Generalized Jordan Polynomials and Bergmann
Structions

Kevin McCrimmon
Department of Mathematics
University of Virginia, Charlottesville, Virginia
kmm4m@virginia.edu

Abstract

The Martinez construction of fractions from a Jordan algebra requires a
Jordan derivation involving certain quadratic multiplications on the original
algebra. We study a general Bergmann construction of such structural trans-
formations (structions) in the context of Jordan pairs, whose natural setting
is a universal polynomial envelope (with a universal representation of polyno-
mial operators) generalizing the universal quadratic envelope (with its universal
representation of linear operators). The Bergmann structions corresponding to
fractions are defined only on a subpair determined by a sesqui-principal inner
ideal determined by an element s and an element n dominated by s. We study
these inner ideals and the criterion for a creating structions on them, which will
be applied to the creation of Jordan algebras of fractions. The methods should
have future application to the problem of creating fractions for Jordan pairs.

Throughout, we consider algebraic systems over an arbitrary ring of scalars ®. A
Jordan pair, a pair V = (V' V™) of ®-modules with compositions (z,a) — Q.(a) €
V™ for (z,a) € VT x V77, 7 = £,! which are quadratic in x and linear in a, and
satisfy the following axioms strictly (in all scalar extensions, equivalently, all their
linearizations hold in V itself): for all z,y € V7, a,b e VT

(JP]-) Dm,aQa: = Q:vDa,a:a (JPZ) DQxa,a = Dz,Qa(z)7 (JPS) QQxa = QanQx7

where as usual we set @, = Quiy — Qz — @y, Which gives the trilinear product
{z,a,y} = Quy(a) = Dyo(y) with {VTVTVT} C V7,

We will try to economize on superscripts and use typography instead, denoting,
for a fixed 7 = +, elements of V7 by x,y, z, w and elements of V=7 by a, b, c. Every

'We will use 7 instead of the usual o as our generic superscript &, since we are especially interested
in multiplications by an incipient element ¢ of a fixed degree o and focus on the important space
V=7 where @5 is defined. Instead of saying “in our earlier formulas replace all o’s by —o” we will
say “set T = —0o”.
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Jordan pair V = (V*,V7) has a dual or opposite pair V= (‘N/+, \N/_) for Vo= V-~"
and operations Q;d = Q,, ﬁiagj ={a,z,b} for T =a,y =0 € Vi,i=2z€eVT
[Loos, p.3]. We could avoid all superscripts by formulating only positive results for
x € V', ae€ V™, and applying duality for the corresponding negative results, but we
won’t be quite this parsimonious.

We will use [Loos] as reference bible for all results about Jordan pairs. The
following formulas are used frequently enough in the paper for us to display them:

(011) Dx,aQy + QyDa,a: = Q{x,a,y},ya
(012) Dx,Qay = D{:c,a,y},a - Dy,Qaw = D:r,aDy,a - Q:v,yQa;
DQay,ac - Da,{y,a,x} - Dan,y - Da,yDa,m - QaQy,ma
( ) QQxa,y = Qx,yDa,z - Dy,an - Dm,an,y - Q;tDa,ya
( ) Q{z,a,y} + QQzQay,y = QwQaQy + QyQan + Dm,aQyDa,x;
(015) QQIQQ%DI@y = QIQaQyDa,x + Daz,aQyQana
( ) QaerQza = Ba,x,a@:ﬁ = QxBa,a,xa
(Ba,x,a = 0521 + aDz,a + Qx@a)'

1 The Universal Quadratic Envelope

For a subpair V C ]7, the unital outer multiplication algebra of V on V is denoted by
M(V|V); it is generated over ® by the identity operator 1 and all operators of the
form D, ,, @, for z,a € V; when V = V we get the full outer multiplication algebra
M(V).

Though seldom mentioned in polite company, Jordan pairs have a universal gad-
get for quadratic representations. If A is a unital associative algebra with 2 x 2 ma-
triz grading, i.e., a decomposition A = P _ . (4} A" satisfying the matrix relations
ATTAPY C 6, , ATV lequivalently, with Peirce decomposition A™7 = e”Ae? relative
toe™ € AVt e” € A7~ where 1 = eT + ¢7], then a quadratic specialization? of
a Jordan pair V in A is a pair of maps Q = (¢,d) = ((¢",¢7"), (d"T,d™7)) for
m™? VYV — A7 strictly satisfying the quadratic specialization relations for pairs: for
al T=+, 2,y € V7 a,be VT

2This was called an associative representation in [Loos 2.4 p.16-17], leaving out (QS2) since it
follows from (QS4,4*) via dg,a.a — dz,Que = (diﬁa — Qan,a) — (di,a — qmqua) = 0. (QS4) in turn
usually follows by applying (QS5) with y, a replaced by m, b, acting on a, and reading the result as
an operator on m. But due to the asymmetry between the pair elements z,y and a,b we cannot
derive (QS4) this way and must assume it as an axiom. This contrasts with the Jordan algebra
case [me, p.282] where 1 = 1, py,y = Pollyble, HUnyz = boVye = Vaylts suffice to define quadratic
specializations.
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(QS2)  dyg..
(QS3) 450 =477,
(QS4)  dy Tdy T =dy G . d
(QS4)*  dpidyy =dg .p+ a0 "0y
(QS5)  dynay ™™ + a7 Ty T = 0y
These relations imply
(QS6) 5y 0y = 4y "y
(QST) dgpadey = a7 "a, "de = dy 0,000
(QS8)  qr,"der™ ™ =diyady ™+ 4G, 0y
(QS9) 47 "Gy + 7 sy = dGna + drady)

z,a"x,b"
Here (6),(7),(8) are Lemma 2.6 (4),(5),(2) in [Loos, p.16] ; (9) is JP6, which was not
derived for specializations in Lemma 2.6, but is equivalent to (QS4) since (QS9) +
(QS4) - (QmQa,b + dac,{a,a:,b} - deb,a - dw,adr,b) + (dx,adm,b - dea,b - Qbe,a) = dw,{a,x,b} -
dg.ba — dg,ap vanishes as a linearization of (QS2).?

The archetypal example of a quadratic specialization is an outer multiplication
representation, i.e., a quadratic specialization ¥V — M(V|V)|r by outer multipli-
cation operators

T’_T Lpe— T7T Lp—
Qx T QJC’M_T7 dx’a T Dw,a MT

for M = (M™, M~) a V-invariant subspace of a Jordan pair V D V. The regular outer

representation is the outer multiplication representation of V on itself (M =V = V).
By restriction we obtain a multiplication representation on any outer ideal Z C V.
A V-bimodule consists of a pair M = (M*,M~) of ®-modules and a bi-
representation of V on M, i.e., a quadratic specialization of V in End(M) =
@TJ e, Fe, for e, the projection of M on M?. In fact, all V-bimodules are in-
variant subspaces of some & D V, and all birepresentations V — End(M) are outer
multiplication representations V — M(V|E)|r on a split null extension.

Bimodule Theorem 1.1 Any V-bimodule M gives rise to a split null extension
E=VoOM=VteM" V=& M™), which is a Jordan pair under the operations

 Quen(@®p) = Qe ® (¢:(p) + daa(m),
Digm,acp(y ® 1) := Dy o(y) ® (dea(n) + Guy(p) + dya(m))

3Similarly, (QS8) is equivalent to (QS5) since (QS8)+(QS5) equals the linearization z — x,y in
(QS1) ¢udee = qQ,a,z- Note that (QS1-3) are (JP1-3), (QS4) is (0.1.2), (QS5) is (0.1.1), (QS8)
is (0.1.3). The Bimodule Theorem below shows that (QS8),(QS9) are more directly involved than
(QS4),(QS5) in capturing bimodule structure, but we prefer (QS5) as a basic result (d, is a Lie
struction), and (QS4)* since it is the dual of (QS4).
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forallz,ye VT, mne M™,a € V™", pe M7, and the original birepresentation is
the restriction of the reqular outer representation of £ to V and M.

PrROOF:  We must verify that the axioms (JP1-3) hold in all extensions of V.
Since the relations (QS1-5) hold strictly, it suffices to show they imply (JP1-3) in V
itself.

For (JP1), the LHS is ﬁx+m,a+p@x+m(b+7‘) = {z,a,Q.b} ® (dy.au (1) + 40,02 (P) +
(dv ol p+d,b,a)(m)), and the RHS is Quym Datpaem (047) = Qu{a, 2,038 (quda o (7)+
Qb (P) + (qap + d%{a,x’b})(m)), which agree by (JP1) in V, (QS1) on r and p, and
(QS9) on m.

For (JP2), the LHS is 5@I+m(a+p)va+p(g/+n) = {Q.a, a, y}D(dq, a,a(n)+dyodyq(m)+

(40say+dyadz)(p)), and the RHS is D, n@usy(orm)(y+1) = {2, Qo y} @ (ds.0u0(n)+
Goyas(P) + (dy.Qus + Guyda) (M), which agree by (JP2) in V, (QS2) on n, (QS8) on
p, and (QS4)* on m.

Finally, for (JP3) the LHS is Q@H%bw)ﬁa—i—p) = Qq.b(a)® (qg,b(p) +dg,b,adx () +
szb,adz‘,b(m))7 and the RHS is Qx+me+er+m(a +p) - QmeQI(a) D (%c%%c(p) +
Cdp.@.a(T) + du.g,0.a(m), which agree by (JP3) in V, (QS3) on p, (QS6) on r, and
(QS7) on m. |

Bimodules are inherently outer modules for V, they have no inner multiplications
(Ny (M) = QnV = 0). Thus they can reflect only outer multiplicative properties of
a Jordan pair.

The universal gadget for quadratic specializations is the universal quadratic
envelope UQE(V) (cf. [me, p. 289-290] for the algebra case), a unital associative
U with 2 x 2 matrix grading, together with a universal quadratic specialization

Q. : V — U, having the universal property that every quadratic specialization V 2,
A factors through the universal one

Q

Y ——

A
(1.2) Qu \, /0
UQE(V)

via a unique homomorphism Q of unital 2 x 2-graded associative algebras. This
implies, in particular, that 4 Q& is unique up to isomorphism and is generated by
the universal elements e*,e™, ¢777 € UT77, dy7 € U™ for x € V7,a € V7. The
standard model of UQE is F/I for F the free unital associative ®-algebra generated
by all e7 (et + e~ = 1), ¢077, d7}, and I is the ideal generated by (e*)? = e* and
all elements needed to make d linear in z,a and ¢ quadratic in z [all doyysr e —
Odda:,a - d:):’,aa dx,anra/ - adz,a - dx,a’a Qoxz — CVQQxa Qoz+a',a — AQga — qgc/,a]a and insure
that (QS1-5), hence also (QS6-9), and their linearizations hold [all elements LHS —
RHS in (QS1-5), plus the z-linearizations of the cubic relations (QS1),(QS6),(QST7)

and the quartic relation (QS3)]. Since the set of generators for both ¢ and I are
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homogeneous and invariant under the reversal involution of F' (determined by
(@7 7)" = qy7 ", (dy5)" = d,77), the quotient U QE inherits the matrix grading
and involution. This leads to the Duality Principle: if a Jordan pair operator
w € UQE(V) is an identity, w = 0 in UQE, then its reversal w* is also an identity,
w* =01in UQE.

We will rapidly get tired of writing g7, d;7, for the generators of U and sim-

ply write ¢, d;, when the indices are understood. In fact, we will often just write
Qz, D, o in place of their preimages (@T(qx) = Qa, @r(dx,a) = D, ,) under the regular
representation Q,., and say “in the universal envelope”, “in U”, or just “universally”.
The deﬁning relations (JP1-3), (0.1.1-6) show that if {x;} is a set of graded generators
z; € V7O for V, then the operators qxl, Qoi ;s Aoy z; 18 @ set of generators for UQE(V).

Any quadratic specialization V 2 Aturns A into a V-bimodule M (A, Q) =Ma
M~ (M™:=Ae, = A7"® A7) (which is cyclic with generator 14 = e @e_ if Q(V)
generates A) via the left regular representation A — End(.A), so for w € UQE(V)
we have w(a) = @(w)a as in (1.2). The universal envelope U becomes a universal
cyclic bimodule M(U, Q,); every cyclic V-bimodule is a homomorphic image of
MU, Qu). B B B

If V is a subalgebra of V, we denote by UQE(V|V) the subalgebra of UQE(V)
generated by 1 and all dm,qx for x;a € V, and we have natural eplmorphlsms
UQE(V) — Z/IQE(VW) MV|V) via dya, @z — dua,de — Dya Qs € End(V).
In particular, V becomes a left UQE (V)-module, and we can form w(Z) for any
w € UQE(V) and any T € V. We also have the Action Principle: If a Jordan
pair operator w € UQE(V) is zero as a bimodule operator, w = 0 € End(M) for all
V-bimodules M, then w = 0 in YQE(V); indeed if w is zero on the universal cyclic
module M(U, Q,,) then 0 = w(ly) = Q\u(w)lu = w implies w = 0 in U [note that
Q. = 1y by uniqueness in (1.2)].

Another formulation of the Action Principle is that an operator w € U is zero iff
it is zero as an operator in all extensions V D V: ifw =0on ) = VoMU, Q,) then
w=0on MU,Q,), sow =0 inU. Conversely, if w vanishes in I then it vanishes
on all m € V since M = M(V|V)m is a Jordan bimodule, and w = 0 on M implies
w =0 on m.

2 Universal Polynomial Envelope

Jordan algebras and pairs have linear outer multiplications U, : a — U,a, Q,.a and
ViasDea  y — {2,a,y} which are linear operators, but they also have inner mul-
tiplications N, : a — Q.x mapping V7 — V™7 which are quadratic rather than
linear operators. We can interpret these as mappings on the associated polarized
Jordan triple system VP := VT @V~ by setting Ny+ (V") = {V7, V7, V} = 0. The full
polynomial multiplication algebra PM (V) C Pol(V) is the associative algebra of
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polynomial maps in several variables on V generated by the Q,, D,.4,N,.* The easiest
approach to these polynomials is through the free product of V with a free pair.

Recall from your subconscious that the free Jordan pair FJP[X] on a nonempty
sets X = X W X~ of graded generators is the free pair monad FPMI[X] on the
generators divided out by the ideal Z(X') generated by the Jordan pair identities (JP1-
JP3) as well as their linearizations. The free pair monad is the free module spanned
spanned by all pair monomials in the generators, constructed recursively by taking in
degree 1 the generators xgt, and if p7,q", a7 of degrees d, e, f have been constructed,
then m™ = Q,a, {p,a,q} = {¢,a,p} are monomials of degrees 2d + f,d + e+ f. The
ideal Z(X) is generated by the following relations®

(JP1>: Dw,an,y + Dy,an - QQ;,;CL,y + QQLQ(L,J{? - Ql’,yDCL,(E + QI"D(Z,ZJJ
(JPB)” QQza,Qz,ya = QanQI,y _'_ Qx,y@a@x,y,
(JP3) QQma,an_l'Q{m,a,y} = QanQy+QyQan+Qx,yQan,y-

Remember that quadratic identities linearize automatically, so it is only identities
of degree 3 or more in a variable that must be assumed to hold, and they hold
automatically if the ring of scalars ® has sufficiently many invertible elements. The
quotient ®-module FJP[X] := FPM|[X]|/Z(X) becomes a Jordan pair by defining
QF p(32 a5) = 7, Qpaj + 3y Apis aj, pr}. We call it the free Jordan pair ®(X)
on the free graded variables X+ W X~ over ®, using pointy brackets to distinguish
it from the scalar polynomial ring ®[X] in ungraded scalar variables. We will speak
of THE free Jordan pair ®(X) over ® when X7 = {a7,27,...} (1 = %) are both
countably infinite sets of indeterminates; its elements may be thought of as universal
Jordan pair polynomials in any (necessarily finite) number of variables.

The free pair on X is graded by degree in each variable, and agrees with the
free monad up to degree 4 (the lowest-degree Jordan identities are (JP1), (JP2) of

degree 5), in particular has a natural imbedding X LN P|[X]. It enjoys the usual
universal property, that every set-theoretic map X+ % V* extends uniquely to a

homomorphism FJP[X] %,V of Jordan pairs. The universal property leads by
universal nonsense to the usual properties of the free object and yields a functor from
sets to Jordan pairs.

For generalized Jordan polynomials on a particular Jordan pair ¥V we must take
the free product of V with FJP[X] to get F[V, X], the polynomials with coefficients
in V in the graded free variables X & X, not to be confused with the scalar poly-
nomials V ®¢ ®[X| in ungraded scalar variables. There is no transparent way to view

1t is not true that PQE(V) is generated by ¢, u; z;, da; ; Na; for generators {xx} of V (Ng, . «; :
a — QqQzix; is not directly expressible in terms of these).

°If we were willing to add the complete linearization of these, namely (JP1)” linearizing x — =, 2
in (JP1), (JP2)',”, " linearizing x — z, z and @ — a,b and both in (JP2), and (JP3) linearizations
x—x,zand x — x,z,w in (JP3) and x — x, 2z, y — y,w, and both in (JP3)”, plus the linearizations
a — a,b in all of these, it would suffice to consider only those relations where x,y, a are themselves
monomials. But that’s too steep a price to pay!
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this algebra as there is in the category of associative algebras, where the elements of
F|A, X] are just linear combinations of strings agpzrMa;2® - - - a,z™a,,1, n > 0, for
nonzero a; € A (allowing ag, a,+1 to be absent) and nontrivial free noncommutative
monomials z() in the free associative algebra F[X] (with the obvious multiplication
and linearity in the variables a;.)® The elements of F[V, X| can be thought of as gen-
eralized polynomials in the sense of Martindale (see, for example, [?, p.111f]): non-
commutative nonassociative Jordan polynomials in indeterminates x; with coefficients
from V. In this paper we will not be concerned with generalized polynomial identi-
ties, nonzero elements of F[V, X| which vanish on V or related pairs, but rather the
zero elements themselves, polynomials p(ay,...an, z1,...2,) = 0 € F[V, X]| where
Y1y Yny X1, - .. Ty) # 0 € &Y W X) is a nontrivial Jordan polynomial which van-
ishes for the particular substitutions y; — a; € V and all possible substitutions x; — Bj
for all pairs % containing a homomorphic image of V.

The easiest way to form this free Jordan product is to present )V in the most
egregious way (take indeterminates Y7 = V7 and write V = FJP[Y]/K induced from
the natural inclusion Y = V, and then form F[V, X] := FJP[X W Y]/K (dividing
out by the relations K in the variables Y defining V, but no further relations in the
variables X other than those Z(X) imposed in the formation of FJP[X]). There are
natural inclusions X 7% F[V, X], V %% F[V, X]. This has the universal property that
any set-theoretic map X = 1% together with a Jordan pair homomoprhism V %

extends uniquely to a Jordan pair homomorphism F[V, X]| w2y, (We will leave
it to the TeXnically proficient reader to construct the corresponding commutative
diagram demonstrating the creation and universal diagram for [V, X| from the those
for FIPIY], FIP[X].)

We will adopt the shorthand notation V(X)) for the free pair F[V, X|, again using
pointy brackets to distinguish it from the scalar polynomial extension V[X] =V Qg
®[X]. When X is countably infinite we call V(X) the free polynomial algebra
F(V) or universal polynomial envelope UPE(V) of V over ®. The universal
property leads by universal nonsense to standard properties of the free object: it
determines a functor from Jordan-pairs-and-sets to Jordan pairs, distinct variables
can be adjoined one-by-one or in one fell swoop,

(2.1) VIXWY) 2 VX WY),

that a bijection of sets induces an isomorphism of free pairs

(2.2) X1 =2 X, = V(X)) =V(X,),

6As pair theorists, we can blithely ignore the complications in the category of unital algebras,
where we would want 1 € A to remain the unit in F[A, X] and therefore must face the sort of collapse
azxMW1zPb— a(zMz?)b familiar from the case of free groups. Indeed, associative ring theory wants
the entire center C of A to remain the center of F[A, X], forming the free product over C' instead
of .



in particular that the free polynomial algebra is indifferent to countable extensions,
(2.3) F(V) = FV)(Y) (Y countable).

We have the Action Principle that p = 0 in F(V) iff the map induced by p
vanishes on all Jordan algebras V with homomorphism (not necessarily an imbedding)
V % V. Certainly if p(z1, . . ., 2,) = 0in V(X) then for any Z1,... %, € V and o(z;) =
Z we have 0 = @(p) — p(@1, ..., &) and p vanishes on V. Conversely, if p vanishes

on all pairs V it certainly vanishes on the pair F(V) itself, so p = (04, ta)(p) = 0.

Any free polynomial algebra V(X) is again X-graded, with the elements in degree
0 being precisely V. We have a graded decomposition V(X) = V&P, Vo V> into
homogeneous parts of degree 0,1, and > 2. Importantly, the homogeneous polynomials
of degree 1 are naturally isomorphic to the universal multiplications of the universal
quadratic envelope.

Quadratic Envelope Imbedding 2.4 Fiz an even and odd variable :Ugt € X*, set
To =g D xy. Then the cyclic V-sub-bimodule M = M(V)xo = Vir ®@V,- CV(X)
is naturally isomorphic to the universal cyclic bimodule M(U, Q,)) = U(1y) = U via

the inverse linear maps U M given by w — evaly, (w) = w(zg) and M 25 U by
p(zo) — p. Under this isomorphism UQE(V) =V, & V- and UQEW)™T = Vyr as

Spaces.

PROOF:  We have a multiplication representation V — M(V|V,,), so by the
universal property of U this induces an algebra homomorphism & — M (V|V,, ), which
can be followed by the evaluation map eval,,. Since evaluation is a V-bimodule map,
the resulting composite ¢ : w — w(xg) is a homomorphism of cyclic V-bimodules.

The specializations x; — 0,29 — 1y (i.e., ) — €7) induce a homomorphism
V(X) £ V@ M by the univeral property, which restricts to a V-bimodule homomor-
phism V,, 2% Uly = U. The recursive construction shows the only polynomials in
V., have the form p(x¢) = w(zg) for a muliplication operator w: in degree 1 there
is just xf = €7(xg), if true for degrees less than n then in degree n any homoge-
neous degree 1 monomial must be Q,q (where p must be constant and by recursion
q = w(xp) for a multiplication operator w) or {p,q,r} (where we must have two con-
stant factors and one an operator on x, by recursion, so {p,q,w(zo)} = D, w(zo) or
{pv Q(xO)a T} = Qp7rw(x0)'

These two homomorphisms are inverses since (¢pot)(w) = po(w(zp)) = w(ly) = w
and (¢ opg)(w(x)) = Y(w(ly)) = ¥(w) = w(zp). Thus the two bimodules are isomor-
phic. Tt is clear that under this bimodule isomorphism UQE(V)7™ = e"UQE(V)e™ =
e’ Me™ corresponds to €7V,r and UQE (V)7 to V,r as spaces. [

We remark that V(X) has no involution corresponding to the powerful reversal
involution on U QE(V). Nevertheless some traces of duality remain. For example, if
xT,x”,y" are distinct variables and for some elements z,w,a,b,c in a pair V the
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quadratic polynomial D7 ,QFQ, Q,+c vanishes universally (as a function of 2™ on all

V over V, equivalently in F (V)), then its linearization D}, Q7 Q, Qu+ ,+c vanishes
universally as a bilinear function of z™, gfr SO (DZan;QI;D;’c) (7)) =0in F(V),+,
and under the isomorphism D}, Q¥ Q, DF, .= 0in UQE(V)™*. But then its reverse
Do Q, Q4D . also vanishes, leadmg (via the isomorphism, this time of U QE(V)*~
with V,-) to an unexpected relation D, ,+QyQu{a, 2,2~} = 0 back in V(X). Notice
that vanishing of a function of ™, y* has led to vanishing of a function of z=,y™
(which is exactly what happens in the universal quadratic envelope, where d,, , = 0 as
a universal map on modules M7 leads to d,, = 0 universally on A/~7). One suspects
the original quadratic function of x vanishing implies some “dual” quadratic function
vanishes, but I have been unable to find examples. At any rate, universal vanishing
of a generalized Jordan pair polynomial has powerful unexpected consequences.

y+c

3 Dominions

An inner ideal 1™ <;, V7 is a subspace closed under inner multiplication, Q;-V =" C
I7; then V(I7) := (I",V~7) forms a subpair of V. By (JP3)and (0.1.6), every element
s € V7 determine closed and open principal inner ideals K] = ®&s + QIV ™7
and I7 := Q7V 7. In the theory of Jordan fractions an important role is played by a
sesqui-principal inner ideal determined by a dominating pair. We say that an element
s dominates the element n if there are pairs N, = (N",N™7), S, = (S7,577) of
operators M™ € End(V7), 7 = 4, such that

(3.1) Qn=N"Q7=Q{N, ns =90 Q5 = QL5
Note that s automatically dominates all n = as + Qsa in the principal inner ideal
K by (0.1.6), (JP1), and we will see that any y dominated n is already halfway in
K. Such a pair (s,n) of dominator and dominatee determines in inner ideal which
is almost principal.
Dominion Theorem 3.2 If the element s dominates n, then the dominion

(3.2.1) K, =d+ds+Q.V T
s an inner ideal satisfying

(3.2.2) Qr,.,.V TCQV T=1I] CK] C Kgp.
The elements x := yn + as + Qsa, y := as + Q,a, z := Q.a of the dominion have
Q-operators which can be “divided by Q4”,

323) QI=Q;Q.
) Qn.=DiQ;=Q7D,"
) @, =G"Q]=QG
3.2.6) Qr=DB"Q]=QB"
) QL =X"QI=Q; X"

( (STDsa Dnm DasS T— an))a
G? = aS"+D")

(B (BocsaaBaas>)7

X° = ,YQNO'_i__,yGO'_'_BO')

(
(
(
(
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where o = +7.

Proor: We will omit all indices in the following arguments, since they are clear
by context from the statements in the theorem. (2) will show that the dominion
is indeed an inner ideal, and (2) will follow from (7) since Q,V~7 = QIX7V™7 C
QIV~". So all that remains is to establish the formulas (3)-(7). The fundamental
formula (3) is just (JP3), the Bergmann formula (6) is (0.1.6). For (4), we have
Qn,z = Qn,Qsa = Ds,aQs,n - QsDa,n [by (013)] = Ds,a(QsS_T) - QsDa,n [by (31)]
= QS(DCLSS_T - Da,n) [by (‘]Pl)] = QSD;Tv and dually QTL,QSCL = Qs,nDa,s - Dn,a@s =
S™QsDys — DypoQs = (S"Dso— D o)Qs = DIQs. Then (5) follows immediately since
Qny = Qnas + Qn. = Q(aS™™ + D7) [by (3.1),(3.4)]. The formula for @, follows
from (0.1.6). For (7) we have Q, = Qyniy = V’Qn + VQny + Q, = Qs (VZN*T +
VG + B;h,) = Q. X7 by (3.1), (3.6), and dually. |

a,a,s

This inner ideal is not bi-principal, since the formulas indicate that n is already
“half in K,”, so a fraction Q;'n is really of degree —1 in s, not —2. We will see that
the operator G provides important “glue” binding the two structural transformations
N and B into a new structural X.

We will denote the operator pairs by Dy s, = (D7, D;7), Gaasn = @Ssn+Dasn =
(G™,G™), Baas == (Basas Baas)s Xyaasn =1V Nsnt7Ga0.5n+Basas. The individ-
ual operators N*, S%, DF also depend on s, n, but we will always omit these subscripts
from the notation.

We will see that life gets easier the smaller our dominions get. It is easy to
construct subdominions inside a given dominion K. ,,.

Subdominion Theorem 3.3 If s dominates n in V7, then also for any c € V7 the
element s’ := Q,c dominates n' .= Q,Q.n, inducing a subdominion

(3.31) Kl ., =on +®s'+QsV T = Qs (<I>c + Q.(Pn + QSV_T)) C QK.

For any element o' := yn'+as’'+Qya = Qs(ac+Qy) € KL, ¥ :=yn+Qsa €
V7™ we have the relations

(3.3.2) {s,c,y'} =QIa" (a":=—vAo(c)+{a,s,c}),
(3.3.3) Qy = QAT =A"Q],

(A7 :=*N" + D] + Q7Q,7, AT :=N"7"+D;7 +QiQ;7),
(3.3.4) w=QuN'"TT=N"7Q}, (N'7T:=QIQ.;"N", N'T:=N7TQIQ;7),
(3.3.5) Qo = QL(AY) T = (A)QT,

(A67' = _DS,AO(C)_Dn,(n Ag_T = _DAO(C),C - Dc,n)a
(336) Q;/,Q ra — Q;’Dtlliq— = DtlzTQ?s—’v (DtlzT = Qchng D:ziT = D;TQCQS)’
(337) Qu=QLX' 7" =X"QT,
X'" == a2l + a(Dyur — Dy o) + QsQ.AT,
X' 7= 062[ + @(Da”,s - Dc,y’) + A_TQCQS'
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Thus the sub-derivation A € Dy is always an inner derwation. If N is a struction,
so is N'.

PrOOF: (1) is clear. For (2), {s,c,y'} = 7Qsnc + Qs0.a¢ = Qs( — 7A0(c) +
D, s(c) [by (5.1.4), (JP1)] = Qsa”. For (3), by (3.2.7) [with a = 0] Qy = Qvn+0.a =
Q,A™T = ATQ, for A7 = 42N + yD7 + B? where Bya,s = Qu@Qs, Bosa = QsQa- (4)
follows from (JP3)7 (513) by Qn = QQchn = QsQcQnQcQs = QSQC(QSN_T)QCQS =
Qg (N_TQCQS), so N77 = N77Q.Qs, and dually N'™ = Q,Q.N~". For (5) we first

note
Dn,cQs = _QSAi)_T’ QsDc,n = _Aé)TQ&
AY = =Dyng) — Dne, Ay 7 =—=Dag(e)s — Do,

since QsDc,n+Dn,cQs = Q{n,c,s},s [by (Oll)] = _QQSAQ(C),S [by (514>] = _QSDAQ(C),S =
_DS,A()(C)QS [(by (JPl)] Then Qn’,s’ = QQSQCH,QSC = QsQan,cQs = QS (QCDn,c) Qs =
Q:Q.Q:AL™" [by (JP1) and the above] = QyAy™" [by (JP3)], and dually, yielding
(5).

For the operators D}, of (6), we compute Q.0 0 = @Q0.Qen.0:0:Qsa = @sQc@n,0.a@cQs =
QSQC (QsD;T)QcQs [by (324)] = Qs’ (D;TQCQS) = QS’D;_Tv and duauy'

For (7) we need another result,

QsBa,C,y’ = XTQS> Ba,y/,cQs = QSX_T’
XT = 042 —+ Oé(Ds,aN — Dy/,c) + (QSQCAT)J
X7 = 0421 + Oé(DaH75 — Dc,y’) + (AiTQcQS)a

which follows from immediately from the separate pieces of the Bergmann opera-
tor: Qs = IQS = Qsla Dy’,cQs + QsDC,y’ = Q{y/,c,s},s [by (011)] = QQSa”,s [by
(2)] = QsDa”,57 and Qy’QcQs = (QSA_T)QCQS [by (3)] and dually. Then Q. =
QQ,g(ac+Qcy’) = QsQachQcy'Qs = Qs(QCBa,y’,c)Qs [by <016)] = QSQCQSQSX_T7 [by
the above] = Q¢ X7 as in (7), and dually.

Automatically A} is inner in dyy by (5). If M is already an inner multiplica-
tion, so is N'. We will see later (Remark 6.2) that A/ will be a (complicated) inner
multiplication if one small part of the struction condition is satisfied. In case N is
already principal, so is N7: if N™ = QQ, (with Qsq¢ = n) then N'™ = Q;Q.(QsQ,) =
QQchq = Qs/Qq and dually. [ |

4 Bergmann Triples and Pairs

A structural pair 7 = (T, T7), or pair of structural transformations (struc-
tion), on a Jordan pair V consists of two linear transformations 77 € End(V7) (the
superscript indicates the domain and range) satisfying

(4.1) Qfrny = T7QIT 7.

for all x € V7 and 7 = £. The structural pairs form a submonoid of End(V™*) x
End(V ™) under 1175 := (T 1Ty, T, Ty ).
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An oddstruction 77 € Hom(V =", V") (the superscript indicates the range) is a
linear transformation satisfying

(4.2) Qfroy = T7QT™.

for alla € V~7. The product of two oddstructions T, T~ gives a struction (T7T—,T-T7).
Each structural pair induces a homotope Jordan pair V7) = (V+, V=) under Q77 :=
QT D;{g i= D p-r (4, any struction S induces a homomorphism V7S — P(7)
and (IT,17) = (Tt (V*),T-(V7)) is always a pair of inner ideals Q7.V " C I". Any
oddstruction 77 induces a Jordan triple system V7T via P,y := QTT - ( ) (and if
T-7=Q;" fort € V-7, then V™I becomes a Jordan algebra via x2( =QIt™7),
and [T =T7(V"7) is always an inner ideal.

An inner struction (innstruction) is one which is built internally out of mul-
tiplications, not just accidentally, but universally: 77 € U, T~7 = (T7)* and (4.1)
holds in U (i.e. with @ replaced by ¢™~7). Similarly, an inner oddstruction (inn-
oddstruction) satisfies (4.2) in Y. The basic examples of innoddstructions are the
principal oddstructions ()7, and the basic examples of innstructions are the prin-
cipal structions

7;,(1 - (Qw@aa Qan) fO’f’ S VT’a eV

(strictly speaking we should write, more cumbersomely, 7, , = (¢7 "¢, "7, ¢; 7" ¢7 "),

but we won’t).

We say G = (G, G7) consisting of two linear transformations G™ : V7 — V7
is structural glue for two structural pairs 77,75, and call (77,G,75) a Bergmann
triple, if the following two relations hold for all x € V7:

(4.3.1) T7Q.G "+ GQ, T, " = Qrrwyarwy (1=1,2),
(4.3.2) T7Q T +T7Q. T + GTQ.G™" = Qar () + Q17 (2) 15 () -

In this case we can glue the two pairs together via G and create a Bergmann struc-
tion

(44) Xq’l’gga . XT = TlT + GT —|— TQT

Indeed, structurality comes from Qx () = Q17 (2) + Q17 (2),67(2) T QG (0) Q17 (2),17 ))—|—
Qry () 6@+ Qry ) = TTQTT T+ (TT QG+ GTQ T ) + (TfoT_ +TTQJ:T +
G Q.G ) (TTQJ; GTT+GQ,T,7)+T17Q.T," = X"Q,X 7. Notice that for any
a1, an € O the triple (alﬂ,alagg,%’fg) is again a Bergmann triple with X7 =
AATT + a1aeG™ + 3Ty .

For the special case Z = (Id, Id), we say (G,7T) is a Bergmann pair if (Z,G,7)
is a Bergmann triple,
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(431) GQ.+ Q.G = Qar(a) s
(4.3.1") TTQ.G77 + G"QT ™7 = Qr(2),6(x)
(4.32) T7Q,+ Q.17+ G Q.G = Qgr(x) + Qrr(a) -

Thus 7 is a structural pair and G is a Lie structural pair or Lie struction by
(2.3.1"), and for any a we obtain a Bergmann struction

(44,) Ba’g;]' = XOLQI’agﬂ' = o’T + aG+T.

The Lie structions form the structure Lie subalgebra Stri(V) of End(V ') x End(V ™)
under [gh gQ] = ([Gi—v G;], [G2_7 Gl_])

We have obvious universal notions of innstructural glue (with (G™)* = G77),
Lie innstruction, and inner Bergmann triple or pair, which produce a Bergmann
innstruction satisfying (2.3-4) in U.

Principal Example 4.5 The archetypal example of an inner Bergmann triple is the
meCipCbl tr@ple (717 g, 75) = (7;1,0,; g:E1,:E2;(l7 7;2,0,) with glue gxl,mg;a = (Qzl,zz Qaa Qanl,mg>
forxz; € V7,a € V77, Here the resulting Bergmann operators Bz, g.15) = L) 4w9,a and
Be2 1 aras6,027 = Tarzi+ases,a ar€ again principal structions.

The archetypal example of an inner Bergmann pair is, of course, the principal
pCLZ"I” Dm,a = (D:v,om Da,x); L,a = (Q:L"Qm Qan)7 with Ba,x,a = (Ba,x,au Ba,a,:p) the usual

Bergmann innstruction. If x happens to be invertible, then B, . o reduces to a principal

struction 7;,& = (Qanm*l—Faa Qaz*l—&-aQw)'

PROOF: In the principal triple clearly 77,7, are structions, and G, ,., is struc-
tural glue since for ¢ = 7 and all z € V7 we have universally in U/ that
(4.5.1) T7Q.G™7 + G7Q. T, = Qro(a),co(a)
(45.2) T7Q.T; 7 +T7 Q.17 + G7QaG ™ = Qar(a) + Qrr ()17 ()
which follow directly from the linearizations

(4.5.1)  Qu,QuQu, a0, + Qa0 QeQa, = Qo (5).Qu; )
(4.5.2) Qo QQa; + Qu;QbQu; + Quy o, QvQuia; = Quy, 6) + QQuy (9.0, )
of (JP3) for all b = Q. (when 0 = 7) and b = z (when o = —7). [

It is clear from the definitions that the restriction to an invariant subpair ¥V C %
of a struction, oddstruction, Bergmann triple, or pair on V remains such on V. More
generally, if the oddstruction does not leave the subpair invariant, we can sometimes
shove it down into the subpair. We say T° € Hom(V =2, V?)" has denominator
s € V77 if Q7 shoves T down to an endomorphism on V in the sense that 577 :=
Q:°T° € End(V=7), 57 := T°Q;° € End(V?) [more precisely, Q7°T°, T°Q7° leave

V invariant, and S~7, 57 are their restrictions to V]. Then 777 := Q,;°7T°Q,% =

"Here we begin our convention that our denominators s and our inner ideals K will always belong
to V7.
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ST7Q;7 = Q;°5° € Hom(V?,V~7), and we say that S=7, 57 result by cancelling Q
from 7 on the right and left. If 777 is an oddstruction, then 77 is an oddstruction
on V leaving V invariant, and its s-cancellation (S~7,57) is a struction on V,

(4.6) Q5% =ST7Q:7S. Qlog =S°QIST7  (z€VaeV),

since Qg p(y) = QsQp(r) Qs = QT QT Qs on Vbecomes Qg-o(a) = S~7QuS%, Qoo () =
S?Q,S7% on V, and dually Qsta =TQ,Q.QsT becomes Qgoq) = S7QaS™.

Pseudo-Principal Example 4.7 The ezample we are more interested in is the
restriction to V of a principal struction on'V 2 V. Let n %,y % = as™ 7 + Q,%a° €
V=2 for some particular o € ®,a € V7. Suppose there are elements §°,u’ € V such
that Q;7(q) =n~7,Q;7(a%) = y where Qg, Qa, Qs have denominator s € V7. [For
exzample, if s7 € V° we may take @ = Q7)Y (n™°) and @@ = as™! +a € Ve
Then s dominates x = yn +y for any v € ® : x = Q; (V) for v =~v§+ a, and

Q.7 =N7Q7 =Q;7N° (N7 :=Q;"Q3lv, N7 := Q3Q;°|v),
ne =A07Q77 = —Q7AF (A7 := Dyglv, Af = —Dgslv),
20 =G, =Q,°G7 (G = Q,7Q4lv, G == Q2.Q:%|v),
Q,° =B Q;°=Q,;°B° (B :=Q;°Q%lv, B’ = QIQ;°|v),
Q.7 =7°Q,7 +1Q,5+Q,7 =X"77Q;7 =Q;°X" for
X7 =9’N"+7G"+ BT € End(V") (X7 =Q;7Q7lv, X" = QQ;|v).

Then T = Qi Qu, Qs and T = @Qn, Qy, Q. are oddstructions whose s-cancellations
N = (NU7N70) = 7:},5|V7 B = (Bo-vBio-) = ,];1,8|V7 X = (XU,XT) = Z?,slv
are structions induced on V by restriction from principal structions on V, and G :=

(G?7,G7%) = Tgas |v is structural glue, with resulting Bergmann struction X =
B(W2N77g73) = ’}/2./\/’ + 'Yg + B3

Moreover, the following relations with wy = @Qgs, wy = Qgn, 21 = Qswy =
N?(s), z0 :== Qswy = N~7(n) are satisfied as linear transformations on W for all

w € W7 for all extensions W DOV DV :

8Since already Q. = Qas+@.a = QsBaas = Ba.sa®s by (0.1.6), by hypothesis B~7Q;7 =
B, 5,0Q5 7, so automatically B~ = B, s 4 if Q5 is surjective on ‘7", and Q;°B% = Q;7Ba 4,5, SO
automatically B = B 4,5 if Qs is injective on ‘7”, and both will hold if s is invertible in V. If s is
merely regular and we take @ = i + a, then B™7 — By 5.0 = @?[QsQa — I] + a[QsQw.a — Ds.a] +
[QsQa - QsQa] = QQ[QSQE - I] + O‘[Ds,w - 2I]Ds,a where [QSQE; - I]Qs = [Ds,w - 2I]Qs =0, and
dually.
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(471)  Qnrw) =N"QuNTT,

(4.72)  N'Qu+ QuN™" = AJQuA;” + Qag(w) + @nrw)w:

(4.73)  N'QuAy" — AjQuN™™ + Qnr(w),agw) =0,

(474) AjQuw = Qarw)w + Quly,

(4.7.5)  Qng.o=DJQs = QD] (D7 = —=DosAf = Doyny D7 = Ag7Dsg = Dy ),
(4.76)  A7Q.n = —Qin00 =2Q,7 + Q.7
(4.7.7)  DysN° + DopyA§ + D, ., =0,
(4.7.7) N °Dyy—Ay°Dypo+ D, 0=0,
(4.78) D3,N°+ D3, A;+D7, =0,
(
(

a,z1 a,z2

47.8)* N°D;7 —A;°D.% + D7 =0,

47.9)  NTAJ=AGNT = M (M = —Dg,, M~ = D,,).

ProOOF:  To see these relations for the restrictions of the principal structions
N = T;5,A0 = Djs,B = Ty, and glue G = T54., (1) follows from (JP3), (2)
from (0.1.4), (3) from (0.1.5), (4) since 655 = (Dgs, —Ds4) is always a derivation
of Jordan pairs by (0.1.1), we saw (5) in (3.2.4), and (6) follows from D, ;Qs 0.5 =
QstdDzj,s = Qs (Dg,s) = Qs (DQgs,s + 2@(1@3) = QQqus,s + QQqu = Qz1,s + 20, for
21 = QsQzs = N~ 7(s). For (7), we have the general Jordan identity D, Q;Qs —
D4.q.iDgs + Dag.0ss = VaUs — VagVi + Vage = 0 in the Jordan algebra J = Vo),
dually (7*) is a Jordan pair identity (thanks to the involution in U QE, not because
of any homotope). In the same way, (8) is a general pair identity D, ,;Qs@s —
Da,QqusDQ,S + DQQSQqQSq = Va@Uq — Va7q2‘/q + Va,tj3 = 0, and dually for (8*)

Finally, (9) holds for 7 = ¢ since Q3Qs(—Dgg.s) = (—Dj.5)Q4Qs [by (JP1) twice]
= _QQ§S7§QS [by (JP1>] = _leﬁ = _le,qu,s + thst] [by (012)] = DWLSAg +
Dyn = —Dg , and dually for 7 = —o we have Q,Q5(Ds4) = (Ds3)Q:Q5 =

wi1?
o B o B . —o - _ —0
QsQwhd - DS:QD&M Dqu,w1 - A0 Ds,w1 Dn,w1 - le : u

This list of ancillary relations (4.7.1-9) provides the necessary tools in the next two
sections to make A a struction, without the help of § or V. The problem of creating
“fractions” is the situation where ¢, 4, v € V are merely figments of our imagination,
and all that exists is their traces N,G,S on V and n,z,z in V. The most general
problem would be that of creating a “holomorph” ¥V O V where suitable structions
become “inner”.

5 Structural Dominance

A central question in fractions ([?],[?]) is whether A/, X as above are innstructions
on V without the help of V. Here g is fictitious, but N, X are often built from multi-
plications from V., and the question is whether they are intrinsically structural.

We say s € V77 structurally dominates n € V™7 on V if there is a derivation
Ao = (A§,Ay) (with corresponding Lie struction Ay = (—AS, Ay 7)) and a struction
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N = (NT, N7) satisfying (for all z € V™, a € Vo, 7 = 40):

) Qn=N"77Qs=QsN° (N results by cancelling Qs),
5.1.2) Qns =Ag7°Qs = —QsAF, (A results by cancelling Qs),
) Qnr@) = N"Q.N77 (N is a struction),

) AfQr = Qaz()e + QA7 (Ao is a derivation),
5.15) Qno.a=DQs= QD (D7 =—Dy Ay — Dan, D;% = A;°Dyq — Dy,

as in (3.1-2), and in addition that
(5.1.6) (Nsny Gasasns Baas) s a Bergmann triple

for all v,a € ®, a € V7. Thus Ny, Baas: Xyaasn as in (3.2) and (4.4) are all
structions. (5.1.3) guarantees N is a structural pair (B, s always is by (0.1.6)), so
(5.1.6) amounts to saying that G = a\g + D, is structural glue.

In practice (see [2]) both Ay and N in the pseudo-principal example can be built
from multiplications entirely within the original pair V (not just 17) We say the
domination is inner if Ay, N' € M(V) are given as multiplications, and is universal
if Aj € U™™ and N7 € U7 are given as universal multiplication operators in
UQE(V) with Ay = —(Af)*, N~ = (N1)* and (5.1.1-6) holding universally in V(X
(i.e., for generic z, not just x € V7). In both cases they act as inner multiplications
on V and N, Gaa.sins Baas are all innstructions.

Conditions (5.1.1-2) go a long way towards structural domination.

Injectivity Theorem 5.2 If the operator QQ, is injective on V, then the structural
conditions (5.1.1 — 2) alone guarantee that s structurally dominates n on the subpair
(V7,QsV~7). Indeed (5.1.5) always holds, the structural conditions (5.1.3 — 4) and
gluing condition (5.1.6) always hold on the subpair for T = —o, and (5.1.3—4), (5.1.6)
hold hold on the subpair for T = o if the map Qs is injective.

ProoOF:  We know (5.1.5) is always a consequence of (5.1.1-2) by (3.2.4). Tt
remains to verify the conditions that (5.1.3-4) and gluing (5.1.6), i.e., (4.3.1-2), vanish
as maps on V7 when 7 = —o, and as maps on Q;V? when 7 = o and we can cancel
Qs. Now it is a general fact that whenever 71, Ty, G result by cancelling Q) as in (4.5),

(521) QST;U = T;‘_JQS - Qtia QSGU = G_UQS = Qt1,t27

that (5.1.3), (4.3.1-2) hold as stated, so (T, G, T5) is a Bergmann triple on the subpair
(V7,QsV7) [note that the inner ideal V7 is invariant under 7" = T, 7, G~ since
T77(Q:V7) = Qs(T° (V7)) C QsV7], and that in the particular case T} := N,t; :=n
las in (3.1)], Ty := B, t, := as+ Q.a = y [as in (3.2.6)], G = alg + D, [as in (3.2.5)]
we also have (5.1.4).

To include G' and 5\0 in the notation, we agree Qr, = @y, Q1 = Qs Qg =
Qi Qg = Qsin (not quite true @, -operators) and note that for T, 7" € {1}, Ts, G, &], I}
we have that the maps Qr(z), Qr@), 7(2), TQLT" satisty
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QT*“(st) = Qqrt) = Qo.1o) = QsQro1)Qs,
T77QquT"" = T7QQvQ:T"" = QrQyQr,
QT-0(Qub).177(Qub) = QQrbQuib
= QQ.(17(v)),Qs (177 (b)) = QsQ1o ()17 (1) Ys-

First, structionality (5.1.3) of T holds whenever T results by cancelling @, from Q;:
setting F™(x) == Qrr(z) — T7Q,T~" we have by (2) that F~7(Qsb) = Q. F7(b)Qs =
Qo — QiQpQ: = 0 by (JP3), which shows F~7(z) = 0 as map on V7 when z =
Qsb € Q;V7, and Q.F7(x) =0 as map on Q,V? when x = b € V7, so that if we can
cancel Qs then F7(z) =0 on Q,V°.

Similarly, Lie structionality of Go = AO holds when it results from cancelling
Qs from Qs, as in (5.1.4) since by (2) (with T" = dz, T’ = I) the map F7(z) =
ASQx_deT(z),x_deZ_T has F_Cf(st) = _QSFU< )Qs Qs,n@bg\s QQs,n (0),Qs(b )+
QsQvQsn = 0 by linearized (JP3) [beware the minus sign, since Ay = (—AJ, Ay7)]
Thus again F~7%(z) = 0 on V7 for z = Qb € Q,V7 and Q;F7(b)Qs = 0 implies
F(b) =0 on Q;V° as long as we can cancel Q.

The gluing condition (4.3.1-2) can similarly be formulated in terms of F"" () :=
,I;TQJ: G+ GTQ:B T, 7 — QTT (z),G7(x)> F27T(m> = TlQJ:TQ_T + TQTQJ:Tl_U + GTQarGiT -
Qar(2) — Q17 (2)17(2), Where (2) again guarantees that F~7(Qsb) = Q.F7(b)Qs = 0
from QtlQthl,tQ +Qt1,t2 QuvQt,— Qa1 (5),Gr, 1,0 = 0 [for FHT] and Qp, QuQy, +Q, QuQr, +
Qut: Qv Qur ity — Qs ) — Qu, (0),Qryv) = 0 [for F>7] by linearized (JP3). Thus for
the third time F~7(Q;V?) = 0 on V7 and F(V?) = 0 on @,V as long as we can
cancel Q). [ |

We will spend the rest of the paper finding conditions (suitable for application to
fractions) that guarantee (N, G, B) is a Bergmann triple on the entire pair (V7, V7).
Besides structionality (5.1.3-4) we still need glue (5.1.6). This modest proposal about
glue translates, by (4.3.1-2), into 18 conditions” on Ay and N, which we will group
according to the parity 4o, the power o of the scalar o, and (in 4.3.1) the struction
N or B. For (4.3.1) we first demand that the following N-Gluing Conditions
relating N to the glue G hold for all b,a € Vo, x € V77 :

A%)  N°Qy(A;Dsa—Dua) = (DaysA5+Dan) QN ™ + Qno(t),(Dec Ag+Danl®) = 0,
(11_\/00) N77Q, (Da,sA8+Da,n) - (AaaDs,a—Dn,a) Q:N7 + QN—a(;L«),[A(;UDS,FD”,G](;E) =0,
(1% NoQyAy7 — AFQyN ™7 + Qno),ag) = 0,

(137 N77QuAf — A QN7 + QN-o(2),257(x) = 0-

Next we require that the B-Gluing Conditions relating B to the glue G hold
forall ba € Vo9, x € V77

(5.2.2)

9The reader may well be thinking of the scene in Independence Day when the monster is cut
loose from its spacesuit.
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13))  QuQsQu(Ag"Dsa—Dya) — (DasD” + Do) QuQsQa,
+QQuQub,[Da, s AF+Dan)(v) = 0,

(15™)  QsQuQu(DasAi+Day) — (Ay7Dya—Dia) QQuQs
+Q0,Qur A5 Daa—Dnal) = U

(13")  Dus@y(Ag"Dsa—Dr) — (DasA§+Dan) QvDs o + QuQs@Qug” — AJQyQsQa
+QDy 0,00 85(0) T @Dy .00 nb + QQuqubagm =0,

(1;°Y) D, aQw(DaSAngDan) — (207 Dy0—Da) QuDays + QsQaQa A — Ay Q2QaQs
TQp, y2.057 Dy u(x) ~ @DearDuar T Q0.0ue.057@) = 05

(1%°)  Qu(A;7Dsa—Dna) — (Da,3A0+Da,n)Qb + Do Qg7 — AJ@QuDsa
+Qb,[Da oA+ D n)(®) T @D brg () = 0,

(157  Qu(DasAZ+Dapn) — (Ag°Dysa—Dia) Qu + DsaQuA — Ag”Qu Doy
Qo (27 Dea=Duu)@) T ©Dsuzas @ = 0;

(17%) QA7 — AQy + Qazwyp =0,

(157%) Qo] = Ag7Qu + Qs ()0 = 0.

Finally, for (4.3.2) we require that the N-B-Gluing Conditions relating B to
the glue G hold for all b,a € V7,2 € V77 :

(27 N7QuQsQa + QuQs@uN ™7 = (DusAf+Dayn) Qy (A5 Dy o= Do)
— QD4 s AG+Dan)(0) — @No(0).Qu@s(r) = 0,

(2770)  N72QuQuQs + QsQuQuN7 — (A7 Do Dya) Qu (Das A8+ Do)
_Q[A °Ds,a—Dn,a](x) — Qn- o (2),QsQs () = 0,

(27")  N7QuDsg + DasQuN™7 — (DQSA%DM)QbAa" — AJQy(A; Dy =D

—QDa . AG+Da (b — QNob),Dasv) = 0,

(277" N 7Q.Da.+ Ds,anN — (A3 Dyo—Dy a)@xA“ — A7 Qo (Das Ay + D)
_Q[Ag“ps,a_pn,a](x),Ag"(z QN-7(2),Ds.0(@) = 0,

(27%)  NoQy+ QuN 7 — AJQuA7 — QAg(b - QNfr b=0,

(277%) N77Qu + QuN" = A7 QA — Qpzruy — Qn—o(x) 2 = 0.

The major goal of our paper is to determine a small number of conditions besides
(5.1.1-4) that will guarantee these 18 gluing conditions. The B-Gluing formulas (1)
hold automatically for any derivation.!?

Bergmann Glue Proposition 5.3 The B-Gluing formulas (1g) hold for any deriva-
tion Ag of V as in (5.1.4) connected with n by the relation (5.1.2).

190ne suspects this follows immediately from properties of the Bergmann operator, but I could
only prove it by breaking the operator into its constituent pieces.



PrROOF:  Formula (1%°
text) from

QaQs [Qb20—20Qb] Do + Das [—AoQu+Q120] QsQa + Qu [Q5s20] Qb Ds
_Da,sz [AOQS] Qa + [_QaQszDn,a a nQbQ Qa+QQa
+ [QQaQs(b)vDa,sAO(b)+QQaQsA0(b),Da s(b ] - QQa(QsAo)(b),Da,s(b)

= [~ QuQsQ 2015 Ds.a—DasQ 05 5Q5QatQ0u0, (0),Das (20(5) + R Qu@s(2o(b)), Das ()]

B [QaQsQbDn,a+QaQs,nQst,a+Da,nQstQa+Da,SQbQS:”Q“_QQ“QS(b Da,n(b)
_QQaQs,n(b)»Da,S(b)] ’

(). Dan(5)]

by (5.1.4), (5.1.2)]
which vanishes by linearizations b — Ay(b),b and s — s,n of (0.1.5)

Formula (1;7°

) follows dually (though not by a dual proof, since the formulas
(1p) are all symmetric under reversal; because of asymmetry (s,n € V/

: ~7) the “dual”
proofs are really “inside-out”). We compute

[QsQanDa,s]AO - A0 [Ds anQaQs]

~Q(202,)Qu(®) Deale
[Q Qan a,s QQ Qalz

_Q(Qs,n)Qa($)st,a(x -

[QQ Qa(2),A0(Ds,a(2)) T QAO(Q‘Qa(CU))vDs,a(J})]
[Q Qan an+Dn anQaQs QQ Qa(z

)\ Do a(®)]
),Ds.a( ]AO + AO[ s anQaQs+QQ Qa(z

)\Dea(a)]
[Qs nQan a, S+DS anQaQs n QQS nQal(x

),Ds,alz )]
[by (5.1.4), (0.1.3), and linearization s — s,n in (0.1.4)]
= - [Ds,anQa(QsAO)} + [(AOQS)QanDa,s] - [Ds,aQanQs,n‘{'Qs,nQanDa,s}

[by (0.1.5)], which vanishes by (5.1.2).

The formula (15') is

Da,s [QbAo—AoQb] Ds o + QuQs [QbAo—AoQb] + [QbAO - AOQb} QsQa+Qa [QSAO} Qv

—Q» [AOQS} Qu+QD, .(b),Da..(Ao(b [QQaQs 5),20(0) TEQuQs (20 (b )b} QQu(Q:20)(b) b
+[ - Da,szDn,a - Da,nQst,a + QDa,S(b),Da,n(b)}

= [Da,sQAo(b),bDa,s _QaQs QAo(b),b_QAO (b),stQa
+QDa,s (b) 7Da,,s (AO (b)) +QQaQs (b)uAO (b) +QQ(LQS (AO (b)),b]

|: QaQn,sz_Qan,sQa_Da,szDn,a_Da,nQst,a_FQQaQn,s(b),b+QDaS(b Dagn( )]
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) follows (omitting superscripts, which are clear by con-
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[by (5.1.4), (5.1.2), (0.1.1)], which vanishes by the linearizations b — Ag(b),b and
s — s,n of (0.1.4).

Dually, the formula (1;”") becomes

[Dy.0Q0 Do s+Q5Q0Qs] Ao — Ao [Ds.0QuDas+Q2QuQs] + @b, wz.20(Dsa)
+[Ds.0QuDan+DinaQuDas—Qp, o(@),Dna(@)] T QDyazso(Ds.az) T Q0uQuz,r0()
= [D40Q: Do s+Q:QuQ2—Qp, o~ Q0. 0urz) Do
— Do [D;s,0Q2Da s+ Q:QuQs—Qp, oo~ Q. Quuc ]
+[D5,0Qu Dant DnaQu Days =@, o (),0na()] — Q0(@u@uwre by (5.1.4) twice]
= [~Q:QaQs] Ao—A0 [-QsQuQ: |+ [~ Q2 QuQsn— Q50 QuQa+ Q0. . Qur ) —Q(200.) Quara

[by (0.1.4) twice and its linearization s — s, n], which vanishes by (5.1.2).

The formula (1%7) becomes [Qy20—A¢Q] Ds o+ Das [QsA0—20Qb] +Qb.Da o (20(8))
+[=QvDna—DanQb+ QDo) +Q20(5),Da s (6) = Qo) 0 Ds,atDas@a0(8) 5+ Das(20(b),5
+Q D, (5),800) [Py (5.1.4), (0.1.1)], which vanishes by the linearization b — b, Ag(b) of
(5.1.4).

Dually, <1B ) become [Qm a, s+ D5 an] Ao—Ag [ s an+Qr a s] +Qx,Ao(Ds,a(I))+
QDS af + [Qw a, n+Dn aQ:v Qz Dy, a:c} QDS a A0 AOCQDS a(x) x_’_QAO(DS,az),JJ_
Qp, ox, Ao( ) [by (0.1.1)], which vanishes by the hnearlzatlon r — x,D; ,x of (5.1.4).

Note that the final conditions (157°) are just the conditions (5.1.4) that A, is a
derivation of V. [

6 The Main Theorem

Our main result is that the 18 Gluing Conditions (5.1) which guarantee that N, X
are structions can be reduced to a small number of connections between N and A,.

Dominance Theorem 6.1 The Gluing Conditions (1), (1), (2) of (5.1) will follow
from the Dominance Conditions (157"), (22) and (5.1.4-4) on s,n if we assume that
the following additional conditions hold for elements wy, wy € V7 with z; := Q,w; and
alla € V7 :

) AGAG =2NT+ Wy (WY = Dy s, W7 = Do),

) DosN°+ Dy, Al + D, ., =0.
6.1.2) N~°D,o— Ay Dy + D.yo = 0.

) D7,.N°+ D7 Af+Dg,, =0,

)

6.1.3)" N- UDn;;—A "D + D7, =0,

21,a
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which implies the further condition

(6.14) AgQspn = —Qsnlo = 2Qn + Q. s.

If the multiplications are regarded as universal in UQE(V), rather than as maps, then
the reversal X* follows automatically from X, and we can omit (6.1.2-3)*.

PrOOF:  First note that (6.1.1) implies (6.1.4): Aj7Qs.n = Ay7(A;7Q5) [by
(5.1.2)] = (2N 74D ,)Qs [by (1)] = 2Qn+ Q0.5 [by (5.1.1), (JP1)] = 2Q,, + Q> 5.
and dually _Qs,nAg = QSASAS = QS(2NU + le,s) = an + Qstl,s = 2Qn + Qz1,s-

To help the reader through the labyrinth of verifications of the Gluing Formulas,
we indicate the migration of terms via superscripts; a superscript A, ¥, e, ¢ denotes
a term which about to die, cancelled out by its evil twin. We also create terms and
their anti-terms * and *x at will.

We must show that the conditions (137°) follow from the above Domnance Con-
ditions. The relation (1%°) follows from (1%'), (272), (5.1.4), (6.1.2), (6.1.3) since it
reduces to

NQy [AODs,a_Dn,a] - [Da,sA0+Da,n] QvN + QN(b),Da.c20(b) — ON(b),Dan(b)
= (NQs20) "' Do = (NQ1) ' Dia = D (B0QuN) ™ = Dy (QuN)
+QS\?21) Das(Bo(b) T Qgszb),Da n(b)
= [20@ N Qo] Do — [ZQNE0+A00™ Ao+ QL +QN))
—Das [Nngﬂ +Q§\?;bb) no)] — Dan|— NQY 42004 Ao +Q 4C)b)+QN b)
+[D a,sQN(b)Ao(b)+QN(b ).20(b) Dsa_Q[Da SN|(b), Ao(b)}
+[_Qfg?nm( pTDan g\?bb)bJers?z);v na)
[by (1% for (1),(3), (22) for (2),(4), and linearized (O 1.1) for (5),(6)]
— AoQs [AOD“‘“ DY) + Qo[A0DE — D] — AgQY* A
+[D B A g+ D) 1QuA0 = [Qao nDd® + D, nQ(ﬁs(b)}
~[Dasi 80+ Da2,] Q= Dano@Qy7 A
[Qﬁijljzo B), Ao (b +Q§§il<b> ro)) = [Qg:,lz)lao (b).b +Q£i2(b b)
[by (6.1.2)* for (1a), (6.1.2) for (3a),(5c), (6.1.3)* for (2a), (6.1.3) for (4a),(6a)]
= [~A0Q) P +QP " Mo) Dy o + [~QDEDY DL Qu QY ]
+Da [~ 0@ + Q5 A0] + Q5™ sis T Qo .20
= — Qaom)bDza = Dazy Qao)p + Qba., (20®) b + QDo) (8),00(0)
[by (5.1.4)], which vanishes by linearized (0.1.1)].
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The formula (137°) follows dually from (137"), (2792), (5.1.4), (6.1.2-3), (6.1.2-
3)*:
NQ.D aSAO+NQzDa n —AgD sang)N+Dnan N"—QN(:E AoDs.a(x) Q(G)

) N(@),Dfla ()
= [NQ{:ZCEJ} CCAO AOQE[?:Q z},x ] " [NQ{Qsatz,x},:c—i_Q{s?a,x},xN} )
(NDS a) 1b)QxAO + AOQ:{: (Da 5N>( g (NDn,a) (Qb)Qx - Qx (Da,nN) ()

+QN (z),A0({s,a,z}) QN(x ),Dn.a(x) [by (O]'l) on (]‘)’(2)7(3)7(4)]
_ (7a) (7b)A
o [ N({{s,a,x}),Ao(x QN ),A0({s, az})]

(8a) (8b) (8)
[AOQ{nax} (EAO + QAo{nax} Ao(z + QN {n,a,z}),x + QN {nax}:|

—[A0DY =D QA0 — AoQ, [Da,nAO?’%Dg?i’? ] - [AODZ??;LDQ??]@
(4b1) 1 (4b2) (5)a 6)v
+Qm|: a,21 +Da 122 } + Q z),A0({s,a,z}) QN)x),{n,a,m}

[by (137") on (7), (279%) on (8), (6.1.2)* on (1b), (6.1.3)* on (2b), (6.1.2) on (3b),
(6.1.3) on (4b)]

_ (7a8b) (8c) _ (1b1) (3b1) (8a) (9)

= O NDuat 20D 2] @80 (a )+QNDM @ T B0[=Dua @ =Qu DR QT Ly L] Ao
(2b1) (3b2) (4b1) 1b2)7 (11

_AO[ 21, aQw +Qx 21 a i| [Qx a,z1 +Dzl7aQ:(L' )] ( )

12
Ao[D., s QP +Q, DL
_ (7a8b)a (8c1)A (8¢2)¥
T %Dy a(x),A0(x) + [QAOD o(@)x QDa 22 ac) x
(IO)A (12)v
_AO [Q{zl,a,z},z} [Q{zl,a,z},x} A0 + Q{Q”x}@

[by (6.1.2)* on (7a8b), (6.1.3)* on (8c), and (0.1.1) on (9),(10),(11),(12)], which
vanishes by linearized (5.1.4).

The formula (279) follows from (27?), (5.1.1), (5.1.2), (5.1.4), (6.1.2)(6.1.4) via

NQQ:Q +Qu@Q:QeN® — Dy [80Qs20] Do — Q%) aro
+ Dy [AoQs] (5)Dn,a—Da,n [QbAO} “p, a_QDa,sAo(b),Da,n(w
+[DanQbDna—Qp, (6 ] QN 6),QaQa(b)
= NQQ.Q +QuQ.QuN® + D, [-NQP - QuN+QR M+ QT 1] Daa

(4a) (4b) (4c) (4d)a
[QQCLQSAO - QaQ QAO(b - QAO Q Qa - a SQAo(b)sta}
+Da s [QASS(b b+QbA(5b)j| |: Q(6a b+AOQ(6b :| s,a

(7x) (7**)
[QDa S‘AO Da n QDa nAO b) Da 9( ) Q(Da,nAO)(b)7Da s(b):|

(8a) (8b) 9) (9%) (9%x)
+[— Qu@nQy _QanQa +QQaQn(b),b}+[_QN(b),Qas ~Qpon0.80) T Pb.0un®)
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[by (272) for (3); (0.1.4) in (4),(8); (5.1.4) in (5),(6); (5.1.1) in (9%)]
= [N -QRe, }QsQa+@aQs[@bN<2>—@g‘§ib]—[(DMN)@b DY+ D4 Qy (N Dy o)™
[ aSQAo(b)vbDT(Eg)+Da,nQAo(b),bD Q(LQS(AO ))sDa,n (b) Qggs(b DM(AO(b)](H)
Qb gty Dety T [~Qu@nQ™ —~QoRnQE 42055 1]
+[Das@uty s DS = Q5 s = Qo]+ DasQu[AoDra] ™
+[= D] ™ QuDas = Q57 1y 5 ey T Q5 D )8
= QNI+ A0 Ag+QN L] QuQa + QuQs [~ NQF+20Q A0 +Q 5]
+[(Dan A4+ DY) Q4 Dy o= DasQu (B0 D" = DE) | + [~ QuQu Qi
~Quot)@ns Q™ + QG0 sl + [~QuQuQ = Qo Q™ + 20050 ]
+[~QuQuQl i — Q) s QeQ ™ Q5 Ny b )] + Das@b[ Ao DI
_[Da,nAoﬁb :|Qb-Ds,zz_ [QDlSZ(b),Da,sN(b +Q53*j Da,zl(b)]

[by (27%) for (1),(2) and its linearization for (11), (12); (6.1.2) for (3a), (10%); (6.1.2)*
for (3b)]
(3b2)

= [Da QoDEP 4D, ,QuDE — Q(ﬁf*f) Dq zl(b)}(lg)
(208 =Q40 ) QenQu=QuQun (A =QL ) + 4t aginal
+2[~ Q@ Q8™ —Qu Q@+ Q5 1))
[by (5.1.1) for (1a), (2a) and (5.1.2) for (1b), (2b)]
= [~0uQu Q=1 QutQaua, 0] ™+ [Q(20Q") Qu=Qu Q4" A0) @
1 ] 2L QG000 10 1.
[by (5.1.4) for (14), linearized (0.1.4) s — s, z; for (13')]
= Qu[~Q:21,s—QsnD20—2Q | Qv+ Qb [~ Q-1 s+ 20Qs i —2Qn] QutQ0u(@r o+ do+2Q0](5),b
which vanishes by assumption (6.1.4).

Formula (279°) follows dually by an equally tortuous computation: it follows from
(277%),(5.1.1),(5.1.2), (5.1.4), (6.1.2), (6.1.4) since it reduces to

[N@x@aczsw Qu@eN]"Y = 80[DsaQeDa] 80 = Q) ()
[ n an Da SAO A0 s aQ:t5)Da "+QA0DS a(z),Dn. o () ] [Dn,anDa,n_QDma(z)] @

_QN (2),QsQa(x)
= [NQ.QQA+Q.Q" QuN] =20 [-Q.Q%Y Q= Qu Q™ Q+Q5 4 + Q5. 1)) Ao
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[AOQDSG A0+QNDS (€),Ds,q(z) NQg:a ng’j)a }
+[Dn0Q D= Q5 (1 1 ]A0+Ao [~ D@ Dant Q5 1y )]
~Q5 o dopnmy + [ QnQ(f“)Qx Q0" QA QG 0]
_[QN ), Qs Qa(z +Q1322 Qurya) T Qc;:;a(:c )
[by (277%) on (3); (0.1.4) on (2), (7); (5.1.4) on (6); (5.1.1) on (8**)]
= N[Q:Q.QM-Q% ]+ [Q @&””Q — Q50 LN+ [QunQE7Qu
+D,aQ D, — Qﬁ;ffa Do) B0 [Q. Q6 e QuntDea@¥ D= QS 5 ]
+[ = NQGigore — QN + Qlan(,0um0() T ON(@@ure + QN 0.000]
+[ = QuE Qs — QuO"Qn +204757)) — [ N @u@ur T ONioruaral
QD A pea by linearized (277%) on (2d); (5.1.2) on (2a), (2b)]
= N[QQQ Q% —Q5 . )" + [0 Q. -5~ ] "N
+ Qe Qun— Dy 0@V Do+ Q0 0 ) Do — Ao [~ Qun Q8 Q= D,y QY Dy
+Q0 Yuwa) [~ Qu=Qu Qi Qu 200 ) 1 +Q0 ™ 0 o soie) =@ ) D (a)
[by linearized (0.1.4) s — s,n on (9),(10); (5.1.2) on (2d3); and (6.1.2)* on (3b6¢)]
= —N[D Q"' * D, s +Q,Q4 " Q,] — [Ds Q8" Do +Q. Q8™ Q) N+Q,Qu [2@5’“ +QY]
+200° + QU ) QuQut DsaQu [ Dus N+ DY 4+ [N DL+ DEG?] Q. D,
~Qn(0mr )T Qo tomso(] T [~ @nQ Qe — QuQiQn + 20 G0 ]
Qi o)~ @rs (e D@

[by (0.1.4) on (11),(12); (6.1.4) on (9a),(10a); (5.1.4) on (9¢),(10c); (6.1.2) on (9b)
and (6.1.2)* on (10b) |

_ [ Nlelb)+2Q7(110a1) an] 13)AQGQ$ +Q1Qa[ QSN(mb)_i_zQ;gal)_ng)](14)v

(9¢10c1 9a2) (10a2) 9b2 1062
~Qlon s, Joura T [Qx 0 Q15 Qe0 QP Qo D, QP D, 4D QY P D
3abc) (15 (Tc8cx)
—Q " ) Do) "4 2Q5% | [by (6.1.4) on (9c10c1)]

= - Q[an+Qzl,s]anym + [QQ21,5QGx7x] + QQQnanﬂf = 0
[by (5.1.1) on (13), (14), and by linearized (0.1.4) s — s, z; on (15)].

Formulas (2*9!) are much easier. (2°!) follows from (29?), (5.1.4), (6.1.2) since
it reduces to

NQyD+DEQUN — Dy e DQYY Ay — AQ AgDyy — D@ Ao + 2QE D,y 4

9)
QDa s(Ao(b)),A0(b) QDa,n(b)vAO(b) ~ WN(b),Da,s(b)
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a 11)
= [NQY — 20Q5" A — ng 19Dy + Das[ QPN — 20Q7 20 — Q1Y
(9%) 2) (9sx) (5a) (5b)
[QDa S(6),N (D) +QDa SN (b)), ] + Q(Da Ny~ Pan [80Q; — Qryh), b)
+[QNehs + @8 80] D = [QF) .00 T @on oo ] T @b nsa)o)s
[by (5.1.4) for (5),(6), (0.1.1) for (7)]
(10") (1)’
= [_QbN>+QZA\7(b),b} Dyq + Da,s [_NQI)'JFQTV(I; b)
[ Das Qi+ @by Do) Qlfj"f}z)',,+[D§5§1 YN+DE*) Qu+Quy [ND” + D]
(5b) (6a) (8%) ¢
|: a HQAO b+QA0(b n Q_QDa,n(b)yAO(b) Da R(Ao(b)) j|

[by (27%) for (10),(11), (0.1.1) for (12), (6.1.2) for (5a), (6.1.2)* for (6b)], which
vanishes by (0.1.1) on e, ¢.

Dually, formula (27%!) follows from (277%), (5.1.4), (6.1.2) since

NQY Dy o+DPQuN — Ao [ D, aQut+Q2Da s] ¥ A

+[DnaQ8 A= 20Q Day+ Q) ) ao] = QN e, 0e) — Ol Do)
= N (@7, .= Dea@”) + (@57, 0 — @zD?é’ )N =20 [Q5) ) 1A
+(@§§Z?:<x>,x—@xDéi*Z>>Ao + Ao (D a@QP— Qéfia(x DFQEA ) oo

_[Q(A?())l')sa( ), A + Qg\é?)::) Ds,af )Jr QNDsa (), ]

+QRa( D) [@“XZ%M AN ] [by (0.1.1) for (1)-(5)]
= - [NDJ?’Q#QE“‘DS,QN} + Q. [DUVN+ DI + [NDE* +DEQ, —
QDZI,G(I),I

[by (5.1.4) for A, linearized (2772) for ¥, ( 6.1.2)* for (5a),(11)], which vanishes by
(0.1.1) for D, ,. This completes the verification of the gluing axioms under the given
hypotheses. |

Remark 6.2 The formula (3.3.5) shows A[ is inner, but the formula (3.3.4) does
not make clear that N’ is inner (though perhaps Innner Multiplication from the Black
Lagoon!) even if N isn't: whenever (2°2) holds (but not necessarily any of the other
structure conditions )

N'" = QnQc + Q:,,sQc — QsQng(c)c T RsQnao(c) + Qs@n-(0)c € QurQv-—~
and dually for N' 7.
PROOF: From (2%2%) we have Q,Q.N" = Q;[Q.N"+N7"Q.] — Q,Q. [by (5.1.1)]
= Qs [AOQCAO + Qag(e) T On-—r ] QnQ: = Qs [AOQC Qaoe) c] + QsQnp(e) +

QSQN(C),C_QTLQC [by (5 L. 4)] [QQn+Qzl s] Qc Q QAO(C C+Q QAO(C +Q QN 7(c),e
Qch [by (614>] Qch + Qzl ch Q QAO (c),c + Q QAO + Q QN [

Tt is not hard to check that if we take ¢ = w; then with relations such as those in (6.1) (c.f. [[?],
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In the presence of scalars % or % certain conditions become redundant.

Proposition 6.3 If N, Ag satisfy condition (4.7.9),

(M): N'Aj = AJNT =M™ (M?:= D3, M~ :=D,°),

wi1? w1

then (272) implies 3(1%"), so that if 5 € ® we can replace condition (1%") by condition
(M).

ProOF: For generic 7 = 0 we omit superscripts and compute 3(1JT\’,1) as

[INQuA—D0QuN+QNw)w] + [(2N)QuwAo—20Quw(2N)+Qp2nw).w]
= [(NQuH+QuN)MA—QY M] — [Ao(NQu+QuN)®-MQE] + Q).
(2027 =W)QuA = A0Qu(B0AF = WI)] + [QK) A1) Qs tw), 200w
[by (M) in (2),(4) and (6.1.1) for 2N]
[AOQ la)AAO+Q(1b . 4 Qg\lfcq):) }AO — A, [AOQ BG)VAO‘FQSSEL) i QS\??EU.)@]

+MQY — QuM® + QU |+ [A0AcQl) T Ag—AQi* A

~W1QW Mg+ 20QE W, ]+ [@SSAO (020 (0) D0t L) Ao () by (27%) on (1), (2)]

= — QNN ) Ay T MQE — QL M=, [A QU =N L+ [QN QU AWy
—Q%)(;)’ Ao(w) [Ag is a derivation on e, ¢

- [MT_WITAS] Qw + Qw [AaTwl_T_MiT} - Q[M—Wle](w),w
[by (M), W, a derivation on »]
At this point we take a break to establish

M™ - WTAL = A, (AL,)" = —AyT (A, = Dymy ALY = —Dhpy).

wi?

Indeed, for 7 = o we have (le75A8 + le,n) — Dy, sAo = Dy, », and for 7 = —o we
have (A(T’Ds,w1 — mel) — Dy, A7 = =Dy 4, since Ay commutes with Dg,, =
Ag?Ay°—2N~7 [by (6.1.1) by the commutativity in condition (M)]. Returning where
we left off in the proof, we get

[A7,]Qu + Qu[ — ALT] — Qag Jw)w

- [A;l]Qw + Qw [AZM] - Q[Aﬁl](w)vw =0
by (0.1.1) since A7 = D,r ,—r. This shows 3(1%') does indeed vanish. |

We make a final remark about the notation for w; € V7 and z; € V~7: from the
Pseudo-Principal Example 4.7 we see that wy = Qgs, wa = Qz(n) = Q3Qsq, 21 =

[?]]) the resulting subdominion has N'™ = Qu, Qn, N' ™7 = Q,Q., a principal struction. However,
in the theory of fractions we want only injective denominators, and s’ = Q,w; is usually not injective.
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N(s), zo = N(n). A more consistent notation would set s, = s, s = s?9 = Q.4 =

n,s3 = s = QQss = Quwy = 21, 84 = s = Q,Q;n = z, and in general
sp = s = 2, 5 with s = 21 and n = 2. Similarly §; = § = wy, §o = % =
Qss = w1, Gz = Q3Qs¢ = we, and in general g, = %) = w,_y. Only w, z for

i = 1,2 play much of a role in the struction conditions or Jordan derivations [?].
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