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Abstract. The theory of the generic minimum polynomial, norm and trace is developed

for quadratic Jordan algebras which are finitely generated and projective modules over an
arbitrary commutative base ring, using scheme-theoretic methods. We recover, with new

proofs, most of the classical theory over fields, and also obtain a number of results which
are new even in the classical setting.

Introduction

The theory of the generic minimum polynomial, norm and trace for linear and
quadratic Jordan algebras of finite dimension over a field is well-known [14, 16, 26].
In this paper, we extend the theory to quadratic Jordan algebras which are finitely
generated and projective modules over an arbitrary commutative base ring. With
an appropriate definition of generically algebraic algebra, we are able to recover
most of the results of the classical theory. Our methods involve scheme theory in
an essential way. They yield new proofs of classical results as well as new ones
even in the classical setting. The theory developed here applies to associative or
alternative algebras by considering the associated Jordan algebra with quadratic
operators Uxy = xyx. The results seem to be new even in this case.

Let k be an arbitrary commutative ring with unity, let J be a quadratic Jordan
algebra which is finitely generated and projective as a k-module, and denote by A
the algebra of polynomial laws on J . For a polynomial f(t) in the indeterminate
t with coefficients in A and an element x in a base ring extension J ⊗k R of J , we
denote by f(t;x) ∈ R[t] the polynomial obtained by evaluating the coefficients of
f at x. We say J is generically algebraic (see 2.2) if there exists a locally monic
polynomial m(t) ∈ A[t] such that

(i) for all x in all base ring extensions, substitution of x for t in m(t;x) and
tm(t;x) yields zero,

(ii) for every prime ideal p of k, the base change of m(t) from k to the quotient
field κ(p) of k/p is the classical generic minimum polynomial of J⊗k κ(p).

These conditions are natural for the following reasons: (i) just says that every x
satisfies its own generic minimum polynomial m(t;x). (Note that the condition
m(x;x) = 0 is sufficient in (i) provided J = B+ is the Jordan algebra associated
to an associative or alternative algebra B). Condition (ii) is forced upon us if we
wish the definition to be invariant under base change and consistent with that over
fields. A polynomial m(t) satisfying (i) and (ii) is unique (Prop. 2.7); it is called
the generic minimum polynomial of J .

The question then arises which finitely generated and projective Jordan algebras
are generically algebraic in this sense. It turns out that there always exist polyno-
mials satisfying (i), for instance, det(t2Id − Ux). The well-known constructions of
Jordan algebras from quadratic forms with base point and from cubic norm struc-
tures yield examples of polynomials of degree 2 and 3 satisfying (i) [22, 30, 20].
Condition (ii) is much more restrictive, and there are many examples of finitely
generated and projective Jordan algebras which are not generically algebraic. On
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the other hand, the obvious analogues over rings of the simple finite-dimensional
algebras over algebraically closed fields are all generically algebraic in this sense.

We now give a more detailed account of the contents. After a preliminary
section collecting facts on locally monic polynomials, schemes and pure submodules,
section 1 deals with algebraic elements. Let J be a quadratic Jordan algebra which
is finitely generated and projective as a k-module. Ignoring for the moment the
difficulties arising from the lack of power-associativity of quadratic Jordan algebras,
we define an element a ∈ J to be algebraic if the subalgebra k[a] generated by a
is a direct summand of J . (The actual definition in 1.4 is more involved and
makes sense even without assumptions on the k-module structure of J). This is
a much more stringent condition than that a be integral, i.e., that it satisfy some
monic polynomial. Algebraic elements have well-defined minimum polynomials
which behave well under base change. The functor of algebraic elements is a finitely
presented quasi-affine k-scheme (Prop. 1.14).

In section 2, we develop the general theory of generically algebraic algebras,
establish results on ascent and descent, and prove the uniqueness and the basic
properties of the generic minimum polynomial (Prop. 2.7, Th. 2.11). An important
tool is the fact that the primitive elements, i.e., the algebraic elements of highest
degree, form an open dense subscheme (Lemma 2.6).

In Theorem 3.1 of section 3 we show that generically algebraic Jordan algebras
are stable under isotopy and compute the generic minimum polynomial of an iso-
tope. For algebras over fields, this is due to N. Jacobson [12] in the linear case,
and to K. McCrimmon [26] in the quadratic case. For central separable algebras
over rings containing 1

2 , it was proved by R. Bix [2] by a case-by-case verification.
McCrimmon’s proof made use of the composition law N(Uxy) = N(x)2N(y) for the
generic norm. Our proof is actually a simplification of McCrimmon’s and yields the
composition law as a corollary. Let us point out here that the classical proof of the
composition law relies on the factoriality of the polynomial ring in several variables
over a field and therefore does not carry over to base rings. We then prove the sym-
metry property of the coefficients of the generic minimum polynomial of an isotope
and the fact that these coefficients are polynomial laws on J × J (Theorem 3.5).
We finally derive in 3.11 explicit formulas for these coefficients which are new even
for algebras over fields.

It is a curious phenomenon of quadratic Jordan algebras that they may contain
elements which are not power-associative in the sense that the subalgebra generated
by such an element is not special. As mentioned above, this brings complications
in the definition of algebraic element. In section 4, we study this phenomenon in
more detail and show in particular that algebraic elements of degree 63 are au-
tomatically power-associative (Prop. 4.5). As a consequence, generically algebraic
Jordan algebras of degree 63 over fields are strictly power-associative (Cor. 4.4).
This gives a partial answer to a question raised by K. McCrimmon in [23].

Finally, in section 5 we prove that a module isomorphism between generically
algebraic Jordan algebras of degree 3 which preserves squares, traces and unit
elements, is already an algebra isomorphism (Th. 5.1). As a consequence, the auto-
morphism group of the exceptional Jordan algebra in characteristic 2 is isomorphic,
by restriction, to the automorphism group of the 2-Lie algebra of its space of trace
zero elements, and a similar result holds for derivations (Cor. 5.4).
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0. Preliminaries

0.1. Notations and conventions. Throughout, k denotes an arbitrary commu-
tative ring. Spec(k) is the set of prime ideals of k, with the Zariski topology, and
for a ring homomorphism %: k → k′, Spec(%): Spec(k′) → Spec(k) is the continuous
map q 7→ %−1(q). The quotient field of k/p (p ∈ Spec(k)) is written κ(p). We de-
note by k-alg the category of commutative associative k-algebras. Unsubscripted
tensor products are understood over k. For R ∈ k-alg and X a k-module, we
often abbreviate XR = X ⊗ R; for x ∈ X we put xR := x ⊗ 1R ∈ XR, and for a
homomorphism h: X → Y of k-modules, we denote by hR: XR → YR the R-linear
extension of h; i.e., hR(x ⊗ r) = h(x) ⊗ r, for all x ∈ X, r ∈ R. Thus we have
hR(xR) = h(x)R.

By a Jordan algebra J over k we always mean a unital quadratic Jordan algebra,
unless otherwise specified. The unit element is written 1J or simply 1, the set
of invertible elements is J×. For an alternative (or associative) algebra B, the
associated Jordan algebra with quadratic operators Uxy = xyx is denoted B+.

0.2. Vanishing sets. Let M be a k-module and x ∈M . With x we associate the
ideals

a := Ann(x) = {λ ∈ k : λx = 0} and b := 〈x,M∗〉 = {〈x, β〉 : β ∈M∗}
of k, where M∗ is the dual module and 〈 , 〉: M ×M∗ → k is the canonical pairing.
Clearly, a · b = 0.

Now let M be finitely generated and projective. In geometric terms, M may
then be considered as a vector bundle over the affine scheme S = Spec(k) and x as
a section of this bundle. To carry this a bit further, let x(p) := x⊗1κ(p) ∈M(p) :=
M ⊗ κ(p), for all p ∈ S. Thus M(p) is the fibre of M and x(p) is the value of the
section x at the point p. We claim that

x(p) = 0 ⇐⇒ b ⊂ p. (1)

Indeed, M(p) being a vector space over κ(p), we have x(p) = 0 if and only if
〈x(p), α〉 = 0, for all α ∈

(
M(p)

)∗. Since M is finitely generated and projective,
the canonical homomorphism M∗ ⊗ R → (M ⊗ R)∗ is an isomorphism, for all
R ∈ k-alg [4, II, §4.2, Prop. 2(ii)]. Thus

x(p) = 0 ⇐⇒ 〈x, β〉 ⊗ 1κ(p) = 0 for all β ∈M∗

⇐⇒ 〈x, β〉 ∈ p for all β ∈M∗

⇐⇒ b ⊂ p.

We may express (1) by
x−1(0) = V (b), (2)

where V (b) = {p ∈ S : p ⊃ b} is the vanishing set of b, cf. [3, II, §4.3].

0.3. Unimodular elements. An element x of a k-moduleM is said to be unimod-
ular if k ·x is a free k-module of rank 1 and a direct summand of M , equivalently, if
there exists an element β ∈M∗ such that 〈x, β〉 = 1, i.e., b = k. Thus 0.2.1 yields,
in case M is finitely generated and projective,

x is unimodular ⇐⇒ x(p) 6= 0 for all p ∈ S. (1)

Let J be a Jordan algebra over k, finitely generated and projective as a k-module,
with unit element 1J . We claim that

J is a faithful k-module ⇐⇒ 1J is unimodular. (2)

Indeed, J = 0 if and only if 1J = 0, and the unit element is compatible with base
change: 1JR

= (1J)R, for all R ∈ k-alg. By general facts on finitely generated and
projective modules, J is faithful if and only if J(p) 6= 0, for all p ∈ S. Now (2)
follows from (1).
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0.4. Lemma. Let M be a finitely generated and projective k-module and x ∈ M .
Then the following conditions are equivalent:

(i) x−1(0) is open in S = Spec(k),
(ii) there exists an idempotent ε ∈ k such that b = k · ε,
(iii) k · x is a direct summand of M .

If these conditions hold, ε is uniquely determined and is called the support idem-
potent of x. The annihilator of x is then a = k · (1− ε).

Proof. (i) =⇒ (ii) follows from well-known facts about the correspondence be-
tween open and closed subsets of S and idempotents of k [3, II, §4.3, Prop. 15].

(ii) =⇒ (iii): Choose β ∈ M∗ with 〈x, β〉 = ε. Then we have x = εx: Indeed,
〈(1− ε)x,M∗〉 = (1− ε)b = (1− ε)ε · k = 0. Since the canonical map M →M∗∗ is
injective, it follows that (1 − ε)x = 0. Now one checks easily that π(y) := 〈y, β〉x
defines a projection of M with image k · x.

(iii) =⇒ (i): Since M is finitely generated and projective so is k · x. Hence the
rank function of k · x is continuous on S, which implies that x−1(0) = {p ∈ S :
rkp(k · x) = 0} is open.

Uniqueness of ε follows from the fact that it is the unit element of b. Finally,
0 = ab = εa implies a ⊂ k·(1−ε), and the reverse inclusion follows from (1−ε)x = 0.

0.5. Lemma. Let J be a not necessarily unital Jordan algebra over k which is
finitely generated and projective as a k-module, and let e ∈ J be an idempotent of
J . Then e satisfies the equivalent conditions of 0.4.

Proof. Consider the Peirce decomposition J = J2(e)⊕ J1(e)⊕ J0(e) of J with
respect to e. Then the Ji(e), being direct summands of J , are finitely generated
and projective. Moreover, Peirce decomposition is compatible with base change:
For all R ∈ k-alg, we have (JR)i(e) = Ji(e) ⊗ R. Finally, e = 0 if and only if
J2(e) = 0. Hence

e(p) = 0 ⇐⇒ J2(e)⊗ κ(p) = 0 ⇐⇒ rkp J2(e) = 0.

Since the rank function of J2(e) is continuous on S, it follows that e−1(0) is open.

0.6. Lemma. Let X be a k-module, let x1, . . . , xn ∈ X and let N be the k-span of
x1, . . . , xn. Then the following conditions are equivalent:

(i) N is free with basis x1, . . . , xn and a direct summand of X,
(ii) y := x1 ∧ · · · ∧ xn is unimodular in

∧n
X.

If X is finitely generated and projective these conditions are equivalent to

(iii) x1(p), . . . , xn(p) are linearly independent over κ(p), for all p ∈ Spec(k).

If these conditions hold, we have

x ∈ N ⇐⇒ y ∧ x = 0, (1)

for all x ∈ X.

Proof. (i) =⇒ (ii): LetX = N⊕P and define linear forms αi ∈ X∗ by 〈xi, αj〉 =
δij and 〈αi, P 〉 = 0. Let β ∈

( ∧n
X

)∗ be the image of α1 ∧ · · · ∧ αn under the
canonical homomorphism

∧n(X∗) →
( ∧n

X
)∗. Then 〈β, y〉 = det(〈αi, xj〉) = 1.

(ii) =⇒ (i): Define αi ∈ X∗ by

〈x, αi〉 := 〈x1 ∧ · · · ∧ xi−1 ∧ x ∧ xi+1 ∧ · · · ∧ xn, β〉.
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Then 〈xi, αj〉 = δij . This clearly implies that N is free with basis x1, . . . , xn.
Furthermore, X = N ⊕ P where P =

⋂n
i=1 Ker(αi), so N is a direct summand of

X.

(ii) ⇐⇒ (iii): Since exterior powers commute with base change, we have
y(p) = x1(p) ∧ · · · ∧ xn(p), so the assertion follows from 0.3.1. Finally, (1) follows
from [4, III, §7.9, Prop. 13].

0.7. k-functors and schemes. Following [6], we will consider schemes over k as
special functors from k-alg to the category of sets, also called k-functors. Mor-
phisms between functors are natural transformations. To fix notations, we give
some examples.

(a) Let A ∈ k-alg. The affine scheme defined by A is the k-functor Spec(A)
given by

Spec(A)(R) = Homk-alg(A,R).

Note the following special cases: For A = {0} we obtain the “empty functor”,
mapping R to ∅ if R 6= {0} and to a one-point set (consisting of the unique homo-
morphism {0} → {0}) if R = {0}.

For A = k, Spec(k) is the “one-point” functor because Homk-alg(k,R) consists
of the unique homomorphism k → R making R a k-algebra.

For A = kI where I is a finite set, we obtain a functor denoted by Ik and
called the constant k-functor defined by I, although “locally constant” would be
more apt. It can be described as follows: For each R ∈ k-alg, Ik(R) is the set
of complete families of orthogonal idempotents (εi)i∈I in R. By the well-known
relation between idempotents and open and closed subsets of Spec(R), Ik(R) can
also be considered as the set of continuous (= locally constant) maps Spec(R) → I,
where I has the discrete topology.

(b) A k-scheme X is a local k-functor for which there exist open affine sub-
schemes Ui covering X [6, I, §1, 3.11]. Refer to [6, I, §1, 3.6, §2, 4.1] for the notion
of an open (closed) subfunctor. “Covering” means that X(K) =

⋃
Ui(K) for all

fields K ∈ k-alg. The union need not be disjoint, and when R is not a field, X(R)
may be strictly bigger than the union of the Ui(R).

(c) The example kI of (a) generalizes in the obvious way to the case of an
arbitrary set I, where now an element of Ik(R) is a family (εi) as before with only
finitely many εi 6= 0. This corresponds to the fact that Spec(R) is quasicompact,
and hence a continuous map to the discrete space I can take only finitely many
values. If I is infinite, Ik is still a scheme but no longer affine.

(d) Let Xi (i ∈ I) be a family of k-functors with the property that Xi({0})
is a one-point set. We define

∐
i∈I Xi to be the functor X given as follows: The

elements of X(R) are the pairs (ε, x) where ε = (εi)i∈I ∈ Ik(R), and x = (xi)i∈I ∈∏
i∈I Xi(εiR). If the Xi are local, this means that X is the local functor associated

to the functor R 7→
⋃̇

i∈I Xi(R). There is a unique morphism deg:
∐

i∈I Xi → Ik
such that Xi = deg−1({i}k), given by (ε, x) 7→ ε.

0.8. Locally monic polynomials. Let t be an indeterminate. A polynomial
f(t) ∈ k[t] is called locally monic if it satisfies the following equivalent conditions:

(i) For all p ∈ S = Spec(k), the localizations f(t)p ∈ kp[t] are monic,
(ii) there exists a finite subset D of N and a family (εd)d∈D of orthogonal

idempotents of k with sum 1 such that f(t) =
∑

d∈D εdfd(t) where fd(t)
is monic of degree d.

If these conditions hold, the function deg f : S → N, p 7→ deg f(t)p, is locally
constant and called the degree of f(t). It is given by
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(deg f)(p) = d ⇐⇒ εd ≡ 1 mod p. (1)

(i) =⇒ (ii): Write f(t) =
∑n

j=0 λjtj where λj ∈ k and let Sd ⊂ S be the set of
p such that deg f(t)p = d, for d ∈ D := {0, . . . , n}. Then

Sd = {p ∈ S : (λd)p = 1 and (λj)p = 0 for j = d+ 1, . . . , n}

which shows that the Sd are open in S, being finite intersections of open sets.
Here we use the following general fact: If M is any k-module and x ∈ M then
{p ∈ S : xp = 0} is the complement of the support of the monogenous k-module
k · x and hence open in S, cf. [3, II, §4.4, Prop. 17]. By our assumption (i),
S =

⋃̇
d∈D Sd. Hence the (Sd)d∈D form a decomposition of S into open and closed

subsets, corresponding to a family (εd)d∈D of orthogonal idempotents with sum 1k

via
p ∈ Sd ⇐⇒ εd ≡ 1 mod p. (2)

Let fd(t) = εdf(t). Then f(t) =
∑

d∈D εdfd(t) and fd(t)p =
{

0 if p /∈ Sd

f(t)p if p ∈ Sd

}
.

In particular, fd(t)p is monic of degree d for all p ∈ Sd. By standard facts on
localization [3, II, §3.3, Cor. 2 of Th. 1], this implies that fd(t) is monic of degree
d. Moreover, deg f is constant equal to d on Sd and hence locally constant on S,
and (1) follows from (2).

(ii) =⇒ (i): Let Sd := Spec(kεd). Then the Sd define a decomposition of S into
open and closed subsets, and for p ∈ Sd and d 6= d′ we have fd′(t)p = 0. Hence
f(t)p = fd(t)p is monic for all p ∈ S.

Remark. The set D can be chosen as any finite subset of N containing the range of
the function deg f . In particular, by reducingD to the range of deg f , all εd are non-
zero and, correspondingly, the Sd non-empty. However, it would be inconvenient
to require this condition, see, e.g., 1.8. To be consistent, we then must consider the
unique element of the polynomial ring over the zero ring as monic.

Locally monic polynomials behave well under base change: Let R ∈ k-alg and
%: k → R the homomorphism making R a k-algebra. Then f(t)R ∈ R[t], obtained
by applying % to the coefficients of f(t), is locally monic and the degree functions
are related by

(deg fR)(q) = (deg f)(%−1(q)), (3)

i.e., the diagram
Spec(R) deg fR - N

@
@@R

Spec(%)
�

���deg f

Spec(k)

(4)

commutes. This follows easily from (ii) above because the (%(εd))d∈D form a com-
plete system of orthogonal idempotents in R.

We also note that the property of being locally monic descends from faithfully
flat base extensions: If R ∈ k-alg is faithfully flat over k and f(t) ∈ k[t] has f(t)R

locally monic then f(t) is locally monic. Indeed, for every p ∈ Spec(k) there exists
q ∈ Spec(R) such that %−1(q) = p, and Rq is faithfully flat over kp. Since the
localization of f(t)R at q is monic and may be identified with the base extension
of f(t)p from kp to Rq, it follows by faithfully flat descent that f(t)p is monic.
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0.9. The copolynomial. Let δ: Spec(k) → N be a locally constant function, cor-
responding to a family of orthogonal idempotents (εd)d∈D with sum 1 in k via
δ(p) = d ⇐⇒ p ∈ Spec(kεd). For example, δ = deg f could be the degree function
of a locally monic polynomial. For R ∈ k-alg and r ∈ R, we define

rδ :=
∑
d∈D

εdr
d and δ · r :=

∑
d∈D

εddr. (1)

Now let f(t) be locally monic and let f(t) =
∑

d∈D εdfd(t) as in (ii) of 0.8. The
copolynomial of f(t) is defined by

f̌(t) := tdeg f · f(t−1) =
∑
d∈D

εdtdfd(t−1). (2)

Clearly, f̌(0) =
∑

d∈D εd = 1, so the copolynomial is comonic. We define the
coefficients ci of f in descending order by the following ascending expansion of
f̌(t):

f̌(t) =
∑
i∈N

(−1)iciti. (3)

Of course, c0 = 1 and ci = 0 for i > max deg f . We can reconstruct f(t) from f̌(t)
and deg f by the formula

f(t) = tdeg f · f̌(t−1), (4)

which yields the expansion

f(t) =
∑
i∈N

(−1)icit(deg f)−i =
∑
d∈D

εd

d∑
j=0

(−1)jcjtd−j . (5)

This also shows why it is more convenient to define the coefficients of f in the
roundabout manner using f̌ rather than f . We finally remark that

f(0) ∈ k× =⇒ f(0)−1f̌(t) is locally monic of degree deg(f). (6)

Indeed, this is easily reduced to the case where deg(f) = d is constant. Then
f(t) =

∑d
i=0(−1)icitd−i and hence f(0)−1f̌(t) =

∑d
i=0(−1)d−icic

−1
d ti.

0.10. Example: Characteristic polynomials. Let M be a finitely generated
and projective k-module and let g ∈ End(M). We refer to [1] for the notion of the
determinant of g. The characteristic polynomial of g is defined by

χg(t) := det(tIdM − g). (1)

This is locally monic, has degree degχg = rkM , and the associated copolynomial
is

χ̌g(t) = det(IdM − tg) =
∑
i∈N

(−1)ici(g)ti, (2)

where the coefficients are given by ci(g) = trace
∧i

g. (Note that in [1], λt(g) :=
χ̌g(−t) is called the characteristic polynomial of g.)

The following lemma is probably well known but we give a proof for lack of a
convenient reference.
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0.11. Lemma. The map associating with a polynomial f ∈ k[t] the quotient E =
k[t]/

(
f
)

induces a bijection between the set of locally monic polynomials in k[t] and
the set of quotient algebras of k[t] which are finitely generated and projective as
k-modules. The inverse map is given by E 7→ χL(z)(t), where z := can(t) ∈ E and
L(z) is multiplication by z in the algebra E. The degree of f equals the rank of E
(as functions on Spec(k)), and f is monic of degree d if and only if E is free with
basis 1, z, . . . , zd−1.

Proof. (a) Let f(t) be locally monic. After decomposing 1k =
∑

d∈D εd as in
0.8, we may assume that f(t) is monic of (constant) degree d. Then it follows from
the usual division algorithm in k[t] that E is free of rank d with basis z0, . . . , zd−1.
Now a standard computation shows that det(tIdE − L(z)) = f(t).

(b) Conversely, let N be an ideal in k[t], let E = k[t]/N be finitely generated
and projective and let f(t) := χL(z)(t). Then f(t) is locally monic of degree rkE,
and by the Cayley-Hamilton Theorem [1, Th. 1.4], 0 = f(L(z)) · 1E = can(f(t))
where can: k[t] → E is the canonical map. Thus f(t) ∈ N, so there exists a
surjective homomorphism u: E′ := k[t]/

(
f(t)

)
→ E. By what we proved in (a), E′

is finitely generated and projective, and rkE′ = deg f = rkE. By standard facts
on finitely generated and projective modules [3, II, §3.3, Th. 1 and Cor. 5 of Th. 1],
u is an isomorphism.

0.12. Schemes defined by modules. With any k-module M , we associate func-
tors Ma and Mu defined by

Ma(R) = M ⊗R, Mu(R) = {x ∈Ma(R) : x unimodular}.
If M = k, then ku is just the functor of units, i.e., ku(R) = R×, so ku = Gm, the
multiplicative group (over k). Now suppose M is finitely generated and projective.
Then Ma

∼= Spec(A) is an affine, smooth and finitely presented k-scheme with
connected fibres over k, where A = O(M), the symmetric algebra over the dual
module M∗ of M [6, II, §1, 2.1]. Moreover, A is faithfully flat over k, so, denoting
by ι: k → A the canonical homomorphism,

Spec(ι): Spec(A) → Spec(k) is open and surjective, (1)
cf. [10, Th. 2.4.6]. Also, Mu is open in Ma, quasi-affine (but in general no longer
affine) and also smooth, finitely presented and with connected fibres. Indeed, choose
a generating set α1, . . . , αn for M∗. Then Mu is the union of the open subschemes
of Ma defined by α1, . . . , αn, i.e., x ∈Mu(R) if and only if the ideal of R generated
by α1(x), . . . , αn(x) is all of R.

Note that A = O(M) is compatible with base ring extension: For all R ∈
k-alg there is a canonical isomorphism AR

∼= O(MR) which will be treated as
an identification. This comes from the canonical isomorphism (MR)∗ ∼= (M∗)R

(because M is finitely generated and projective) and the fact that the symmetric
algebra commutes with base ring extension.

We may identify A with the algebra of k-valued polynomial laws on M in the
sense of [31]. Thus if g ∈ A, then for all x ∈ MR we have g(x) ∈ R, and for all k-
algebra homomorphisms %: R→ S, we have %(g(x)) = g((IdM⊗%)(x)). Usually, this
will be simply written as g(x)S = g(xS). Also, A =

⊕
n∈N An is a graded algebra,

where An is the n-th symmetric power of M∗, corresponding to the homogeneous
polynomial laws of degree n. In particular, A0 = k, A1 = M∗ and A2 is naturally
identified with the quadratic forms on M . We claim that

an idempotent ε of A belongs to A0 = k. (2)
Indeed, decompose ε = ε0 + ε+ where ε0 ∈ A0 and ε+ ∈

∑
i>1Ai. Assume ε+ 6= 0,

and let n > 1 be maximal with the property that ε+ ∈
⊕

i>nAi. Then ε2 =
ε20 +2ε0ε+ +ε2+ = ε0 +ε+ yields ε20 = ε0 and ε+ = 2ε0ε+ +ε2+, or (1−2ε0)ε+ = ε2+.
Now (1− 2ε0)2 = 1 and hence ε+ = (1− 2ε0)ε2+ ∈

⊕
i>2nAi, contradiction.
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0.13. Locally monic polynomials, continued. We keep the notations and con-
ventions introduced in 0.12. Consider a polynomial f(t) =

∑
i>0 gi ti ∈ A[t] and

an element x ∈MR. By evaluating the coefficients of f at x we obtain a polynomial
in R[t], written

f(t;x) :=
∑
i>0

gi(x) ti ∈ R[t]. (1)

Conversely, specifying an element in A[t] amounts to specifying a polynomial f(t;x)
∈ R[t] for all x ∈MR and all R ∈ k-alg, varying functorially with R, i.e., such that
f(t;x)S = f(t;xS) for all R-algebras S. Note also that, for f(t) ∈ A[t] and any
R ∈ k-alg,

fR := f(t)R := f(t)⊗k 1R =
∑
i>0

(gi)R ti ∈ AR[t] (2)

is a polynomial with coefficients in AR.

Now let f(t) ∈ A[t] be locally monic, with degree function deg f : Spec(A) → N,
and let f(t) =

∑
d∈D εdfd(t) as in 0.8, where (εd)d∈D is a complete system of

orthogonal idempotents of A and fd(t) is monic of degree d. By 0.12.2, the εd

belong to k. Let R ∈ k-alg and let %: k → R be the homomorphism making R a
k-algebra. Then the %(εd) = εd ⊗ 1R form a family of orthogonal idempotents with
sum 1R, and f(t)R =

∑
d∈D(εd⊗1R) ·fd(t)⊗1R shows that f(t)R is locally monic.

Let P ∈ Spec(A) and p: = k ∩P = Spec(ι)(P) ∈ Spec(k). Then

(deg f)(P) = d ⇐⇒ εd ≡ 1 modP (by 0.8.1)
⇐⇒ εd ≡ 1 mod p (by 0.12.2).

Thus there exists a unique locally constant function deg f : Spec(k) → N making
the diagram

Spec(A) deg f - N
@

@@R
Spec(ι)

�
���deg f

Spec(k)

(3)

commutative. It can also be described as follows: Aκ(p) is isomorphic to the poly-
nomial algebra in n = rkpM variables over κ(p), in particular, it is an integral
domain. Hence the locally monic polynomial f(t)κ(p) ∈ Aκ(p)[t] is actually monic,
and we have (

deg f
)
(p) = deg f(t)κ(p), (4)

for all p ∈ Spec(k). Indeed, letting d be the unique element of D with εd ≡ 1 mod p
(which exists because p is a prime ideal), we see that f(t)κ(p) = fd(t)κ(p) has degree
d, as required.

Let again R ∈ k-alg and let x ∈ MR. Then f(t;x) =
∑

d∈D εdfd(t;x) =∑
d∈D %(εd)fd(t;x). Furthermore, for q ∈ Spec(R), %(εd) ≡ 1 mod q if and only if

εd ≡ 1 mod %−1(q). Hence f(t;x) is locally monic of degree

deg f(t;x) = (deg f) ◦ Spec(%). (5)

In particular, for R = k (and hence % = Id) we see that deg f = deg f(t;x) for any
x ∈ M . Applying this to fR ∈ AR[t] (cf. (2)) and noting that fR(t;x) = f(t;x)
for all x ∈MR yields

deg fR = (deg f) ◦ Spec(%). (6)

We finally remark that passing to the copolynomial commutes with evaluating the
coefficients, i.e., we have the formula

f̌(t;x) = f(t;x)̌ . (7)

Indeed, by the definition of the copolynomial in 0.9, f(t;x)̌ =
∑

td%(εd)fd(t−1;x),
and f̌(t) =

∑
tdεdfd(t−1). Evaluating this at x yields f̌(t;x) =

∑
tdεdfd(t−1;x).

But since R is a k-algebra, εdr = %(εd)r for all r ∈ R, whence (7).
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0.14. Density. A subfunctor U of a k-functor X is called dense if, for all open
subfunctors V ⊂ X and all closed Z ⊃ U ∩V we have Z = V, and this property
remains valid in all scalar extensions. If X is a scheme then this notion agrees with
“universally schematically dense” in the sense of [11, 11.10].

Let X be a smooth separated finitely presented k-scheme with connected non-
empty fibres, and let U be an open subscheme of X. We refer to [7, Exp. XVIII,
1.7] and [11, 11.10.10] for the equivalence of the following conditions:

(i) U is dense in X,
(ii) there exists a faithfully flat and finitely presented R ∈ k-alg such that

U(R) 6= ∅,
(iii) U(K) 6= ∅ for all algebraically closed fields K ∈ k-alg.

Note that the assumptions on X are in particular satisfied when X = Ma is the
k-scheme defined by a finitely generated and projective k-module M .

For example, let J be a Jordan algebra over k which is finitely generated and
projective as a k-module, let J = Ja be the affine scheme defined by J and U = J×

the subfunctor of invertible elements, defined by U(R) = J×R for all R ∈ k-alg.
Then U is open, being the inverse image of ku under the morphism x 7→ detUx for
all x in all base extensions of J , and it is dense because 1J ∈ U(k).

Density will be used mostly for the following type of argument: Suppose U ⊂ X
is dense, that Y is a separated k-functor, and that f, g: X → Y are morphisms
which agree on U. Then f = g. This is immediate from the definition applied to
V = X and Z the subfunctor of X where f and g agree.

0.15. Pure submodules. Recall [18, §4J] that a submodule P of a k-module X
is called pure if for every k-module N , the map u⊗ IdN : P ⊗N → X ⊗N induced
from the inclusion u: P ⊂ X is injective. For example, this is so if P is a direct
summand or if X/P is flat. We collect some facts on pure submodules.

(a) P is pure if and only if the map P⊗R→ X⊗R is injective, for all R ∈ k-alg.

(b) If P is pure in X then PR (canonically identified with Im(uR)) is a pure
submodule of XR, for all R ∈ k-alg.

(c) Conversely, if R ∈ k-alg is faithfully flat and PR is pure in XR then P is
pure in X.

(d) Suppose X is projective and P ⊂ X is pure and finitely generated. Then
P is a direct summand of X (and hence both P and X/P are projective.)

(e) Suppose k is a principal ideal domain. Then P is pure in X if and only if
P ∩ λX = λP , for all λ ∈ k.

Proof. (a) The stated condition is obviously necessary. To see that it is suffi-
cient, let N be an arbitrary k-module, and let R := k⊕N be the split null extension.
Then the injectivity of P⊗R→ X⊗R implies that also P⊗N → X⊗N is injective.

(b) See [3, I, Ex. 24(e) of §2] or [18, 4.84(f)].

(c) Let N be a k-module. Since R is faithfully flat, the map P ⊗N → X ⊗N
is injective provided the map (P ⊗ N) ⊗ R → (X ⊗ N) ⊗ R is injective. Now
(P ⊗ N) ⊗ R ∼= (P ⊗k R) ⊗R (N ⊗k R) by [4, II, §5.1, Prop. 3], and similarly for
X in place of P . Since PR is pure in XR, the map (PR) ⊗ (NR) → XR ⊗ NR is
injective, whence our assertion.

(d) See [18, p. 164, Ex. 42(a)].

(e) See [3, I, Ex. 24(a) of §2] or [18, Cor. 4.93].
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1. Algebraic elements

1.1. In this section, J always denotes a unital quadratic Jordan algebra over an
arbitrary commutative ring k of scalars. Denote by k[t] the polynomial ring in the
indeterminate t and let a ∈ J . It is well known that there is a unique homomor-
phism ja: k[t]+ → J of Jordan algebras sending t to a. The image of ja is the
subalgebra k[a] of J generated by (1 and) a. The kernel K(a) of ja is a Jordan,
but in general not an associative ideal of k[t]. In case k is a field, K(a) contains a
unique largest associative ideal [16, Section 1] which is of course principal. If k is
arbitrary, we proceed in a somewhat different manner as follows.

Write the elements of J2 = J × J as formal column vectors
(
x
y

)
, x, y ∈ J ,

and correspondingly the endomorphisms of J2 as 2× 2-matrices with entries from
End J . For a ∈ J and i ∈ N, define a[i] ∈ J2 by

a[i] :=
(

ai

ai+1

)
. (1)

Let ha: k[t] → J2 be the unique k-linear map with ha(ti) = a[i], and denote its
kernel by N(a) and its image by M(a). Thus

ha(f(t)) =
(
ja(f(t))
ja(tf(t))

)
, (2)

whence ja = pr1 ◦ ha and N(a) ⊂ K(a). Also, by definition, we have an exact
sequence

0 - N(a) ia- k[t] h′a-M(a) - 0 (3)

of k-modules, where ia is inclusion and h′a is just ha but with codomain M(a) =
Im(ha). If ψ: J → J̃ is a homomorphism of unital Jordan algebras, one checks
immediately that

K(a) ⊂ K(ψ(a)) and N(a) ⊂ N(ψ(a)). (4)

1.2. Lemma and Definition. (a) Let θa :=
(

0 Id
Ua 0

)
∈ End(J2). Then

θ2a =
(
Ua 0
0 Ua

)
, (1)

θa · a[i] = a[i+1], (2)
ha

(
f(t)g(t)

)
= f(θa) · ha

(
g(t)

)
, (3)

for all i ∈ N and f(t), g(t) ∈ k[t]. Hence, regarding J2 as a k[t]-module by letting t
act via θa, ha is a homomorphism of k[t]-modules and M(a) is the k[t]-submodule
generated by a[0].

(b) N(a) is the largest ideal of k[t] contained in K(a). We define

E(a) := k[t]/N(a), (4)

regarded as a commutative associative monogenous k-algebra, generated by the el-
ement z := can(t), and denote by π: E(a)+ → J the homomorphism of Jordan
algebras induced from ja. Then for all b ∈ Ker(π) = K(a)/N(a), b2 = 2b = 0.

(c) Let M0(a) = {w ∈ M(a) : pr1(w) = 0}. Then M0(a) ∼= Ker(π) as k-
modules, and pr2(M0(a)) ⊂ J consists of absolute zero divisors.

11
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Remark. Of course, ha induces a canonical isomorphism

γa: E(a)
∼=-M(a) , γa(zn) = a[n], (5)

of k-modules and even of k[t]-modules. Nevertheless, it is useful to distinguish E(a)
and M(a), in particular, since the algebra structure of E(a) does not correspond
to a multiplication on M(a) induced in a natural way from the Jordan algebra
structure on J2.

Proof. (a) (1) and (2) are immediate from the definitions and (3) follows easily
from (2).

(b) It is clear from (3) that N(a) is an ideal of k[t] and N(a) ⊂ K(a) by
1.1.2. Now suppose I is an ideal of k[t] contained in K(a), and let f(t) ∈ I.
Then also tf(t) ∈ I, and hence ha(f(t)) = 0 by 1.1.2, showing f(t) ∈ N(a). If
g(t) ∈ K(a) then, because K(a) is a Jordan ideal, g(t)2 and tg(t)2 = Ug(t) · t belong
to K(a), whence g(t)2 ∈ Ker(ha) = N(a) by 1.1.2. Similarly, 2g(t) = 1 ◦ g(t) and
2tg(t) = t ◦ g(t) belong to K(a), showing 2g(t) ∈ N(a).

(c) The first statement follows easily from pr1 ◦ha = ja. An element w =
(

0
y

)
belongs to M0(a) if and only if there exists f(t) ∈ k[t] such that ja(f(t)) = 0, i.e.,
f(a) = 0, and y = ja(tf(t). By [15, Cor. 3.3.3], Uy = UaUf(a) = 0.

1.3. Lemma. Let a ∈ J and R ∈ k-alg. We use the notations of 1.2 and 0.1.

(a) Identify k[t]⊗R with R[t] in the canonical way. Then

(ha)R = haR
: R[t] → J2

R. (1)

(b) The image of (ia)R is contained in N(aR) and hence induces a homomor-
phism ϕ: N(a) ⊗ R → N(aR), for which Ker(ϕ) = Ker

(
(ia)R

)
. The image of the

map uR: M(a) ⊗ R → J2
R induced from the inclusion u: M(a) ⊂ J2 is M(aR),

whence a surjective homomorphism u′R: M(a) ⊗ R → M(aR) of R-modules. The
diagram

Ker(ϕ) - 0 - Ker(uR)

? ? ?
N(a)⊗R

(ia)R-R[t] (h′a)R-M(a)⊗R - 0

ϕ

? ?
u′R

0 - N(aR) -
iaR

R[t] -
h′aR

M(aR) - 0

? ? ?
Coker(ϕ) - 0 - 0

(2)

is commutative with exact rows and columns, and there is a canonical isomorphism

∂: Ker(uR)
∼=−→ Coker(ϕ). (3)

(c) The unique R-module homomorphism η: E(a) ⊗ R → E(aR) making the
diagram

E(a)⊗R η - E(aR)

(γa)R

?
∼= ∼=

?
γaR

M(a)⊗R -
u′R

M(aR)

(4)

12
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commutative, is a homomorphism of R-algebras.

(d) If R is flat over k then Ker(uR) = 0 and u′R is an isomorphism.

Proof. (a) The map x 7→ xR from J to JR is a homomorphism of Jordan
algebras over k. Hence (an)R = (aR)n which implies

(ha)R(tn) = ha(tn)R =
(
a[n]

)
R

= (aR)[n] = haR
(tn), (5)

from which (1) follows.

(b) Let f(t) ∈ N(a) and r ∈ R. Then by (1),

haR

(
f(t)⊗ r

)
= (ha)R

(
f(t)⊗ r

)
= ha(f(t))⊗ r = 0.

Since the elements of the form f(t)⊗ r span N(a)⊗R, this proves the existence of
ϕ. Next, let f(t)⊗ r ∈ k[t]⊗R = R[t]. Then

uR

(
h′a(f(t))⊗ r

)
= ha(f(t))⊗ r = (ha)R

(
f(t)⊗ r

)
= haR

(
f(t)⊗ r

)
(by (1)) shows that the image of uR equals the image of haR

which is, by definition,
M(aR). This establishes the existence of u′R.

It is easy to check that (2) is commutative. The exactness of the second row
follows by tensoring 1.1.3 with R, while the exactness of the third row is just 1.1.3,
but for aR instead of a. Now (3) follows from the Snake Lemma [3, I, §1.4].

(c) Let z = can(t) ∈ E(a) and w = can′(t) ∈ E(aR) (where can′: R[t] → E(aR)
is the canonical map) be the generators of E(a) and E(aR), respectively. We show
that η(zn ⊗ 1R) = wn for all n ∈ N, from which the homomorphism property of η
follows easily. Now γaR

(wn) = (aR)[n] while uR

(
(γa)R(zn ⊗ 1R)

)
= uR

(
γa(zn) ⊗

1R

)
= uR(a[n] ⊗ 1R) = (a[n])R, and these two are equal by (5).

(d) Obvious.

1.4. Definition. Let again J be a unital Jordan algebra over k. We will use the
expression “a satisfies a polynomial f(t)” for the fact that f(t) ∈ N(a), i.e., that
ja(f(t)) = ja(tf(t)) = 0. An element a ∈ J is called integral if it satisfies some
monic polynomial. Just as in the case of associative algebras, we have:

a is integral ⇐⇒ M(a) is finitely generated as a k-module. (1)

Indeed, the implication from left to right follows easily from 1.2.2 and induction.
For the reverse, note that θa induces, by 1.2.2, an endomorphism

ζa: M(a) →M(a).

ThenM(a) is a faithful k[ζa]-module. Hence by [3, V, §1.1, Lemma 1], there exists a
monic f(t) ∈ k[t] satisfying f(ζa) = 0. It follows that 0 = f(ζa) ·a[0] = f(θa) ·a[0] =
ha(f(t)) (by 1.2.3), so a satisfies f(t).

In general, integral elements do not have well-defined minimum polynomials,
i.e., the ideal N(a) need not be generated by a (locally) monic polynomial. For

example, let k = Z/4Z, J = Mat2(k)+ and a =
(

0 2
0 0

)
. Then N(a) is generated

by 2t and t2 and E(a) ∼= k ⊕ (k/2k) is not projective as a k-module. Therefore,
we introduce the following notion. An element a ∈ J is called pre-algebraic if E(a)
is a finitely generated and projective k-module. By Lemma 0.11, this is equivalent
to N(a) being the principal ideal generated by a unique locally monic polynomial,

13
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called the minimum polynomial of a and denoted by µa(t). Because E(a) ∼= M(a)
by 1.2.5, we have

a is pre-algebraic ⇐⇒ M(a) is a finitely generated projective k-module. (2)

Obviously, by (1) and (2),

a pre-algebraic =⇒ a integral. (3)

We note that, for a pre-algebraic,

µa(t) = det(tIdM(a) − ζa), µ̌a(t) = det(IdM(a) − tζa). (4)

Indeed, we have the commutative diagram

E(a) L(z) - E(a)

γa

?
∼= ∼=

?
γa

M(a) -
ζa

M(a)

where γa is the isomorphism 1.2.5. Hence the assertion follows from 0.10.2, Lemma
0.11 and the fact that the determinant is compatible with isomorphisms [1, Prop.
1.3(iv)].

The degree of a pre-algebraic a is defined to be the degree of µa(t), i.e., the
locally constant function

deg a: p 7→ degµa(t)p = rkpE(a) = rkpM(a) (5)

on Spec(k). If a has constant degree d, i.e., if µa(t) is monic of degree d, then by
Lemma 0.11, E(a) is free as a k-module with basis 1, . . . , zd−1. Hence 1.2.5 implies

a is pre-algebraic of degree d ⇐⇒ a[0], . . . , a[d−1] is a basis of M(a). (6)

Note that for a pre-algebraic a ∈ J , the exact sequence 1.1.3 splits because
M(a) is in particular projective. It therefore remains exact upon tensoring with
any R ∈ k-alg, so we have, with the notations of Lemma 1.3(b):

a pre-algebraic =⇒ ϕ: N(a)⊗R→ N(aR) injective. (7)

Hence, for a pre-algebraic a, we may and often will identify N(a) ⊗ R with its
image in N(aR). However, even when also aR is pre-algebraic, ϕ is not necessarily
surjective, and hence µa(t)R may be different from µaR

(t). For example, let k = Z
and J = B+ where B is the associative commutative Z-algebra, free of rank 4, with
basis 1, a, b, ab and multiplication table a2 = 2b, b2 = 0. Then K(a) = N(a) = (t4)
so µa(t) = t4. But for R = Z/2Z, JR is the tensor product of the algebra of dual
numbers over R with itself, and the minimum polynomial of aR is t2. This leads
to the following definition:

An element a ∈ J is called algebraic if aR is pre-algebraic and satisfies

µaR
(t) = µa(t)R, (8)

equivalently,
N(aR) = N(a)⊗R, (9)

for all R ∈ k-alg. The equivalence of (8) and (9) follows from the fact that N(a)
and N(aR) are, respectively, the principal ideals generated by µa(t) and µaR

(t).
Of course, if k is a field, the three notions just introduced all coincide with the
usual definition of an algebraic element. They hold for all a ∈ J provided J is
finite-dimensional over k.
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1.5. Proposition. Let a ∈ J and R ∈ k-alg and denote by %: k → R the ring
homomorphism making R a k-algebra.

(a) a is algebraic if and only if M(a) is a finitely generated and projective
k-module and a pure submodule of J2.

(b) If J is finitely generated and projective as a k-module, then a is algebraic
if and only if M(a) is a direct summand of J2.

(c) Let a be algebraic. Then aR is algebraic as well, and the homomorphisms
ϕ, u′R and η of Lemma 1.3 are isomorphisms. The degree functions of a and aR

are related by
(deg aR)(q) = (deg a)(%−1(q)) (1)

for all q ∈ Spec(R).

(d) Conversely, let R be faithfully flat over k and assume that aR is algebraic.
Then a is algebraic.

Proof. (a) If a is algebraic then it is in particular pre-algebraic, so M(a) is
finitely generated and projective by 1.4.2. Because of 1.4.9, the map ϕ of 1.3(b) is
an isomorphism. Hence by 1.3.3, uR: M(a)⊗R→ J2

R is injective for all R ∈ k-alg,
so M(a) is pure by 0.15(a). Conversely, suppose M(a) is finitely generated and
projective and pure, and let R ∈ k-alg. Then uR: M(a)⊗ R → J2

R is injective, so
u′R: M(a)⊗R→M(aR) is an isomorphism. Finitely generated projective modules
remain so under base change. Hence M(aR) is finitely generated and projective,
so aR is pre-algebraic by 1.4.2. Since in particular a itself is pre-algebraic, ϕ is
injective. By 1.3.3, ϕ is surjective as well, so 1.4.9 holds.

(b) Direct summands of finitely generated and projective modules are them-
selves finitely generated and projective and of course pure, and pure submodules of
projective modules are direct summands, by 0.15(d).

(c) From the definition of an algebraic element it is evident that aR is algebraic
along with a. The fact that ϕ, u′R and η are isomorphisms follows from the proof
of (a) and 1.3.4. Formula (1) follows from the definition of the degree function in
1.4.5 and 0.8.3.

(d) We use the characterization given in (a). By Lemma 1.3(d), u′R: M(a)⊗R→
M(aR) is an isomorphism. Since M(aR) is finitely generated and projective, the
same is true of M(a) by [3, I, §3.6, Prop. 12]. Purity of M(a) follows from that of
M(aR) by 0.15(c).

1.6. Power-associativity. An element a ∈ J is called power-associative if the
kernel K(a) = Ker(ja) of the evaluation map ja: k[t] → J (cf. 1.1) is an ideal of the
associative algebra k[t] (and not just a Jordan ideal). By Lemma 1.2, equivalent
conditions are that N(a) = K(a), or that pr1: M(a) → k[a] or π: E(a) → J be
injective. We will say an element a ∈ J is strictly power-associative if aR is power-
associative for all R ∈ k-alg. Any one of the following conditions is sufficient to
guarantee that every element of J is power-associative:

(a) J has no 2-torsion,
(b) J contains no absolute zero divisors,

and any one of the following conditions implies that every element of J is strictly
power-associative:

(c) 2 ∈ k×,
(d) J = B+ is the Jordan algebra associated with an associative or alternative

algebra B.
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Indeed, (a) and (b) follow from Lemma 1.2, and the rest is clear.

Let v: k[a] ⊂ J be the inclusion, let R ∈ k-alg and denote by v′R: k[a] ⊗ R →
R[aR] the induced map. Then we have a commutative diagram of surjective maps

M(a)⊗R
pr1⊗IdR- k[a]⊗R

u′R
? ?

v′R

M(aR) -
pr1

R[aR]

(1)

where u′R is as in Lemma 1.3. By 0.15(a), k[a] is pure if and only if, for all R ∈ k-alg,
v′R is injective, while M(a) is pure if and only if all u′R are injective. Also, all top
maps are bijective if and only if a is power-associative, and all bottom maps are
bijective if and only if a is strictly power-associative. Thus we see that

a is power-associative and k[a] is pure ⇐⇒
a is strictly power-associative and M(a) is pure. (2)

If k is a field, the purity conditions are automatically satisfied, so power-associat-
ivity of an element a implies strict power-associativity of a, and by (c), only the
case where the characteristic is 2 is of interest. But over rings there may exist
power-associative elements which are not strictly power-associative.

Example. Let A be the associative commutative algebra over Z obtained from
Q[t]/(t4) by restricting scalars to Z. Let a := can(t) ∈ A and b := a2/2 and define
J = Z1⊕ Za⊕ Zb⊕ Za3 ⊂ A. Using the relations a2 = 2b, a ◦ b = a3, b2 = 0, one
shows easily that J is a Jordan subalgebra of A; it is not an associative subalgebra
of A because ab /∈ J . Obviously, J is free of rank 4 as a Z-module. Since J has no
2-torsion, every element of J is power-associative. But the element a is not strictly
power-associative, because for R = Z/2Z we have a2

R = 0 6= a3
R. We also see that

k[a] is not pure, because 2b ∈ k[a] but b /∈ k[a] (cf. 0.15(e)). On the other hand,
M(a) is a direct summand of J2 (hence pure), a complementary submodule being

spanned by
(
b
0

)
,

(
0
1

)
,

(
0
a

)
,

(
0
b

)
. In particular, a is algebraic. The algebra

J is also an example of a special but not strictly special Jordan algebra: It loses
speciality after the base change from Z to Z/2Z.

Remark. K. McCrimmon [23] has defined a Jordan algebra J over a field K to be
power-associative if every element of J is power-associative. As remarked above,
every element of J is then even strictly power-associative. But it is not clear if
all elements of all field extensions J ⊗K L are power-associative, even when K is
infinite.

In the presence of (strict) power-associativity, the conditions that an element a
be pre-algebraic or algebraic can be reformulated as follows:

1.7. Corollary. (a) Let a ∈ J be power-associative. Then a is pre-algebraic if
and only if k[a] is finitely generated and projective.

(b) Let a ∈ J be strictly power-associative. Then a is algebraic if and only if
k[a] is finitely generated and projective and a pure submodule of J .

(c) Let a ∈ J be strictly power-associative and let J be finitely generated and
projective. Then a is algebraic if and only if k[a] is a direct summand of J .

Proof. (a) Immediate from 1.4.2 because pr1: M(a) → k[a] is now an isomor-
phism of k-modules.

(b) By strict power-associativity, the horizontal arrows in 1.6.1 are isomor-
phisms. Now the assertion follows from Prop. 1.5(a).

(c) This is immediate from (b) and Prop. 1.5(b).
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Example. The reader may find it instructive to use (c) for showing that the
element a ∈ J = B+ of 1.4 is not algebraic. Here k[a] = Z1 ⊕ Za ⊕ Z2b ⊕ Z2ab is
not a direct summand of J , because J/k[a] ∼= Z2 ⊕ (Z/2Z)2 is not projective as a
Z-module.

1.8. Example: Idempotents. We claim that an idempotent e = e2 ∈ J is
strictly power-associative. Since eR remains an idempotent in JR for all R ∈ k-alg,
it suffices to show e power-associative. Now e2 = e implies e3 = Uee = Uee

2 =

e4 = (e2)2 = e, and then ei = e for all i > 1. Hence e[i] =
(
e
e

)
for all

i > 1, so M(e) = k

(
1J

e

)
+ k

(
e
e

)
. If w = λ

(
1J

e

)
+ µ

(
e
e

)
∈ M(e) and

pr1(w) = λ1J + µe = 0, then applying Ue to this equation yields λe + µe = 0 and
therefore w = 0. Hence pr1: M(e) → J is injective, as desired.

Now let us assume that J is finitely generated and projective as a k-module.
We show that e is algebraic and compute its minimum polynomial. By 1.7(c), e
will be algebraic if and only if k[e] is a direct summand of J . Consider the Peirce
decomposition J = J2 ⊕ J1 ⊕ J0 of J with respect to e. Then 1J = e⊕ (1J − e) ∈
J2 ⊕ J0, and k[e] = k · 1J + k · e = k · e⊕ k · (1J − e), so it suffices to show that k · e
and k · (1 − e) are direct summands of J2 and J0, respectively. This follows from
Lemma 0.5 since e and 1− e are idempotents (in fact, the unit elements) of J2 and
J0. Using the notations of 0.2, we define subsets of S = Spec(k) by

p ∈ S0 ⇐⇒ 1J(p) = 0 ⇐⇒ J(p) = {0},
p ∈ S′1 ⇐⇒ e(p) = 0 6= 1J(p),
p ∈ S′′1 ⇐⇒ e(p) = 1J(p) 6= 0,
p ∈ S2 ⇐⇒ 0 6= e(p) 6= 1J(p).

These sets are open and closed, disjoint, and their union is S. Indeed, let γ, δ and
ε be the support idempotents of 1J , 1J − e and e, respectively (cf. 0.4 and 0.5).
Then these subsets correspond to the following orthogonal idempotents with sum
1k: ε0 = 1−γ, ε′1 = δ(1−ε), ε′′1 = ε(1− δ), and ε2 = εδ. The minimum polynomial
of e satisfies

µe(t)p =


1 if p ∈ S0

t if p ∈ S′1
t− 1 if p ∈ S′′1
t2 − t if p ∈ S2

 .

Put S1 = S′1 ∪ S′′1 and ε1 = ε′1 + ε′′1 . Then the degree function of e takes the value
i on Si, and the minimum polynomial of e and its copolynomial are given by

µe(t) = ε0 + ε1(t− ε) + ε2(t2 − t), µ̌e(t) = 1− εt, (1)

where of course some of the εi may be zero. We note the special cases e = 1J and
e = 0:

µ1J
(t) = γ(t− 1) + (1− γ), µ0(t) = γt + (1− γ). (2)

When J is faithful as a k-module, i.e., when 1J is unimodular or γ = 1 (cf. 0.3.2),
these formulas simplify to µ1J

(t) = t− 1 and µ0(t) = t.

1.9. Lemma. (a) Let λ ∈ k× be a unit. Then an element a ∈ J is (pre-)algebraic
if and only if λa is so, and in this case,

µλa(t) = λdeg aµa(λ−1t), µ̌λa(t) = µ̌a(λt). (1)
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(b) Let a, b ∈ J× be invertible and consider the isotopes J (b) and J (a). Then
a is (pre-)algebraic in J (b) if and only if b is (pre-)algebraic in J (a), and then the
respective minimum polynomials are related by

µ(b)
a (t) = µ

(a)
b (t). (2)

Proof. (a) Put σλ =
(

Id 0
0 λId

)
∈ GL(J2). From 1.1.1, we have (λa)[i] =

λiσλ

(
a[i]

)
and hence σλ(M(a)) = M(λa). Thus M(λa) is finitely generated and

projective (and pure) if and only if M(a) is so. In view of 1.4.2 and Prop. 1.5(a),
this proves the statement about λa being (pre-)algebraic. The diagram

M(a) λζa - M(a)

σλ

?
∼= ∼=

?
σλ

M(λa) -
ζλa

M(λa)

is easily seen to commute. Hence by 1.4.4, µ̌λa(t) = det(IdM(λa) − tζλa) =
det(IdM(a) − λtζa) = µ̌a(λt), and then the first formula of (1) follows by 0.9.4.

(b) We indicate quantities computed in J (v) by a superscript (v); in particular,
the ith power of an element x in the isotope J (v) is x(i,v). Induction shows

Uab
(i,a) = a(i+1,b) and U−1

b b(i+1,a) = a(i,b)

for all i ∈ N, equivalently,(
0 U−1

b

Ua 0

) (
b(i,a)

b(i+1,a)

)
=

(
a(i,b)

a(i+1,b)

)
. (3)

Now φ :=
(

0 U−1
b

Ua 0

)
∈ GL(J2), and (3) says that φ induces an isomorphism

φ: M (a)(b) →M (b)(a) of k-modules. One easily checks that the diagram

M (a)(b)
ζ
(a)
b -M (a)(b)

φ

?
∼= ∼=

?
φ

M (b)(a) -
ζ(b)

a

M (b)(a)

is commutative. Now similar arguments as before complete the proof.

1.10. Invertibility. Let a ∈ J be invertible. Then we define a[i] for all i ∈ Z by
1.1.1 and extend ha to a map ha: k[t, t−1] → J2. It is immediately checked that
θa ∈ GL(J2) with inverse

θ−1
a =

(
0 U−1

a

Id 0

)
, (1)

and that 1.2.2 holds for all i ∈ Z. Thus J2 becomes a module over the Laurent
polynomial ring k[t, t−1] by letting again t act via θa, and formula 1.2.3 then holds
for all f(t), g(t) ∈ k[t, t−1]. The analogue of the usual formula (a−1)i = (ai)−1 is

(a−1)[i] = ω
(
a[−i−1]

)
(i ∈ Z), (2)

where ω =
(

0 Id
Id 0

)
∈ GL(J2) is the switch of factors. This is easily verified. We

finally note that, when a is invertible, M(a) is not necessarily a k[t, t−1]-submodule
of J2. Indeed, 1.2.2 and the fact that M(a) is spanned by all a[i], i>0, implies that

θ−1
a stabilizes M(a) ⇐⇒ θ−1

a (a[0]) = a[−1] ∈M(a). (3)
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1.11. Lemma. For any polynomial f(t) ∈ k[t] define f ](t) by

tf ](t) = f(t)− f(0). (1)

(a) If a ∈ J satisfies a polynomial f(t) with invertible constant term then a is
invertible in J , with inverse

a−1 = −f
](a)
f(0)

. (2)

Moreover, θ−1
a ∈ End(J2) stabilizes M(a), and M(a−1) ⊂ ω

(
M(a)

)
where ω ∈

GL(J) is as in 1.10. If in addition a is integral, then

M(a−1) = ω
(
M(a)

)
. (3)

(b) Suppose a ∈ J is algebraic. Then a ∈ J× if and only if µa(0) ∈ k×. In this
case, a−1 is algebraic as well, of the same degree as a, formula (3) holds, and the
minimum polynomial of a−1 is

µa−1(t) =
µ̌a(t)
µa(0)

. (4)

Proof. (a) For fields, (2) is proved in [16, Sec. 1, Lemma 1], and the proof is
identical in case of a base ring. For the convenience of the reader, we repeat the
argument. Squaring (1) gives t2f ](t)2 = f(t)2− 2f(0)f(t)+ f(0)2 and applying ja
to this yields Uaf

](a)2 = f(0)2 · 1J , or Uab
2 = 1J where b := −f ](a)/f(0). Hence

1J is in the range of Ua so a is invertible. Now multiply (1) with t2 to obtain
t2f ](t) = tf(t)− tf(0). As tf(t) ∈ N(a), applying ja yields Uaf

](a) = −f(0)a or
Uab = a and therefore b = U−1

a a = a−1.
We show that θ−1

a stabilizes M(a) by verifying the condition of 1.10.3. Apply
ha to (1) and use 1.2.3. Then θa · ha(f ](t)) = −f(0)a[0], and hence θ−1

a · a[0] =
−f(0)−1ha(f ](t)) ∈ M(a), as desired. Thus all a[i] for i < 0 lie in M(a). From
1.10.2, it follows that M(a−1) = ω

(
ha

( ∑
j>1 k · t−j

))
⊂ ω

(
M(a)

)
.

Now assume a is integral, so it satisfies a monic polynomial, say a[n]+λ1a
[n−1]+

· · · + λna
[0] = 0. Applying θ−n−1

a to this and using 1.2.2 yields
∑n

i=0 λia
[−i−1] =

0, and by 1.10.2, we obtain
∑n

i=0 λi(a−1)[i] = 0, so a−1 satisfies the polynomial
1 + λ1t + · · ·+ λntn with constant term 1. Thus we may switch the roles of a and
a−1 and have M(a) ⊂ ω

(
M(a−1)

)
. Now it follows from ω2 = Id that (3) holds.

(b) For the first statement, and by what we proved in (a), it remains to show
that a ∈ J× implies µa(0) ∈ k×. Assume this is not the case. Then there exists
a maximal ideal m ⊂ k such that µa(0) ∈ m. Let K := k/m. By 1.4.8, we have
µaK

(0) = µa(0) ⊗ 1K = 0, whence aK is not invertible in JK by [16, Sec. 1,
Lemma 1]. On the other hand, invertible elements remain so under base change,
contradiction.

Now let a be algebraic and invertible. Then a is in particular integral and
satisfies µa(t) whose constant term is invertible. Hence part (a) shows that (3)
holds. Since ω ∈ GL(J2), it follows from (3) that M(a−1) is finitely generated and
projective and pure in J2, so a−1 is algebraic by Prop. 1.5(a). From 1.10.2 one sees
that the diagram

M(a) (ζa)−1
- M(a)

ω

?
∼= ∼=

?
ω

M(a−1) -
ζa−1

M(a−1)

commutes. Hence µa−1(t) = det(tIdM(a−1) − ζa−1) = det(tIdM(a) − (ζa)−1) =
det(−ζa)−1 · det(Id− tζa) = µa(0)−1 · µ̌a(t). Finally, deg a = deg a−1 follows from
(4) and 0.9.6.
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1.12. Lemma. Let J be a finitely generated and projective Jordan algebra over k
and a ∈ J . Then a is algebraic of degree d if and only if

a[0] ∧ · · · ∧ a[d−1] ∈
d∧
J2 is unimodular, and (1)

a[0] ∧ · · · ∧ a[d] = 0. (2)

Proof. “Only if”: As remarked in 1.4, M(a) is free with basis a[0], . . . , a[d−1].
By 1.5(b), it is a direct summand of J2, and obviously a[d] ∈ M(a). Thus (1) and
(2) follow from Lemma 0.6.

“If”: From (1) and (2) and Lemma 0.6, it follows that the span, say N , of
a[0], . . . , a[d−1] is a free direct summand of J2 with basis a[0], . . . , a[d−1], and that
a[d] ∈ N . Now 1.2.2 implies that N contains all a[i] and hence that N = M(a). By
1.5(b), a is algebraic and obviously of degree d.

1.13. Definition. For a unital Jordan algebra J over k and d ∈ N, we define the
following subsets of J :

Jalg := {a ∈ J : a is algebraic}, Jalg,d := {a ∈ Jalg : deg a = d}.

Now let J = Ja be the functor from k-alg to the category of sets defined by J as
in 0.12, i.e., J(R) = J ⊗R, for all R ∈ k-alg. We put

Jalg(R) := (JR)alg, Jalg,d(R) := (JR)alg,d,

for all R ∈ k-alg and denote by Nk the constant functor determined by N as in
0.7(c).

1.14. Proposition. (a) Jalg and Jalg,d are hard subsheaves of J in the sense of
[6, III, §1, 3.3], in particular, they are local functors. The degree function a 7→ deg a
associated to an algebraic element a defines a morphism deg: Jalg → Nk such that
Jalg,d = deg−1({d}k), for all d ∈ N. The Jalg,d are open subfunctors of Jalg which
cover Jalg.

(b) Suppose J is finitely generated and projective as a k-module and let P (n) :=∧n
J2. Then

∧n(J2
R) ∼= (P (n))R for all R ∈ k-alg, and hence there are morphisms

pn: J → P
(n)
a given by x 7→ x[0] ∧ · · · ∧ x[n−1], for all x ∈ JR, R ∈ k-alg. Let P (n)

u

be the open subscheme of unimodular elements of P (n)
a , cf. 0.12. Then Jalg and the

Jalg,d are finitely presented quasi-affine k-schemes, given by

Jalg,d = p−1
d

(
P (d)

u

)
∩ p−1

d+1(0) and Jalg =
r∐

d=0

Jalg,d,

where r = max rk J2.

Proof. (a) Let X = Jalg or X = Jalg,d. We first show that X is a subfunctor of
J, i.e., that, for all homomorphisms %: R → S of k-algebras, J(%)

(
X(R)

)
⊂ X(S).

Since %: R → S makes S an R-algebra, aS ∈ X(S) follows from Prop. 1.5(c),
(applied to JR and S instead of J and R). To say that X is a hard sheaf just means
that it commutes with finite direct products (which is obvious), and that for all
R ∈ k-alg and all faithfully flat R-algebras S, the sequence of sets

X(R) - X(S) -- X(S ⊗R S)
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is exact, where the arrows are induced from R → S and the two embeddings
S → S ⊗R S into the first and second factor. After changing the base ring from k
to R, this is precisely the statement of Prop. 1.5(d).

It is easy to check that there is a morphism (i.e., a natural transformation of
functors) deg: Jalg → Nk such that degR: Jalg(R) → Nk(R) is given by(

degR(a)
)
(p) = (deg a)(p),

for all R ∈ k-alg, a ∈ Jalg(R), p ∈ Spec(R). Clearly a ∈ Jalg,d(R) if and only
if the function degR(a): Spec(R) → N is constant equal to d. This proves that
deg−1({d}k) = Jalg,d. Finally, if K is a field then Spec(K) is a one-point set, so
the function degK(a) is constant, for every a ∈ Jalg(K) (this is just saying that an
algebraic element over a field has a well-defined (constant) degree). It follows that
Jalg(K) is the disjoint union of the Jalg,d(K), proving the last assertion.

(b) Let r = max{rkp(J2) : p ∈ Spec(k)}. Then clearly Jalg,d = ∅ for d > r.
Hence, to prove the statement for Jalg, it suffices to show that the Jalg,d are finitely
presented quasi-affine schemes. Since J is finitely generated and projective so are
the exterior powers P (n), and hence they define affine finitely presented schemes
P

(n)
a and open quasi-affine finitely presented subschemes P (n)

u of unimodular ele-
ments. Also, exterior powers commute with base change, so the natural homomor-
phism

∧n(J2
R) → P

(n)
R is an isomorphism. This proves the existence of pn. Now

Lemma 1.12 (which of course holds in all base ring extensions as well) shows that
Jalg,d = Z ∩U where Z = p−1

d+1(0) and U = p−1
d (P (d)

u ) are, respectively, closed and
open finitely presented subschemes of J [6, I, §3]. This completes the proof.

Remark. Let in particular k be a field and J finite-dimensional. Then every
element of J is algebraic, so (b) shows J is the disjoint union of the Jalg,d. Over a
ring, the union is still disjoint, but there may be non-algebraic elements.

2. Generically algebraic algebras

2.1. The function deg J . In this section, J always denotes a unital quadratic
Jordan algebra over an arbitrary ring k which is finitely generated and projective
as a k-module, and J = Ja the affine k-scheme defined by J as in 0.12. For
every prime ideal p ∈ Spec(k), J(p) = J ⊗ κ(p) is finite-dimensional and therefore
generically algebraic over κ(p) [16, Sec. 2, Th. 2]. In particular, it has a well-defined
generic minimum polynomial whose degree is, by definition, the degree deg J(p) of
J(p). We thus have a function deg J : Spec(k) → N given by

(deg J)(p) := deg J(p).

This function is lower semicontinuous (where N has the discrete topology). Indeed,
let pd: J → P

(d)
a be as in 1.14 and let Y = p−1

d (P (d)
u ). Then Y is open in J. Let

deg J(p) = d and let K be an algebraic closure of κ(p). Then it follows from [16,
Section 3] that there exists x ∈ JK such that x[0], . . . , x[d−1] are linearly indepen-
dent, i.e., Y(K) 6= ∅. Let |Y| be the open subset of Spec(A) underlying the open
subscheme Y, cf. [6, I, §1, No. 4]. Then by 0.12.1, U := p(|Y|) ⊂ Spec(k) is an
open neighbourhood of p, and for all q ∈ U the fibre of Y over q is not empty. Thus
there exists y ∈ J ⊗L where L is an algebraic closure of κ(q), for which y ∈ Y(L),
i.e., such that y[0], . . . , y[d−1] are linearly independent, and hence the degree of J(q)
is at least d.

The degree of J behaves as expected under base change, namely,

deg JR = (deg J) ◦ Spec(%) (R ∈ k-alg), (1)
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where %: k → R is the homomorphism making R a k-algebra. Indeed, if q ∈ Spec(R)
and p = %−1(q) ∈ Spec(k), then κ(q) is, via %, an extension field of κ(p), so by
the invariance of the generic minimum polynomial of a Jordan algebra over a field
under field extension, deg J(p) = deg J(p)⊗κ(q) = deg JR(q). — For later use, we
note:

a ∈ J algebraic =⇒ deg a6 deg J. (2)

Indeed, for every p ∈ Spec(k), the degree of a at p is the degree of µa(t)κ(p) by
1.4.5, and by 1.4.8, this is the same as µa(p)(t), which divides the generic minimum
polynomial of J(p).

2.2. Definition. Let J be as above, let A = O(J) be the affine algebra of J (cf.
0.12), and let f(t) ∈ A[t] be locally monic. Using the notations of 0.13, we say J
satisfies f(t) if, for all R ∈ k-alg, every x ∈ J(R) satisfies the polynomial f(t;x),
i.e., f(t;x) ∈ N(x). Obviously, this condition is stable under base change, i.e., if J
satisfies f(t) then JR satisfies f(t)R, for all R ∈ k-alg. In particular, J(p) satisfies
f(t)κ(p) for all p ∈ Spec(k), so that f(t)κ(p) is a multiple of the generic minimum
polynomial of J(p). Thus by 0.13.4 and the definition of the degree function of J ,
we have:

J satisfies f(t) =⇒ deg J 6 deg f(t). (1)

Note that such f always exist. For example, f(t;x) = det(t2Id − Ux) is locally
monic, and by the Cayley-Hamilton Theorem, f(Ux;x) = 0 in End(JR) for all
R ∈ k-alg. Hence 0 = f(Ux;x) · 1J = f(Ux;x) · x, cf. [16, Section 1, Lemma 2].
However, it is in general not true that J satisfies a locally monic f for which equality
holds in (1). This leads to the following definition:

J is called generically algebraic if there exists a locally monic polynomial m(t) ∈
A[t] such that

(i) J satisfies m(t), i.e., for all R ∈ k-alg and all x ∈ J(R), x satisfies the
polynomial m(t;x),

(ii) deg J = degm(t); equivalently, that for all prime ideals p ∈ Spec(k),
m(t)⊗k 1κ(p) is the generic minimum polynomial of J(p).

An associative or alternative algebra B will be called generically algebraic if the
associated Jordan algebra B+ has this property. — It is useful to note that (ii) is
equivalent to the condition

(ii)′ m(t)K is the generic minimum polynomial of JK , for all fields K ∈ k-alg.

This follows easily from the fact that the kernel of the canonical map k → K is a
prime ideal p of k, so K is an extension field of κ(p), and the well-known invariance
of the generic minimum polynomial of a finite-dimensional Jordan algebra under
base field extensions.

A polynomial m(t) satisfying (i) and (ii) will be called a generic minimum
polynomial for J . Actually, we will show below in 2.7(a) that m(t) is uniquely
determined by (i) and (ii).

2.3. Remarks. (a) The property of being generically algebraic is stable under
base change (and descends from faithfully flat base extensions, see 2.7(b)): If J is
generically algebraic over k and m(t) is a generic minimum polynomial for J then
JR is generically algebraic over R and m(t)R is a generic minimum polynomial for
JR, for all R ∈ k-alg.

Indeed, by general facts, JR is finitely generated and projective over R, and by
0.13, m(t)R is locally monic. As noted before, JR satisfies m(t)R. Hence condition
(i) holds for m(t)R, and condition (ii) follows from 0.13.6 and 2.1.1.
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(b) By condition (ii) and 0.13.3, the degree function deg J of a generically
algebraic J is locally constant on Spec(k). Thus we can decompose k =

∏
d∈D kd

and correspondingly Spec(k) =
∐

d∈D Spec(kd) such that deg J is constant equal to
d on Spec(kd); equivalently, that J ⊗ kd is generically algebraic of constant degree
d over kd. In proofs, this fact will often be used by employing a phrase like “after
decomposing the base ring, we may assume that J has constant degree equal to
d.” There are, however, natural examples of generically algebraic Jordan algebras
whose degree functions are not constant, see 2.4(d).

(c) In the literature, the terminology “generically algebraic Jordan algebra of
degree d”, in particular for d = 2 and d = 3, has been used in an informal fashion
for Jordan algebras over rings which possess a monic polynomial m(t) of degree d
satisfying condition (i), e.g., in [29, 30, 20]. Since condition (ii) does in general
not hold for these examples, they are not necessarily generically algebraic in the
present sense.

2.4. Examples. (a) If k is a field, every finite-dimensional Jordan algebra over k
is generically algebraic in the present sense, and its generic minimum polynomial
is the usual one.

(b) Let either C be a composition algebra of rank >2 over k as defined in [28,
1.4] or let C = k. (Note that k itself is not a composition algebra in the sense of
[28] unless 2 is a unit in k). Consider the Jordan algebra J = Hd(C, k) of hermitian
d × d-matrices over C with diagonal entries in k. Then it is easily seen from [22,
pp. 501–503] that J is generically algebraic of degree d, provided d 6 3. If C is
associative, then Hd(C, k) is generically algebraic of degree d for all d> 1.

(c) We leave it to the reader to show that J is generically algebraic of degree 0 if
and only if J = {0}, and of degree 1 if and only if J ∼= k. The generically algebraic
algebras of degree 2 are precisely the Jordan algebras associated with quadratic
forms with base point on finitely generated and projective k-modules of rank >2,
see 3.7. The generically algebraic Jordan algebras of degree 3 are all obtained by
the “general cubic construction”, see 3.9.

(d) Let M be a finitely generated and projective k-module. Then J :=
End(M)+ is generically algebraic, with generic minimum polynomial given by the
characteristic polynomial

m(t;x) = det(tId− x)

where det is the determinant of an endomorphism of a finitely generated and pro-
jective module, see [1]. The degree of J is given by deg(J) = rk(M) and therefore
is in general not constant. More generally, Azumaya algebras over k are generically
algebraic [17, III, §1], as are central separable Jordan algebras over rings containing
1
2 [2, §1].

(e) Let J ′ and J ′′ be generically algebraic with generic minimum polynomials
m′ and m′′. Then it is easily seen that J = J ′ × J ′′ is generically algebraic with
generic minimum polynomial m(t; (x′, x′′)) = m′(t;x′) ·m′′(t;x′′) and that deg J =
deg J ′ + deg J ′′.

(f) By 2.3(b), the degree function of a generically algebraic Jordan algebra J is
locally constant on Spec(k). This necessary condition gives easy examples of finitely
generated and projective Jordan algebras which are not generically algebraic. For
example, let J = B+ where B is as in 1.4. Then

(deg J)(p) =
{

2 if p = (2)
4 if p 6= (2)

}
23



22 November 2005

is not constant on the connected space Spec(Z). On the other hand, there are
examples of finitely generated and projective Jordan algebras of constant degree
which are not generically algebraic, see 3.7.

2.5. Primitive elements. Let J be finitely generated and projective as a k-
module. An element a ∈ J is called primitive if a is algebraic and deg a = deg J .
We define

Jprim = {a ∈ J : a primitive} and Jprim(R) := (JR)prim ⊂ J(R),

for all R ∈ k-alg. Then Jprim is a subfunctor of J (actually, of Jalg): Indeed,
let R → S be a homomorphism of k-algebras, and let a ∈ Jprim(R). Then aS ∈
J(S) = (JR)S is algebraic by Prop. 1.5(c), and from 1.5.1 and 2.1.1, it follows that
deg aS = deg JS .

In case J is generically algebraic and m(t) is a generic minimum polynomial of
J , we have

a is primitive ⇐⇒ a is algebraic and µa(t) = m(t; a). (1)

Since deg a = deg µa(t) by definition, this is immediate from (ii) of 2.2 and the fact
that µa(t) divides m(t; a). Also,

a primitive =⇒ µ̌a(t) = m̌(t; a) (2)

which follows immediately from 0.13.7.

2.6. Lemma. Let J be generically algebraic. Then Jprim is an open dense finitely
presented subscheme of J, given as follows: Decompose k =

∏
d∈D kd such that

Jd := J ⊗ kd has constant degree d, cf. 2.2(b). Then, in the notation of 1.13 and
of 0.7(d),

Jprim =
∐
d∈D

(Jd)alg,d.

In particular, Jprim = Jalg,d if J has constant degree d.

Proof. Since J =
∐

d∈D Jd where Jd = (Jd)a is the affine scheme defined by Jd,
we may assume that deg J = d is constant. Then by definition, a ∈ Jprim(R) if and
only if a is algebraic and has degree d, so Jprim = Jalg,d.

Now we show that Jalg,d is open and dense in J. Consider the morphisms
pn: J → P

(n)
a of 1.14(b). By (i) of 2.2, x[d] is a linear combination of x[0], . . . , x[d−1]

in all base ring extensions, which shows that pd+1 = 0. Hence by Prop. 1.14(b),
Jalg,d is the inverse image of the open subscheme P (d)

u of P (d)
a under pd and therefore

open in J. To prove that it is dense, it suffices by 0.14(iii) to show that Jalg,d(K) 6=
∅, for all algebraically closed fields K ∈ k-alg. This follows from well-known results
on Jordan algebras over fields, see [16, Section 3].

Remark. Although Jprim is dense in J, this does not imply that J itself contains
any primitive elements. For example, let k = F2 and J = k3, which by 2.4(e) is
generically algebraic of degree 3. Then an = a for all n> 1 and all a ∈ J , so M(a)
has dimension 62, while for a to be primitive, we must have dimM(a) = 3. On
the other hand, by 0.14(ii), there always exists a faithfully flat R ∈ k-alg such that
Jprim(R) 6= ∅.

2.7. Proposition. (a) The generic minimum polynomial m(t) of a generically
algebraic Jordan algebra J is uniquely determined. The coefficients mi of m(t),
defined as in 0.9.4 by the expansion
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m̌(t;x) =
∑
i>0

(−1)imi(x)ti, (1)

are homogeneous of degree i. In particular, m0 = 1 and m1 is a linear form on J ,
called the generic trace of J . The generic norm, defined by

N(x) := m(0;−x) = (−1)deg Jm(0;x), (2)

is locally homogeneous of degree deg J , i.e., it satisfies

N(rx) = rdeg JN(x), (3)

for all r ∈ R, x ∈ JR, R ∈ k-alg; see 0.9.1 for the notation rdeg J . The mi and
hence also m(t) and N are invariant under isomorphisms in the obvious sense and
under derivations in the sense that

∂∆(x)mi

∣∣
x

= 0, (4)

for all ∆ ∈ Der(J).

(b) (Descent) Let J be a Jordan algebra over k, let R ∈ k-alg be faithfully
flat over k and suppose that J̃ := JR is generically algebraic over R. Then J is
generically algebraic over k.

Remarks. (i) Despite appearances, the sum in (1) is finite, because mi = 0 for
i > max deg J . The derivative ∂vf

∣∣
x

of a polynomial law f at x in direction v is
defined by f(x + εv) = f(x) + ε∂vf

∣∣
x
∈ J ⊗ k(ε), where k(ε) = k[t]/(t2) is the

algebra of dual numbers.
(ii) In [30, Remark after 2.6], examples of isomorphisms are given which do not

preserve norms. This is no contradiction to (a) because the “norms” in question
are the cubic forms of a cubic norm structure. The algebras in these examples are
not generically algebraic of degree 3 and hence have generic norms different from
the cubic forms of the norm structure, see also the remark made in 3.9.

Proof. (a) Suppose m(t) and m′(t) are generic minimum polynomials for J .
Then by 2.5.1, m(t; a) = µa(t) = m′(t; a) for all a ∈ Jprim(R) and all R ∈ k-alg,
so m(t) = m′(t) follows from density of Jprim.

By [31, I, §8], mi is homogeneous of degree i if and only if

mi(rx) = rimi(x), (5)

for all r ∈ R, x ∈ JR, R ∈ k-alg. Since ku is dense in ka and Jprim is dense in
J, it suffices to show that this holds for all r ∈ R× and x ∈ Jprim(R). Then by
Lemma 1.9, rx is algebraic and we have µ̌rx(t) = µ̌x(rt). Hence, using 0.13.7,

m̌(t; rx) = µ̌rx(t) = µ̌x(rt) = m̌(rt;x).

Now (5) follows by comparing coefficients at powers of t in (1). In particular, m1

is homogeneous of degree 1 and thus a linear form on J [31, I, §11]. For (3), we
may, after decomposing the base ring, assume that J has constant degree d. Then
N = md is homogeneous of degree d.

The invariance under isomorphisms is clear from the uniqueness. In particular,
the mi are invariant under all automorphisms. If ∆ ∈ Der(J) then Φ := Id +
ε∆ ∈ Aut(JR) where R = k(ε). As remarked in 2.2(a), JR is generically algebraic
with generic minimum polynomial m(t)R. Hence mi(Φ(x)) = mi(x), which after
expansion yields (4).
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(b) Since J̃ is in particular finitely generated and projective so is J by [3, I,
§3.6, Prop. 12]. Hence, deg J is well-defined.

Let Ã = O(J̃) = A ⊗ R where A = O(J), and let m̃(t) ∈ Ã[t] be the generic
minimum polynomial of J̃ . We show that m̃(t) is “defined over k”, i.e., of the form
m(t)R, obtained by base change from a (unique) polynomial m(t) ∈ A[t]. The
algebra S := R ⊗k R can be considered as an R-algebra in two ways by means of
the embeddings %1, %2: R → S into the first and second factor. We denote these
R-algebra structures by S1 and S2, respectively. By general facts on faithfully flat
descent [17, Ch. III], m̃(t) is defined over k if and only if m̃(t)S1 = m̃(t)S2 . By
2.3(a) (applied to J̃ over the base ring R), J̃Si

is generically algebraic over S with
generic minimum polynomial m̃(t)Si , for i = 1, 2. Since J̃ = J ⊗k R is defined over
k, we have J̃Si = (J⊗kR)⊗RSi = J⊗kSi = J⊗kS (because Si = S as a k-algebra
by restriction of scalars from R to k). Hence m̃(t)S1 = m̃(t)S2 follows from the
uniqueness of the generic minimum polynomial of J⊗k S shown in (a). This proves
the existence of m(t) ∈ A[t] with m(t)R = m̃(t).

Now it is easy to see that m(t) meets the requirements of Definition 2.2. First,
Ã is faithfully flat over A and m̃(t) can be considered as obtained from m(t) by base
change from A to Ã. Hence m(t) is locally monic, as noted in 0.8. From the fact
that J̃ satisfies m(t)R and that R is faithfully flat, it follows easily that J satisfies
m(t). Finally, let %: k → R be the homomorphism making R a k-algebra. Then
(degm) ◦ Spec(%) = deg m̃ (by 0.13.6) = deg J̃ (by condition (ii) of 2.2, because
J̃ is generically algebraic over R) = (deg J) ◦ Spec(%) (by 2.1.1). Now Spec(%) is
surjective because R is faithfully flat over k, so we conclude that condition (ii) of
2.2 holds for m(t).

2.8. Lemma. Let E ∈ k-alg be a commutative associative k-algebra which is
finitely generated and projective as a k-module. Then the following conditions are
equivalent:

(i) E is generically algebraic of degree degE = rkE,
(ii) E becomes monogenous after a faithfully flat base change.

If these conditions hold then the generic minimum polynomial of E is m(t;x) =
det(tId − L(x)) and the primitive elements of E are precisely the generators of E
as a k-algebra.

Remark. Algebras satisfying these conditions play an important role in the theory
of the norm functor [8] where the property (ii) is called “locally simple”, see also
[9].

Proof. (i) =⇒ (ii): Let E = Ea be the k-scheme defined by E. By Lemma 2.6,
Eprim is open and dense in E, so there exists a faithfully flat (and even finitely
presented) R ∈ k-alg such that ER contains a primitive element z. Since z is
strictly power-associative, R[z] ∼= M(z) and R[z] ⊂ ER is a direct summand as an
R-module by Cor. 1.7(c). It follows that rkR[z] = rkM(z) = deg(z) = degER

(because z is primitive) = rkER (by 2.1.1). Thus R[z] = ER is monogenous, and
we also see that primitive elements are generators.

(ii) =⇒ (i): By the descent property proved in Prop. 2.7(b) and the behaviour
of the degree under base change (2.1.1), we may assume that E is monogenous,
say, E = k[z]. Clearly, the indicated polynomial m(t) is locally monic, and from
the Cayley-Hamilton Theorem it follows that E satisfies m(t). Hence degE 6
degm(t) by 2.2.1. By Lemma 0.11, E ∼= k[t]/

(
m(t; z)

)
. Since E is an associative

algebra, z is strictly power-associative in the sense of 1.6. Because E = k[z], it
follows from Cor. 1.7(c) that z is algebraic, and obviously µz(t) = m(t; z). Hence
degm(t) = degm(t; z) = (by 0.13.5 in the special case R = k) = degµz(t) =
deg z (by definition of the degree of an algebraic element in 1.4.5) 6degE (by
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2.2.1). Thus degE = degm(t), so E is generically algebraic with generic minimum
polynomial m(t). As degµz(t) = rkE by Lemma 0.11, we have degE = rkE. We
also see that z is primitive because deg z = degE.

2.9. Lemma. Let J be generically algebraic with generic minimum polynomial
m(t), and let a ∈ J be primitive. Let E := E(a) and π: E+ → J be as in 1.2(b).
Then E is monogenous and finitely generated and projective, with rkE = deg J .
For all y ∈ ER and R ∈ k-alg,

m(t;π(y)) = det(tId− L(y)), m̌(t;π(y)) = det(Id− tL(y)), (1)

where L(y) is left multiplication with y in E.

Proof. E is finitely generated and projective by 1.2.5 and 1.4.2, and it is gener-
ically algebraic with generic minimum polynomial

mE(t; y) = det(tIdE − L(y)) (2)

by Lemma 2.8. The affine scheme E := Ea defined by E is smooth, finitely presented
and with connected fibres. By Lemma 2.6, Eprim is open in E and Jprim is open
in J. Hence U: = Eprim ∩ π−1(Jprim) is open in E. Moreover, z = can(t) ∈ E
is primitive by Lemma 2.8, and π(z) = a ∈ J is primitive by assumption, whence
z ∈ U(k). Thus U is dense in E by 0.14. We claim that

µy(t) = µπ(y)(t) for all y ∈ U(R), R ∈ k-alg. (3)

Indeed, y and b := π(y) are algebraic elements of ER and JR, respectively, so they
have well-defined locally monic minimum polynomials, generating, respectively, the
ideals N(y) and N(b) of R[t]. Moreover, N(y) ⊂ N(b) by 1.1.4, so µy(t) is a multiple
of µb(t). Hence it suffices to show that both polynomials have the same degree,
i.e., that deg b = deg y. Since y and b are primitive, deg y = degER = rkER

(by 2.8) and deg b = deg JR. Also, since a is primitive, deg J = deg a = rkE, cf.
1.4.5, and therefore also deg JR = rkER. This implies deg y = deg b, so we have
(3). It follows that det(tIdE − L(y)) = mE(t; y) (by (2)) = µy(t) (because y is
primitive) = µπ(y)(t) (by (3)) = m(t;π(y)) (because π(y) is primitive). Hence the
first formula of (1) holds for all y ∈ U(R) and all R ∈ k-alg. Since U is dense in
E, it holds for all y ∈ E(R). The second formula is clear from 0.10.1 and 0.10.2.

2.10. The adjoint. Let J be generically algebraic with generic minimum polyno-
mial m(t). We define the polynomial m](t) ∈ A[t] as in 1.11.1 by

tm](t;x) = m(t;x)−m(0;x), (1)

and the adjoint of an arbitrary x ∈ JR (R ∈ k-alg) by

x] = m](−x;−x). (2)

From the homogeneity of the coefficients mi of m(t) it follows that m(t;x) is locally
homogeneous of degree deg J in (t;x), i.e., m(λt;λx) = λdeg Jm(t;x). Hence x 7→
x] is a locally homogeneous polynomial law of degree (deg J) − 1. If deg J = d is
constant, we have

m](t;x) =
d∑

i=1

(−1)i−1mi−1(x)td−i, x] =
d∑

i=1

mi−1(x)(−x)d−i. (3)

We also note the formulas

Uxx
] = N(x)x, Ux(x])2 = Ux]x2 = N(x)21J , (4)

which follow by applying j−x to the equations t2m](t;−x) = tm(t;−x) − tN(x)
and

[
tm](t;−x)

]2 =
[
m(t;−x)−N(x)

]2.
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2.11. Theorem. Let J be a generically algebraic Jordan algebra over k. We use
the notations introduced in 2.7 and 2.10.

(a) The generic minimum polynomial and copolynomial can be recovered from
the generic norm by

m(t;x) = N(t1J − x), m̌(t;x) = N(1J − tx). (1)

In particular, m̌(t; 0) = N(1J) = 1, m̌(t; 1J) = (1− t)deg J and

mi(1J) =
(

deg J
i

)
(i ∈ N). (2)

(b) For all x ∈ J , the generic norm is multiplicative on k[x] in the sense that

N
(
(fg)(x)

)
= N(f(x))N(g(x)) (3)

for all f, g ∈ k[t]. In particular,

N(xj) = N(x)j (j ∈ N). (4)

(c) The element x ∈ J is invertible if and only if N(x) ∈ k×. In this case,

x−1 =
x]

N(x)
, (5)

m(t;−x−1) =
m̌(t;−x)
N(x)

, (6)

N(x−1) =
1

N(x)
, (7)

N(x]) = N(x)(deg J)−1, (8)
x]] = N(x)(deg J)−2x. (9)

(d) x ∈ J is nilpotent if and only the mi(x) ∈ k are nilpotent, for all i> 1.

(e) The derivative of mi+1 in the direction of 1J is

∂1J
mi+1

∣∣
x

=
(
(deg J)− i

)
mi(x). (10)

Proof. (a) By density of Jprim (Lemma 2.6), it suffices to prove this for all
x ∈ Jprim(R) and all R ∈ k-alg, and after changing the base from k to R to
simplify notation, we may assume x = a ∈ J is primitive. As in Lemma 2.9, let
a = π(z) and put y := t1E − z ∈ Ek[t]. Then by 2.9.1,

N(t1J − a) = N(π(y)) = m(0;−π(y)) = detL(y) = det(tId− L(z)) = m(t; a).

The second formula of (1) is proved similarly. By specializing t → 0 and because
the copolynomial is comonic (0.9) we see 1 = m̌(0;x) = N(1J), and putting x = 1J

yields m̌(t; 1J) = N(
(
(1− t)1J

)
= (1− t)deg J (by 2.7.3) =

∑
i>0(−1)imi(1)ti (by

2.7.1). This proves (2).

(b) By the density argument employed above, it suffices to prove this for x =
a ∈ J primitive. Then the asserted formulas follow at once from the fact that
N(π(y)) = detL(y) (by 2.9.1) and the multiplicativity of the determinant.
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(c) If N(x) = m(0;−x) is invertible, then x is invertible, and formula (5)
holds by Lemma 1.11(a). Conversely, let x ∈ J× but assume N(x) /∈ k×. Then
there exists a maximal ideal m ⊂ k with N(x) ∈ m. Let K = k/m. Then 0 =
N(x)K = N(xK), and hence xK is not invertible in JK , by [16, Theorem 2(iii)].
This contradicts the fact that invertible elements remain so under base change.

We prove (6). By density, we may assume x primitive. Then also x−1 is primitive
because deg x = deg x−1 by 1.11(b). Now it follows from 1.11.4 and 2.5.2 that

m(t;x−1) =
m̌(t;x)
m(0;x)

,

and replacing x by −x in this formula yields (6). By specializing t → 0 we have
(7).

Next, (8) and (9) are polynomial identities, so by density we may assume x
invertible. Then N(x)−1 = N(x−1) = N(x]/N(x)) = N(x])/N(x)deg J yields the
first formula. For the second, one argues similarly, using the fact that (x−1)−1 = x
and that x] is homogeneous of degree (deg J)− 1.

(d) After decomposing the base ring, we may assume deg J = d constant. Then
xd =

∑d
i=1(−1)i−1mi(x)xd−i. Hence, if all mi(x) are nilpotent, it follows from the

multinomial expansion that x is nilpotent. Conversely, if x is nilpotent then so is
x(p), for all prime ideals p ∈ Spec(k). By [16, Theorem 2(vi)], 0 = mi(x(p)) =
mi(x) ⊗ 1κ(p), so mi(x) belongs to the intersection of all prime ideals of k and
therefore is nilpotent.

(e) Let R = k(ε) be the algebra of dual numbers. Then by (a), m̌(t;x+ ε1J) =
N(1J − t(x + ε1J)) = N((1 − tε)1J − tx). Now 1 − tε is invertible with inverse
(1− tε)−1 = 1 + tε. Hence by 2.7.3,

m̌(t;x+ ε1J) = (1− tε)deg JN(1− t(1 + tε)x) = (1− tε)deg Jm̌(t + t2ε;x).

Expanding both sides with formula 2.7.1 and comparing coefficients at εti+1 yields
(10).

2.12. Generic elements. For finite-dimensional algebras Jordan algebras over
fields, the generic minimum polynomial is simply the minimum polynomial of the
generic element, see [5, 14]. Does a similar statement hold over rings? It would
be tempting to be able to say “J is generically algebraic if and only if the generic
element of J is algebraic”. Unfortunately, this is not the case. Let us first recall the
notion of generic element for finitely generated and projective modules [19, §18].

Let J be finitely generated and projective and A = O(J). The generic element
x of J is the element x ∈ J ⊗J∗ ⊂ J ⊗A corresponding to IdJ under the canonical
isomorphism J ⊗ J∗ ∼= End J . The name “generic element” is justified by the
fact that x can be specialized to any x ∈ JR, R ∈ k-alg, in the following sense:
Evaluation of an element g ∈ A at x defines a homomorphism ex: A→ R, ex(g) =
g(x), and hence a map IdJ ⊗ ex: JA → JR, which maps x to x. We thus have
g = g(x) ∈ A, for all g ∈ A. This implies that, for any f(t) ∈ A[t], we have
f(t;x) = f(t), and that J satisfies a locally monic f(t) ∈ A[t] (in the sense of 2.2)
if and only if the generic element x satisfies f(t).

2.13. Proposition. (a) Let J be generically algebraic with generic minimum poly-
nomial m(t). Then the generic element x of J is pre-algebraic and its minimum
polynomial is m(t), but x is not an algebraic element of JA, unless J = {0}.

(b) There are examples of finitely generated and projective Jordan algebras
whose generic element is pre-algebraic but which are not generically algebraic.
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Proof. (a) After decomposing the base ring, we may assume deg J = d constant.
Since every element x ∈ JR in every base ring extension R of k satisfies m(t;x),
this is in particular so for x, whence m(t) ∈ N(x). To prove µx(t) = m(t) it
suffices to show that x[0], . . . ,x[d−1] are free over A in J2

A. Thus assume a relation∑d−1
i=0 gi(x)x[i] = 0 in J2

A. By specializing x to any a ∈ Jprim(R), R ∈ k-alg,
it follows that

∑d−1
i=0 gi(a)a[i] = 0. Since a is algebraic of degree d, the powers

a[0], . . . , a[d−1] are linearly independent over R, so that all gi(a) = 0. Thus the
gi vanish on the open and dense subscheme Jprim of J and are therefore zero. It
follows that x is pre-algebraic of degree d, so its minimum polynomial is m(t).

Now assume that x is algebraic. Then, for every A-algebra R, the degree of xR

is still d. On the other hand, x can be specialized to 0. Hence the element 0 ∈ J
is algebraic of degree d. Since 0 is in particular an idempotent, the computation
in 1.8 shows µ0(t) = γt + (1 − γ) where γ is the support idempotent of 1J . It
follows that either d = 0 and then γ = 0 hence J = 0, or d = 1 whence d = 1 and
J = k. But the second case is impossible, because then x = t ∈ A = k[t], and the
A-submodule of A generated by t is tA which is not a direct summand of A (as an
A-module).

(b) Let J = B+ be the algebra of 2.4(f). Then it is easily seen that the
generic element is pre-algebraic, but J is not generically algebraic because its degree
function is not locally constant on Spec(Z).

3. The generic minimum polynomial of an isotope

3.1. Theorem. Let J be a generically algebraic Jordan algebra over k, with generic
minimum polynomial m(t) and generic norm N . Let v ∈ J× and let J (v) be the v-
isotope of J , with unit element 1(v) = v−1 and U -operators U (v)

x = UxUv. Then also
J (v) is generically algebraic, deg J (v) = deg J , with generic minimum polynomial,
copolynomial and generic norm given by

m(v)(t;x) = N(v)N(tv−1 − x), (1)
m̌(v)(t;x) = N(v)N(v−1 − tx), (2)
N (v)(x) = N(v)N(x). (3)

Proof. We follow the idea of the proof of [26, Th. 1] but avoid the use of
the composition law for the generic norm. Clearly J (v) is finitely generated and
projective because J = J (v) as k-modules. For the remainder of the proof, we may
assume, after decomposing the base ring, that deg J = d is constant, and it is no
restriction to assume d > 0, for else J = {0} by 2.4(c). Then N is homogeneous
of degree d. Define polynomial laws Ni,d−i, bihomogeneous of degree (i, d− i), on
J × J by the expansion

N(sx+ ty) =
d∑

i=0

sitd−iNi,d−i(x, y), (4)

where s, t are indeterminates and x, y ∈ JR, R ∈ k-alg, cf. [31, II, §1]. Then
Ni,d−i(x, y) = Nd−i,i(y, x) and N0,d(x, y) = N(y). Define f(t) ∈ A[t] (where
A = O(J)) by

f(t;x) = N(v)N(tv−1 − x) =
d∑

i=0

(−1)iN(v)Ni,d−i(x, v−1)td−i. (5)

This is obtained from (4) by s → −1 and y = v−1. Then the coefficient of td in
f(t) is N(v)N0,d(x, v−1) = N(v)N(v−1) = 1 (by 2.11.7), so f(t) is monic of degree
d.
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Now we show that J (v) satisfies f(t) in the sense of 2.2, i.e., that f(t;x) and
tf(t;x) vanish upon substitution of x for t, for all x ∈ J

(v)
R and R ∈ k-alg. Since

everything is compatible with base change, we may extend k to R and then write
again k for R (for simpler notation), so it suffices to prove this for all x ∈ J (v).
Consider the k-algebra S = k(λ) = k[s]/(sd+2) which is free as a k-module with
basis 1, λ, . . . , λd+1 and satisfies λd+2 = 0. Since λ is nilpotent, 1(v) − λx ∈ J (v)

S is
invertible. We compute its inverse in two ways. First, again by nilpotence of λ, the
inverse is given by the geometric series:

(1(v) − λx)(−1,v) =
d+1∑
j=0

λjx(j,v), (6)

where x(j,v) is the jth power of x in J (v). On the other hand, an element a is
invertible in J (v) if and only if it is invertible in J , and then

a(−1,v) =
(
U (v)

a

)−1
a =

(
UaUv

)−1
a = U−1

v U−1
a a = U−1

v a−1. (7)

Since J is generically algebraic, a−1 = a]/N(a) by 2.11.5. All this remains true in
any base ring extension. In particular, let a = 1(v) − λx = v−1 − λx. Substituting
a]/N(a) for a−1 in (6) and multiplying the resulting equation with N(a) yields

U−1
v (v−1 − λx)] = N(v−1 − λx) ·

d+1∑
j=0

λjx(j,v). (8)

Now x 7→ x] is a homogeneous polynomial law of degree d− 1 by 2.10. Hence the
coefficients of λd and λd+1 on the left hand side of (8) vanish, so they must vanish
on the right hand side as well. From (4) we have the expansion N(v−1 − λx) =∑d

i=0(−λ)iNi,d−i(x, v−1). By collecting terms at λd and λd+1 on the right hand
side, we obtain the relations

d∑
i=0

(−1)iNi,d−i(x, v−1)x(d−i,v) =
d∑

i=0

(−1)iNi,d−i(x, v−1)x(d+1−i,v) = 0.

After multiplying with N(v), this says precisely that x satisfies f(t;x) in the isotope
J (v).

We have verified condition (i) of 2.2 for J (v), so it remains to show that J (v)

has degree d, i.e., that J (v)(p) = J (v) ⊗ 1κ(p) has degree d, for all p ∈ Spec(k).
Now deg J (v)(p) 6 d = deg J(p) because because J (v)(p) satisfies the polynomial

f(t)κ(p) of degree d. But J(p) =
(
J (v)(p)

)(v−2(p)) is an isotope of J (v)(p), and
J (v)(p) is generically algebraic, being finite-dimensional over κ(p). Hence the above
argument, applied to J (v)(p) instead of J , yields deg J(p) 6 deg J (v)(p). We have
shown that J (v) is generically algebraic with generic minimum polynomial f(t) =
m(v)(t). The formulas for m̌(v)(t) and the generic norm are then an immediate
consequence.

3.2. Corollary. (a) The generic norm of a generically algebraic Jordan algebra
J permits Jordan composition:

N(Uxy) = N(x)2N(y), (1)

for all x, y ∈ JR, R ∈ k-alg.
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(b) Let B be a generically algebraic associative or alternative algebra over k and
let N be its generic norm, i.e., the generic norm of the associated Jordan algebra
B+. Then N is multiplicative:

N(xy) = N(x)N(y), (2)

for all x, y ∈ BR, R ∈ k-alg.

Proof. (a) By density of J× (see 0.14) we may assume y invertible. Then
N(y)N(Uxy) = N (y)(x(2,y)) = N (y)(x)2 (by 2.11.4) = N(y)2N(x)2 (by 3.1.3).

(b) Again by density, we may assume x invertible. Then left multiplication Lx

with x in B is an isomorphism Lx:
(
B(x)

)+ → B+ of Jordan algebras [24, Prop. 4],

and
(
B(x)

)+ =
(
B+

)(x) by [24, (19)]. Since the generic norm is invariant under
isomorphisms by Prop. 2.7(a), it follows that N(xy) = N(Lx(y)) = N (x)(y) =
N(x)N(y).

The following lemma is the analogue over rings of [26, Th. 2].

3.3. Lemma. Let J be generically algebraic and let u, v ∈ J×. Then the generic
minimum polynomials of u ∈ J (v) and v ∈ J (u) are related by

m(v)(t;u) = m(u)(t; v), (1)
m̌(v)(t;u) = m̌(u)(t; v), (2)

and the generic norm has the symmetry property

N(v)N(v−1 − u) = N(u)N(u−1 − v). (3)

Proof. Let us first assume that u is primitive, hence in particular algebraic,
in J (v). By Lemma 1.9(b), v is then algebraic in J (u), and µ

(u)
v (t) = µ

(v)
u (t) =

m(v)(t;u) (by 2.5.1). Hence degµ(u)
v (t) = degm(v)(t;u) = deg J = deg J (u) by

Th. 3.1. This shows that v is primitive in J (u), and hence (1) follows again from
2.5.1. Furthermore, (2) and (3) are immediate consequences.

In the general case, consider the subfunctor U of J× × J× defined by(
x
y

)
∈ U(R) ⇐⇒ x is primitive in (JR)(y),

for all R ∈ k-alg. Note that (x, y) ∈ U(R) if and only if (y, x) ∈ U(R) and that
(1) – (3) hold on U(R), by what we proved above. Hence, it suffices to show that
U is an open and dense subscheme of J× × J×. After decomposing the base ring,
we may assume deg J = d constant. Then also all isotopes of all JR have degree d.
Define a morphism p: J× × J× → P

(d)
a (cf. Prop. 1.14(b)) by(

x
y

)
7→

(
x(0,y)

x(1,y)

)
∧ · · · ∧

(
x(d−1,y)

x(d,y)

)

in all base ring extensions. Then U is the inverse image of P (d)
u under p and

therefore open. Furthermore, J× × J× is smooth, being open in J × J, and it has
connected fibres: Indeed, for all algebraically closed fields K ∈ k-alg, J×K × J×K is
the complement of the hypersurface N(x)N(y) = 0 in JK × JK and the latter is
isomorphic to affine 2n-space over K where n = dim JK . Thus by 0.14, it suffices
to have U(K) 6= ∅. Since Jprim(K) 6= ∅ by density of Jprim and Jprim × {1J} ⊂ U,
we are done.
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3.4. Suppose J is generically algebraic of constant degree d. In view of 3.1.1 and
3.1.5, the symmetry formulas 3.3.1 – 3.3.3 are equivalent to

m
(y)
i (x) = N(y)Ni,d−i(x, y−1) = N(x)Ni,d−i(y, x−1) = m

(x)
i (y).

Here the two left hand sides are defined for all x while the two right hand sides are
defined for all y. This suggests the existence of polynomial laws Fi on J × J such
that m(y)

i (x) = Fi(x, y) for all x and all invertible y, and analogously with x and y
interchanged. For i = 0 and i = d this is of course trivially true, with F0 = 1 and

Fd(x, y) = N(x)N(y). (1)

For i = d− 1, we have Nd−1,1(z, v) linear in v, and hence, using 2.11.5, m(y)
d−1(x) =

N(y)Nd−1,1(x, y−1) = Nd−1,1(x, y]), so

Fd−1(x, y) = Nd−1,1(x, y]) (2)

is such a polynomial law. We now show that such Fi exist for all i.

3.5. Theorem. Let J be generically algebraic. Then there exist unique polynomial
laws Fi (i ∈ N) on J × J such that

m
(y)
i (x) = Fi(x, y), (1)

for all x ∈ JR, y ∈ (JR)×, R ∈ k-alg. The Fi are symmetric and bihomogeneous
of bidegree (i, i). In particular, F1 is a symmetric bilinear form on J , called the
bilinear trace. Explicitly, it is given by

F1(x, y) = m1(x)m1(y)−m1,1(x, y) = −∂x∂y logN
∣∣
1J

(2)

where m1,1 denotes the bilinear form associated to the quadratic form m2, and
satisfies

F1(x, y]) = ∂xN
∣∣
y
, (3)

for all x, y ∈ JR, R ∈ k-alg.

Proof. After decomposing the base ring, we may assume deg J = d constant.
Let R ∈ k-alg and consider the R-algebra R̃ = R[t](λ) = R[t, s]/(sd+1). Let
x, y ∈ JR be arbitrary. Then 1− λx ∈ JR ⊗R R̃ is invertible, with inverse given by
the geometric series: (1− λx)−1 = 1 + λx+ · · ·+ λdxd. Since R̃ is a free R-module
with basis λitj (i = 0, . . . , d, j ∈ N), we can write, using 3.1.2,

m̌(1−λx)(t; y) = N(1− λx)N
(
(1− λx)−1 − ty

)
=

d∑
i,j=0

λitjhij(x, y), (4)

with uniquely determined hij(x, y) ∈ R. By “varying R”, one sees that (4) defines
polynomial laws hij on J × J , and since the left hand side of (4) depends only on
λx and ty, it is clear that hij is bihomogeneous of bidegree (i, j). Now assume y
invertible. Then by 2.7.1 and 3.3.2,

d∑
i=0

(−1)im
(y)
i (1−λx)ti = m̌(y)(t; 1−λx) = m̌(1−λx)(t; y) =

d∑
i,j=0

λitjhij(x, y). (5)

Since m(y)
i is homogeneous of degree i we have m(y)

i (1−λx) = (−1)iλim
(y)
i (x) plus

terms with lower powers of λ. Substituting this into (5) and comparing coefficients
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at λiti yields m(y)
i (x) = hii(x, y) (and hij = 0 for i > j). Thus Fi := hii has

the asserted property. Symmetry and homogeneity of the Fi follow from the corre-
sponding properties of the m(y)

i (x) = m
(x)
i (y) and the fact that J× × J× is dense

in J× J. In particular, F1 is a bilinear form by [31, Prop. I.6].
We now determine F1 = h11 from (4) as the coefficient of λt. Computing modulo

λ2 and t2, we have (1− λx)−1 ≡ 1 + λx, hence

m̌(1−λx)(t; y) = N(1− λx)N(1 + λx− ty) = m̌(1;λx)m̌(1; ty − λx) (by 2.11.1)
≡

{
1−m1(λx)

}{
1−m1(ty − λx) +m2(ty − λx)

}
(by 2.7.1)

≡ 1− tm1(y) + tλ
{
(m1(x)m1(y)−m1,1(x, y)

}
.

This proves (2). By density of J×, it suffices to prove (3) for y invertible. Replace v
by y−1 in 3.1.2 and multiply the result withN(y). Then, becauseN(y−1) = N(y)−1

and y−1 = y]N(y)−1 by Th. 2.11(c), it follows that

N(y − tx) = N(y)m̌(y−1)(t;x) ≡ N(y)− tF1(x, y]) (mod t2).

On the other hand, N(y − tx) ≡ N(y)− t∂xN
∣∣
y

(mod t2), whence (3).

3.6. Corollary. We keep the assumptions and the notation of Th. 3.5. Let Str(J)
be the structure group of J and let g 7→ g∗ be the antiautomorphism of Str(J)
determined by Ug(x) = gUxg

∗, for all x ∈ J .

(a) The Fi are invariant under the structure group in the sense that, for g ∈
Str(J),

Fi(g(x), y) = Fi(x, g∗(y)), (1)

for all x, y ∈ JR, R ∈ k-alg.

(b) The generic norm is covariant under the structure group in the sense that

N
(
g(x)

)
= N

(
g(1J)

)
N(x) (2)

for all g ∈ Str(J), x ∈ JR, R ∈ k-alg. The map g 7→ N
(
g(1J)

)
is a character

χ: Str(J) → k× satisfying χ(g∗) = χ(g) and χ(Ux) = N(x)2.

Proof. (a) By density of J×, it suffices to prove (1) for invertible y, and after
changing the base ring from k to R, we may assume x, y ∈ J . Then g: J (g∗(y)) →
J (y) is an isomorphism of Jordan algebras. Hence, by the invariance of the generic
minimum polynomial under isomorphisms (Prop. 2.7(a)), Fi(g(x), y) = m

(y)
i (g(x))

= m
(g∗(y))
i (x) = Fi(x, g∗(y)).

(b) We may assume that J has constant degree d. Then by 3.4.1 and (1),
N

(
g(x)

)
N(y) = N(x)N

(
g∗(y)

)
. By putting x = y we see thatN

(
g(x)

)
= N

(
g∗(x)

)
and for y = 1 we obtain N

(
g(x)

)
= N

(
g∗(1)

)
N(x) = N

(
g(1)

)
N(x). This easily

implies that χ is a homomorphism. Finally, χ(Ux) = N(x)2 is clear from 3.2.1.

Remark. For a base field and i = 1, formula (1) is proved in [26, Th. 4]. An
obvious rephrasing of (b) together with 3.1.3 shows that an isotopy between gener-
ically algebraic Jordan algebras is a strict norm similarity. The converse holds for
central separable Jordan algebras over rings containing 1

2 [2, Th. 4.4] but fails for
rings where 2 is not invertible, e.g., for the n×n symmetric matrices over k = K(ε)
(dual numbers over a field K of characteristic 2), as discovered by Waterhouse [32].

3.7. Corollary. J is a generically algebraic Jordan algebra of degree 2 if and only
if J = Jor(X,Q, 1) is the Jordan algebra defined by a unital quadratic form (X,Q, 1)
as in [20, 1.5], where X is a finitely generated and projective k-module of rank >2.
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Proof. (a) Let J = Jor(X,Q, 1) with X finitely generated and projective of
rank >2. Thus

Uxy = B(x, ȳ)x−Q(x)ȳ, (1)

where B is the bilinear form associated with Q and x̄ = T (x)1 − x, with T (x) =
B(1, x). By [20, 1.5.2], J satisfies the polynomial m(t;x) = t2−T (x)t+Q(x), and
we have deg J = 2 because rkX > 2, cf. 2.4(c). Hence J is generically algebraic of
degree 2.

(b) Conversely, let J be generically algebraic of degree 2, with generic minimum
polynomial m(t;x) = t2 −m1(x)t +m2(x), and let X be the k-module underlying
J . Because a Jordan algebra over a field is of degree 1 if and only if it is one-
dimensional, the condition deg J = 2 implies rkX > 2. Hence the unit element
1J = 1 is a unimodular vector by 0.3.2. Next, Q := m2 is a quadratic form, and
N(x) = m(0;−x) = Q(x), so Q(1) = 1 by Th. 2.11(a). Thus (X,Q, 1) is a unital
quadratic form in the sense of [20]. It remains to show that J = Jor(X,Q, 1) is the
associated Jordan algebra, i.e., that (1) holds.

Let B be the bilinear form associated with Q and put T (x) := B(1, x) as well
as x̄ := T (x)1− x. Now note that m1(x) = ∂1m2

∣∣
x

(by 2.11.10) = B(1, x) = T (x),
and x] = m1(x)1−x (by 2.10.3) = x̄. By density of J×, it suffices to prove (1) for y
invertible. Then Uxy = x(2,y) = m

(y)
1 (x)x−m

(y)
2 (x)1(y) = F1(x, y)x− F2(x, y)y−1.

Furthermore, F1(x, y) = F1(x, ȳ) = ∂xN
∣∣
ȳ

= B(x, ȳ) by 3.5.3, and y−1 = y]/N(y)
(by 2.11.5) = ȳ/Q(y), as well as F2(x, y) = Q(x)Q(y) by 3.4.1. Hence Uxy is given
by (1).

3.8. Example. Not every Jordan algebra J which is finitely generated and projec-
tive as a k-module and whose degree is constant equal to 2 is generically algebraic
of degree 2 and (hence the Jordan algebra of a unital quadratic form). For example,
let J = k · 1 ⊕ k · a be free of rank 2 as a k-module. It can be shown that there
exists a unique Jordan algebra structure on J such that

a2 = βa− α1, a3 = βa2 − (α+ δ)a+ γ1 (1)

if and only if the constants α, β, γ, δ in k satisfy the conditions

2γ = 2δ = βγ = βδ = γ2 = δ2 = γδ = 0. (2)

Suppose these conditions are satisfied. Then J has constant degree equal to 2.
Indeed, by (2), γ and δ are nilpotent, so γK = δK = 0 for all fields K ∈ k-alg. Thus
JK is just the commutative associative algebra K[t]/(t2 − βKt + αK1) considered
as a Jordan algebra, hence of degree 2. We claim that J is generically algebraic
if and only if γ = δ = 0. Indeed, assuming J to be generically algebraic, its
generic minimum polynomial has the form m(t;x) = t2 −m1(x)t +m2(x)1. Now
0 = m(a; a) = a2 − m1(a)a + m2(a)1 shows, because 1 and a are a basis of J
as a k-module, that β = m1(a) and α = m2(a). Moreover, 0 = ja

(
tm(t; a)

)
=

a3 − βa2 + αa implies, by (1), that γ = δ = 0. Conversely, if γ = δ = 0, then
it is easy to see that J is the Jordan algebra associated with the unital quadratic
form Q on J given by Q(λ1 + µa) = λ2 + λµβ + µ2α, and is therefore generically
algebraic of degree 2 by Cor. 3.7.

Since there are rings containing α, . . . , δ satisfying (2) with (γ, δ) 6= (0, 0), for
example, k = Z/4Z or the ring of dual numbers over a field of characteristic 2, this
gives examples of Jordan algebras, free of rank 2 and of constant degree 2, which
are not generically algebraic.
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3.9. Corollary. (a) Let J be generically algebraic of degree 3, with generic norm
N and adjoint map ]. Then J is obtained by the general cubic construction [22,
Th. 1] from the cubic norm structure (N, ], 1).

(b) Conversely, let (N, ], 1) be a cubic norm structure on a finitely generated
and projective k-module X, let J be the Jordan algebra structure on X determined
by (N, ], 1), and suppose that deg J = 3 (as a function on Spec(k)). Then J is
generically algebraic of degree 3.

Remark. In (b), deg J is a well-defined function on Spec(k) by 2.1, because X is
finitely generated and projective. Unlike the degree 2 case, a blanket assumption
on the rank of X is not sufficient to guarantee that deg J = 3, cf. [30, 2.4 – 2.6].

Proof. (a) We first verify the conditions required for (N, ], 1): Condition (i)
x]] = N(x)x, holds by 2.11.9, and condition (ii) F1(x, y]) = ∂xN

∣∣
y
, holds by 3.5.3.

Condition (iii) says 1 × y = m1(y)1 − y: By 2.10.3, x] = x2 −m1(x)x + m2(x)1.
Linearization yields x× y = x ◦ y−m1(x)y−m1(y)x+ ∂xm2

∣∣
y
, and putting x = 1

results in

1× y = 1 ◦ y −m1(1)y −m1(y)1 + ∂1m2

∣∣
y

= 2y − 3y −m1(y)1 + 2m1(y) (by 2.11.2 and 2.11.10)
= −y +m1(y)1.

The remaining conditions (iv) 1] = 1 and (v)N(1) = 1 are clear from Th. 2.11. Now
the same formal calculation as in [23, Th. 1] shows that Uxy = F1(x, y)x− x] × y.

(b) It only remains to show that J satisfies the polynomial m(t;x) = t3 −
T (x)t2 + S(x)t −N(x) (where we use the notations of [22]). Now x3 − T (x)x2 +
S(x)x−N(x)1 = 0 is [22, (20)], and x4 = Uxx

2 = Ux

(
x] +T (x)x−S(x)1

)
(by [22,

(21)]) = N(x)x+ T (x)x3 − S(x)x2 (by [22, (24)]), as desired.

3.10. Corollary. Let J be generically algebraic and x ∈ J . Then for all polyno-
mials f(t), g(t) ∈ k[t],

Fi

(
f(x), g(x)

)
= mi

(
(fg)(x)

)
. (1)

In particular,
mi(xl+n) = Fi(xl, xn), (2)

for all l, n ∈ N.

Proof. By the standard density argument, we may assume x = a primitive.
Then let E = E(a) = k[t]/(m(t; a)) and π: E+ → k[a] be as in Lemma 2.9, and let
z = can(t) be the generator of E. The elements of E are of the form y = f(z) where
f ∈ k[t]. If w = g(z) is a second element of E, then π(y) = f(a), π(w) = g(a), and
π(yw) = (fg)(a). Hence, (1) is equivalent to

Fi(π(y), π(w)) = mi(π(yw)), (3)

for all y, w ∈ E. By 2.9.1, N(π(y)) = m(0;−π(y)) = detL(y), and m̌(t;π(y)) =
det(Id − tL(y)), for all y ∈ E. Again by density, it suffices to prove (3) for all
invertible w ∈ E. Then also π(w) is invertible in J with inverse π(w−1), and we
have

m̌(π(w))(t;π(y)) = N(π(w))N(π(w−1)− tπ(y)) (by 3.1.2)

= detL(w) det
(
L(w−1)− tL(y)

)
= det(Id− tL(yw)

)
(because E is commutative and associative)

= m̌(t;π(yw)).

Expanding both sides with 2.7.1 and using 3.5.1 yields (3).
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3.11. An explicit formula for the Fi. Let J be generically algebraic of constant
degree d. It is natural to ask for an explicit formula, expressing the Fi of Th. 3.5
in terms of the coefficients mj of the generic minimum polynomial and generalizing
3.5.2 in case i = 1. The proof of 3.5 shows that Fi = hii is the coefficient of λiti in
3.5.4. In order to free the index i for other purposes, we will use the letter p instead
of i. In expanding the left hand side of 3.5.4, we are therefore only interested in
terms containing λptp. Thus, it is no restriction to assume λp+1 = 0.

Define polynomial laws gip(x, y) on J × J , bihomogeneous of bidegree (i, p), by
the expansion

N
(
(1− λx)−1 − ty

)
= N(1 + λx+ · · ·+ λpxp − ty) ≡ (−t)p

p∑
i=0

gip(x, y)λi, (1)

where ≡ means that both sides differ only by terms not involving tp. Then

N(1− λx)N
(
(1− λx)−1 − ty

)
≡ (−t)p

( p∑
i=0

(−1)imi(x)λi
)( p∑

i=0

gip(x, y)λi
)

= λptp
( p∑

i=0

gip(x, y)(−1)imp−i(x)
)

+ · · ·

where the dots indicate terms not involving λp, and therefore

Fp(x, y) =
p∑

i=0

gip(x, y)(−1)imp−i(x). (2)

It remains to compute the gip. Since N(1 + z) = m̌(1;−z) =
∑d

j=0mj(z) by 2.7.1
and 2.11.1, we have

N(1 + λx+ · · ·+ λpxp − ty) ≡
d∑

j=p

mj(−ty + λx+ · · ·+ λpxp), (3)

because mj = 0 for j > d. Let t0, . . . , tp be indeterminates, and define the mul-
tihomogeneous polynomial laws mi0,...,ip

(x0, . . . , xp) of multidegree (i0, . . . , ip) and
total degree j = i0 + · · ·+ ip by the expansion

mj(t0x0 + · · ·+ tpxp) =
∑

i0+···+ip=j

mi0,...,ip
(x0, . . . , xp)ti0

0 · · · tip
p ,

cf. [31, Chap. II]. Note that the iν are >0, and if iν = 0 thenmi0,...,ip
is independent

of xν . Then we obtain from (3), putting x̃ = λx+ · · ·+ λpxp for short,

N(1 + x̃− ty) ≡ (−t)p

d−p∑
l=0

∑
i1+···+ip=l

λ1i1+2i2+···+pip mp,i1,...,ip
(y, x, x2, . . . , xp).

(4)
Now collect the terms involving λi to obtain gip:

gip(x, y) =
d−p∑
l=0

∑
i1+···+ip=l

1i1+2i2+···+pip=i

mp,i1,...,ip
(y, x, x2, . . . , xp). (5)

The sum over l in (5) actually runs only from 0 to min(p, d − p) because l =
i1 + · · ·+ ip 6 1i1 + · · ·+ pip = i and 0 6 i6 p by (1). Then formulas (2) and (5)
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together constitute the desired explicit expression for Fp. We note the following
special cases:

F2(x, y) = m2(x)m2(y) +m2,1(y, x2 −m1(x)x) +m2,2(x, y), (6)
F3(x, y) = m3(x)m3(y)−m3,1(y, x3 −m1(x)x2 +m2(x)x)

+m1(x)m3,2(y, x)−m3,1,1(y, x, x2)−m3,3(x, y). (7)

Finally note that, because the Fi(x, y) are symmetric in x and y, so must be the
right hand side of these formulas, which yields identities between the polarizations
of the mi.

Remark. An expansion similar to the right hand side of (4), but in a different
context, occurs in [27, (1.13)] (personal communication by K. McCrimmon).

3.12. The exponential trace formula. Let J be generically algebraic. Switch-
ing x and y in Formula 3.5.3 we have F1(x], y) = ∂yN

∣∣
x
. For invertible x, this is

equivalent to
∂yN

∣∣
x

N(x)
= ∂y logN

∣∣
x

= F1(x−1, y) (1)

because x−1 = x]/N(x). Let k[[t]] be the algebra of formal power series and put
J̃ := J ⊗ k[[t]]. Also let x ∈ J be arbitrary. Then 1 − tx ∈ J̃ is invertible in J̃ ,
with inverse given by (1− tx)−1 =

∑∞
i=0 x

iti. Indeed, the formal sum on the right
makes sense in J [[t]] (by which we mean the direct product of countably many
copies J · ti (i ∈ N) of J with the obvious operations making it a Jordan algebra)
and has the right formal properties, so it suffices to show that J̃ = J [[t]]. Since J is
finitely generated and projective there exist finitely many vj ∈ J and αj ∈ J∗ such
that IdJ =

∑l
j=1 vj ⊗αj . Hence an element

∑∞
i=0 ziti ∈ J [[t]] equals

∑l
j=1 ϕj(t)vj

where ϕj(t) =
∑∞

i=0 αj(zi)ti ∈ k[[t]].
We now compute the logarithmic derivative with respect to t of

N(1− tx) = m̌(t;x) =
n∑

i=0

(−1)imi(x)ti

(by 2.7.1 and 2.11.1, with n = maxdeg J) in two ways. On the one hand,

d

dt
logN(1− tx) = N(1− tx)−1 d

dt
m̌(t;x)

= N(1− tx)−1 ·
n∑

i=1

(−1)iimi(x)ti−1. (2)

On the other hand, by (1), the chain rule and 3.10.2,

d

dt
logN(1− tx) = F1((1− tx)−1,−x)

= −
∞∑

i=0

F1(xi, x)ti = −
∞∑

i=0

m1(xi+1)ti. (3)

Combining (2) and (3), we have

n∑
i=1

(−1)iimi(x)ti−1 =
( n∑

i=0

(−1)imi(x)ti
)(

−
∞∑

i=0

m1(xi+1)ti
)
.
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By comparing coefficients at powers of t, one sees recursively that i!mi(x) is a
polynomial with coefficients in Z in m1(x), . . . ,m1(xi). The first two terms are

2m2(x) = m1(x)2 −m1(x2), (4)
6m3(x) = m1(x)3 − 3m1(x)m1(x2) + 2m1(x3). (5)

Explicit formulas for all i are known and involve the cycle indicator polynomials,
see, e.g., [21, §4].

Now assume k is a Q-algebra. Then we can integrate and exponentiate formula
(3) and obtain the exponential trace formula

N(1− tx) = exp
(
−

∞∑
i=1

m1(xi)
ti

i

)
. (6)

Remark. In [1, Th. 1.10], formula (3) is proved in a different way for the special
case J = End(M) (cf. 2.4(d)), and is referred to as the exponential trace formula,
although (6) seems to be more deserving of this name.

4. Generically power-associative algebras

4.1. Definition. Let J be a Jordan algebra over k. For every R ∈ k-alg we define

Jpa(R) := {a ∈ JR : a strictly power-associative},

cf. 1.6. From the very definition of strict power-associativity it is evident that Jpa

is a subfunctor of J. We claim that it is in fact a hard subsheaf of J. After a
base change, this just means that it has the following descent property: If a ∈ J
and aR is strictly power-associative for some faithfully flat R ∈ k-alg, then a is
strictly power-associative as well. Thus we must show that pr1: M(aS) → JS is
injective, for all S ∈ k-alg. Now the S-algebra RS = R ⊗ S is in particular flat
over S, so the canonical map M(aS) ⊗S RS → M(aS ⊗S 1RS

) is an isomorphism
by Lemma 1.3(d). We can consider RS

∼= S ⊗ R = SR as an R-algebra, and then
aS ⊗S 1RS

= a ⊗k 1R⊗S = aR ⊗R 1SR
are canonically identified. Also, since aR is

strictly power-associative, pr1: M(aR ⊗R 1SR
) → JR ⊗R SR is injective. From the

commutative diagram

M(aS)⊗S RS
pr1⊗IdRS- JS ⊗S RS

∼=
? ?

∼=

M(aR ⊗R 1SR
) -

pr1
JR ⊗R SR

we see that M(aS) ⊗S RS → JS ⊗ RS is injective. Since RS is faithfully flat over
S, it follows that M(aS) → JS is injective, as desired.

4.2. Lemma. Let J be a Jordan algebra over k and let a ∈ J be algebraic of degree
d. Consider the following conditions:

(i) a is strictly power-associative,
(ii) a0, . . . , ad−1 are k-free and span a direct summand of J ,
(iii) a0 ∧ · · · ∧ ad−1 is unimodular in

∧d
J .

Then (iii) ⇐⇒ (ii) =⇒ (i). If J is finitely generated and projective as a k-module
or if k is a field then all conditions are equivalent.

Proof. (iii) ⇐⇒ (ii) follows from Lemma 0.6.

39



22 November 2005

(ii) =⇒ (i): Since a is algebraic of degree d, M(a) is free with basis a[0], . . . , a[d−1]

by 1.4.6. Now pr1(a[i]) = ai shows that pr1: M(a) → k[a] is a k-module isomor-
phism. Hence a is power-associative and k[a] is pure, being a direct summand. By
1.6.2, a is strictly power-associative.

Now let J be finitely generated and projective, and suppose (i) holds. Then
M(a) is pure by Prop. 1.5(a), so k[a] is pure by 1.6.2 and therefore a direct summand
by 0.15(d). As pr1: M(a) → k[a] is an isomorphism and a[0], . . . , a[d−1] is a basis of
M(a), we have (ii). Finally, if k is a field, k[a] is automatically a direct summand,
so the same argument applies.

4.3. Lemma. Let J be a Jordan algebra over a field K and let a ∈ J be an algebraic
element of degree d6 3. Then a0, . . . , ad−1 are linearly independent.

Proof. There are the following cases:

d = 0: Then J = {0} and the empty set is linearly independent.

d = 1: Then J 6= {0} and a0 = 1J 6= 0 is linearly independent.

d = 2: Assume that 1 and a are linearly dependent. Then a = λ1 for some
λ ∈ K, hence, a2 = λ21 = λa. This shows that a satisfies the polynomial t − λ of
degree 1, contradicting the fact that µa(t) has degree 2.

d = 3: Assume again, by way of contradiction, that 1, a, a2 are linearly depen-
dent. We must have 1 and a linearly independent, else a = λ1 and µa(t) = t−λ as
in the previous case. Thus a2 ∈ K · 1⊕K · a, and since µa(t) has degree 3, a3 is a
linear combination of 1, a, a2, hence of 1 and a. It follows that K[a] = K · 1⊕K ·a,
so there exist unique α, β, γ, δ ∈ K such that

a2 = α1 + βa, a3 = αa+ βa2 + γ1 + δa. (1)

It suffices to show that γ = δ = 0, because then (1) says that a satisfies the
degree 2 polynomial t2 − βt− α1, contradicting the fact that deg a = 3. If K has
characteristic 6= 2 then the first equation (1) implies a◦a2 = 2a3 = 2αa+2βa2, and
we are done. If K has characteristic 2, we compute powers of a as follows, always
using 2 = 0 in K:

a4 = (a2)2 = (α1 + βa)2 = α21 + β2a2 (2)
= Uaa

2 = Ua(α1 + βa) = αa2 + βa3

= αa2 + αβa+ β2a2 + βγ1 + βδa

= α21 + 2αβa+ β2a2 + βγ1 + βδa. (3)

From (2) and (3) we see by comparing coefficients at 1 and a and using (1), that
βγ = βδ = 0. Thus we are done if β 6= 0. Now assume β = 0 and compute fifth
and sixth powers:

a5 = Ua2a = Uα1a = α2a

= Uaa
3 = Ua

(
γ1 + (α+ δ)a

)
= γa2 + (α+ δ)a3 = αγ1 + (α+ δ)

(
γ1 + (α+ δ)a

)
.

Comparing coefficients at a shows α2 = (α+ δ)2 = α2 + δ2, whence δ = 0. Next,

a6 = (a2)3 = α31

= (a3)2 = (γ1 + αa)2 = γ21 + α2a2 = (γ2 + α3)1,

which implies γ = 0 and completes the proof.
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4.4. Corollary. Let J be a (possibly infinite-dimensional) Jordan algebra over a
field K which is generically algebraic of degree 63 in the sense of [16]. Then J
is strictly power-associative in the sense of [23]; i.e., every element of every base
field extension of J is power-associative.

This is obvious from Lemma 4.2 and Lemma 4.3. Note, however, that it is not
clear whether all elements of JR, R a commutative K-algebra, are power-associative
as well.

4.5. Proposition. Let J be finitely generated and projective as a k-module.

(a) Jpa ∩ Jalg is an open finitely presented subscheme of Jalg.

(b) Algebraic elements of degree 63 are strictly power-associative, that is,∐
d63 Jalg,d ⊂ Jpa.

Proof. (a) By Prop. 1.14(b), it suffices to show that Jpa ∩ Jalg,d is open and
finitely presented, for all d. Define a morphism from Jalg,d to (

∧d
J)a by x 7→

x0 ∧ · · · ∧ xd−1 in all base extensions. Then Lemma 4.2(iii) says that Jpa ∩ Jalg,d is
the inverse image of (

∧d
J)u, whence the assertion.

(b) Let a ∈ J be algebraic of constant degree d 6 3 and let p ∈ Spec(k) be
arbitrary. Then a(p) ∈ J(p) is algebraic of degree d as well, so Lemma 4.3 shows
that a(p)0, . . . , a(p)d−1 are linearly independent over κ(p). Now Lemma 0.6 and
Lemma 4.2 imply that a is strictly power-associative. Since the same argument
works in all base ring extensions, it follows that Jalg,d ⊂ Jpa for 0 6 d 6 3. Now∐

d63 Jalg,d ⊂ Jpa follows because Jpa, being a hard sheaf (cf. 4.1), is in particular
a local functor.

4.6. Definition. Let J be a generically algebraic Jordan algebra over k. By
Lemma 2.6, Jprim is an open dense subscheme of J, contained in Jalg, and by
Prop. 4.5(a), Jpa ∩ Jalg is open in Jalg. Hence Jpa ∩ Jprim is open in J. We will
say J is generically power-associative if Jpa ∩ Jprim is dense in J. By 0.14 and
Lemma 4.2, an equivalent condition is: For all p ∈ Spec(k), and letting K denote
an algebraic closure of κ(p), there exists an element x ∈ JK such that the powers
1, x, . . . , x(deg J(p))−1 are linearly independent over K.

4.7. Corollary. Let J be generically algebraic over k. Any one of the following
conditions is sufficient for J to be generically power-associative:

(i) 2 ∈ k×,
(ii) J = B+ where B is associative or alternative,
(iii) deg J 6 3 (as a function on Spec(k)).

Indeed, (i) and (ii) follow from (c) and (d) of 1.6, and (iii) is clear from
Prop. 4.5(b).

4.8. Example. A Jordan algebra of degree 4 need not be generically power-
associative, the simplest example being J = k · 1 ⊕ k · a ⊕ k · a3 where k is a
ring with 2k = 0. But there are such examples even over Z. Let J be the al-
gebra, free of rank 4 over Z, with basis 1, a, b, a3 introduced in 1.6. It is easily
seen that J is generically algebraic of degree 4, with generic minimum polynomial
m(t;x) = (t − ϕ(x))4 where ϕ is the linear form determined by ϕ(1) = 1 and
ϕ(a) = ϕ(b) = ϕ(a3) = 0. Then J is not generically power-associative, because
for K a field of characteristic 2, the powers 1, x, x2, x3 of any x ∈ JK are linearly
dependent. Indeed, let us put c = a3. The products in J are determined by the
following relations:
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Ua1 = a2 = 2b, Uaa = a3 = a ◦ b = c, Uab = Uac = 0,
Ub = Uc = Ua,c = Ub,c = 0,
Ua,b1 = a ◦ b = c, Ua,ba = Ua,bb = Ua,bc = 0.

Now let R be an arbitrary commutative ring and denote the basis of JR obtained
by base change from Z to R again by 1, a, b, c. Let x = λ1 + αa + βb + γc ∈ JR.
Then the powers of x are

x2 = λ21 + 2λαa+ 2(λβ + α2)b+ (2λγ + αβ)c,

x3 = λ31 + 3λ2αa+ (3λ2β + 6λα2)b+ (3λ2γ + 3λαβ + α3)c.

A straightforward computation shows that the determinant of the coefficients of
1, x, x2, x3 with respect to the basis 1, a, b, c is

det


1 λ λ2 λ3

0 α 2λα 3λ2α
0 β 2λβ + 2α2 3λ2β + 6λα2

0 γ 2λγ + αβ 3λ2γ + 3λαβ + α3

 = 2α6.

Hence JR contains a power-associative element of degree 4 if and only if 2 ∈ R×.

5. Algebras of degree 3

5.1. Theorem. Let J and J ′ be generically algebraic Jordan algebras of degree 3
over a ring k and let m1 and m′

1 be the generic traces of J and J ′, respectively.
Also let f : J → J ′ be an isomorphism of k-modules. Then the following conditions
are equivalent:

(i) f is an isomorphism of Jordan algebras,
(ii) f preserves unit elements, squares and traces; i.e., f(1J) = 1J′ , f(x2) =

f(x)2, and m′
1(f(x)) = m1(x), for all x ∈ J .

Remark. This theorem is of course only of interest in case 2 is not a unit in
k, because otherwise the quadratic operators can be recovered from the squaring
operation by the formula 2Uxy = x ◦ (x ◦ y)− x2 ◦ y.

Proof. (i) =⇒ (ii): The first two conditions are obvious, and the third follows
from Prop. 2.7(a).

(ii) =⇒ (i): First note that the conditions on f are preserved under arbitrary
base change. We will show that f preserves third powers in all base ring extensions.
Then the assertion will follow by differentiation, see also [25, Th. 1].

Let U := Jprim = Jalg,3 ⊂ J and U′ := J′prim = J′alg,3 ⊂ J′. By Lemma 2.6
these are open dense subschemes of J and J′, respectively. Since f induces an
isomorphism f : J → J′ of schemes, f−1(U′) is dense in J, hence U∩ f−1(U′) is so
as well. Thus it suffices to prove f(x3) = f(x)3 for all x ∈ U(R)∩ f−1(U′(R)) and
all R ∈ k-alg. Everything is invariant under base change, so we may replace R by
k and assume x ∈ Jprim ∩ f−1(J ′prim).

Let E = k[x] and E′ = k[y] where y := f(x). By Prop. 4.5(b), x and y are
strictly power-associative, so by Lemma 4.2, E and E′ are free of rank 3 with bases
1 = 1J , x, x

2 and 1′ = 1J′ , y, y
2, respectively. Let T = m1, S = m2 and N = m3

and denote the corresponding quantities for J ′ by T ′, S′ and N ′. Since x satisfies
its generic minimum polynomial m(t;x) = t3 − T (x)t2 + S(x)t−N(x), we have

x3 = T (x)x2 − S(x)x+N(x)1, (1)
x4 = T (x)x3 − S(x)x2 +N(x)x. (2)
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Substitution of (1) in (2) results in

x4 =
[
T (x)2 − S(x)

]
x2 +

[
N(x)− S(x)T (x)

]
x+ T (x)N(x)1. (3)

Since f preserves squares and hence also fourth powers, f applied to (3) yields

y4 =
[
T (x)2 − S(x)

]
y2 +

[
N(x)− S(x)T (x)

]
y + T (x)N(x)1′. (4)

On the other hand, the analogue of (3) holds in J ′ for y, so we have

y4 =
[
T ′(y)2 − S′(y)

]
y2 +

[
N ′(y)− S′(y)T ′(y)

]
y + T ′(y)N ′(y)1′. (5)

Since f preserves traces, we have T (x) = T ′(y). Hence it follows from (4) and (5)
and the linear independence of 1′, y, y2 that S(x) = S′(y) and N(x) = N ′(y). Now
f applied to (1) shows

f(x3) = T (x)y2 − S(x)y +N(x)1′ = T ′(y)y2 − S′(y)y +N ′(y)1′ = y3 = f(x)3.

By our initial reduction, f(x3) = f(x)3 holds now for all x ∈ J(R) and all
R ∈ k-alg. In particular, let R = k(ε) (dual numbers) and let x, y ∈ J . Then
(x+ εy)3 = x3 + ε(x2 ◦ y+Uxy), and since f preserves squares and circle products,
we also have f(Uxy) = Uf(x)f(y). This completes the proof.

5.2. The characteristic 2 case. Let k be a commutative ring with 2k = 0, and
let J be a unital Jordan algebra over k. Then the k-module J becomes a 2-Lie
algebra, denoted L(J), with Lie bracket [x, y] = x ◦ y and second power operation
x[2] = x2 [13, Ch. I, Th. 4].

From 1 ◦x = 2x = 0 for all x ∈ J it follows that k · 1J is contained in the centre
Z(L(J)) of L(J). For a Jordan matrix algebra as in 2.4(b), it is easily seen that in
fact

Z
(
L(Hn(C, k))

)
= k · 1J . (1)

Now let J be generically algebraic of constant degree d and let T = m1 be the
generic trace. Then by 3.12.4, the trace commutes with the squaring operation:

T (x2) = T (x)2, for all x ∈ J . (2)

Linearization of (2) yields T (x◦y) = 2T (x)T (y) = 0, which together with (2) shows
that

J0 = KerT is a 2-ideal of L(J). (3)

Assume in particular that d is odd. Then T (1J) = d · 1k (by 2.11.2) = 1k , which
implies

L(J) = k · 1J ⊕ J0 (4)

is a direct sum of 2-Lie algebras.

Let g and g′ be 2-Lie algebras over k. We denote the set of Lie algebra isomor-
phisms from g to g′ by IsomLie(g, g′), and the set of 2-Lie algebra isomorphism by
Isom2-Lie(g, g′), and employ similar notations for automorphism groups. Clearly,
Isom2-Lie(g, g′) ⊂ IsomLie(g, g′). Furthermore,

Z(g′) = 0 =⇒ Isom2-Lie(g, g′) = IsomLie(g, g′). (5)

Indeed, this follows easily from the formula ad(x[2]) = (adx)2, valid in any 2-Lie
algebra, and the fact that the adjoint representation of g′ is faithful.
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5.3. Corollary. We keep the assumptions of Theorem 5.1 and assume furthermore
that 2k = 0. Let L(J) = k · 1J ⊕ J0 and L(J ′) = k · 1J′ ⊕ J ′0 be the decompositions
as in 5.2.4.

(a) The restriction map res: f 7→ f0 = f
∣∣J0 is a bijection res: Isom(J, J ′) →

Isom2-Lie(J0, J
′
0), and

res: Aut(J) → Aut2-Lie(J0) (1)

is an isomorphism of groups.

(b) Assume that in addition Z(L(J)) = k · 1J and Z(L(J ′)) = k · 1J′ ; equiv-
alently, that J0 and J ′0 have trivial centres. Then the assertions of (a) hold for
IsomLie and AutLie instead of Isom2-Lie and Aut2-Lie as well.

Proof. (a) It is clear that an isomorphism f of Jordan algebras induces an
isomorphism f0 = f

∣∣J0 of 2-Lie algebras. Conversely, let f0: J0 → J ′0 be an iso-
morphism of 2-Lie algebras and extend f0 to an k-module isomorphism f : J → J ′

by f(1J) = 1J′ and f
∣∣J0 = f0. Since (λ1J + x0)2 = λ21J + 2λx0 + x2

0 = λ21J + x2
0

for all x0 ∈ J0, we see that f satisfies the conditions (ii) of Th. 5.1, and therefore
is an isomorphism of Jordan algebras.

(b) From 5.2.4 and the assumption on the centres of L(J) and L(J ′) it follows
that J0 and J ′0 have trivial centres as Lie algebras. Now the assertion is clear from
5.2.5.

Using the fact that ∆ is a derivation if and only if Id + ε∆ is an automorphism
(where k(ε) is the ring of dual numbers), it is easy to formulate an infinitesimal
version of Cor. 5.3 which we leave to the reader. In particular, 5.2.1 and Cor. 5.3(b)
imply the following result:

5.4. Corollary. Let J = H3(C, k) be the Jordan algebra of 3× 3 hermitian matri-
ces over a composition algebra C over k with scalar diagonal entries as in 2.4(b),
and assume that 2k = 0. Then Aut2-Lie(J0) = AutLie(J0) and Der2-Lie(J0) =
DerLie(J0). The restriction maps Aut(J) → AutLie(J0) and Der(J) → DerLie(J0)
are isomorphisms of groups and of 2-Lie algebras, respectively.
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