ−σ
s =

Bα,s,aQ−σ
s , so automatically B−σ = Bα,s,a if Qs is surjective on Ṽ σ, and Q−σ

s Bσ = Q−σ
s Bα,a,s, so

automatically Bσ = Bα,a,s if Qs is injective on Ṽ σ, and both will hold if s is invertible in Ṽ. If s is
merely regular and we take ũ = αw̃ + a, then B−σ −Bα,s,a = α2[QsQw̃ − I] + α[QsQw̃,a −Ds,a] +
[QsQa −QsQa] = α2[QsQw̃ − I] + α[Ds,w − 2I]Ds,a where [QsQw̃ − I]Qs = [Ds,w − 2I]Qs = 0, and
dually.
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(4.7.1) QNτ (w) = N τQwN−τ ,

(4.7.2) N τQw + QwN−τ = ∆τ
0Qw∆−τ

0 + Q∆τ
0 (w) + QNτ (w),w,

(4.7.3) N τQw∆−τ
0 −∆τ

0QwN−τ + QNτ (w),∆τ
0 (w) = 0,

(4.7.4) ∆τ
0Qw = Q∆τ

0 (w),w + Qw∆−τ
0 ,

(4.7.5) Qn,Qsa = Dσ
aQs = QsD

σ
a (Dσ

a = −Da,s∆
σ
0 −Da,n, D−σ

a = ∆−σ
0 Ds,a −Dn,a),

(4.7.6) ∆−σ
0 Q−σ

s,n = −Q−σ
s,n∆0 = 2Q−σ

n + Q−σ
z1,s,

(4.7.7) Da,sN
σ + Da,n∆σ

0 + Da,z1 = 0,

(4.7.7)∗ N−σDs,a −∆−σ
0 Dn,a + Dz1,a = 0,

(4.7.8) Dσ
a,nN

σ + Dσ
a,z1

∆σ
0 + Dσ

a,z2
= 0,

(4.7.8)∗ N−σD−σ
n,a −∆−σ

0 D−σ
z1,a + D−σ

z2,a = 0,
(4.7.9) N τ∆τ

0 = ∆τ
0N

τ = M τ (Mσ := −Dσ
w1

, M−σ := Dw1).

Proof: To see these relations for the restrictions of the principal structions
N = Tq̃,s, ∆0 = Dq̃,s,B = Tũ,s, and glue G = Tq̃,ũ;s, (1) follows from (JP3), (2)
from (0.1.4), (3) from (0.1.5), (4) since δq̃,s = (Dq̃,s,−Ds,q̃) is always a derivation
of Jordan pairs by (0.1.1), we saw (5) in (3.2.4), and (6) follows from Ds,q̃Qs,Qsq̃ =
Qs,Qsq̃Dq̃,s = Qs

(
D2

q̃,s

)
= Qs

(
DQq̃s,s + 2Qq̃Qs

)
= QQsQq̃s,s + 2QQsq̃ = Qz1,s + 2Qn for

z1 := QsQq̃s = N−σ(s). For (7), we have the general Jordan identity Da,sQq̃Qs −
Da,Qsq̃Dq̃,s + Da,QsQq̃s = VaUq̃ − Va,q̃Vq̃ + Va,q̃2 = 0 in the Jordan algebra J = V σ(s),
dually (7*) is a Jordan pair identity (thanks to the involution in UQE , not because
of any homotope). In the same way, (8) is a general pair identity Da,Qsq̃Qq̃Qs −
Da,QsQq̃sDq̃,s + Da,QsQq̃Qsq̃ = Va,q̃Uq̃ − Va,q̃2Vq̃ + Va,q̃3 = 0, and dually for (8*).

Finally, (9) holds for τ = σ since Qq̃Qs(−Dq̃q̃,s) = (−Dq̃,s)Qq̃Qs [by (JP1) twice]
= −QQq̃s,q̃Qs [by (JP1)] = −Qw1,q̃ = −Dw1,sDq̃,s + Dw1,Qsq̃ [by (0.1.2)] = Dw1,s∆

σ
0 +

Dw1,n = −Dσ
w1

, and dually for τ = −σ we have QsQq̃(Ds,q̃) = (Ds,q̃)QsQq̃ =
QsQw1,q̃ = Ds,q̃Ds,w1 −DQsq̃,w1 = ∆−σ

0 Ds,w1 −Dn,w1 = D−σ
w1

. ¥
This list of ancillary relations (4.7.1-9) provides the necessary tools in the next two

sections to make N a struction, without the help of q̃ or Ṽ . The problem of creating
“fractions” is the situation where q̃, ũ, ṽ ∈ Ṽ are merely figments of our imagination,
and all that exists is their traces N, G, S on V and n, z, x in V . The most general
problem would be that of creating a “holomorph” Ṽ ⊇ V where suitable structions
become “inner”.

5 Structural Dominance

A central question in fractions ([?],[?]) is whether N ,X as above are innstructions

on V without the help of Ṽ . Here q̃ is fictitious, but N,X are often built from multi-
plications from V , and the question is whether they are intrinsically structural.

We say s ∈ V −σ structurally dominates n ∈ V −σ on V if there is a derivation
∆0 = (∆+

0 , ∆−
0 ) (with corresponding Lie struction ∆̂0 = (−∆σ

0 , ∆
−σ
0 )) and a struction
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N = (N+, N−) satisfying (for all x ∈ V τ , a ∈ V σ, τ = ±σ):

(5.1.1) Qn = N−σQs = QsN
σ (N results by cancelling Qs),

(5.1.2) Qn,s = ∆−σ
0 Qs = −Qs∆

σ
0 , (∆0 results by cancelling Qs),

(5.1.3) QNτ (x) = N τQxN
−τ (N is a struction),

(5.1.4) ∆τ
0Qx = Q∆τ

0 (x),x + Qx∆
−τ
0 (∆0 is a derivation),

(5.1.5) Qn,Qsa = Dσ
aQs = QsD

σ
a (Dσ

a = −Da,s∆
σ
0 −Da,n, D−σ

a = ∆−σ
0 Ds,a −Dn,a),

as in (3.1-2), and in addition that

(5.1.6) (Ns,n,Gα,a,s,n,Bα,a,s) is a Bergmann triple

for all γ, α ∈ Φ, a ∈ V σ. Thus Ns,n,Bα,a,s,Xγ,α,a,s,n as in (3.2) and (4.4) are all
structions. (5.1.3) guarantees N is a structural pair (Bα,a,s always is by (0.1.6)), so

(5.1.6) amounts to saying that G = α∆̂0 +Da is structural glue.
In practice (see [2]) both ∆0 and N in the pseudo-principal example can be built

from multiplications entirely within the original pair V (not just Ṽ). We say the
domination is inner if ∆0,N ∈M(V) are given as multiplications, and is universal
if ∆τ

0 ∈ U τ,τ and N τ ∈ U τ,−τ are given as universal multiplication operators in
UQE(V) with ∆−

0 = −(∆+
0 )∗, N− = (N+)∗ and (5.1.1-6) holding universally in V〈X〉

(i.e., for generic x, not just x ∈ V τ ). In both cases they act as inner multiplications
on V and Ns,n,Gα,a,s,n,Bα,a,s are all innstructions.

Conditions (5.1.1-2) go a long way towards structural domination.

Injectivity Theorem 5.2 If the operator Qs is injective on V, then the structural
conditions (5.1.1− 2) alone guarantee that s structurally dominates n on the subpair
(V σ, QsV

−σ). Indeed (5.1.5) always holds, the structural conditions (5.1.3 − 4) and
gluing condition (5.1.6) always hold on the subpair for τ = −σ, and (5.1.3−4), (5.1.6)
hold hold on the subpair for τ = σ if the map Qs is injective.

Proof: We know (5.1.5) is always a consequence of (5.1.1-2) by (3.2.4). It
remains to verify the conditions that (5.1.3-4) and gluing (5.1.6), i.e., (4.3.1-2), vanish
as maps on V σ when τ = −σ, and as maps on QsV

σ when τ = σ and we can cancel
Qs. Now it is a general fact that whenever T1, T2, G result by cancelling Qs as in (4.5),

(5.2.1) QsT
σ
i = T−σ

i Qs = Qti , QsG
σ = G−σQs = Qt1,t2 ,

that (5.1.3), (4.3.1-2) hold as stated, so (T1, G, T2) is a Bergmann triple on the subpair
(V σ, QsV

σ) [note that the inner ideal QsV
σ is invariant under T = T−σ

i , G−σ since
T−σ(QsV

σ) = Qs(T
σ(V σ)) ⊆ QsV

σ], and that in the particular case T1 := N, t1 := n

[as in (3.1)], T2 := B, ts := αs + Qsa = y [as in (3.2.6)], G = α∆̂0 + Da [as in (3.2.5)]
we also have (5.1.4).

To include G and ∆̂0 in the notation, we agree QTi
:= Qti , QI := Qs, QG :=

Qt1,t2 , Qc∆0
:= Qs,n (not quite true Qx-operators) and note that for T, T ′ ∈ {T1, T2, G, ∆̂0, I}

we have that the maps QT (x), QT (x), T ′(x), TQxT
′ satisfy
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(5.2.2)

QT−σ(Qsb) = QQT (b) = QQsT σ(b) = QsQT σ(b)Qs,

T−σQQsbT
′σ = T σQsQbQsT

′σ = QT QbQT ′ ,

QT−σ(Qsb),T ′σ(Qsb) = QQT b,QT ′b

= QQs(T σ(b)),Qs(T ′σ(b)) = QsQT σ(b),T ′σ(b)Qs.

First, structionality (5.1.3) of T holds whenever T results by cancelling Qs from Qt:
setting F τ (x) := QT τ (x) − T τQxT

−τ we have by (2) that F−σ(Qsb) = QsF
σ(b)Qs =

QQtb − QtQbQt = 0 by (JP3), which shows F−σ(x) = 0 as map on V σ when x =
Qsb ∈ QsV

σ, and QsF
σ(x) = 0 as map on QsV

σ when x = b ∈ V σ, so that if we can
cancel Qs then F σ(x) = 0 on QsV

σ.

Similarly, Lie structionality of G0 = ∆̂0 holds when it results from cancelling
Qs from Qs,n as in (5.1.4) since by (2) (with T = d̂z, T ′ = I) the map F τ (x) :=
∆τ

0Qx−Qdzτ (x),x−Qxdz−τ has F−σ(Qsb) = −QsF
σ(b)Qs = Qs,nQbQs−QQs,n(b),Qs(b)+

QsQbQs,n = 0 by linearized (JP3) [beware the minus sign, since ∆̂0 = (−∆σ
0 , ∆

−σ
0 )]

Thus again F−σ(x) = 0 on V σ for x = Qsb ∈ QsV
σ and QsF

σ(b)Qs = 0 implies
F (b) = 0 on QsV

σ as long as we can cancel Qs.
The gluing condition (4.3.1-2) can similarly be formulated in terms of F 1,τ

i (x) :=
T τ

i QxG
−τ + GτQxT

−σ
i −QT τ (x),Gτ (x), F 2,τ (x) := T1QxT

−τ
2 + T τ

2 QxT
−σ
1 + GτQxG

−τ −
QGτ (x) − QT τ

1 (x),T τ
2 (x), where (2) again guarantees that F−σ(Qsb) = QsF

σ(b)Qs = 0
from QtiQbQt1,t2+Qt1,t2QbQti−QQti (b),Qt1,t2 (b) = 0 [for F 1,τ ] and Qt1QbQt2+Qt2QbQt1+
Qt1,t2QbQt1,t2 − QQt1,t2(b) − QQt1 (b),Qt2(b) = 0 [for F 2,τ ] by linearized (JP3). Thus for
the third time F−σ(QsV

σ) = 0 on V σ and F (V σ) = 0 on QsV
σ as long as we can

cancel Qs. ¥
We will spend the rest of the paper finding conditions (suitable for application to

fractions) that guarantee (N,G, B) is a Bergmann triple on the entire pair (V σ, V −σ).
Besides structionality (5.1.3-4) we still need glue (5.1.6). This modest proposal about
glue translates, by (4.3.1-2), into 18 conditions9 on ∆0 and N , which we will group
according to the parity ±σ, the power αk of the scalar α, and (in 4.3.1) the struction
N or B. For (4.3.1) we first demand that the following N-Gluing Conditions
relating N to the glue G hold for all b, a ∈ V σ, x ∈ V −σ :

(1σ,0
N ) NσQb

(
∆−σ

0 Ds,a−Dn,a

)− (
Da,s∆

σ
0+Da,n

)
QbN

−σ + QNσ(b),[Da,s∆σ
0 +Da,n](b) = 0,

(1−σ,0
N ) N−σQx

(
Da,s∆

σ
0+Da,n

)− (
∆−σ

0 Ds,a−Dn,a

)
QxN

σ + QN−σ(x),[∆−σ
0 Ds,a−Dn,a](x) = 0,

(1σ,1
N ) NσQb∆

−σ
0 −∆σ

0QbN
−σ + QNσ(b),∆σ

0 (b) = 0,

(1−σ,1
N ) N−σQx∆

σ
0 −∆−σ

0 QxN
σ + QN−σ(x),∆−σ

0 (x) = 0.

Next we require that the B-Gluing Conditions relating B to the glue G hold
for all b, a ∈ V σ, x ∈ V −σ :

9The reader may well be thinking of the scene in Independence Day when the monster is cut
loose from its spacesuit.
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(1σ,0
B ) QaQsQb

(
∆−σ

0 Ds,a−Dn,a

)− (
Da,s∆

−σ
0 + Da,n

)
QbQsQa,

+QQaQsb,[Da,s∆σ
0 +Da,n](b) = 0,

(1−σ,0
B ) QsQaQx

(
Da,s∆

σ
0+Da,n

)− (
∆−σ

0 Ds,a−Dn,a

)
QxQaQs

+QQsQax,[∆−σ
0 Ds,a−Dn,a](x) = 0,

(1σ,1
B ) Da,sQb

(
∆−σ

0 Ds,a−Dn,a

)− (
Da,s∆

σ
0+Da,n

)
QbDs,a + QaQsQb∆

−σ
0 −∆σ

0QbQsQa

+QDa,sb,Da,s∆σ
0 (b) + QDa,sb,Da,nb + QQaQsb,∆σ

0 (b) = 0,

(1−σ,1
B ) Ds,aQx

(
Da,s∆

σ
0+Da,n

)− (
∆−σ

0 Ds,a−Dn,a

)
QxDa,s + QsQaQx∆

σ
0 −∆−σ

0 QxQaQs

+QDs,ax,∆−σ
0 Ds,a(x) −QDs,ax,Dn,ax + QQsQax,∆−σ

0 (x) = 0,

(1σ,2
B ) Qb

(
∆−σ

0 Ds,a−Dn,a

)− (
Da,s∆

σ
0+Da,n

)
Qb + Da,sQb∆

−σ
0 −∆σ

0QbDs,a

+Qb,[Da,s∆σ
0 +Da,n](b) + QDa,sb,∆σ

0 (b) = 0,

(1−σ,2
B ) Qx

(
Da,s∆

σ
0+Da,n

)− (
∆−σ

0 Ds,a−Dn,a

)
Qx + Ds,aQx∆

σ
0 −∆−σ

0 QxDa,s

+Qx,[∆−σ
0 Ds,a−Dn,a](x) + QDs,ax,∆−σ

0 (x) = 0,

(1σ,3
B ) Qb∆

−σ
0 −∆σ

0Qb + Q∆σ
0 (b),b = 0,

(1−σ,3
B ) Qx∆

σ
0 −∆−σ

0 Qx + Q∆−σ
0 (x),x = 0.

Finally, for (4.3.2) we require that the N-B-Gluing Conditions relating B to
the glue G hold for all b, a ∈ V σ, x ∈ V −σ :

(2σ,0) NσQbQsQa + QaQsQbN
−σ − (

Da,s∆
σ
0+Da,n

)
Qb

(
∆−σ

0 Ds,a−Dn,a

)

−Q[Da,s∆σ
0 +Da,n](b) −QNσ(b),QaQs(b) = 0,

(2−σ,0) N−σQxQaQs + QsQaQxN
σ − (

∆−σ
0 Ds,a−Dn,a

)
Qx

(
Da,s∆

σ
0+Da,n

)

−Q[∆−σ
0 Ds,a−Dn,a](x) −QN−σ(x),QsQs(x) = 0,

(2σ,1) NσQbDs,a + Da,sQbN
−σ − (

Da,s∆
σ
0+Da,n

)
Qb∆

−σ
0 −∆σ

0Qb

(
∆−σ

0 Ds,a−Dn,a

)

−Q[Da,s∆σ
0 +Da,n](b),∆σ

0 (b) −QNσ(b),Da,s(b) = 0,

(2−σ,1) N−σQxDa,s + Ds,aQxN
σ − (

∆−σ
0 Ds,a−Dn,a

)
Qx∆

σ
0 −∆−σ

0 Qx

(
Da,s∆

σ
0+Da,n

)

−Q[∆−σ
0 Ds,a−Dn,a](x),∆−σ

0 (x) −QN−σ(x),Ds,a(x) = 0,

(2σ,2) NσQb + QbN
−σ −∆σ

0Qb∆
−σ
0 −Q∆σ

0 (b) −QNσ(b),b = 0,

(2−σ,2) N−σQx + QxN
σ −∆−σ

0 Qx∆
σ
0 −Q∆−σ

0 (x) −QN−σ(x),x = 0.

The major goal of our paper is to determine a small number of conditions besides
(5.1.1-4) that will guarantee these 18 gluing conditions. The B-Gluing formulas (1B)
hold automatically for any derivation.10

Bergmann Glue Proposition 5.3 The B-Gluing formulas (1B) hold for any deriva-
tion ∆0 of V as in (5.1.4) connected with n by the relation (5.1.2).

10One suspects this follows immediately from properties of the Bergmann operator, but I could
only prove it by breaking the operator into its constituent pieces.
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Proof: Formula (1σ,0
B ) follows (omitting superscripts, which are clear by con-

text) from

QaQs

[
Qb∆0−∆0Qb

]
Ds,a + Da,s

[−∆0Qb+Qb∆0

]
QsQa + Qa

[
Qs∆0

]
QbDs,a

−Da,sQb

[
∆0Qs

]
Qa +

[−QaQsQbDn,a−Da,nQbQsQa+QQaQs(b),Da,n(b)

]

+
[
QQaQs(b),Da,s∆0(b)+QQaQs∆0(b),Da,s(b)

]−QQa(Qs∆0)(b),Da,s(b)

=
[−QaQsQ∆0(b),bDs,a−Da,sQ∆0(b),bQsQa+QQaQs(b),Da,s(∆0(b))+QQaQs(∆0(b)),Da,s(b)

]

−[
QaQsQbDn,a+QaQs,nQbDs,a+Da,nQbQsQa+Da,sQbQs,nQa−QQaQs(b),Da,n(b)

−QQaQs,n(b),Da,s(b)

]
, [by (5.1.4), (5.1.2)]

which vanishes by linearizations b → ∆0(b), b and s → s, n of (0.1.5).

Formula (1−σ,0
B ) follows dually (though not by a dual proof, since the formulas

(1B) are all symmetric under reversal; because of asymmetry (s, n ∈ V −σ) the “dual”
proofs are really “inside-out”). We compute

[
QsQaQxDa,s]∆0 −∆0

[
Ds,aQxQaQs

]
+

[
QQsQa(x),∆0(Ds,a(x)) + Q∆0(QsQa(x)),Ds,a(x)

]

−Q(∆0Qs)Qa(x),Ds,a(x) +
[
QsQaQxDa,n+Dn,aQxQaQs−QQsQa(x),Dn,a(x)

]

=
[
QsQaQxDa,s−QQsQa(x),Ds,a(x)

]
∆0 + ∆0

[−Ds,aQxQaQs+QQsQa(x),Ds,a(x)

]

−Q(Qs,n)Qa(x),Ds,a(x) −
[
Qs,nQaQxDa,s+Ds,aQxQaQs,n−QQs,nQa(x),Ds,a(x)

]

[by (5.1.4), (0.1.3), and linearization s → s, n in (0.1.4)]

= − [
Ds,aQxQa(Qs∆0)

]
+

[
(∆0Qs)QaQxDa,s

]− [
Ds,aQxQaQs,n+Qs,nQaQxDa,s

]

[by (0.1.5)], which vanishes by (5.1.2).

The formula (1σ,1
B ) is

Da,s

[
Qb∆0−∆0Qb

]
Ds,a + QaQs

[
Qb∆0−∆0Qb

]
+

[
Qb∆0−∆0Qb

]
QsQa + Qa

[
Qs∆0

]
Qb

−Qb

[
∆0Qs

]
Qa+QDa,s(b),Da,s(∆0(b))+

[
QQaQs(b),∆0(b)+QQaQs(∆0(b)),b

]−QQa(Qs∆0)(b),b

+
[−Da,sQbDn,a −Da,nQbDs,a + QDa,s(b),Da,n(b)

]

=
[
Da,sQ∆0(b),bDa,s−QaQsQ∆0(b),b−Q∆0(b),bQsQa

+QDa,s(b),Da,s(∆0(b))+QQaQs(b),∆0(b)+QQaQs(∆0(b)),b

]

+
[
−QaQn,sQb−QbQn,sQa−Da,sQbDn,a−Da,nQbDs,a+QQaQn,s(b),b+QDa,s(b),Da,n(b)

]
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[by (5.1.4), (5.1.2), (0.1.1)], which vanishes by the linearizations b → ∆0(b), b and
s → s, n of (0.1.4).

Dually, the formula (1−σ,1
B ) becomes

[
Ds,aQxDa,s+QsQaQx

]
∆0 −∆0

[
Ds,aQxDa,s+QxQaQs

]
+ QDs,ax,∆0(Ds,ax)

+
[
Ds,aQxDa,n+Dn,aQxDa,s−QDs,a(x),Dn,a(x)

]
+ QDs,ax,∆0(Ds,ax) + QQsQax,∆0(x)

= [Ds,aQxDa,s+QsQaQx−QDs,ax−QQsQax,x

]
∆0

−∆0

[
Ds,aQxDa,s+QxQaQs−QDs,ax−QQsQax,x

]

+
[
Ds,aQxDa,n+Dn,aQxDa,s−QDs,a(x),Dn,a(x)

]−Q∆0(QsQax),x [by (5.1.4) twice]

=
[−QxQaQs

]
∆0−∆0

[−QsQaQx

]
+

[−QxQaQs,n−Qs,nQaQx+QQs,nQax,x

]−Q(∆0Qs)Qax,x

[by (0.1.4) twice and its linearization s → s, n], which vanishes by (5.1.2).

The formula (1σ,2
B ) becomes

[
Qb∆0−∆0Qb

]
Ds,a+Da,s

[
Qb∆0−∆0Qb

]
+Qb,Da,s(∆0(b))

+
[−QbDn,a−Da,nQb+Qb,Da,nb

]
+Q∆0(b),Da,s(b) = Q∆0(b),bDs,a+Da,sQ∆0(b),b+QDa,s(∆0(b)),b

+QDa,s(b),∆0(b) [by (5.1.4), (0.1.1)], which vanishes by the linearization b → b, ∆0(b) of
(5.1.4).

Dually, (1−σ,2
B ) become

[
QxDa,s+Ds,aQx

]
∆0−∆0

[
Ds,aQx+QxDa,s

]
+Qx,∆0(Ds,a(x))+

QDs,a(x),∆0(x) +
[
QxDa,n+Dn,aQx−Qx,Dn,ax

]
= QDs,a(x),x∆0−∆0QDs,a(x),x+Q∆0(Ds,ax),x−

QDs,ax,∆0(x) [by (0.1.1)], which vanishes by the linearization x → x,Ds,ax of (5.1.4).

Note that the final conditions (1±σ,3
B ) are just the conditions (5.1.4) that ∆0 is a

derivation of V . ¥

6 The Main Theorem

Our main result is that the 18 Gluing Conditions (5.1) which guarantee that N ,X
are structions can be reduced to a small number of connections between N and ∆0.

Dominance Theorem 6.1 The Gluing Conditions (1N), (1B), (2) of (5.1) will follow
from the Dominance Conditions (1±σ,1

N ), (2±σ,2) and (5.1.4-4) on s, n if we assume that
the following additional conditions hold for elements w1, w2 ∈ V σ with zi := Qswi and
all a ∈ Ṽ σ :

(6.1.1) ∆τ
0∆

τ
0 = 2N τ + W τ

1 (W σ
1 := Dw1,s, W

−σ
1 := Ds,w1),

(6.1.2) Da,sN
σ + Da,n∆σ

0 + Da,z1 = 0.
(6.1.2)∗ N−σDs,a −∆−σ

0 Dn,a + Dz1,a = 0.
(6.1.3) Dσ

a,nNσ + Dσ
a,z1

∆σ
0 + Dσ

a,z2
= 0,

(6.1.3)∗ N−σD−σ
n,a −∆−σ

0 D−σ
z1,a + D−σ

z2,a = 0,
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which implies the further condition
(6.1.4) ∆0Qs,n = −Qs,n∆0 = 2Qn + Qz1,s.

If the multiplications are regarded as universal in UQE(V), rather than as maps, then
the reversal X∗ follows automatically from X, and we can omit (6.1.2-3)∗.

Proof: First note that (6.1.1) implies (6.1.4): ∆−σ
0 Qs,n = ∆−σ

0 (∆−σ
0 Qs) [by

(5.1.2)] = (2N−σ+Ds,w1)Qs [by (1)] = 2Qn+QQsw1,s [by (5.1.1), (JP1)] = 2Qn+Qz1,s,
and dually −Qs,n∆σ

0 = Qs∆
σ
0∆σ

0 = Qs(2N
σ + Dw1,s) = 2Qn + QQsw1,s = 2Qn + Qz1,s.

To help the reader through the labyrinth of verifications of the Gluing Formulas,
we indicate the migration of terms via superscripts; a superscript N, H, •,¨ denotes
a term which about to die, cancelled out by its evil twin. We also create terms and
their anti-terms ∗ and ∗∗ at will.

We must show that the conditions (1±σ,0
N ) follow from the above Domnance Con-

ditions. The relation (1σ,0
N ) follows from (1σ,1

N ), (2σ,2), (5.1.4), (6.1.2), (6.1.3) since it
reduces to

NQb

[
∆0Ds,a−Dn,a

]− [
Da,s∆0+Da,n

]
QbN + QN(b),Da,s∆0(b) −QN(b),Da,n(b)

=
(
NQb∆0

)(1)
Ds,a −

(
NQb

)(2)
Dn,a −Da,s

(
∆0QbN

)(3) −Da,n

(
QbN

)(4)

+Q
(5)
N(b),Da,s(∆0(b)) + Q

(6)
N(b),Da,n(b)

=
[
∆0Q

(1a)
b N−Q

(1b)N
N(b),∆0(b)

]
Ds,a −

[−QbN
(2a)+∆0Q

(2b)
b ∆0+Q

(2c)
∆0(b)+Q

(2d)H
N(b),b

]

−Da,s

[
NQ

(3a)
b +Q

(3b)¨
N(b),∆0(b)

]−Da,n

[−NQ
(4a)
b +∆0Q

(4b)
b ∆0+Q

(4c)
∆0(b)+Q

(4d)•
N(b),b

]

+
[
Da,sQ

(5a)¨)
N(b)∆0(b)+Q

(5b)N
N(b),∆0(b)Ds,a−Q

(5c)
[Da,sN ](b),∆0(b)

]

+
[−Q

(6a)
[Da,nN ](b),b+Da,nQ

(6b)•
N(b),b+Q

(6c)H
N(b),bDn,a

]

[by (1σ,1
N ) for (1),(3), (2σ,2) for (2),(4), and linearized (0.1.1) for (5),(6)]

= ∆0Qb

[
∆0D

(1a1)N
n,a −D

(1a2)
z1,a

]
+ Qb

[
∆0D

(2a1)
z1,a −D

(2a2)
z2,a

]−∆0Q
(2b)N
b ∆0Dn,a

+
[
D

(3a1)H)
a,n ∆0+D

(3a2)
a,z1

]
Qb∆0 −

[
Q∆0(b)D

(2c)¨
n,a + Da,nQ

(4c)•
∆0(b)

]

−[
Da,z1∆0 + Da,z2

]
Qb −Da,n∆0Q

(4b)H
b ∆0

+
[
Q

(5c1)¨
Da,n∆0(b),∆0(b) + Q

(5c2)
Da,z1(b),∆0(b)

]
=

[
Q

(6a1)
Da,z1∆0(b),b + Q

(6a2)
Da,z2 (b),b

]

[by (6.1.2)∗ for (1a), (6.1.2) for (3a),(5c), (6.1.3)∗ for (2a), (6.1.3) for (4a),(6a)]

=
[−∆0Q

(1a2)
b +Q

(2a1)
b ∆0

]
Dz1,a +

[−QbD
(2a2)¨)
z2,a −D

(4a2)¨
a,z2 Qb+Q

(6a2)¨
Da,z2 (b),b

]

+Da,z1

[−∆0Q
(4a1)
b + Q

(3a2)
b ∆0

]
+ Q

(6a1)
Da,z1(∆0(b)),b + Q

(5b2)
Da,z1 (b),∆0(b)

= −Q∆0(b),bDz1,a −Da,z1Q∆0(b),b + QDa,z1 (∆0(b)),b + QDa,z1 (b),∆0(b)

[by (5.1.4)], which vanishes by linearized (0.1.1)].
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The formula (1−σ,0
N ) follows dually from (1−σ,1

N ), (2−σ,2), (5.1.4), (6.1.2-3), (6.1.2-
3)∗ :

NQxD
(1)
a,s∆0+NQxDa, n(2)−∆0Ds,aQ

(3)
x N +Dn,aQ

(4)
x N +Q

(5)
N(x),∆0Ds,a(x)−Q

(6)

N(x),D
(1)
n,a(x)

=
[
NQ

(1a)
{s,a,x},x∆0−∆0Q

(3a)
{s,a,x},xN

](7)
+

[
NQ

(2a)
{s,a,x},x+Q

(4a)
{s,a,x},xN

](8)

−(
NDs,a

)(1b)
Qx∆0 + ∆0Qx

(
Da,sN

)(3b) − (
NDn,a

)(2b)
Qx −Qx

(
Da,nN

)(4b)

+Q
(5)
N(x),∆0({s,a,x}) −Q

(6)
N(x),Dn,a(x) [by (0.1.1) on (1),(2),(3),(4)]

=
[−Q

(7a)
N({s,a,x}),∆0(x)−Q

(7b)N
N(x),∆0({s,a,x})

]

+
[
∆0Q

(8a)
{n,a,x},x∆0 + Q

(8b)
∆0{n,a,x},∆0(x) + Q

(8c)
N({n,a,x}),x + Q

(8d)N
N(x),{n,a,x}

](8)

−[
∆0D

(1b1)
n,a −D

(1b2)
z1,a

]
Qx∆0 −∆0Qx

[
Da,n∆

(3b1)
0 +D

(3b2)
a,z1

]− [
∆0D

(2b1)
z1,a −D

(2b2)
z2,a

]
Qx

+Qx

[
D

(4b1)
a,z1 +D

(4b2)
a,z2

]
+ Q

(5)N
N(x),∆0({s,a,x}) −Q

(6)H
N)x),{n,a,x}

[by (1−σ,1
N ) on (7), (2−σ,2) on (8), (6.1.2)∗ on (1b), (6.1.3)∗ on (2b), (6.1.2) on (3b),

(6.1.3) on (4b)]

= Q
(7a8b)

[−NDs,a+∆0Dn,a

]
(x),∆0(x)

+ Q
(8c)
NDn,a(x),x + ∆0

[−Dna,Q
(1b1)
x −QxD

(3b1)
a,n +Q

(8a)
{n,a,x},x

](9)
∆0

−∆0

[
Dz1,aQ

(2b1)
x +QxD

(3b2)
z1,a

](10)
+

[
QxD

(4b1)
a,z1 +Dz1,aQ

(1b2)
x

](11)

∆0

[
Dz2,aQ

(2b2)
x +QxD

(4b2)
a,z2

](12)

= Q
(7a8b)N
Dz1,a(x),∆0(x) +

[
Q

(8c1)N
∆0Dz1,a(x),x −Q

(8c2)H
Da,z2 (x),x

−∆0

[
Q{z1,a,x},x

](10)N
+

[
Q{z1,a,x},x

](11)N
∆0 + Q

(12)H
{z2,,x},x

[by (6.1.2)∗ on (7a8b), (6.1.3)∗ on (8c), and (0.1.1) on (9),(10),(11),(12)], which
vanishes by linearized (5.1.4).

The formula (2σ,0) follows from (2σ,2), (5.1.1), (5.1.2), (5.1.4), (6.1.2)(6.1.4) via

NQbQsQ
(1)
a +QaQsQbN

(2) −Da,s

[
∆0Qb∆0

](3)
Ds,a −Q

(4)
Da,s(∆0(b))

+Da,s

[
∆0Qb

](5)
Dn,a−Da,n

[
Qb∆0

](6)
Ds,a−Q

(7)
Da,s∆0(b),Da,n(b)

+
[
Da,nQbDn,a−QDa,n(b)

](8) −Q
(9)
N(b),QaQs(b)

= NQbQsQ
(1)
a +QaQsQbN

(2) + Da,s

[−NQ
(3a)
b −QbN

(3b)+Q
(3c)N
∆0(b)+Q

(3d)
N(b),b

]
Ds,a

+
[
Q

(4a)
QaQs∆0(b),∆0(b) −QaQsQ

(4b)
∆0(b) −Q∆0(b)QsQ

(4c)
a −Da,sQ

(4d)N
∆0(b)Ds,a

]

+Da,s

[
Q

(5a)
∆0(b),b+Qb∆

(5b)
0

]
Dn,a−Da,n

[−Q
(6a)
∆0(b),b+∆0Q

(6b)
b

]
Ds,a

−[
Q

(7)
Da,s∆0(b),Da,n(b)+Q

(7∗)
Da,n∆0(b),Da,s(b)

−Q
(7∗∗)
(Da,n∆0)(b),Da,s(b)

]

+
[−QaQnQ

(8a)
b −QbQnQ

(8b)
a +Q

(8c)
QaQn(b),b

]
+

[−Q
(9)
N(b),QaQs(b)

−Q
(9∗)
b,QaQsN(b) +Q

(9∗∗)
b,QaQn(b)

]
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[by (2σ,2) for (3); (0.1.4) in (4),(8); (5.1.4) in (5),(6); (5.1.1) in (9*)]

=
[
NQ

(1)
b −Q

(4c)
∆0(b)

]
QsQa+QaQs

[
QbN

(2)−Q
(4b)
∆0(b)

]−[(
Da,sN

)
QbD

(3a)
s,a +Da,sQb

(
NDs,a

)(3b)]

+
[
Da,sQ∆0(b),bD

(5a)
n,a +Da,nQ∆0(b),bD

(6a)
s,a −Q

(7)
Da,s(∆0(b)),Da,n(b)−Q

(10)
Da,s(b),Da,n(∆0(b))

](11)

−Q
(10∗)
[Da,n∆0](b),Da,s(b)

+
[−QaQnQ

(8a)
b −QbQnQ

(8b)
a +2Q

(8c9∗)
QaQn(b),b

]

+
[
Da,sQN(b),bD

(3d)
s,a −Q

(9b)
QaQsN(b),b −Q

(9a)
QaQs(b),N(b)

](12)
+ Da,sQb

[
∆0Dn,a

](5b)

+
[−Da,n∆0

](6b)
QbDa,s −Q

(7∗)
Da,s(b),Da,n∆0(b) + Q

(7∗∗)
Da,s(b),(Da,n∆0)(b)

=
[−QbN

(1a)+∆0Q
(1b)
b ∆0+Q

(1c)N
N(b),b

]
QsQa + QaQs

[−NQ
(2a)
b +∆0Q

(2b)
b ∆0+Q

(2c)H
N(b),b

]

+
[(

Da,n∆
(3a1)¨
0 +D

(3a2)
a,z1

)
QbDs,a−Da,sQb

(
∆0D

(3b1)•
n,a −D

(3b2)
z1,a

)]
+

[−QaQn,sQ
(11a)
∆0(b),b

−Q∆0(b),bQn,sQ
(11b)
a + Q

(11c)
QaQs,n∆0(b),b

]
+

[−QaQnQ
(8a)
b −QbQnQ

(8b)
a + 2Q

(8c9∗)
QaQnb,b

]

+
[−QaQsQ

(12a)H
N(b),b−QN(b),bQsQ

(12b)N
a +Q

(12c)J
Da,s(N(b)),Da,s(b)

]
+ Da,sQb

[
∆0D

(5b)•
n,a

]

−[
Da,n∆

(6b)¨
0

]
QbDs,a −

[
Q

(10∗)J
Da,s(b),Da,sN(b) + Q

(10∗a)
Da,s(b),Da,z1 (b)

]

[by (2σ,2) for (1),(2) and its linearization for (11), (12); (6.1.2) for (3a), (10*); (6.1.2)∗

for (3b)]

=
[
Da,z1QbD

(3a2)
s,a +Da,sQbD

(3b2)
z1,a −Q

(10∗a)
Da,s(b),Da,z1 (b)

](13)

+
[(

∆0Q
(1b)
b −Q

(10b)
∆0(b),b

)
Qs,nQa−QaQs,n

(
Qb∆

(2b)
0 −Q

(10a)
∆0(b),b

)
+ Q

(10c)
QaQs,n∆0(b),b

](14)

+2
[−QbQnQ

(1a8b)
a −QaQnQ

(2a8a)
b +Q

(8c)
QaQn(b),b

]

[by (5.1.1) for (1a), (2a) and (5.1.2) for (1b), (2b)]

=
[−QaQz1,sQb−QbQz1,sQa+QQaQz1,s(b),b

](13′)
+

[
Qb

(
∆0Q

(14a)
s,n

)
Qa−Qa

(
Q

(14b)
s,n ∆0

)
Qb

+Q
(14c)
QaQs,n∆0(b),b

]
+ 2

[−QbQnQ
(1a8b)
a −QaQnQ

(2a8a)
b +Q

(8c)
QaQn(b),b

]

[by (5.1.4) for (14), linearized (0.1.4) s → s, z1 for (13′)]

= Qa

[−Qz1,s−Qs,n∆0−2Qn

]
Qb+Qb

[−Qz1,s+∆0Qs,n−2Qn

]
Qa+QQa[Qz1,s+Qs,n∆0+2Qn](b),b

which vanishes by assumption (6.1.4).

Formula (2−σ,0) follows dually by an equally tortuous computation: it follows from
(2−σ,2), (5.1.1), (5.1.2), (5.1.4), (6.1.2), (6.1.4) since it reduces to

[
NQxQaQs+QsQaQxN

](1) −∆0

[
Ds,aQxDa,s

](2)
∆0 −Q

(3)
∆0Da,s(x)

+
[
Dn,aQ

(4)
x Da,s∆0−∆0Ds,aQ

(5)
x Da,n+Q

(6)
∆0Ds,a(x),Dn,a(x)

]
+

[
Dn,aQxDa,n−QDn,a(x)

](7)

−Q
(8)
N(x),QsQa(x)

=
[
NQxQ

(1a)
a Qs+QsQ

(1b)
a QxN

]−∆0

[−QsQ
(2a)
a Qx−QxQ

(2b)
a Qs+Q

(2c)N
Ds,a(x)+Q

(2d)
QsQa(x),x

]
∆0



24

+
[
∆0Q

(3a)N
Ds,a(x)∆0+Q

(3b)
NDs,a(x),Ds,a(x) −NQ

(3c)
Ds,a(x) −Q

(3d)
Ds,a(x)N

]

+
[
Dn,aQ

(4)
x Da,s−Q

(6a)
Ds,a(x),Dn,a(x)

]
∆0 + ∆0

[−Ds,aQ
(5)
x Da,n+Q

(6b)
Ds,a(x),Dn,a(x)

]

−Q
(6c)
Ds,a(x),(∆0Dn,a)(x) +

[−QnQ
(7a)
a Qx−QxQ

(7b)
a Qn+Q

(7c)
QnQa(x),x

]

−[
Q

(8)
N(x),QsQa(x)+Q

(8∗)
N(QsQax),x

]
+ Q

(8∗∗)
QnQa(x),x

[by (2−σ,2) on (3); (0.1.4) on (2), (7); (5.1.4) on (6); (5.1.1) on (8**)]

= N
[
QxQaQ

(1a)
s −Q

(3c)
Ds,a(x)

]
+

[
QsQ

(1b)
a Qx −Q

(3d)
Ds,a(x)

]
N +

[
Qs,nQ

(2a)
a Qx

+Dn,aQ
(4)
x Da,s−Q

(6a)
Ds,a(x),Dn,a(x)

](9)
∆0−∆0

[
QxQ

(2b)
a Qs,n+Ds,aQ

(5)
x Da,n−Q

(6b)
Ds,a(x),Dn,a(x)

](10)

+
[−NQ

(2d1)
QsQax,x −Q

(2d2)
QsQax,xN + Q

(2d3)
∆0(QsQax),∆0(x) + Q

(2d4)N
N(QsQax),x + Q

(2d5)H
N(x),QsQax

]

+
[−QnQ

(7a)
a Qx −QxQ

(7b)
a Qn + 2Q

(7c8∗∗)
QnQax,x

]− [
Q

(8a)H
N(x),QsQax + Q

(8∗)N
N(QsQax),x

]

+Q
(3b6c)
[NDs,a−∆0Dn,a](x),Ds,a(x) [by linearized (2−σ,2) on (2d); (5.1.2) on (2a), (2b)]

= N
[
QxQ

(1a)
a Qs−Q

(3c)
Ds,a(x)−Q

(2d1)
QsQax,x

](11)
+

[
QsQ

(1b)
a Qx−Q

(3d)
Ds,a(x)−Q

(2d2)
QsQax,x

](12)
N

+
[−QxQ

(9a)
a Qs,n−Ds,aQ

(9b)
x Da,n+Q

(9c)
Qs,nQax,x

]
∆0−∆0

[−Qs,nQ
(10a)
a Qx−Dn,aQ

(10b)
x Da,s

+Q
(10c)
Qs,nQax,x

]
+

[−QnQ
(7a)
a Qx−QxQ

(7b)
a Qn+2Q

(7c8∗∗)
QnQax,x

]
+Q

(2d3)
Qs,nQax,∆0(x)−Q

(3b6c)
Dz1,a(x),Ds,a(x)

[by linearized (0.1.4) s → s, n on (9),(10); (5.1.2) on (2d3); and (6.1.2)∗ on (3b6c)]

= −N
[
Ds,aQ

(11a)N
x Da,s+QsQ

(11b)
a Qx

]−[
Ds,aQ

(12a)H
x Da,s+QxQ

(12b)
a Qs

]
N+QxQa

[
2Q

(9a1)
n +Q

(9a2)
z1,s

]

+
[
2Q

(10a1)
n +Q

(10a2)
z1,s

]
QaQx+Ds,aQx

[
Da,sN

(9b1)H+D
(9b2)
a,z1

]
+

[
ND

(10b1)N
s,a +D

(10b2)
z1,a

]
QxDa,s

−[
Q

(9c10c1)
∆0(Qs,nQax),x+Q

(9c10c2)¨
Qs,nQax,∆0(x)

]
+

[−QnQ
(7a)
a Qx −QxQ

(7b)
a Qn + 2Q

(7c8∗∗)
QnQax,x

]

+Q
(2d3)¨
Qs,nQax,∆0(x)−Q

(3a6c)
Dz1,a(x),Ds,a(x)

[by (0.1.4) on (11),(12); (6.1.4) on (9a),(10a); (5.1.4) on (9c),(10c); (6.1.2) on (9b)
and (6.1.2)∗ on (10b) ]

=
[−NQ

(11b)
s +2Q

(10a1)
n −Q

(7a)
n

](13)N
QaQx + QxQa

[−QsN
(12b)+2Q

(9a1)
n −Q

(7b)
n

](14)H

−Q
(9c10c1)
[2Qn+Qz1,s]Qax,x +

[
QxQ

(9a2)
a Qz1,s+Qz1,sQ

(10a2)
a Qx+Ds,aQ

(9b2)
x Da,z1+Dz1,aQ

(10b2)
x Da,s

−Q
(3a6c)
Dz1,a(x),Ds,a(x)

](15)
+ 2Q

(7c8c∗)
QnQax,x [by (6.1.4) on (9c10c1)]

= −Q[2Qn+Qz1,s]Qax,x +
[
QQz1,sQax,x

]
+ 2QQnQax,x = 0

[by (5.1.1) on (13), (14), and by linearized (0.1.4) s → s, z1 on (15)].

Formulas (2±σ,1) are much easier. (2σ,1) follows from (2σ,2), (5.1.4), (6.1.2) since
it reduces to

NQbD
(1)
s,a+D

(2)
a,sQbN −Da,s∆0Q

(3)
b ∆0 −∆0Q

(4)
b ∆0Ds,a −Da,nQ

(5)
b ∆0 + ∆0Q

(6)
b Dn,a

−Q
(7)
Da,s(∆0(b)),∆0(b) −Q

(8)
Da,n(b),∆0(b) −Q

(9)
N(b),Da,s(b)
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=
[
NQ

(1)
b −∆0Q

(4)
b ∆0 −Q

(7a)
∆0(b)

](10)
Ds,a + Da,s

[
Q

(2)
b N −∆0Q

(3)
b ∆0 −Q

(7b)
∆0(b)

](11)

−[
Q

(9)
Da,s(b),N(b)+Q

(9∗)
Da,s(N(b)),b

](12)
+ Q

(9∗∗)
(Da,sN)(b),b −Da,n

[
∆0Q

(5a)
b −Q

(5b)
∆0(b),b

]

+
[
Q

(6a)
∆0b,b + Q

(6b)
b ∆0

]
Dn,a −

[
Q

(8)
Da,n(b),∆0(b) + Q

(8∗
Da,n(∆0(b)),b

]
+ Q

(8∗∗)
(Da,n∆0)(b),b

[by (5.1.4) for (5),(6), (0.1.1) for (7)]

=
[−QbN

I+QN
N(b),b

](10′)
Ds,a + Da,s

[−NQH
b +QJ

N(b),b

](11)′

−[
Da,sQ

J
b,N(b)+QN

N(b),bDs,a

](12′)−Q
(8∗∗9∗∗)•
Da,z1 (b),b+

[
D

(5a1)H
a,s N+D

(5a2)•
a,z1

]
Qb+Qb

[
ND

(6b1)I
s,a +D

(6b2)•
z1,a

]

+
[
Da,nQ

(5b)
∆0(b),b+Q

(6a)
∆0(b),bDn,a−Q

(8)
Da,n(b),∆0(b)−Q

(8∗)
Da,n(∆0(b)),b

]¨

[by (2σ,2) for (10),(11), (0.1.1) for (12), (6.1.2) for (5a), (6.1.2)∗ for (6b)], which
vanishes by (0.1.1) on •,¨.

Dually, formula (2−σ,1) follows from (2−σ,2), (5.1.4), (6.1.2) since

NQ
(1)
x Da,s+D

(2)
s,aQxN −∆0

[
Ds,aQx+QxDa,s

](3)
∆0

+
[
Dn,aQ

(4)
x ∆0−∆0Q

(5)
x Da,n+Q

(6)
Dn,a(x),∆0(x)

]−Q
(7)
∆0Ds,a(x),∆0(x) −Q

(8)
N(x),Ds,a(x)

= N
(
Q

(1a)H
Ds,a(x),x−Ds,aQ

(1b)
x

)
+

(
Q

(2a)H
Ds,a(x),x −QxD

(2b)
s,a

)
N −∆0

[
Q

(3)H
Ds,a(x),x

]
∆0

+
(
Q

(4a)N
Dn,a(x),x−QxD

(4b)
a,n

)
∆0 + ∆0

(
Dn,aQ

(5a)
x −Q

(5b)N
Dn,a(x),x

)
+Q

(6)N
Dn,a(x),∆0(x)

−[
Q

(7)H
∆0Ds,a(x),∆0(x) + Q

(8)H
N(x),Ds,a(x) + Q

(9∗)H
NDs,a(x),x

]

+Q
(10∗)N
∆0(Dn,ax),x +

[
Q

(10∗∗)
−∆0Dn,a(x),x + Q

(9∗∗)
NDs,a(x),x

](11)
[by (0.1.1) for (1)-(5)]

= − [
ND

(1b)•
s,a Qx+Q

(2b)¨
x Ds,aN

]
+ Qx

[
D

(4b1)¨
a,s N+D

(4b2)
a,z1

]
+

[
ND

(5a1)•
s,a +D

(5a2)
z1,a

]
Qx −

Q
(11′)
Dz1,a(x),x

[by (5.1.4) for N, linearized (2−σ,2) for H, ( 6.1.2)∗ for (5a),(11)], which vanishes by
(0.1.1) for Dz1,a. This completes the verification of the gluing axioms under the given
hypotheses. ¥
Remark 6.2 The formula (3.3.5) shows ∆′

0 is inner, but the formula (3.3.4) does
not make clear that N ′ is inner (though perhaps Innner Multiplication from the Black
Lagoon!) even if N isn’t: whenever (2σ,2) holds (but not necessarily any of the other
structure conditions )

N ′ τ = QnQc + Qz1,sQc −QsQ∆0(c),c + QsQ∆0(c) + QsQN−τ (c),c ∈ QV τ QV −τ

and dually for N ′ −τ .

Proof: From (2±,2) we have QsQcN
τ = Qs

[
QcN

τ +N−τQc

]−QnQc [by (5.1.1)]
= Qs

[
∆0Qc∆0 + Q∆0(c) + QN−τ (c),c

]−QnQc = Qs∆0

[
∆0Qc −Q∆0(c),c

]
+ QsQ∆0(c) +

QsQN(c),c−QnQc [by (5.1.4)] =
[
2Qn+Qz1,s

]
Qc−QsQ∆0(c),c+QsQ∆0(c)+QsQN−τ (c),c−

QnQc [by (6.1.4)] = QnQc + Qz1,sQc −QsQ∆0(c),c + QsQ∆0(c) + QsQN−τ (c),c.
11 ¥

11It is not hard to check that if we take c = w1 then with relations such as those in (6.1) (c.f. [[?],
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In the presence of scalars 1
2

or 1
3

certain conditions become redundant.

Proposition 6.3 If N , ∆0 satisfy condition (4.7.9),

(M): N τ∆τ
0 = ∆τ

0N
τ = M τ

(
Mσ := −Dσ

w1
, M−σ := D−σ

w1

)
,

then (2σ,2) implies 3(1σ,1
N ), so that if 1

3
∈ Φ we can replace condition (1σ,1

N ) by condition
(M).

Proof: For generic τ = ±σ we omit superscripts and compute 3(1τ,1
N ) as

[
NQw∆0−∆0QwN+QN(w),w

]
+

[
(2N)Qw∆0−∆0Qw(2N)+Q[2N ](w),w

]

=
[
(NQw+QwN)(1)∆0−Q

(2)
w M

]− [
∆0(NQw+QwN)(3)−MQ

(4)
w

]
+ Q

(5)
N(w),w

+
[
(∆0∆

(6)
0 −W

(7)
1 )Qw∆0 −∆0Qw(∆0∆

(8)
0 −W

(9)
1 )

]
+

[
Q

(10)
∆0∆0(w),w−Q

(11)
W1(w),∆0(w)

]

[by (M) in (2),(4) and (6.1.1) for 2N ]

=
[
∆0Q

(1a)N
w ∆0+Q

(1b)•
∆0(w) + Q

(1c)¨
N(w),w

]
∆0 −∆0

[
∆0Q

(3a)H
w ∆0+Q

(3b)•
∆0(w) + Q

(3c)¨
N(w),w

]

+MQ
(2)
w −QwM (4) + Q

(5)¨
N(w),w +

[
∆0∆0Q

(6)H
w ∆0−∆0Q

(8)N
w ∆0∆0

−W1Q
(7)
w ∆0+∆0Q

(9)
w W1

]
+

[
Q

(10)•
∆0∆0(w),∆0(w)−Q

(11)
W1(w),∆0(w)

]
[by (2τ,2) on (1), (2)]

= −Q
(1c3c)
∆0N(w),∆0(w)+MQ

(2)
w −Q

(4)
w M−W1

[
∆0Q

(7a)
w −Q

(7b)I
∆0(w),w

]
+

[
Q

(9a)I
∆0(w),w+Q

(9b)
w ∆0

]
W1

−Q
(11)I
W1(w),∆0(w) [∆0 is a derivation on •, ¨]

=
[
M τ−W τ

1 ∆τ
0

]
Qw + Qw

[
∆−τ

0 W−τ
1 −M−τ

]−Q[M−W1∆0](w),w.

[by (M), W1 a derivation on I]

At this point we take a break to establish

M τ −W τ
1 ∆τ

0 = ∆τ
w1

, (∆τ
w1

)∗ = −∆−τ
w1

(∆σ
w1

:= Dw1,n, ∆−σ
w1

:= −Dn,w1).

Indeed, for τ = σ we have
(
Dw1,s∆

σ
0 + Dw1,n

)−Dw1,s∆0 = Dw1,n, and for τ = −σ we
have

(
∆−σ

0 Ds,w1 − Dn,w1

) − Ds,w1∆
−σ
0 = −Dn,w1 since ∆−σ

0 commutes with Ds,w1 =
∆−σ

0 ∆−σ
0 −2N−σ [by (6.1.1) by the commutativity in condition (M)]. Returning where

we left off in the proof, we get

=
[
∆τ

w1

]
Qw + Qw

[−∆−τ
w1

]−Q[∆τ
w1

](w),w

=
[
∆τ

w1

]
Qw + Qw

[
∆τ

w1

]∗ −Q[∆τ
w1

](w),w = 0

by (0.1.1) since ∆τ
w1

= Dpτ ,q−τ . This shows 3(1σ,1
N ) does indeed vanish. ¥

We make a final remark about the notation for wi ∈ V σ and zi ∈ V −σ: from the
Pseudo-Principal Example 4.7 we see that w1 = Qq̃s, w2 = Qq̃(n) = Qq̃Qsq̃, z1 =

[?]]) the resulting subdominion has N ′ τ = Qw1Qn, N ′ −τ = QnQw1 a principal struction. However,
in the theory of fractions we want only injective denominators, and s′ = Qsw1 is usually not injective.
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N(s), z2 = N(n). A more consistent notation would set s1 = s, s2 = s(2,q̃) = Qsq̃ =
n, s3 = s(3,q̃) = QsQq̃s = Qsw1 = z1, s4 = s(4,q̃) = QsQq̃n = z2, and in general
sk = s(k,q̃) = zk−2 with s = z−1 and n = z0. Similarly q̃1 = q̃ = w0, q̃2 = q̃(2,s) =
Qq̃s = w1, q̃3 = Qq̃Qsq̃ = w2, and in general q̃k = q̃(k,s) = wk−1. Only wi, zi for
i = 1, 2 play much of a role in the struction conditions or Jordan derivations [?].
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