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1. Introduction

One of the classical achievements of the combinatorial group theory is

the decidability of the word problem in a finitely generated group with

one defining relation [1]. This result was a corollary of a fundamental

statement called Freiheitssatz: Every equation over a free group is

solvable in some extension. For solvable and nilpotent groups, this

complex of problems was studied in [2].

In the context of Lie algebras, similar statements were proved [3].

For associative algebras, the problem turns to be surprisingly difficult:

Over a field of characteristic zero, the Freiheitssatz was proved in [5],

but the question about decidability of the word problem for an asso-

ciative algebra with one defining relation remains open.

In [6], the Freiheitssatz was proved for right-symmetric (pre-Lie) al-

gebras, and in [7]—for Poisson algebras. In this paper, we consider a

modified approach to the proof in [7] which allows to prove the Frei-

heitssatz also for generic Poisson algebras.

There is a plenty of varieties for which the Freiheitssatz is not true,

e.g., so is the variety of Poisson algebras over a field of positive charac-

teristic. One may find more examples of this kind in [8]. Also, for the

variety of Leibniz algebras (as well as for every variety of di-algebras

in the sense of [9]) the Freiheitssatz does not hold.
1
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Throughout the paper k denotes a field of characteristic zero.

A generic Poisson algebra (GP-algebra) is a linear space with two

operations and one constant:

(1) associative and commutative product x · y = xy;

(2) anti-commutative bracket {x, y};

(3) multiplicative identity 1, x · 1 = 1 · x = x,

satisfying the Leibniz identity

{x, yz} = {x, y}z + {x, z}y.

These algebras were introduced in [10] in the study of speciality and

deformations of Malcev–Poisson algebras.

Let AC(X) be the free anti-commutative algebra (AC-algebra) gen-

erated by a set X with respect to operation denoted by {·, ·}, and let

GP (X) be the free GP-algebra with a set of generators X.

As a linear space, GP (X) is isomorphic to the symmetric algebra

S(AC(X)) [10].

2. Conditionally closed algebras and the Freiheitssatz

Suppose M is a variety of algebras over a field k. Denote by M(X)

the free algebra in M generated by a set X. For A,B ∈M, the notation

A ∗M B stands for the free product of A and B in M.

If A ∈ M then every Ψ ∈ A ∗M M(x) may be interpreted as an A-

valued function on A. Moreover, for every extension Ā of A, Ā ∈ M,

Ψ(x) is an Ā-valued function on Ā. An equation of the form Ψ(x) = 0

is solvable over A if there exists an extension Ā of A such that the

equation has a solution in Ā. If such a solution can be found in A itself

then Ψ(x) = 0 is said to be solvable in A.
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Recall the common definition (see, e.g., [11, 12]): An algebra A is

(existentially) algebraically closed if every system of equations which is

solvable over A is solvable in A. This definition is important for model

theory, and it can be an efficient tool for studying algebras provided the

principal question on the solvability of a particular equation is solved.

A stronger property (see [13]) can be stated as follows: An algebra

A ∈M is called algebraically closed in M if for every Ψ ∈ A ∗M M(x),

Ψ /∈ A, the equation Ψ(x) = 0 is solvable in A. We are going to propose

an intermediate definition which is sufficient for our purpose.

Definition 1. An algebra A ∈ M is called conditionally closed in M

if for every Ψ(x) ∈ A ∗M FM(x) which is not a constant function on A

the equation Ψ(x) = 0 is solvable in A.

Every algebraically closed in M algebra is conditionally closed in M.

However, there is a plenty of conditionally closed systems that are not

algebraically closed in M.

For example, an algebraically closed field is conditionally closed but

not algebraically closed in the variety of all associative algebras. Simi-

larly, such a field may be considered as a Poisson algebra with respect to

trivial bracket, and the Poisson algebra obtained is conditionally closed

but not algebraically closed in the variety of all Poisson algebras.

Suppose M1 and M2 are two varieties of algebras over a field k, and

let ω : M1 → M2 be a functor which acts as follows: Given A ∈ M1,

A(ω) ∈ M2 is the same linear space equipped with new operations

expressed in terms of initial operations. For example, one may consider

the classical functor from the variety of associative algebras into the

variety of Lie algebras defined by [x, y] = xy−yx. In general, ω may be
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a functor induced by a morphism of the governing operads. Functors

of this kind were closely studied in [8].

Proposition 1. An algebra A ∈ M1 is conditionally closed in M1 if

and only if A(ω) is conditionally closed in M2.

Note that for algebraically closed algebras this statement does not

hold.

Proof. Since ω is a functor, the universal property of the free product

implies the existence of a homomorphism ϕ : A(ω) ∗M2 M2(x)→ (A∗M1

M1(x))(ω) such that f(a) = ϕ(f)(a) for all f = f(x) ∈ A(ω) ∗M2 M2(x),

a ∈ A. Therefore, f is not a constant function on A(ω) if and only if

ϕ(f) is not a constant function on A.

IfA is conditionally closed then there exists a ∈ A such that ϕ(f)(a) =

0 and thus f(a) = 0. The converse is similar. �

Another important example comes from the following settings. Let

M1 = Dif2n be the variety of commutative associative algebras with

2n pairwise commuting derivations ∂i, ∂
′
i, i = 1, . . . , n. Then, given

A ∈ Dif2n, the same space equipped with new binary operation

(1) {a, b} =
n∑
i=1

∂i(a)∂′i(b)− ∂i(b)∂′i(a), a, b ∈ A,

is known to be a Poisson algebra denoted by A(∂). If we allow the

derivations ∂i, ∂
′
i to be non-commuting then (1) defines on a commuta-

tive algebra A a structure of a GP-algebra.

The Freiheitssatz problem for a variety M is to determine whether ev-

ery nontrivial equation over the free algebra M(X), X = {x1, x2, . . . },

is solvable over M(X).

It is obviously equivalent to the following question about free al-

gebras: Is the intersection of the ideal generated by an element f ∈
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M(X ∪ {x}) and the subalgebra M(X) ⊂ M(X ∪ {x}) trivial if f /∈

M(X) (i.e., depends on x)? If the answer is positive for all such f then

we say that the Freiheitssatz holds for M.

Lemma 1. Suppose M is a variety of algebras with at least one binary

operation · in the language such that M(X) = M(x1, x2, . . . ) has no

zero divisors with respect to ·. Then, if for every nonzero polynomial

h = h(x1, . . . , xn) ∈ M(X) there exists a conditionally closed algebra

A ∈M which does not satisfy the polynomial identity h(x1, . . . , xn) = 0

then the Freiheitssatz holds for M.

Proof. SupposeX = {x1, x2, . . . }, x /∈ X, and let f = f(x, x1, . . . , xn) ∈

M(X ∪ {x}) \M(X). Then f = f1 + f0, where f1 belongs to the ideal

generated by x, f0 ∈M(X).

Assume g ∈ (f)∩M(X), g 6= 0. Then h = f1 ·g 6= 0, hence, there ex-

ist a conditionally closed A ∈M such that h(x, x1, . . . , xn) is not a poly-

nomial identity on A. Therefore, there exist a, a1, . . . , an ∈ A such that

f1(a, a1, . . . , an)g(a1, . . . , an) 6= 0 in A, so f1(a1, . . . , an) 6= 0. On the

other hand, f1(0, a1, . . . , an) = 0. Therefore, Ψ(x) = f1(x, a1, . . . , an)

is a non-constant function on A. Since A is conditionally closed, there

exists a ∈ A such that Ψ(a) = f1(a, a1, . . . , an) = −f0(a1, . . . , an).

Thus, f(a, a1, . . . , an) = 0 but g(a1, . . . , an) 6= 0 which is impossible if

g ∈ (f) /M(X ∪ {x}). �

Corollary 1. The Freiheitssatz holds for the variety generated by spe-

cial Jordan algebras.

Proof. Consider the algebraically closed associative noncommutative

algebra A from [5]. It is essential that A is a skew field and contains the

first Weyl algebra W1. Thus, A contains free associative algebra in any
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finite number of generators x1, . . . , xn [4]. The special Jordan algebra

A(+) is conditionally closed by Proposition 1 and contains free special

Jordan algebra SJ(x1, . . . , xn). Therefore, the variety SJ satisfies all

conditions of Lemma 1. �

3. Jacobian polynomials in free anti-commutative

algebras

In order to prove the Freiheitssatz for a variety M by means of

Lemma 1, we have to construct an algebra in M which is conditionally

closed algebra and does not satisfy a given polynomial identity.

In this section, we discuss technical questions that are used in subse-

quent sections for the study of polynomial identities on generic Poisson

algebras.

3.1. Preliminaries on AC(X). Let X be a set of generators, and

let X∗ stand for the set of all (nonempty) associative words u in the

alphabet X. Denote by X∗∗ the set of all non-associative words in X.

Given a word u ∈ X∗, denote by (u) a non-associative word obtained

from u by some bracketing. We will also use [X∗] to denote the set of

all associative and commutative words in X. Given u ∈ X∗, [u] stands

for the commutative image of u.

Suppose X∗∗ is equipped with a linear order �. A non-associative

word u ∈ X∗∗ is normal if either u = x ∈ X or u = u1u2, where u1 and

u2 are normal and u1 ≺ u2. Obviously, normal words in X∗∗ form a

linear basis of the free anti-commutative algebra AC(X) generated by

X (see [14, 15]).

Let us call the elements of AC(X) AC-polynomials. Given u ∈ X∗∗,

define deg u to be the length of u. Thus, we have a well-defined degree

function on AC(X).
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Choose a generator xi ∈ X = {x1, . . . , xn} and denote by Vi the

subspace of AC(X) spanned by all nonassociative words linear in xi.

Fix a linear order � on X∗∗ such that any nonassociative word which

contains xi is greater than any word without xi (there exist many linear

orders with this property). With respect to such an order, the unique

normal form of a monomial w ∈ Vi is

(2) w = {u1, {u2, . . . {uk, xi} . . . }},

where uj, j = 1, . . . , k, are normal words in the alphabet X \{xi}. The

number k is called xi-height ([16]) of w, let us denote it by ht(w, xi).

Let V0 =
n⋂
i=1

Vi be the space of polylinear AC-polynomials. It is

easy to compute xi-height of a nonassociative word w ∈ V0 just by the

number of brackets in w to the left of xi, assuming { is counted as 1 and

} as −1. For example, the x4-height of {{x1, {{x2, x3}, x4}}, {x5, x6}}

is equal to 3.

Definition 2. A linear transformation of Vi defined by the rule

Fi : {u1, {u2, . . . {uk, xi} . . . }} 7→ (−1)k−1{uk, {uk−1, . . . {u1, xi} . . . }}

is called an xi-flip.

Since the normal form (2) is unique, Fi : Vi → Vi is a well-defined

map.

The set of all flips {F1, . . . , Fn} acts on the space V0 and thus gener-

ates a group F ⊆ GL(V0). Given a normal word u ∈ V0, the orbit Fv

consists of AC-monomials (polynomials of the form εv, v is a nonasso-

ciative word, ε = ±1).

Lemma 2. Let w = {x1, {x2, . . . {xn−1, xn} . . . }} ∈ V0. Then

(−1)σ{x1σ, {x2σ, . . . {x(n−1)σ, xnσ} . . . }} ∈ Fw
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for every σ ∈ Sn (here (−1)σ stands for the oddity of a permutation σ.)

Proof. It is straightforward to compute that

F1(Fiw) = −{xi, {x2, . . . xi−1, {x1, {xi+1, . . . {xn−1, xn} . . . }}}},

i = 2, . . . , n. Since transpositions of the form (1i) generate the entire

symmetric group Sn, the lemma is proved. �

3.2. Jacobian AC-polynomials. In this section, we describe poly-

linear AC-polynomials that have a specific property if considered as

elements of the free GP-algebra.

Suppose Ψ(x1, . . . , xn) is an element of the free GP-algebra GP (X),

X = {x1, . . . , xn} which is linear with respect to xn. Following [16], let

us say that Ψ is a derivation with respect to xn if

Ψ(x1, . . . , xn−1, yz) = yΨ(x1, . . . , xn−1, z) + zΨ(x1, . . . , xn−1, y)

in the free GP-algebra GP (x1, . . . , xn−1, y, z).

Definition 3. A polylinear AC-polynomial Ψ = Ψ(x1, . . . , xn) ∈ V0 is

said to be jacobian if Ψ is a derivation with respect to each variable xi,

i = 1, . . . , n. A polylinear element of GP (X) with the same property is

called a jacobian GP-polynomial.

For free Lie algebra considered as a part of the free Poisson algebra,

a similar notion was considered in [16]. Obviously, if n = 2 then C2 =

{x1, x2} is a jacobian AC-polynomial. It was shown in [16] that there

are no more jacobian Lie polynomials (up to a multiplicative constant).

However, there exists a jacobian AC-polynomial of degree 3:

J3 = {{x1, x2}, x3}+ {{x2, x3}, x1}+ {{x3, x1}, x2}.

The main purpose of this section is to show that C2 and J3 exhaust all

jacobian AC-polynomials.
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For a generic Poisson algebra A, a ∈ A, consider the linear map

ad a : x 7→ {a, x}, x ∈ A. The set of all such transformations {ad a | a ∈

A} ⊂ Endk(A) generates a Lie subalgebra L(A) ⊂ gl (A) = Endk(A)(−).

Given L ∈ L(GP (x1, . . . , xn−1)), one may easily note that L(xn) ∈

GP (x1, . . . , xn) is a derivation with respect to xn. Indeed, the Leibniz

identity implies that adu, u ∈ GP (x1, . . . , xn−1), is a derivation with

respect to xn, and the commutator of derivations is a derivation itself.

Lemma 3. Let Ψ(x1, . . . , xn) ∈ AC(X) ⊂ GP (X) be a polylinear

element such that Ψ is a derivation with respect to xn. Then there

exists L ∈ L(AC(X)) such that Ψ = L(xn).

Proof. Consider a polylinear word from AC(X):

w(x1, . . . , xn) = {u1, {u2, . . . {uk, xn} . . . }}.

Denote

D(w, xn;x, y) = w(x1, . . . , xy)− xw(x1, . . . , y)− yw(x1, . . . , x)

and extend D(·, xn;x, y) to the entire space V0 by linearity.

By the condition of the statement, D(Ψ, xn;x, y) = 0.

It is easy to compute D(w, xn;x, y):

D(w, xn;x, y) =
k−1∑
l=1

∑
s∈Sh (k,l)

{u1s, . . . {uls, x} . . . }·{u(l+1)s, . . . {uks, y} . . . }

where Sh (k, l) is the set of all shuffles, i.e., permutations s ∈ Sk such

that 1s < 2s < · · · < ls and (l + 1)s < · · · < ks.

Comparing the x-heights and y-heights of factors conclude that all

summands of Ψ split into groups of equal xn-height; each group is

a derivation in xn. Hence, we may suppose Ψ is homogeneous with

respect to xn-height.
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Moreover, the formula for D(·) shows that it is enough to consider

Ψ =
∑
s∈Sk

αsws, ws = {u1s, . . . {uks, xn} . . . }

(computation of D(·) does not affect the inner structure of all ui).

Now we may proceed with description of all jacobian AC-polynomials.

Suppose u1 is maximal among all ui with respect to ≺. Let us show

that there exists s ∈ Sk such that 1s = 1 and αs 6= 0, i.e., the maximal

word appears as the first entry.

Assume the converse: u1 never appears in the beginning. Choose

the minimal j > 1 such that js = 1 for some s ∈ Sk, αs 6= 0. Then

D(ws, xn;x, y) contains a summand like

αs{ujs, . . . {uks, x} . . . } · {u1s, . . . {u(j−1)s, y} . . . }.

This summand must coincide with at least one similar term coming

from D(wt, xn;x, y), for some t ∈ Sk, αt 6= 0 (since in D(Ψ, xn;x, y)

all terms vanish). Since j is minimal, we have jt = 1, and the shuffle

corresponding to the desired term of D(wt, xn;x, y) is the same as we

have for D(ws, xn;x, y). Hence, t = s, which proves the claim.

Note that for

L = [aduk[aduk−1 . . . [adu2, adu1] . . . ]] ∈ gl (AC(X))

the element L(xn) contains only one summand of the form {u1, . . . }

(i.e., starting with u1) which is equal to ±{u1, {u2, . . . {uk, xn} . . . }}.

Therefore, subtracting L(xn) with an appropriate coefficient we may

cancel one term of Ψ starting with u1, but the result is still a derivation

with respect to xn. When we cancel all such terms, the polynomial

obtained must be zero since it does not contain a summand starting

with u1. �
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Remark 1. In the same way as the claim above was proved, one may

show that there exists s ∈ Sk such that ks = 1 and αs 6= 0, i.e., the

maximal word u1 appears as the last entry in

ws = {u1s, . . . {uks, xn} . . . }, uks = u1.

Corollary 2. Let Ψ(x1, . . . , xn) ∈ AC(X) be a poly-linear AC-polyno-

mial of degree n such that Ψ is a derivation with respect to xn. Suppose

Ψ =
∑
w

αww, w ∈ X∗∗ are normal words, and

max
αw 6=0

ht(w, xn) ≥ max
αw 6=0

ht(w, xi), i = 1, . . . , n.

(xn has maximal height in Ψ). Then

max
αw 6=0

ht(w, xn) = n− 1

and thus Ψ contains a monomial of the form

w = {x1s, . . . {x(n−1)s, xn} . . . }

for some s ∈ Sn−1.

Proof. Assume k < n − 1 is the maximal height of xn in Ψ, i.e., Ψ

contains a summand of the form {u1, . . . {uk, xn} . . . }, k < n−1. Then

at least one of ui has the degree greater than 1. Choose the maximal of

these ui with respect to ≺. Remark 1 implies Ψ to contain a summand

αww, where w = {uj1 , . . . {ujk , xn} . . . }, jk = i, αw 6= 0. There exists

xj such that ht(ui, xj) > 1, so ht(w, xj) > k, which contradicts to the

condition ht(w, xj) ≤ k. Hence, k = n− 1. �

Lemma 4. Suppose Ψ = Ψ(x1, . . . , xn) is a jacobian AC-polynomial.

Then Ψ is invariant with respect to the action of the group F generated

by all xi-flips, i = 1, . . . , n.
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Proof. Let us fix i ∈ {1, . . . , n}. Without loss of generality we may

assume i = n. Then by Lemma 3 Ψ = L(xn), where L is a linear oper-

ator constructed by commutators of operators adu, u ∈ (X \ {xn})∗∗

are normal words. The set U of all such adu generates an associative

subalgebra U ⊂ EndkVn. It follows from the description of the basis in

AC(X) that U is isomorphic to the free associative algebra generated

by U . Note that since Ψ is polylinear, L naturally splits into a sum of

operators presented by polylinear elements of U .

Since L belongs to the Lie subalgebra of U (−) generated by U (which

is well-known to be free), it is invariant with respect to the natural

involution τ of U given by

τ : u1 . . . uk 7→ (−1)k−1uk . . . u1, ui ∈ U

(it follows from the obvious observation τ([u, v]) = [τ(u), τ(v)] for

u, v ∈ U).

By Definition 2,

Fn(Ψ) = Fn(L(xn)) = τ(L)(xn) = L(xn) = Ψ.

As Ψ is invariant with respect to all flips, we have F(Ψ) = {Ψ}. �

Lemma 5. Suppose U = {u1, . . . , um} is a set, U = As(U) is the

free associative algebra generated by U . Denote by Lie(U) the free Lie

algebra generated by U , Lie(U) ⊂ As(U)(−) Consider

Am =
∑
s∈Sm

(−1)su1s . . . ums.

Then Am ∈ Lie(U) if and only if m = 1 or m = 2.

Proof. For m = 1, 2 it is obvious that Am ∈ Lie(U).

Assume m ≥ 3 and Am ∈ Lie(U). Consider the homomorphism Φ :

As(U)→ ∧(kU) given by u 7→ u, where ∧(kU) is the exterior algebra of
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the linear space spanned by U . Note that Φ(Am) = m!u1 . . . um 6= 0 in

∧(kU). However, Φ(Lie(U)) ⊂ ∧(kU)(−) is a Lie subalgebra generated

by U . It is easy to see that ∧(kU)(−) is a 3-nilpotent Lie algebra, so

Φ(Lie(U)) does not contain elements of degree m ≥ 3. �

Theorem 1. Let X = {x1, . . . , xn}, and let Ψ = Ψ(x1, . . . , xn) ∈

AC(X) be a jacobian AC-polynomial. Then either n = 2 and Ψ = αC2,

or n = 3 and Ψ = αJ3, where α ∈ k∗.

Proof. By Lemma 4 FΨ = Ψ for every F ∈ F . Corollary 2 im-

plies that Ψ contains a summand of the form αw, where α ∈ k∗,

w = {x1s, . . . {x(n−1)s, xn} . . . } for some s ∈ Sn−1. Without loss of

generality, α = 1 and s = id. By Lemma 2, Ψ contains all monomials

obtained from w by all permutations of variables, i.e.,

Ψ =
∑

s∈Sn−1

(−1)s{x1s, . . . {x(n−1)s, xn} . . . }+ Φ(x1, . . . , xn),

where the xn-height of all monomials in Ψ is smaller than n− 1. Since

all summands of Ψ with the same xn-height form a derivation with

respect to xn, the AC-polynomial

Ψ1 =
∑

s∈Sn−1

(−1)s{x1s, . . . {x(n−1)s, xn} . . . }

must be a derivation with respect to xn. But

Ψ1 = An−1(u1, . . . , un−1)(xn), ui = adxi,

so An−1(u1, . . . , un−1) ∈ L(AC(X)). By Lemma 5, n−1 ≤ 2, so n ≤ 3.

Obviously, C2 and J3 are the only jacobian AC-polynomials for n = 2

and n = 3, respectively. �

4. Identities of generic Poisson algebras

Let A be a GP-algebra, and let f ∈ GP (x1, . . . , xn), f 6= 0. As usual,

we say that f is a polynomial identity on A if for every homomorphism
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ϕ : GP (x1, . . . , xn) → A we have ϕ(f) = 0. In this case we also say

that A satisfies the polynomial identity f .

Proposition 2. Suppose a GP-algebra A satisfies a polynomial iden-

tity. Then there exists a polynomial identity Ψ on A which is a jacobian

GP-polynomial.

This statement, as well as its proof, is similar to the result by Farkas

[16] on polynomial identities of Poisson algebras.

Proof. The standard linearization procedure (see, e.g., [17, Chapter 1])

allows to assume that A satisfies a polylinear polynomial identity f ∈

GP (X), X = {x1, . . . , xn}.

As an element of GP (X), f may be uniquely presented as a linear

combination of GP-monomials w = u1 . . . uk, uj ∈ U , where U ⊂

AC(X) is the set of normal words. Note that uj are of degree two or

more (if an AC-monomial of degree one appears, e.g., uj = xi, then

one may plug in xi = 1 and obtain a polylinear polynomial identity

without xi). Denote by FHi(w) (the Farkas height) the degree of uj

in which the variable xi occurs, and let FHi(f) be the maximal of

FHi(w) among all GP-monomials w that appear in f with a nonzero

coefficient. Finally, set

FH(f) =
n∑
i=1

3FHi(f)

Observe that if f is not a derivation in xi then the derivation difference

D(f, xi;xi, xn+1) is a nonzero polylinear element of GP (X ∪ {xn+1})

which has a smaller Farkas height. Indeed, for a GP-monomial w from



THE FREIHEITSSATZ FOR GENERIC POISSON ALGEBRAS 15

f we have

FHj(D(w, xi;xi, xn+1)) ≤ FHj(w),

FHi(D(w, xi;xi, xn+1)) ≤ FHi(w)− 1,

FHn+1(D(w, xi;xi, xn+1)) ≤ FHi(w)− 1,

which implies

FH(w)− FH(D(w, xi;xi, xn+1)) ≤ 3FHi(w) − 2 · 3FHi(w)−1 > 0.

Obviously, D(f, xi;xi, xn+1) is a polynomial identity on A.

Therefore, after a finite number of steps we obtain a nonzero poly-

nomial identity on A which is a jacobian GP-polynomial in a larger set

of variables X̃ ⊇ X. �

Let us recall the notion of fine grading [16]. First, given a set X, the

free anti-commutative algebra AC(X) carries [X∗]-grading such that

u ∈ X∗∗ has weight [u]. Next, if w = (u1) . . . (un) ∈ GP (X), ui ∈ X∗,

then the weight of w is [u1] + · · ·+ [un] ∈ k[X∗]. As a result,

GP (X) =
⊕

p∈k[X∗]\{0}

GPp(X),

where GPp(X) is the space spanned by all generic Poisson monomials

of degree p. An element f ∈ GPp(X) is said to be finely homogeneous.

Proposition 3. A jacobian GP-polynomial Ψ can be presented as a

linear combination of products of jacobian AC-polynomials (on the ap-

propriate set of variables).

Proof. Let X = {x1, x2, . . . , xn} be a set of variables, and let U =

{u1, u2, . . . } be the set of normal nonassociative words in X (with re-

spect to some ordering), then GP (X) = k[U ]. For Ψ ∈ GP (X), denote

by supp(Ψ) all variables from X that appear in Ψ and by psupp(Ψ) all

variables from U that appear in Ψ.
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Suppose f ∈ GP (x1, . . . , xn) ⊂ GP (X) is a jacobian GP-polynomial.

Without loss of generality we may assume f to be finely homogeneous

and f /∈ AC(X). Proceed by induction on | psupp(f)|.

Consider a GP-monomial w in f . If w = uiw
′ where w′ 6= 1 then

write f = uig + h, g, h ∈ GP (X), g 6= 1, where all GP-monomials of

h are not divisible by ui (in k[U ]). Since f is polylinear, supp(g) ∩

supp(ui) = ∅.

Denote by Di a map GP (X)→ GP (X ∪ {y, z}) defined as follows:

Di(Ψ) =

{
D(Ψ, xi; y, z), xi ∈ supp(Ψ),

Ψ, xi /∈ supp(Ψ).

Then Dj(f) = uiDj(g) +Dj(h) = 0 if xj ∈ supp(g).

Consider GP (X ∪ {y, z}) as a polynomial algebra with a set Ũ of

generators including U . Then ui /∈ psupp(h) and ui /∈ psupp(Dj(h)).

Hence, Dj(g) = 0 and g is a jacobian GP-polynomial.

Let us now fix the deg-lex order on the set [U∗], i.e., commutative

monomials in U are first compared by their length and then lexico-

graphically, assuming u1 < u2 < . . . . Recall that f = uig + h, where

psupp(h) 63 ui, and presented h as h = gp+r, where all GP-monomials

of r are not divisible (in k[U ]) by the leading GP-monomial ḡ of g.

Then f = gq + r, q = ui + p, and psupp(r) 63 ui. In particular,

psupp(r) ⊂ psupp(f).

By definition, Dj(f) = gDj(q) + Dj(r) = 0 if xj ∈ supp(q). If

Dj(q) 6= 0 then some of the monomials in Dj(r) are divisible by ḡ.

Consider a GP-monomial M of r. Since it is not divisible by ḡ there is

at least one variable ua which appears in ḡ and does not appear in M .

Note that if supp(ub) 63 xi then Di(ub) = ub, and if suppub 3 xi then

Di(ub) is a GP-polynomial of degree two (in k[Ũ ]) in which neither of

variables belongs to U . Hence, Dj(M) is not divisible by ua and neither
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of the GP-monomials of Dj(r) is divisible by ḡ. Therefore, Dj(q) = 0

and q is a jacobian GP-polynomial.

Since a product of two jacobian GP-polynomials is also jacobian

(with respect to the corresponding sets of variables), r = f − gq is a

jacobian GP-polynomial. By induction, the statement holds for r, as

well as for g and q. �

Corollary 3. Let F (t1, . . . , tn) ∈ GP (t1, t2, . . . ) be a finely homoge-

neous jacobian GP-polynomial. Then F contains a summand αu1 . . . uk,

where α ∈ k∗, ui ∈ AC(t1, t2, . . . ) are of the form

{ti1 , ti2} or {ti1 , {ti2 , ti3}}

5. The Freiheitssatz for (generic) Poisson algebras

The following statement is well-known in the theory of differential

fields [18, 19]. We will sketch a proof below in order to make the

exposition more convenient for a reader. Recall that the characteristic

of the base field k is assumed to be zero.

Theorem 2. Every algebra from Difn which is a field can be embedded

into an algebraically closed algebra in Difn.

Proof. Let F be a differential field of characteristic zero with a set

∆ = {∂i | i = 1, . . . , n} of pairwise commuting derivations. Denote by

F [x; ∆] = F ∗Difn Difn(x) the set of all differential polynomials in one

variable x over F . Suppose f(x) ∈ F [x; ∆] \ F . Then there exists a

differential field K which is an extension of the differential field F such

that the equation f(x) = 0 has a solution in K.

Indeed, differential polynomials F [x; ∆] may be considered as ordi-

nary polynomials in infinitely many variables

X = {x(i1,...,in) | (i1, . . . , in) ∈ Zn+},
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where x(i1,...,in) is identified with ∂i11 . . . ∂
in
n (x). Then the differential

ideal I(f ; ∆) generated by f(x) in F [x; ∆] coincides with the ordinary

ideal in F [X] generated by f and all its derivatives ∂i11 . . . ∂
in
n (f).

Note that if f /∈ F then I(f ; ∆) is proper: One may apply the notion

of a characteristic set (see, e.g., [19, Ch. I.10]) or simply note that the

set of all derivatives of f is a Gröbner basis provided that we choose an

ordering of monomials in such a way that highest derivative (leader) is

contained in the leading monomial (e.g., rank ordering in [19, Ch. I.8]).

Indeed, if uy is the leading monomial of f (y ∈ X is the leader of f , u

is an ordered monomial in X) then uy(i1,...,in) is the leading monomial

of ∂i11 . . . ∂
in
n (f). It is easy to see that there are no compositions (we

follow the terminology of Shirshov [3], see [20] for details) among f

and its derivatives except for the case when uy = yk, but in the latter

case the only series of compositions of intersection of f with itself is

obviously trivial.

Hence, if f /∈ F then I = I(f ; ∆) is proper, and so is its radical
√
I. By the differential prime decomposition theorem (see, e.g., [18,

Ch. 1]), I = p1 ∩ · · · ∩ pk, where pi are prime differential ideals in

F [x; ∆]. In particular, f ∈ p1, and F [x; ∆]/p1 is a differential domain

containing a root x+p1 of f . Finally, the quotient field of that domain

Q(F [x; ∆]/p1) is the desired differential field.

Therefore, every nontrivial equation over an arbitrary differential

field F has a solution in an extension K of F . If F is infinite then

K has the same cardinality as F , so the standard transfinite induction

arguments similar to those applied to ordinary fields show that F can

be embedded into a differential field F̄ ∈ Difn in which every nontrivial

differential polynomial has a root. �
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Corollary 4 ([7]). The Freiheitssatz holds for the variety of Poisson

algebras.

Proof. Let A2n = k(x1, y1, x2, y2, . . . , xn, yn) be the algebra of (commu-

tative) rational functions over k, ∂i = ∂xi , ∂
′
i = ∂yi be ordinary partial

derivatives with respect to xi, yi, respectively. As A2n ∈ Dif2n, there

exists its algebraically closed extension Ā2n ∈ Dif2n. Let PSn = A
(∂)
2n

be the Poisson algebra defined by (1). Then PSn ⊆ Ā
(∂)
2n , where the

latter is a conditionally closed Poisson algebra by Proposition 1.

It was shown in [16] that for every nonzero Poisson polynomial h =

h(x1, . . . , xm), m ≥ 1, there exists a sufficiently large N such that

PSN (and thus Ā
(∂)
2N) does not satisfy the identity h(x1, . . . , xm) = 0.

Lemma 1 implies the claim. �

Let us twist the functor ∂ : Dif2n → Pois in order to obtain a

conditionally closed generic Poisson algebra that does not satisfy a

fixed polynomial identity.

Consider the variety CDifn of commutative differential algebras with

pairwise commuting derivations ∂i and constants ci, i = 1, . . . , n, such

that ∂i(cj) = δij. Then there exists a natural forgetting functor ω :

CDifn → Difn erasing the information about constants.

In particular, A2n may be considered as an algebra from CDif2n

with derivations ∂i = ∂xi , ∂
′
i = ∂yi , and constants ci = xi, c

′
i = yi,

i = 1, . . . , n. Moreover, if A2n ⊆ A ∈ Dif2n then A = B(ω) for an

appropriate B ∈ CDif2n. Hence, by Proposition 1, for every n ≥ 1

there exists a conditionally closed algebra B̄2n in CDif2n, B̄
(ω)
2n = Ā2n.

Suppose B ∈ CDif2n with derivations ∂i, ∂
′
i and constants ci, c

′
i,

i = 1, . . . , n. Let us consider the following functor τ from CDif2n



20PAVEL KOLESNIKOV, LEONID MAKAR-LIMANOV, AND IVAN SHESTAKOV

to the variety NDif2n of commutative differential algebras with non-

commuting derivations ξi, ξ
′
i, i = 1, . . . , n. On the same space B, define

new derivations by

(3)

ξi(a) = c′i+1∂i, i = 1, . . . , n− 1,

ξn(a) = c′1∂n,

ξ′i(a) = ∂′i(a), i = 1, . . . , n,

for a ∈ B. If B is conditionally closed in CDif2n then B(τ) is condi-

tionally closed in NDif2n.

Finally, define a functor ξ from NDif2n to the variety GP of generic

Poisson algebras by means of

(4) {a, b} =
∑
i≥1

ξi(a)ξ′i(b)− ξi(b)ξ′i(a).

Denote by GPSN the GP-algebra
(
A

(τ)
2n

)(ξ)
.

Proposition 4. For every n ≥ 1 there exists N ≥ 1 such that the

GP-algebra GPSm does not satisfy a polynomial identity of degree n

for all m ≥ N .

Proof. Suppose f ∈ GP (t1, t2, . . . ) is a GP-polynomial of degree n

which is an identity on GPSm. By Proposition 2 there also exists a

polylinear identity g on GPSm which is a jacobian GP-polynomial.

Let us split g into finely homogeneous components:

g = g1 + · · ·+ gk,

each gi is a jacobian GP-polynomial (but not an identity on GPSm).

According to Corollary 3, g1 contains a summand αu1 . . . ul, α ∈ k∗,

ui = {ti1 , . . . {timi
, timi+1} . . . }, mi = 1, 2.
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Assume m is large enough (e.g., m > 2l), and evaluate the variables in

such a way that

timi+1 = yki ,

timi
= xki , timi−1 = xki+1, . . . , ti1 = xki+mi−1,

ki+1 ≥ ki +mi, kl +ml < m.

Then the only summand in g1(t1, . . . , tn) is nonzero, namely, the sum-

mand mentioned by Corollary 3: It turns into αyk1+m1 . . . ykl+ml
6= 0.

Other gis turn into zero.

Hence, g can not be a polynomial identity on GPSm. �

Theorem 3. The Freiheitssatz holds for the variety of generic Poisson

algebras.

Proof. Given N ≥ 1, GN =
(
B̄

(τ)
2N

)(ξ)
is a conditionally closed algebra

in GP by Proposition 1, and GPSN ⊆ GN . The claim now follows

from Proposition 4 and Lemma 1. �
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