THE FREIHEITSSATZ FOR GENERIC POISSON ALGEBRAS

PAVEL KOLESNIKOV, LEONID MAKAR-LIMANOV, AND IVAN SHESTAKOV

1. Introduction

One of the classical achievements of the combinatorial group theory is the decidability of the word problem in a finitely generated group with one defining relation [1]. This result was a corollary of a fundamental statement called Freiheitssatz: Every equation over a free group is solvable in some extension. For solvable and nilpotent groups, this complex of problems was studied in [2].

In the context of Lie algebras, similar statements were proved [3]. For associative algebras, the problem turns to be surprisingly difficult: Over a field of characteristic zero, the Freiheitssatz was proved in [5], but the question about decidability of the word problem for an associative algebra with one defining relation remains open.

In [6], the Freiheitssatz was proved for right-symmetric (pre-Lie) algebras, and in [7]-for Poisson algebras. In this paper, we consider a modified approach to the proof in [7] which allows to prove the Freiheitssatz also for generic Poisson algebras.

There is a plenty of varieties for which the Freiheitssatz is not true, e.g., so is the variety of Poisson algebras over a field of positive characteristic. One may find more examples of this kind in [8]. Also, for the variety of Leibniz algebras (as well as for every variety of di-algebras in the sense of [9]) the Freiheitssatz does not hold.

Throughout the paper \mathbb{k} denotes a field of characteristic zero.
A generic Poisson algebra (GP-algebra) is a linear space with two operations and one constant:
(1) associative and commutative product $x \cdot y=x y$;
(2) anti-commutative bracket $\{x, y\}$;
(3) multiplicative identity $1, x \cdot 1=1 \cdot x=x$, satisfying the Leibniz identity

$$
\{x, y z\}=\{x, y\} z+\{x, z\} y
$$

These algebras were introduced in [10] in the study of speciality and deformations of Malcev-Poisson algebras.

Let $A C(X)$ be the free anti-commutative algebra (AC-algebra) generated by a set X with respect to operation denoted by $\{\cdot, \cdot\}$, and let $G P(X)$ be the free GP-algebra with a set of generators X.

As a linear space, $G P(X)$ is isomorphic to the symmetric algebra $S(A C(X))[10]$.

2. Conditionally Closed algebras and the Freiheitssatz

Suppose \mathfrak{M} is a variety of algebras over a field \mathbb{k}. Denote by $\mathfrak{M}(X)$ the free algebra in \mathfrak{M} generated by a set X. For $A, B \in \mathfrak{M}$, the notation $A *_{\mathfrak{M}} B$ stands for the free product of A and B in \mathfrak{M}.

If $A \in \mathfrak{M}$ then every $\Psi \in A *_{\mathfrak{M}} \mathfrak{M}(x)$ may be interpreted as an A valued function on A. Moreover, for every extension \bar{A} of $A, \bar{A} \in \mathfrak{M}$, $\Psi(x)$ is an \bar{A}-valued function on \bar{A}. An equation of the form $\Psi(x)=0$ is solvable over A if there exists an extension \bar{A} of A such that the equation has a solution in \bar{A}. If such a solution can be found in A itself then $\Psi(x)=0$ is said to be solvable in A.

Recall the common definition (see, e.g., $[11,12]$): An algebra A is (existentially) algebraically closed if every system of equations which is solvable over A is solvable in A. This definition is important for model theory, and it can be an efficient tool for studying algebras provided the principal question on the solvability of a particular equation is solved.

A stronger property (see [13]) can be stated as follows: An algebra $A \in \mathfrak{M}$ is called algebraically closed in \mathfrak{M} if for every $\Psi \in A *_{\mathfrak{M}} \mathfrak{M}(x)$, $\Psi \notin A$, the equation $\Psi(x)=0$ is solvable in A. We are going to propose an intermediate definition which is sufficient for our purpose.

Definition 1. An algebra $A \in \mathfrak{M}$ is called conditionally closed in \mathfrak{M} if for every $\Psi(x) \in A *_{\mathfrak{M}} F_{\mathfrak{M}}(x)$ which is not a constant function on A the equation $\Psi(x)=0$ is solvable in A.

Every algebraically closed in \mathfrak{M} algebra is conditionally closed in \mathfrak{M}. However, there is a plenty of conditionally closed systems that are not algebraically closed in \mathfrak{M}.

For example, an algebraically closed field is conditionally closed but not algebraically closed in the variety of all associative algebras. Similarly, such a field may be considered as a Poisson algebra with respect to trivial bracket, and the Poisson algebra obtained is conditionally closed but not algebraically closed in the variety of all Poisson algebras.

Suppose \mathfrak{M}_{1} and \mathfrak{M}_{2} are two varieties of algebras over a field \mathbb{k}, and let $\omega: \mathfrak{M}_{1} \rightarrow \mathfrak{M}_{2}$ be a functor which acts as follows: Given $A \in \mathfrak{M}_{1}$, $A^{(\omega)} \in \mathfrak{M}_{2}$ is the same linear space equipped with new operations expressed in terms of initial operations. For example, one may consider the classical functor from the variety of associative algebras into the variety of Lie algebras defined by $[x, y]=x y-y x$. In general, ω may be a functor induced by a morphism of the governing operads. Functors of this kind were closely studied in [8].

Proposition 1. An algebra $A \in \mathfrak{M}_{1}$ is conditionally closed in \mathfrak{M}_{1} if and only if $A^{(\omega)}$ is conditionally closed in \mathfrak{M}_{2}.

Note that for algebraically closed algebras this statement does not hold.

Proof. Since ω is a functor, the universal property of the free product implies the existence of a homomorphism $\varphi: A^{(\omega)} *_{\mathfrak{M}_{2}} \mathfrak{M}_{2}(x) \rightarrow\left(A *_{\mathfrak{M}_{1}}\right.$ $\left.\mathfrak{M}_{1}(x)\right)^{(\omega)}$ such that $f(a)=\varphi(f)(a)$ for all $f=f(x) \in A^{(\omega)} *_{\mathfrak{M}_{2}} \mathfrak{M}_{2}(x)$, $a \in A$. Therefore, f is not a constant function on $A^{(\omega)}$ if and only if $\varphi(f)$ is not a constant function on A.

If A is conditionally closed then there exists $a \in A$ such that $\varphi(f)(a)=$ 0 and thus $f(a)=0$. The converse is similar.

Another important example comes from the following settings. Let $\mathfrak{M}_{1}=D i f_{2 n}$ be the variety of commutative associative algebras with $2 n$ pairwise commuting derivations $\partial_{i}, \partial_{i}^{\prime}, i=1, \ldots, n$. Then, given $A \in D i f_{2 n}$, the same space equipped with new binary operation

$$
\begin{equation*}
\{a, b\}=\sum_{i=1}^{n} \partial_{i}(a) \partial_{i}^{\prime}(b)-\partial_{i}(b) \partial_{i}^{\prime}(a), \quad a, b \in A, \tag{1}
\end{equation*}
$$

is known to be a Poisson algebra denoted by $A^{(\partial)}$. If we allow the derivations $\partial_{i}, \partial_{i}^{\prime}$ to be non-commuting then (1) defines on a commutative algebra A a structure of a GP-algebra.

The Freiheitssatz problem for a variety \mathfrak{M} is to determine whether every nontrivial equation over the free algebra $\mathfrak{M}(X), X=\left\{x_{1}, x_{2}, \ldots\right\}$, is solvable over $\mathfrak{M}(X)$.

It is obviously equivalent to the following question about free algebras: Is the intersection of the ideal generated by an element $f \in$
$\mathfrak{M}(X \cup\{x\})$ and the subalgebra $\mathfrak{M}(X) \subset \mathfrak{M}(X \cup\{x\})$ trivial if $f \notin$ $\mathfrak{M}(X)$ (i.e., depends on $x)$? If the answer is positive for all such f then we say that the Freiheitssatz holds for \mathfrak{M}.

Lemma 1. Suppose \mathfrak{M} is a variety of algebras with at least one binary operation • in the language such that $\mathfrak{M}(X)=\mathfrak{M}\left(x_{1}, x_{2}, \ldots\right)$ has no zero divisors with respect to \cdot. Then, if for every nonzero polynomial $h=h\left(x_{1}, \ldots, x_{n}\right) \in \mathfrak{M}(X)$ there exists a conditionally closed algebra $A \in \mathfrak{M}$ which does not satisfy the polynomial identity $h\left(x_{1}, \ldots, x_{n}\right)=0$ then the Freiheitssatz holds for \mathfrak{M}.

Proof. Suppose $X=\left\{x_{1}, x_{2}, \ldots\right\}, x \notin X$, and let $f=f\left(x, x_{1}, \ldots, x_{n}\right) \in$ $\mathfrak{M}(X \cup\{x\}) \backslash \mathfrak{M}(X)$. Then $f=f_{1}+f_{0}$, where f_{1} belongs to the ideal generated by $x, f_{0} \in \mathfrak{M}(X)$.

Assume $g \in(f) \cap \mathfrak{M}(X), g \neq 0$. Then $h=f_{1} \cdot g \neq 0$, hence, there exist a conditionally closed $A \in \mathfrak{M}$ such that $h\left(x, x_{1}, \ldots, x_{n}\right)$ is not a polynomial identity on A. Therefore, there exist $a, a_{1}, \ldots, a_{n} \in A$ such that $f_{1}\left(a, a_{1}, \ldots, a_{n}\right) g\left(a_{1}, \ldots, a_{n}\right) \neq 0$ in A, so $f_{1}\left(a_{1}, \ldots, a_{n}\right) \neq 0$. On the other hand, $f_{1}\left(0, a_{1}, \ldots, a_{n}\right)=0$. Therefore, $\Psi(x)=f_{1}\left(x, a_{1}, \ldots, a_{n}\right)$ is a non-constant function on A. Since A is conditionally closed, there exists $a \in A$ such that $\Psi(a)=f_{1}\left(a, a_{1}, \ldots, a_{n}\right)=-f_{0}\left(a_{1}, \ldots, a_{n}\right)$. Thus, $f\left(a, a_{1}, \ldots, a_{n}\right)=0$ but $g\left(a_{1}, \ldots, a_{n}\right) \neq 0$ which is impossible if $g \in(f) \triangleleft \mathfrak{M}(X \cup\{x\})$.

Corollary 1. The Freiheitssatz holds for the variety generated by special Jordan algebras.

Proof. Consider the algebraically closed associative noncommutative algebra A from [5]. It is essential that A is a skew field and contains the first Weyl algebra W_{1}. Thus, A contains free associative algebra in any
finite number of generators x_{1}, \ldots, x_{n} [4]. The special Jordan algebra $A^{(+)}$is conditionally closed by Proposition 1 and contains free special Jordan algebra $S J\left(x_{1}, \ldots, x_{n}\right)$. Therefore, the variety $S J$ satisfies all conditions of Lemma 1.

3. Jacobian polynomials in free anti-COMmutative

ALGEBRAS
In order to prove the Freiheitssatz for a variety \mathfrak{M} by means of Lemma 1 , we have to construct an algebra in \mathfrak{M} which is conditionally closed algebra and does not satisfy a given polynomial identity.

In this section, we discuss technical questions that are used in subsequent sections for the study of polynomial identities on generic Poisson algebras.
3.1. Preliminaries on $A C(X)$. Let X be a set of generators, and let X^{*} stand for the set of all (nonempty) associative words u in the alphabet X. Denote by $X^{* *}$ the set of all non-associative words in X. Given a word $u \in X^{*}$, denote by (u) a non-associative word obtained from u by some bracketing. We will also use $\left[X^{*}\right]$ to denote the set of all associative and commutative words in X. Given $u \in X^{*},[u]$ stands for the commutative image of u.

Suppose $X^{* *}$ is equipped with a linear order \preceq. A non-associative word $u \in X^{* *}$ is normal if either $u=x \in X$ or $u=u_{1} u_{2}$, where u_{1} and u_{2} are normal and $u_{1} \prec u_{2}$. Obviously, normal words in $X^{* *}$ form a linear basis of the free anti-commutative algebra $A C(X)$ generated by X (see [14, 15]).

Let us call the elements of $A C(X) A C$-polynomials. Given $u \in X^{* *}$, define $\operatorname{deg} u$ to be the length of u. Thus, we have a well-defined degree function on $A C(X)$.

Choose a generator $x_{i} \in X=\left\{x_{1}, \ldots, x_{n}\right\}$ and denote by V_{i} the subspace of $A C(X)$ spanned by all nonassociative words linear in x_{i}. Fix a linear order \preceq on $X^{* *}$ such that any nonassociative word which contains x_{i} is greater than any word without x_{i} (there exist many linear orders with this property). With respect to such an order, the unique normal form of a monomial $w \in V_{i}$ is

$$
\begin{equation*}
w=\left\{u_{1},\left\{u_{2}, \ldots\left\{u_{k}, x_{i}\right\} \ldots\right\}\right\} \tag{2}
\end{equation*}
$$

where $u_{j}, j=1, \ldots, k$, are normal words in the alphabet $X \backslash\left\{x_{i}\right\}$. The number k is called x_{i}-height ([16]) of w, let us denote it by $h t\left(w, x_{i}\right)$.
Let $V_{0}=\bigcap_{i=1}^{n} V_{i}$ be the space of polylinear AC-polynomials. It is easy to compute x_{i}-height of a nonassociative word $w \in V_{0}$ just by the number of brackets in w to the left of x_{i}, assuming $\{$ is counted as 1 and $\}$ as -1 . For example, the x_{4}-height of $\left\{\left\{x_{1},\left\{\left\{x_{2}, x_{3}\right\}, x_{4}\right\}\right\},\left\{x_{5}, x_{6}\right\}\right\}$ is equal to 3 .

Definition 2. A linear transformation of V_{i} defined by the rule

$$
F_{i}:\left\{u_{1},\left\{u_{2}, \ldots\left\{u_{k}, x_{i}\right\} \ldots\right\}\right\} \mapsto(-1)^{k-1}\left\{u_{k},\left\{u_{k-1}, \ldots\left\{u_{1}, x_{i}\right\} \ldots\right\}\right\}
$$ is called an x_{i}-flip.

Since the normal form (2) is unique, $F_{i}: V_{i} \rightarrow V_{i}$ is a well-defined map.

The set of all flips $\left\{F_{1}, \ldots, F_{n}\right\}$ acts on the space V_{0} and thus generates a group $\mathcal{F} \subseteq \mathrm{GL}\left(V_{0}\right)$. Given a normal word $u \in V_{0}$, the orbit $\mathcal{F} v$ consists of AC-monomials (polynomials of the form $\varepsilon v, v$ is a nonassociative word, $\varepsilon= \pm 1$).

Lemma 2. Let $w=\left\{x_{1},\left\{x_{2}, \ldots\left\{x_{n-1}, x_{n}\right\} \ldots\right\}\right\} \in V_{0}$. Then

$$
(-1)^{\sigma}\left\{x_{1 \sigma},\left\{x_{2 \sigma}, \ldots\left\{x_{(n-1) \sigma}, x_{n \sigma}\right\} \ldots\right\}\right\} \in \mathcal{F} w
$$

Proof. It is straightforward to compute that

$$
F_{1}\left(F_{i} w\right)=-\left\{x_{i},\left\{x_{2}, \ldots x_{i-1},\left\{x_{1},\left\{x_{i+1}, \ldots\left\{x_{n-1}, x_{n}\right\} \ldots\right\}\right\}\right\}\right\}
$$

$i=2, \ldots, n$. Since transpositions of the form (1i) generate the entire symmetric group S_{n}, the lemma is proved.
3.2. Jacobian AC-polynomials. In this section, we describe polylinear AC-polynomials that have a specific property if considered as elements of the free GP-algebra.

Suppose $\Psi\left(x_{1}, \ldots, x_{n}\right)$ is an element of the free GP-algebra $G P(X)$, $X=\left\{x_{1}, \ldots, x_{n}\right\}$ which is linear with respect to x_{n}. Following [16], let us say that Ψ is a derivation with respect to x_{n} if

$$
\Psi\left(x_{1}, \ldots, x_{n-1}, y z\right)=y \Psi\left(x_{1}, \ldots, x_{n-1}, z\right)+z \Psi\left(x_{1}, \ldots, x_{n-1}, y\right)
$$

in the free GP-algebra $\operatorname{GP}\left(x_{1}, \ldots, x_{n-1}, y, z\right)$.
Definition 3. A polylinear AC-polynomial $\Psi=\Psi\left(x_{1}, \ldots, x_{n}\right) \in V_{0}$ is said to be jacobian if Ψ is a derivation with respect to each variable x_{i}, $i=1, \ldots, n$. A polylinear element of $G P(X)$ with the same property is called a jacobian GP-polynomial.

For free Lie algebra considered as a part of the free Poisson algebra, a similar notion was considered in [16]. Obviously, if $n=2$ then $C_{2}=$ $\left\{x_{1}, x_{2}\right\}$ is a jacobian AC-polynomial. It was shown in [16] that there are no more jacobian Lie polynomials (up to a multiplicative constant). However, there exists a jacobian AC-polynomial of degree 3:

$$
J_{3}=\left\{\left\{x_{1}, x_{2}\right\}, x_{3}\right\}+\left\{\left\{x_{2}, x_{3}\right\}, x_{1}\right\}+\left\{\left\{x_{3}, x_{1}\right\}, x_{2}\right\} .
$$

The main purpose of this section is to show that C_{2} and J_{3} exhaust all jacobian AC-polynomials.

For a generic Poisson algebra $A, a \in A$, consider the linear map $\operatorname{ad} a: x \mapsto\{a, x\}, x \in A$. The set of all such transformations $\{\operatorname{ad} a \mid a \in$ $A\} \subset \operatorname{End}_{\mathfrak{k}}(A)$ generates a Lie subalgebra $L(A) \subset \mathrm{gl}(A)=\operatorname{End}_{\mathfrak{k}}(A)^{(-)}$.

Given $L \in L\left(G P\left(x_{1}, \ldots, x_{n-1}\right)\right)$, one may easily note that $L\left(x_{n}\right) \in$ $G P\left(x_{1}, \ldots, x_{n}\right)$ is a derivation with respect to x_{n}. Indeed, the Leibniz identity implies that ad $u, u \in G P\left(x_{1}, \ldots, x_{n-1}\right)$, is a derivation with respect to x_{n}, and the commutator of derivations is a derivation itself.

Lemma 3. Let $\Psi\left(x_{1}, \ldots, x_{n}\right) \in A C(X) \subset G P(X)$ be a polylinear element such that Ψ is a derivation with respect to x_{n}. Then there exists $L \in L(A C(X))$ such that $\Psi=L\left(x_{n}\right)$.

Proof. Consider a polylinear word from $A C(X)$:

$$
w\left(x_{1}, \ldots, x_{n}\right)=\left\{u_{1},\left\{u_{2}, \ldots\left\{u_{k}, x_{n}\right\} \ldots\right\}\right\} .
$$

Denote

$$
D\left(w, x_{n} ; x, y\right)=w\left(x_{1}, \ldots, x y\right)-x w\left(x_{1}, \ldots, y\right)-y w\left(x_{1}, \ldots, x\right)
$$

and extend $D\left(\cdot, x_{n} ; x, y\right)$ to the entire space V_{0} by linearity.
By the condition of the statement, $D\left(\Psi, x_{n} ; x, y\right)=0$.
It is easy to compute $D\left(w, x_{n} ; x, y\right)$:
$D\left(w, x_{n} ; x, y\right)=\sum_{l=1}^{k-1} \sum_{s \in \operatorname{Sh}(k, l)}\left\{u_{1 s}, \ldots\left\{u_{l s}, x\right\} \ldots\right\} \cdot\left\{u_{(l+1) s}, \ldots\left\{u_{k s}, y\right\} \ldots\right\}$
where $\operatorname{Sh}(k, l)$ is the set of all shuffles, i.e., permutations $s \in S_{k}$ such that $1 s<2 s<\cdots<l s$ and $(l+1) s<\cdots<k s$.

Comparing the x-heights and y-heights of factors conclude that all summands of Ψ split into groups of equal x_{n}-height; each group is a derivation in x_{n}. Hence, we may suppose Ψ is homogeneous with respect to x_{n}-height.

10PAVEL KOLESNIKOV, LEONID MAKAR-LIMANOV, AND IVAN SHESTAKOV
Moreover, the formula for $D(\cdot)$ shows that it is enough to consider

$$
\Psi=\sum_{s \in S_{k}} \alpha_{s} w_{s}, \quad w_{s}=\left\{u_{1 s}, \ldots\left\{u_{k s}, x_{n}\right\} \ldots\right\}
$$

(computation of $D(\cdot)$ does not affect the inner structure of all u_{i}). Now we may proceed with description of all jacobian AC-polynomials. Suppose u_{1} is maximal among all u_{i} with respect to \prec. Let us show that there exists $s \in S_{k}$ such that $1 s=1$ and $\alpha_{s} \neq 0$, i.e., the maximal word appears as the first entry.

Assume the converse: u_{1} never appears in the beginning. Choose the minimal $j>1$ such that $j s=1$ for some $s \in S_{k}, \alpha_{s} \neq 0$. Then $D\left(w_{s}, x_{n} ; x, y\right)$ contains a summand like

$$
\alpha_{s}\left\{u_{j s}, \ldots\left\{u_{k s}, x\right\} \ldots\right\} \cdot\left\{u_{1 s}, \ldots\left\{u_{(j-1) s}, y\right\} \ldots\right\}
$$

This summand must coincide with at least one similar term coming from $D\left(w_{t}, x_{n} ; x, y\right)$, for some $t \in S_{k}, \alpha_{t} \neq 0$ (since in $D\left(\Psi, x_{n} ; x, y\right)$ all terms vanish). Since j is minimal, we have $j t=1$, and the shuffle corresponding to the desired term of $D\left(w_{t}, x_{n} ; x, y\right)$ is the same as we have for $D\left(w_{s}, x_{n} ; x, y\right)$. Hence, $t=s$, which proves the claim.

Note that for

$$
L=\left[\operatorname{ad} u_{k}\left[\operatorname{ad} u_{k-1} \ldots\left[\operatorname{ad} u_{2}, \operatorname{ad} u_{1}\right] \ldots\right]\right] \in \operatorname{gl}(A C(X))
$$

the element $L\left(x_{n}\right)$ contains only one summand of the form $\left\{u_{1}, \ldots\right\}$ (i.e., starting with u_{1}) which is equal to $\pm\left\{u_{1},\left\{u_{2}, \ldots\left\{u_{k}, x_{n}\right\} \ldots\right\}\right\}$.

Therefore, subtracting $L\left(x_{n}\right)$ with an appropriate coefficient we may cancel one term of Ψ starting with u_{1}, but the result is still a derivation with respect to x_{n}. When we cancel all such terms, the polynomial obtained must be zero since it does not contain a summand starting with u_{1}.

Remark 1. In the same way as the claim above was proved, one may show that there exists $s \in S_{k}$ such that $k s=1$ and $\alpha_{s} \neq 0$, i.e., the maximal word u_{1} appears as the last entry in

$$
w_{s}=\left\{u_{1 s}, \ldots\left\{u_{k s}, x_{n}\right\} \ldots\right\}, \quad u_{k s}=u_{1} .
$$

Corollary 2. Let $\Psi\left(x_{1}, \ldots, x_{n}\right) \in A C(X)$ be a poly-linear AC-polynomial of degree n such that Ψ is a derivation with respect to x_{n}. Suppose $\Psi=\sum_{w} \alpha_{w} w, w \in X^{* *}$ are normal words, and

$$
\max _{\alpha_{w} \neq 0} h t\left(w, x_{n}\right) \geq \max _{\alpha_{w} \neq 0} h t\left(w, x_{i}\right), \quad i=1, \ldots, n .
$$

(x_{n} has maximal height in Ψ). Then

$$
\max _{\alpha_{w} \neq 0} h t\left(w, x_{n}\right)=n-1
$$

and thus Ψ contains a monomial of the form

$$
w=\left\{x_{1 s}, \ldots\left\{x_{(n-1) s}, x_{n}\right\} \ldots\right\}
$$

for some $s \in S_{n-1}$.

Proof. Assume $k<n-1$ is the maximal height of x_{n} in Ψ, i.e., Ψ contains a summand of the form $\left\{u_{1}, \ldots\left\{u_{k}, x_{n}\right\} \ldots\right\}, k<n-1$. Then at least one of u_{i} has the degree greater than 1 . Choose the maximal of these u_{i} with respect to \prec. Remark 1 implies Ψ to contain a summand $\alpha_{w} w$, where $w=\left\{u_{j_{1}}, \ldots\left\{u_{j_{k}}, x_{n}\right\} \ldots\right\}, j_{k}=i, \alpha_{w} \neq 0$. There exists x_{j} such that $h t\left(u_{i}, x_{j}\right)>1$, so $h t\left(w, x_{j}\right)>k$, which contradicts to the condition $h t\left(w, x_{j}\right) \leq k$. Hence, $k=n-1$.

Lemma 4. Suppose $\Psi=\Psi\left(x_{1}, \ldots, x_{n}\right)$ is a jacobian $A C$-polynomial. Then Ψ is invariant with respect to the action of the group \mathcal{F} generated by all x_{i}-flips, $i=1, \ldots, n$.

Proof. Let us fix $i \in\{1, \ldots, n\}$. Without loss of generality we may assume $i=n$. Then by Lemma $3 \Psi=L\left(x_{n}\right)$, where L is a linear operator constructed by commutators of operators ad $u, u \in\left(X \backslash\left\{x_{n}\right\}\right)^{* *}$ are normal words. The set U of all such ad u generates an associative subalgebra $\mathcal{U} \subset \operatorname{End}_{k} V_{n}$. It follows from the description of the basis in $A C(X)$ that \mathcal{U} is isomorphic to the free associative algebra generated by U. Note that since Ψ is polylinear, L naturally splits into a sum of operators presented by polylinear elements of \mathcal{U}.

Since L belongs to the Lie subalgebra of $\mathcal{U}^{(-)}$generated by U (which is well-known to be free), it is invariant with respect to the natural involution τ of \mathcal{U} given by

$$
\tau: u_{1} \ldots u_{k} \mapsto(-1)^{k-1} u_{k} \ldots u_{1}, \quad u_{i} \in U
$$

(it follows from the obvious observation $\tau([u, v])=[\tau(u), \tau(v)]$ for $u, v \in \mathcal{U})$.

By Definition 2,

$$
F_{n}(\Psi)=F_{n}\left(L\left(x_{n}\right)\right)=\tau(L)\left(x_{n}\right)=L\left(x_{n}\right)=\Psi .
$$

As Ψ is invariant with respect to all flips, we have $\mathcal{F}(\Psi)=\{\Psi\}$.

Lemma 5. Suppose $U=\left\{u_{1}, \ldots, u_{m}\right\}$ is a set, $\mathcal{U}=A s(U)$ is the free associative algebra generated by U. Denote by Lie (U) the free Lie algebra generated by $U, \operatorname{Lie}(U) \subset A s(U)^{(-)}$Consider

$$
A_{m}=\sum_{s \in S_{m}}(-1)^{s} u_{1 s} \ldots u_{m s} .
$$

Then $A_{m} \in \operatorname{Lie}(U)$ if and only if $m=1$ or $m=2$.

Proof. For $m=1,2$ it is obvious that $A_{m} \in \operatorname{Lie}(U)$.
Assume $m \geq 3$ and $A_{m} \in \operatorname{Lie}(U)$. Consider the homomorphism Φ : $A s(U) \rightarrow \wedge(\mathbb{k} U)$ given by $u \mapsto u$, where $\wedge(\mathbb{k} U)$ is the exterior algebra of
the linear space spanned by U. Note that $\Phi\left(A_{m}\right)=m!u_{1} \ldots u_{m} \neq 0$ in $\wedge(\mathbb{k} U)$. However, $\Phi(\operatorname{Lie}(U)) \subset \wedge(\mathbb{k} U)^{(-)}$is a Lie subalgebra generated by U. It is easy to see that $\wedge(\mathbb{k} U)^{(-)}$is a 3-nilpotent Lie algebra, so $\Phi(\operatorname{Lie}(U))$ does not contain elements of degree $m \geq 3$.

Theorem 1. Let $X=\left\{x_{1}, \ldots, x_{n}\right\}$, and let $\Psi=\Psi\left(x_{1}, \ldots, x_{n}\right) \in$ $A C(X)$ be a jacobian AC-polynomial. Then either $n=2$ and $\Psi=\alpha C_{2}$, or $n=3$ and $\Psi=\alpha J_{3}$, where $\alpha \in \mathbb{k}^{*}$.

Proof. By Lemma $4 F \Psi=\Psi$ for every $F \in \mathcal{F}$. Corollary 2 implies that Ψ contains a summand of the form αw, where $\alpha \in \mathbb{k}^{*}$, $w=\left\{x_{1 s}, \ldots\left\{x_{(n-1) s}, x_{n}\right\} \ldots\right\}$ for some $s \in S_{n-1}$. Without loss of generality, $\alpha=1$ and $s=\mathrm{id}$. By Lemma $2, \Psi$ contains all monomials obtained from w by all permutations of variables, i.e.,

$$
\Psi=\sum_{s \in S_{n-1}}(-1)^{s}\left\{x_{1 s}, \ldots\left\{x_{(n-1) s}, x_{n}\right\} \ldots\right\}+\Phi\left(x_{1}, \ldots, x_{n}\right)
$$

where the x_{n}-height of all monomials in Ψ is smaller than $n-1$. Since all summands of Ψ with the same x_{n}-height form a derivation with respect to x_{n}, the AC-polynomial

$$
\Psi_{1}=\sum_{s \in S_{n-1}}(-1)^{s}\left\{x_{1 s}, \ldots\left\{x_{(n-1) s}, x_{n}\right\} \ldots\right\}
$$

must be a derivation with respect to x_{n}. But

$$
\Psi_{1}=A_{n-1}\left(u_{1}, \ldots, u_{n-1}\right)\left(x_{n}\right), \quad u_{i}=\operatorname{ad} x_{i}
$$

so $A_{n-1}\left(u_{1}, \ldots, u_{n-1}\right) \in L(A C(X))$. By Lemma $5, n-1 \leq 2$, so $n \leq 3$. Obviously, C_{2} and J_{3} are the only jacobian AC-polynomials for $n=2$ and $n=3$, respectively.

4. Identities of generic Poisson algebras

Let A be a GP-algebra, and let $f \in G P\left(x_{1}, \ldots, x_{n}\right), f \neq 0$. As usual, we say that f is a polynomial identity on A if for every homomorphism

14PAVEL KOLESNIKOV, LEONID MAKAR-LIMANOV, AND IVAN SHESTAKOV
$\varphi: G P\left(x_{1}, \ldots, x_{n}\right) \rightarrow A$ we have $\varphi(f)=0$. In this case we also say that A satisfies the polynomial identity f.

Proposition 2. Suppose a GP-algebra A satisfies a polynomial identity. Then there exists a polynomial identity Ψ on A which is a jacobian GP-polynomial.

This statement, as well as its proof, is similar to the result by Farkas [16] on polynomial identities of Poisson algebras.

Proof. The standard linearization procedure (see, e.g., [17, Chapter 1]) allows to assume that A satisfies a polylinear polynomial identity $f \in$ $G P(X), X=\left\{x_{1}, \ldots, x_{n}\right\}$.

As an element of $G P(X), f$ may be uniquely presented as a linear combination of GP-monomials $w=u_{1} \ldots u_{k}, u_{j} \in U$, where $U \subset$ $A C(X)$ is the set of normal words. Note that u_{j} are of degree two or more (if an AC-monomial of degree one appears, e.g., $u_{j}=x_{i}$, then one may plug in $x_{i}=1$ and obtain a polylinear polynomial identity without x_{i}). Denote by $F H_{i}(w)$ (the Farkas height) the degree of u_{j} in which the variable x_{i} occurs, and let $F H_{i}(f)$ be the maximal of $F H_{i}(w)$ among all GP-monomials w that appear in f with a nonzero coefficient. Finally, set

$$
F H(f)=\sum_{i=1}^{n} 3^{F H_{i}(f)}
$$

Observe that if f is not a derivation in x_{i} then the derivation difference $D\left(f, x_{i} ; x_{i}, x_{n+1}\right)$ is a nonzero polylinear element of $G P\left(X \cup\left\{x_{n+1}\right\}\right)$ which has a smaller Farkas height. Indeed, for a GP-monomial w from
f we have

$$
\begin{gathered}
F H_{j}\left(D\left(w, x_{i} ; x_{i}, x_{n+1}\right)\right) \leq F H_{j}(w), \\
F H_{i}\left(D\left(w, x_{i} ; x_{i}, x_{n+1}\right)\right) \leq F H_{i}(w)-1, \\
F H_{n+1}\left(D\left(w, x_{i} ; x_{i}, x_{n+1}\right)\right) \leq F H_{i}(w)-1,
\end{gathered}
$$

which implies

$$
F H(w)-F H\left(D\left(w, x_{i} ; x_{i}, x_{n+1}\right)\right) \leq 3^{F H_{i}(w)}-2 \cdot 3^{F H_{i}(w)-1}>0 .
$$

Obviously, $D\left(f, x_{i} ; x_{i}, x_{n+1}\right)$ is a polynomial identity on A.
Therefore, after a finite number of steps we obtain a nonzero polynomial identity on A which is a jacobian GP-polynomial in a larger set of variables $\widetilde{X} \supseteq X$.

Let us recall the notion of fine grading [16]. First, given a set X, the free anti-commutative algebra $A C(X)$ carries [X^{*}]-grading such that $u \in X^{* *}$ has weight $[u]$. Next, if $w=\left(u_{1}\right) \ldots\left(u_{n}\right) \in G P(X), u_{i} \in X^{*}$, then the weight of w is $\left[u_{1}\right]+\cdots+\left[u_{n}\right] \in \mathbb{k}\left[X^{*}\right]$. As a result,

$$
G P(X)=\bigoplus_{p \in \mathbb{k}\left[X^{*}\right] \backslash\{0\}} G P_{p}(X),
$$

where $G P_{p}(X)$ is the space spanned by all generic Poisson monomials of degree p. An element $f \in G P_{p}(X)$ is said to be finely homogeneous.

Proposition 3. A jacobian GP-polynomial Ψ can be presented as a linear combination of products of jacobian AC-polynomials (on the appropriate set of variables).

Proof. Let $X=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ be a set of variables, and let $U=$ $\left\{u_{1}, u_{2}, \ldots\right\}$ be the set of normal nonassociative words in X (with respect to some ordering), then $G P(X)=\mathbb{k}[U]$. For $\Psi \in G P(X)$, denote by $\operatorname{supp}(\Psi)$ all variables from X that appear in Ψ and by $\operatorname{psupp}(\Psi)$ all variables from U that appear in Ψ.

Suppose $f \in G P\left(x_{1}, \ldots, x_{n}\right) \subset G P(X)$ is a jacobian GP-polynomial. Without loss of generality we may assume f to be finely homogeneous and $f \notin A C(X)$. Proceed by induction on $|\operatorname{psupp}(f)|$.

Consider a GP-monomial w in f. If $w=u_{i} w^{\prime}$ where $w^{\prime} \neq 1$ then write $f=u_{i} g+h, g, h \in G P(X), g \neq 1$, where all GP-monomials of h are not divisible by $u_{i}($ in $\mathbb{k}[U])$. Since f is polylinear, $\operatorname{supp}(g) \cap$ $\operatorname{supp}\left(u_{i}\right)=\emptyset$.

Denote by D_{i} a map $G P(X) \rightarrow G P(X \cup\{y, z\})$ defined as follows:

$$
D_{i}(\Psi)= \begin{cases}D\left(\Psi, x_{i} ; y, z\right), & x_{i} \in \operatorname{supp}(\Psi), \\ \Psi, & x_{i} \notin \operatorname{supp}(\Psi) .\end{cases}
$$

Then $D_{j}(f)=u_{i} D_{j}(g)+D_{j}(h)=0$ if $x_{j} \in \operatorname{supp}(g)$.
Consider $G P(X \cup\{y, z\})$ as a polynomial algebra with a set \widetilde{U} of generators including U. Then $u_{i} \notin \operatorname{psupp}(h)$ and $u_{i} \notin \operatorname{psupp}\left(D_{j}(h)\right)$. Hence, $D_{j}(g)=0$ and g is a jacobian GP-polynomial.

Let us now fix the deg-lex order on the set [U^{*}], i.e., commutative monomials in U are first compared by their length and then lexicographically, assuming $u_{1}<u_{2}<\ldots$. Recall that $f=u_{i} g+h$, where $\operatorname{psupp}(h) \not \supset u_{i}$, and presented h as $h=g p+r$, where all GP-monomials of r are not divisible (in $\mathbb{k}[U]$) by the leading GP-monomial \bar{g} of g. Then $f=g q+r, q=u_{i}+p$, and $\operatorname{psupp}(r) \not \ni u_{i}$. In particular, $\operatorname{psupp}(r) \subset \operatorname{psupp}(f)$.

By definition, $D_{j}(f)=g D_{j}(q)+D_{j}(r)=0$ if $x_{j} \in \operatorname{supp}(q)$. If $D_{j}(q) \neq 0$ then some of the monomials in $D_{j}(r)$ are divisible by \bar{g}. Consider a GP-monomial M of r. Since it is not divisible by \bar{g} there is at least one variable u_{a} which appears in \bar{g} and does not appear in M. Note that if $\operatorname{supp}\left(u_{b}\right) \not \supset x_{i}$ then $D_{i}\left(u_{b}\right)=u_{b}$, and if $\operatorname{supp} u_{b} \ni x_{i}$ then $D_{i}\left(u_{b}\right)$ is a GP-polynomial of degree two (in $\left.\mathbb{k}[\widetilde{U}]\right)$ in which neither of variables belongs to U. Hence, $D_{j}(M)$ is not divisible by u_{a} and neither
of the GP-monomials of $D_{j}(r)$ is divisible by \bar{g}. Therefore, $D_{j}(q)=0$ and q is a jacobian GP-polynomial.

Since a product of two jacobian GP-polynomials is also jacobian (with respect to the corresponding sets of variables), $r=f-g q$ is a jacobian GP-polynomial. By induction, the statement holds for r, as well as for g and q.

Corollary 3. Let $F\left(t_{1}, \ldots, t_{n}\right) \in G P\left(t_{1}, t_{2}, \ldots\right)$ be a finely homogeneous jacobian GP-polynomial. Then F contains a summand $\alpha u_{1} \ldots u_{k}$, where $\alpha \in \mathbb{k}^{*}, u_{i} \in A C\left(t_{1}, t_{2}, \ldots\right)$ are of the form

$$
\left\{t_{i_{1}}, t_{i_{2}}\right\} \quad \text { or } \quad\left\{t_{i_{1}},\left\{t_{i_{2}}, t_{i_{3}}\right\}\right\}
$$

5. The Freiheitssatz for (generic) Poisson algebras

The following statement is well-known in the theory of differential fields $[18,19]$. We will sketch a proof below in order to make the exposition more convenient for a reader. Recall that the characteristic of the base field \mathbb{k} is assumed to be zero.

Theorem 2. Every algebra from Difn which is a field can be embedded into an algebraically closed algebra in $D i f_{n}$.

Proof. Let F be a differential field of characteristic zero with a set $\Delta=\left\{\partial_{i} \mid i=1, \ldots, n\right\}$ of pairwise commuting derivations. Denote by $F[x ; \Delta]=F *_{D i f_{n}} D i f_{n}(x)$ the set of all differential polynomials in one variable x over F. Suppose $f(x) \in F[x ; \Delta] \backslash F$. Then there exists a differential field K which is an extension of the differential field F such that the equation $f(x)=0$ has a solution in K.

Indeed, differential polynomials $F[x ; \Delta]$ may be considered as ordinary polynomials in infinitely many variables

$$
X=\left\{x^{\left(i_{1}, \ldots, i_{n}\right)} \mid\left(i_{1}, \ldots, i_{n}\right) \in \mathbb{Z}_{+}^{n}\right\},
$$

where $x^{\left(i_{1}, \ldots, i_{n}\right)}$ is identified with $\partial_{1}^{i_{1}} \ldots \partial_{n}^{i_{n}}(x)$. Then the differential ideal $I(f ; \Delta)$ generated by $f(x)$ in $F[x ; \Delta]$ coincides with the ordinary ideal in $F[X]$ generated by f and all its derivatives $\partial_{1}^{i_{1}} \ldots \partial_{n}^{i_{n}}(f)$.

Note that if $f \notin F$ then $I(f ; \Delta)$ is proper: One may apply the notion of a characteristic set (see, e.g., [19, Ch. I.10]) or simply note that the set of all derivatives of f is a Gröbner basis provided that we choose an ordering of monomials in such a way that highest derivative (leader) is contained in the leading monomial (e.g., rank ordering in [19, Ch. I.8]). Indeed, if $u y$ is the leading monomial of $f(y \in X$ is the leader of f, u is an ordered monomial in X) then $u y^{\left(i_{1}, \ldots, i_{n}\right)}$ is the leading monomial of $\partial_{1}^{i_{1}} \ldots \partial_{n}^{i_{n}}(f)$. It is easy to see that there are no compositions (we follow the terminology of Shirshov [3], see [20] for details) among f and its derivatives except for the case when $u y=y^{k}$, but in the latter case the only series of compositions of intersection of f with itself is obviously trivial.

Hence, if $f \notin F$ then $I=I(f ; \Delta)$ is proper, and so is its radical \sqrt{I}. By the differential prime decomposition theorem (see, e.g., [18, Ch. 1]), $I=p_{1} \cap \cdots \cap p_{k}$, where p_{i} are prime differential ideals in $F[x ; \Delta]$. In particular, $f \in p_{1}$, and $F[x ; \Delta] / p_{1}$ is a differential domain containing a root $x+p_{1}$ of f. Finally, the quotient field of that domain $Q\left(F[x ; \Delta] / p_{1}\right)$ is the desired differential field.

Therefore, every nontrivial equation over an arbitrary differential field F has a solution in an extension K of F. If F is infinite then K has the same cardinality as F, so the standard transfinite induction arguments similar to those applied to ordinary fields show that F can be embedded into a differential field $\bar{F} \in D i f_{n}$ in which every nontrivial differential polynomial has a root.

Corollary 4 ([7]). The Freiheitssatz holds for the variety of Poisson algebras.

Proof. Let $A_{2 n}=\mathbb{k}\left(x_{1}, y_{1}, x_{2}, y_{2}, \ldots, x_{n}, y_{n}\right)$ be the algebra of (commutative) rational functions over $\mathbb{k}, \partial_{i}=\partial_{x_{i}}, \partial_{i}^{\prime}=\partial_{y_{i}}$ be ordinary partial derivatives with respect to x_{i}, y_{i}, respectively. As $A_{2 n} \in D i f_{2 n}$, there exists its algebraically closed extension $\bar{A}_{2 n} \in D i f_{2 n}$. Let $P S_{n}=A_{2 n}^{(\partial)}$ be the Poisson algebra defined by (1). Then $P S_{n} \subseteq \bar{A}_{2 n}^{(\partial)}$, where the latter is a conditionally closed Poisson algebra by Proposition 1.

It was shown in [16] that for every nonzero Poisson polynomial $h=$ $h\left(x_{1}, \ldots, x_{m}\right), m \geq 1$, there exists a sufficiently large N such that $P S_{N}$ (and thus $\bar{A}_{2 N}^{(\partial)}$) does not satisfy the identity $h\left(x_{1}, \ldots, x_{m}\right)=0$. Lemma 1 implies the claim.

Let us twist the functor $\partial: D i f_{2 n} \rightarrow$ Pois in order to obtain a conditionally closed generic Poisson algebra that does not satisfy a fixed polynomial identity.

Consider the variety $C D i f_{n}$ of commutative differential algebras with pairwise commuting derivations ∂_{i} and constants $c_{i}, i=1, \ldots, n$, such that $\partial_{i}\left(c_{j}\right)=\delta_{i j}$. Then there exists a natural forgetting functor ω : $C D i f_{n} \rightarrow D i f_{n}$ erasing the information about constants.

In particular, $A_{2 n}$ may be considered as an algebra from $C D i f_{2 n}$ with derivations $\partial_{i}=\partial_{x_{i}}, \partial_{i}^{\prime}=\partial_{y_{i}}$, and constants $c_{i}=x_{i}, c_{i}^{\prime}=y_{i}$, $i=1, \ldots, n$. Moreover, if $A_{2 n} \subseteq A \in D i f_{2 n}$ then $A=B^{(\omega)}$ for an appropriate $B \in C D i f_{2 n}$. Hence, by Proposition 1 , for every $n \geq 1$ there exists a conditionally closed algebra $\bar{B}_{2 n}$ in $C D i f_{2 n}, \bar{B}_{2 n}^{(\omega)}=\bar{A}_{2 n}$.

Suppose $B \in C D i f_{2 n}$ with derivations $\partial_{i}, \partial_{i}^{\prime}$ and constants c_{i}, c_{i}^{\prime}, $i=1, \ldots, n$. Let us consider the following functor τ from $C D i f_{2 n}$

20PAVEL KOLESNIKOV, LEONID MAKAR-LIMANOV, AND IVAN SHESTAKOV to the variety $N D i f_{2 n}$ of commutative differential algebras with noncommuting derivations $\xi_{i}, \xi_{i}^{\prime}, i=1, \ldots, n$. On the same space B, define new derivations by

$$
\begin{gather*}
\xi_{i}(a)=c_{i+1}^{\prime} \partial_{i}, \quad i=1, \ldots, n-1 \\
\xi_{n}(a)=c_{1}^{\prime} \partial_{n} \tag{3}\\
\xi_{i}^{\prime}(a)=\partial_{i}^{\prime}(a), \quad i=1, \ldots, n
\end{gather*}
$$

for $a \in B$. If B is conditionally closed in $C D i f_{2 n}$ then $B^{(\tau)}$ is conditionally closed in $N D i f_{2 n}$.

Finally, define a functor ξ from $N D i f_{2 n}$ to the variety $G P$ of generic Poisson algebras by means of

$$
\begin{equation*}
\{a, b\}=\sum_{i \geq 1} \xi_{i}(a) \xi_{i}^{\prime}(b)-\xi_{i}(b) \xi_{i}^{\prime}(a) \tag{4}
\end{equation*}
$$

Denote by $G P S_{N}$ the GP-algebra $\left(A_{2 n}^{(\tau)}\right)^{(\xi)}$.

Proposition 4. For every $n \geq 1$ there exists $N \geq 1$ such that the GP-algebra GPS S_{m} does not satisfy a polynomial identity of degree n for all $m \geq N$.

Proof. Suppose $f \in G P\left(t_{1}, t_{2}, \ldots\right)$ is a GP-polynomial of degree n which is an identity on $G P S_{m}$. By Proposition 2 there also exists a polylinear identity g on $G P S_{m}$ which is a jacobian GP-polynomial.

Let us split g into finely homogeneous components:

$$
g=g_{1}+\cdots+g_{k},
$$

each g_{i} is a jacobian GP-polynomial (but not an identity on $G P S_{m}$).
According to Corollary 3 , g_{1} contains a summand $\alpha u_{1} \ldots u_{l}, \alpha \in \mathbb{k}^{*}$,

$$
u_{i}=\left\{t_{i_{1}}, \ldots\left\{t_{i_{m_{i}}}, t_{i_{m_{i}+1}}\right\} \ldots\right\}, \quad m_{i}=1,2 .
$$

Assume m is large enough (e.g., $m>2 l$), and evaluate the variables in such a way that

$$
\begin{gathered}
t_{i_{m_{i}+1}}=y_{k_{i}} \\
t_{i_{m_{i}}}=x_{k_{i}}, t_{i_{m_{i}-1}}=x_{k_{i}+1}, \ldots, t_{i_{1}}=x_{k_{i}+m_{i}-1} \\
k_{i+1} \geq k_{i}+m_{i}, \quad k_{l}+m_{l}<m
\end{gathered}
$$

Then the only summand in $g_{1}\left(t_{1}, \ldots, t_{n}\right)$ is nonzero, namely, the summand mentioned by Corollary 3: It turns into $\alpha y_{k_{1}+m_{1}} \ldots y_{k_{l}+m_{l}} \neq 0$. Other g_{i} s turn into zero.

Hence, g can not be a polynomial identity on $G P S_{m}$.

Theorem 3. The Freiheitssatz holds for the variety of generic Poisson algebras.

Proof. Given $N \geq 1, G_{N}=\left(\bar{B}_{2 N}^{(\tau)}\right)^{(\xi)}$ is a conditionally closed algebra in $G P$ by Proposition 1, and $G P S_{N} \subseteq G_{N}$. The claim now follows from Proposition 4 and Lemma 1.

Acknowledgements

P. Kolesnikov was partially supported by FAPESP (grant 2012/04704$0)$ and RFBR (12-01-33031). L. Makar-Limanov acknowledges the support of FAPESP (grant 2011/52030-5), and I. Shestakov was supported by FAPESP (grant 2010/50347-9) and CNPq (grant 3305344/2009-9). The both are also grateful to the Max-Plank Institute for the support and excellent working conditions. Finally, the authors are grateful to Alexei Ovchinnikov for valuable discussions.

References

[1] W. Magnus, Über discontinuierliche Gruppen mit einer definierenden Relation (Der Freiheitssatz), J. Reine Angew. Math. 163 (1930) 141-165.
[2] N.S. Romanovskii, A theorem on freeness for groups with one defining relation in varieties of solvable and nilpotent groups of given degrees, Mat. Sb. (N.S.) 89 (131) (1972) 93-99.
[3] A.I. Shirshov, Some algorithmic problems for Lie algebras, Sib. Mat. Zh. 3 (1962), 292-296.
[4] L. Makar-Limanov, The skew field of fractions of the Weyl algebra contains a free noncommutative subalgebra, Comm. Algebra 11 (1983) (17) 2003-2006.
[5] L. Makar-Limanov, Algebraically closed skew fields, J. Algebra 93 (1) (1985) 117-135.
[6] D. Kozybaev, L. Makar-Limanov, U. Umirbaev, The Freiheitssatz and the automorphisms of free right-symmetric algebras, Asian-Eur. J. Math. 1 (2) (2008) 243-254.
[7] L. Makar-Limanov, U. Umirbaev, The Freiheitssatz for Poisson algebras, Journal of Algebra 328 (2011) 495-503.
[8] A. A. Mikhalev, I. P. Shestakov, PBW-pairs of varieties of linear algebras, Comm. Algebra, to appear.
[9] P. S. Kolesnikov, Varieties of dialgebras, and conformal algebras, Sib. Math. J. 49 (2) (2008) 257-272.
[10] I. P. Shestakov, Speciality problem for Malcev algebras and Poisson Malcev algebras, In: Nonassociative algebra and its applications (São Paulo, 1998), 365-371, Lecture Notes in Pure and Appl. Math. 211, Dekker, New York, 2000.
[11] W.R. Scott, Algebraically closed groups, Proc. Amer. Math. Soc. 2 (1951) 118-121.
[12] G. Higman, E. Scott, Existentially Closed Groups, Clarendon Press, Oxford, 1988.
[13] L.A. Bokut, Theorems of embedding in the theory of algebras, Colloq. Math. 14 (1966) 349-353.
[14] A.I. Shirshov, Some algorithmic problems for ε-algebras, Sibirsk. Mat. Zh. 3 (1) (1962) 132-137.
[15] L.A. Bokut, Y. Chen, Y. Li, LyndonShirshov basis and anti-commutative algebras, J. Algebra 378 (2013) 173-183.
[16] D.R. Farkas, Poisson polynomial identities, Comm. Algebra 26 (2) (1998) 401416.
[17] K.A. Zhevlakov, A.M. Slin'ko, I.P. Shestakov, A.I. Shirshov, Rings that are nearly associative, Academic Press, New York, 1986.
[18] J.F. Ritt, Differential algebra, AMS Colloq. Publ., V.33, Providence, RI, 1950.
[19] E.R. Kolchin, Differential algebra and algebraic groups, Pure Appl. Math. 54, Acad. Press, New York, London, 1973.
[20] L.A. Bokut', P.S. Kolesnikov, Gröbner-Shirshov bases: from their incipiency to the present, J. Math. Sci. 116 (1) (2003) 2894-2916.

