ALBERT ALGEBRAS OVER \mathbb{Z} AND OTHER RINGS

SKIP GARIBALDI, HOLGER P. PETERSSON, AND MICHEL L. RACINE

Abstract

Albert algebras, a specific kind of Jordan algebra, are naturally distinguished objects among commutative non-associative algebras and also arise naturally in the context of simple affine group schemes of type F_{4}, E_{6}, or E_{7}. We study these objects over an arbitrary base ring R, with particular attention to the case $R=\mathbb{Z}$. We prove in this generality results previously in the literature in the special case where R is a field of characteristic different from 2 and 3.

Contents

1. Introduction 1
2. Notation 3
3. Background on polynomial laws 3
4. Background on composition algebras 6
5. Background on Jordan algebras 8
6. Cubic Jordan algebras 9
7. Albert algebras are Freudenthal algebras are Jordan algebras 12
8. The ideal structure of Freudenthal algebras 14
9. Groups of type F_{4} and C_{3} 15
10. Generic minimal polynomial of a Freudenthal algebra 17
11. Basic classification results for Albert algebras 19
12. Isotopy 20
13. Classification of Albert algebras over \mathbb{Z} 23
14. Groups of type E_{6} 24
15. Freudenthal triple systems 27
16. Groups of type E_{7} 29
17. Exceptional groups over \mathbb{Z} 31
References 32

1. Introduction

Albert algebras, a specific kind of Jordan algebra, are naturally distinguished objects among commutative non-associative algebras and also arise naturally in the context of simple affine group schemes of type $\mathrm{F}_{4}, \mathrm{E}_{6}$, or E_{7}. We study these objects over an arbitrary base ring R, with particular attention to the case $R=\mathbb{Z}$. We prove in this generality results previously in the literature in the special case where R is a field of characteristic different from 2 and 3.

[^0]Why Albert algebras? In the setting of semisimple algebraic groups over a field, a standard technique for computing with elements of a group - especially an anisotropic group - is to interpret the group in terms of automorphisms of some algebraic structure, such as viewing an adjoint group of type B_{n} as the special orthogonal group of a quadratic form of dimension $2 n+1$, or an adjoint group of type A_{n} as the automorphism group of an Azumaya algebra of rank $(n+1)^{2}$. This approach can be seen in many references, from [Wei60], through [KMRT98] and [Con]. In this vein, Albert algebras appear as a natural tool for computations related to $\mathrm{F}_{4}, \mathrm{E}_{6}$, and E_{7} groups, as we do below.

In the setting of nonassociative algebras, Albert algebras arise naturally. Among commutative not-necessarily-associative algebras under additional mild hypotheses (the field has characteristic $\neq 2,3,5$ and the algebra is metrized), every algebra satisfying a polynomial identity of degree ≤ 4 is a Jordan algebra, see [ChG, Prop. A.8]. Jordan algebras have an analogue of the Wedderburn-Artin theory for associative algebras [Jac68, p. 201, Cor. 2], and one finds that all the simple Jordan algebras are closely related to associative algebras (more precisely, "are special") except for one kind, the Albert algebras, see for example [Jac68, p. 210, Th. 11] or [MZ88].

Our contribution. In the setting of nonassociative algebras, we prove a classification of Albert algebras over \mathbb{Z} (Theorem 13.3), which was viewed as an open question in the context of nonassociative algebra; here we see that it is equivalent to the classification of groups of type F_{4}, which was known, see [Con] which leverages [Gro96] and [EG96]. We also prove new results about ideals in Albert algebras (Theorem 8.3) and about isotopy of Albert algebras over local rings (Theorem 12.5). We have not seen Lemma 14.1 in the literature, even in the case of a base field of characteristic different from 2 and 3.

In the setting of affine group schemes, we present Albert algebras in a streamlined way in Definition 7.1. Note that this definition is in the context of what was formerly called a "quadratic" Jordan algebra - because instead of a bilinear multiplication one has a quadratic map, the U-operator - and that it makes sense whether or not 2 is invertible in the base ring. Applying this definition here allows one to replace, in some proofs, "global" computations over \mathbb{Z} as one finds in [Con] with "local" computations over an algebraically closed field that exist in several places in the literature (see, for example, the proof of Lemma 9.1). We also interpret a clever computation in [EG96] as an example of a general mechanism known as isotopy, see Definition 13.1. Our classification of groups of type E_{7} over \mathbb{Z} in Proposition 17.1 uses general techniques to reduce the problem to computations over \mathbb{R}.

Comparison with other works. The survey [Pet19] also considers Albert algebras over rings. It asserts that $\mathbf{A u t}(J)$ is a smooth group scheme of type F_{4} for J an Albert algebra, saying that the proof is similar to the analogous result for octonion algebras and groups of type G_{2} in [LPR08]. We give a different and complete proof here, see Lemma 9.1.

The definition of Freudenthal algebra in [Pet19] is different from here, but the two definitions are essentially equivalent, see Remark 7.5.

A recent article by Alsaody, [Als], gives several interesting examples about Albert algebras over rings, especially concerning isotopy, compare $\S 12$ here. That paper relies on the assertion about $\operatorname{Aut}(J)$ already mentioned.

Changing our viewpoint away from nonassociative algebras and towards group schemes, this note owes various debts to [Con].

2. Notation

Rings, by definition, have a 1 . We put \mathbb{Z}-alg for the category of commutative rings, where \mathbb{Z} is an initial object. For any $R \in \mathbb{Z}$-alg, we put R-alg for the category of pairs (S, f) with $S \in \mathbb{Z}$-alg and $f: R \rightarrow S$, i.e., the coslice category $R \downarrow \mathbb{Z}$-alg. Below, R will typically denote an element of \mathbb{Z}-alg. (The interested reader is invited to mentally replace R by a base scheme X, R-alg with the category of schemes over X, finitely generated projective R-modules with vector bundles over X, etc., thereby translating results below into a language closer to that in [CalF].)

We write $\operatorname{Mat}_{n}(R)$ for the ring of n-by- n matrices with entries from R; its invertible elements form the group $\mathrm{GL}_{n}(R)$. We write $\left\langle\alpha_{1}, \ldots, \alpha_{n}\right\rangle \in \operatorname{Mat}_{n}(R)$ for the diagonal matrix whose (i, i)-entry is α_{i}.

Suppose now that \mathbf{G} is a finitely presented group scheme over R. For each $\operatorname{fppf} S \in$ R-alg, we write $H^{1}(S / R, \mathbf{G})$ for the collection of G-torsors over R trivialized by S, see for example [Gir71], [Wat79], or [CalF, §2.2]. It does not depend on the choice of structure homomorphism $R \rightarrow S$ [Gir71, Rem. III.3.6.5]. The subcategory of fppf elements of R-alg has a small skeleton, so the union

$$
H^{1}(R, \mathbf{G}):=\bigcup_{\mathrm{fppf} S \in R-\mathrm{alg}} H^{1}(S / R, \mathbf{G})
$$

is a set. It is the non-abelian fppf cohomology of \mathbf{G}. In case \mathbf{G} is smooth, it agrees with étale H^{1}. If additionally R is a field, then it agrees with the non-abelian Galois cohomology defined in, for example, [Ser02].

Unimodular elements. Let M be an R-module. An element $m \in M$ is said to be unimodular if $R m$ is a free R-module of rank 1 and a direct summand of M, equivalently, if there is some $\lambda \in M^{*}$ (the dual of M) such that $\lambda(m)=1$. When M is finitely generated projective, this is equivalent to: $m \otimes 1$ is not zero in $M \otimes F$ for every field $F \in R$-alg, see for example [Loo06, 0.3].

If $m \in M$ is unimodular, then so is $m \otimes 1 \in M \otimes S$ for every $S \in R$-alg. In the opposite direction, if M is finitely generated projective, S is a cover of R (i.e., Spec $S \rightarrow \operatorname{Spec} R$ is surjective), and $m \otimes 1$ is unimodular in $M \otimes S$, it follows that m is unimodular as an element of M.

3. BACKGROUND ON POLYNOMIAL LAWS

We may identify an R-module M with a functor $\mathbf{W}(M)$ from R-alg to the category of sets defined via $S \mapsto M \otimes S$. For R-modules M, N, a polynomial law (in the sense of [Rob63]) $f: \mathbf{W}(M) \rightarrow \mathbf{W}(N)$ is a morphism of functors, i.e., a collection of set maps $f_{S}: M \otimes S \rightarrow N \otimes S$ varying functorially with S. We put $\mathscr{P}_{R}(M, N)$ for the collection of polynomial laws $\mathbf{W}(M) \rightarrow \mathbf{W}(N)$, and omit the subscript R when it is understood.

A polynomial law is homogeneous of degree $d \geq 0$ if $f_{S}(s x)=s^{d} f_{S}(x)$ for every $S \in R$-alg, $s \in S$, and $x \in M \otimes S$, see [Rob63, p. 226]. A form of degree d on M is a polynomial law $\mathbf{W}(M) \rightarrow \mathbf{W}(R)$ that is homogeneous of degree d. The forms of degree 0 are constants, i.e., given by an element of R. Those of degree 1 are R-linear maps $M \rightarrow R$. Those of degree 2 are commonly known as quadratic forms on M. We put $\mathscr{P}_{R}^{d}(M, N)$ for the submodule of $\mathscr{P}_{R}(M, N)$ of polynomial laws that are homogeneous of degree d.

It is often useful to argue that a polynomial law f is zero, which a priori means checking a condition for all $S \in R$-alg. However, it suffices to verify that $f_{T}=0$ for every local
ring $T \in R$-alg. Indeed, for $m \in M \otimes S, f_{S}(m)=0$ in $N \otimes S$ if and only if $f_{S}(m) \otimes 1=$ $f_{S_{\mathfrak{m}}}(m \otimes 1)=0$ in $N \otimes S_{\mathfrak{m}}$ for every maximal ideal \mathfrak{m} of S.

Lemma 3.1. Let M be a finitely generated projective R-module, and suppose $f \in \mathscr{P}(M, R)$ is such that $f(0)=0$. If $m \in M$ has $f(m) \in R^{\times}$, then m is unimodular.
Proof. If m is not unimodular, then there is a field $F \in R$-alg such that $m \otimes 1=0$ in $M \otimes$ F, and $f(m \otimes 1)=0$, whence $f(m)$ belongs to the kernel of $R \rightarrow F$, a contradiction.

Directional derivatives. For $f \in \mathscr{P}(M, N), v \in M$, and t an indeterminate $n \geq 0$, we define a polynomial law $\nabla_{v}^{n} f$ as follows. For $S \in R$-alg and $x \in M \otimes S, f_{S[t]}(x+v \otimes t)$ is an element of $N \otimes S[t]$, and we define $\nabla_{v}^{n} f_{S}(x) \in N \otimes S$ to be the coefficient of t^{n}. This defines a polynomial law called the n-th directional derivative $\nabla_{v}^{n} f$ of f in the direction v. One finds that $\nabla_{v}^{0} f=f$ regardless of v. We abbreviate $\nabla_{v} f:=\nabla_{v}^{1} f$; it is linear in v.

If f is homogeneous of degree d and $0 \leq n \leq d$, then $\nabla_{v}^{n} f(x)$ is homogeneous of degree $d-n$ in x and degree n in v. The symmetry implicit in the definition of the directional derivative gives $\nabla_{v}^{n} f(x)=\nabla_{x}^{d-n} f(v)$ for $x \in M$.
Lemma 3.2. Suppose M, N are R-modules and A is a unital associative R-algebra and $g \in \mathscr{P}(M, A)$ is a polynomial law such that there is an element $m \in M$ such that $g(m) \in$ A is invertible. If $f \in \mathscr{P}^{d}(M, N)$ satisfies

$$
g_{S}(x) \in A_{S}^{\times} \Rightarrow f_{S}(x)=0
$$

for all $S \in R$-alg and $x \in M \otimes S$, then f is identically zero.
Proof. Since the hypotheses are stable under base change, it suffices to show that $f(v)=0$ for all $v \in M$. Replacing g by $L \circ g \in \mathscr{P}(M, A)$, where $L \in \operatorname{End}_{R}(A)$ is multiplication in A on the left by the inverse of $g(m)$, we may assume $g(m)=1_{A}$. Set $S:=R[\varepsilon] /\left(\varepsilon^{d+1}\right)$. For $v \in M$, the element

$$
g_{S}(m+\varepsilon v)=1_{A}+\sum_{n=1}^{d} \varepsilon^{n} \nabla_{v}^{n} g(m)
$$

is invertible in A_{S}, so by hypothesis,

$$
0=f_{S}(m+\varepsilon v)=\sum_{n=0}^{d} \varepsilon^{n} \nabla_{v}^{n} f(m)
$$

Focusing on the coefficient of ε^{d} in that equation gives

$$
0=\nabla_{v}^{d} f(m)=\nabla_{m}^{0} f(v)=f(v),
$$

as required.
The module of polynomial laws. In the following, we write $\mathrm{S}^{n} M$ for the n-th symmetric power of M, i.e., the R-module $\otimes^{n} M$ modulo the submodule generated by elements $x-$ $\sigma(x)$ for $x \in \otimes^{n} M$ and σ a permutation of the n factors.
Lemma 3.3. Let M and N be finitely generated projective R-modules. Then for each $d \geq 0$:
(1) $\mathscr{P}^{d}(M, N)$ is a finitely generated projective R-module.
(2) If $T \in R$-alg is faithfully flat, the natural map $\mathscr{P}_{R}^{d}(M, N) \otimes T \rightarrow \mathscr{P}_{T}^{d}(M \otimes$ $T, N \otimes T)$ is an isomorphism.
(3) The natural map $\mathrm{S}^{d}\left(M^{*}\right) \otimes N \rightarrow \mathscr{P}^{d}(M, N)$ is an isomorphism.
(4) The natural map $\mathscr{P}^{d}(M, R) \otimes N \rightarrow \mathscr{P}^{d}(M, N)$ is an isomorphism.

Proof. $\mathscr{P}_{R}^{d}(M, N)$ is naturally isomorphic to $\operatorname{Hom}_{R}\left(\Gamma_{d}(M), N\right)$ by [Rob63, Th. IV.1], where $\Gamma_{d}(M)$ denotes the module of degree d divided powers on M. Then $\mathscr{P}_{R}^{d}(M, N) \otimes$ $T \cong \operatorname{Hom}_{R}\left(\Gamma_{d}(M), N\right) \otimes T$, which in turn is $\operatorname{Hom}_{T}\left(\Gamma_{d}(M) \otimes T, N \otimes T\right)$ because T is faithfully flat [KO74, p. 33, Prop. II.2.5]. Now $\Gamma_{d}(M) \otimes T \cong \Gamma_{d}(M \otimes T)$ by [Bour, §IV.5, Exercise 7], completing the proof of (2).
(3): If M and N are free modules, then the map is an isomorphism by [Rob63, p. 232]. If M and N have constant rank, then there is a faithfully flat $T \in R$-alg such that $M \otimes T$ and $N \otimes T$ are free. Since (3) holds over T by the free case, (2) and faithfully flat descent give that (3) holds. In the general case, since M and N are finitely generated projective, we may write $R=\prod_{i=0}^{n} R_{i}$ for some n such that $M=\oplus M_{i}$ and $N=\oplus N_{i}$ with each M_{i}, N_{i} an R_{i}-module of finite constant rank. Then $\mathscr{P}^{d}(M, N)=\oplus \mathscr{P}^{d}\left(M_{i}, N_{i}\right)$ and $\mathrm{S}^{d}\left(M^{*}\right) \otimes N=\oplus\left(\mathrm{S}^{d}\left(M_{i}^{*}\right) \otimes N_{i}\right)$ and the claim follows by the constant rank case.
(4) follows trivially from (3). For (1), note that M^{*} is finitely generated projective, so so is $\mathrm{S}^{d}\left(M^{*}\right)$ and also the tensor product $\mathrm{S}^{d}\left(M^{*}\right) \otimes N$. Applying (3) gives the claim.

One can create new polynomial laws from old by twisting by a line bundle.
Lemma 3.4. Let M and N be finitely generated projective R-modules. Then for every $d \geq 0$ and every line bundle L, we have:
(1) There is a natural isomorphism $\mathscr{P}^{d}(M, N) \otimes\left(L^{*}\right)^{\otimes d} \rightarrow \mathscr{P}^{d}(M \otimes L, N)$.
(2) There is a natural isomorphism $\mathscr{P}^{d}(M, N) \cong \mathscr{P}^{d}\left(M \otimes L, N \otimes L^{\otimes d}\right)$.

Proof. For (1), since L^{*} is a line bundle, the natural map $\left(L^{*}\right)^{\otimes d} \rightarrow \mathrm{~S}^{d}\left(L^{*}\right)$ is an isomorphism because it is so after faithfully flat base change. Since $\mathrm{S}^{d}\left(M^{*}\right) \otimes \mathrm{S}^{d}\left(L^{*}\right)$ is naturally identified with $\mathrm{S}^{d}\left((M \otimes L)^{*}\right)$, combining Lemma 3.3(3),(4) then gives (1).

For (2), there are isomorphisms $\mathscr{P}^{d}\left(M \otimes L, N \otimes L^{\otimes d}\right) \xrightarrow{\sim} \mathscr{P}^{d}(M, N) \otimes\left(L^{*}\right)^{\otimes d} \otimes L^{\otimes d}$ by (1) and Lemma 3.3(4). Since $L^{\otimes d} \otimes\left(L^{*}\right)^{\otimes d} \cong R$, the claim follows.

Example 3.5. Suppose L is a line bundle and there is an isomorphism $h: L^{\otimes d} \rightarrow R$ for some $d \geq 1$. Such pairs $[L, h]$ are called (approximately) d-trivialized line bundles in [CaIF, §2.4.3] and were studied in the case $d=2$ in [Knu91], where they are called discriminant modules. Applying h to identify $N \otimes L^{\otimes d} \xrightarrow{\sim} N$ in Lemma 3.4(2) gives a construction that takes $f \in \mathscr{P}^{d}(M, N)$ and gives an element of $\mathscr{P}^{d}(M \otimes L, N)$, which we denote by $[L, h] \cdot(M, f)$.

For example, for each $\alpha \in R^{\times}$, define $\langle\alpha\rangle$ to be $[L, h]$ as in the preceding paragraph, where $L=R$ and h is defined by $h\left(\ell_{1} \otimes \cdots \otimes \ell_{d}\right)=\alpha \prod \ell_{i}$. Clearly, $\left\langle\alpha \beta^{d}\right\rangle \cong\langle\alpha\rangle$ for all $\alpha, \beta \in R^{\times}$. Applying the construction in the previous paragraph, we find $\langle\alpha\rangle \cdot(M, f) \cong$ ($M, \alpha f$).

Every $[L, h]$ with $L=R$ is necessarily isomorphic to $\langle\alpha\rangle$ for some $\alpha \in R^{\times}$. In particular, if $\operatorname{Pic}(R)$ has no d-torsion elements other than zero - e.g., if R is a semilocal ring or a UFD [Sta18, tags $0 \mathrm{BCH}, 02 \mathrm{M} 9]$ - then each $[L, h]$ is isomorphic to $\langle\alpha\rangle$ for some α.

The group scheme μ_{d} of d-th roots of unity is the automorphism group of each $[L, h]$, where μ_{d} acts by multiplication on L. The group $H^{1}\left(R, \mu_{d}\right)$ classifies pairs (L, h).

We say that homogeneous polynomial laws related by the isomorphism in Lemma 3.4(2) are projectively similar, imitating the language from $[\mathrm{AuBB}, \S 1.2]$ for the case of quadratic forms $(d=2)$. (This relationship was called "lax-similarity" in [BC].) We say that homogeneous degree d laws f and $[L, h] \cdot f$ for $[L, h] \in H^{1}\left(R, \mu_{d}\right)$ as in the preceding example are similar. If $\operatorname{Pic}(R)$ has no d-torsion elements other than zero, the two notions coincide.

For $f \in \mathscr{P}^{d}(M, N)$, we define $\operatorname{Aut}(f)$ to be the subgroup of GL (M) consisting of elements g such that $f g=f$ as polynomial laws. In case M and N are finitely generated projective, so is $\mathscr{P}^{d}(M, N)$, whence the functor $\operatorname{Aut}(f)$ from R-alg to groups defined by $\operatorname{Aut}(f)(T)=\operatorname{Aut}\left(f_{T}\right)$ is a closed sub-group-scheme of $\mathbf{G L}(M)$.
Lemma 3.6. Let f and f^{\prime} be homogeneous polynomial laws on finitely generated projective modules. If f and f^{\prime} are projectively similar, then their automorphism groups are isomorphic.

Proof. By hypothesis, $f \in \mathscr{P}^{d}(M, N)$ and $f^{\prime} \in \mathscr{P}^{d}\left(M \otimes L, N \otimes L^{\otimes d}\right)$ for some modules M and N; line bundle L; and $d \geq 0$. The group scheme $\operatorname{Aut}(f)$ is the closed sub-group-scheme of $\mathbf{G L}(M)$ stabilizing the element f in $\mathrm{S}^{d}\left(M^{*}\right) \otimes N$. Now, any element of $\mathbf{G L}(M)$ acts on $\mathrm{S}^{d}\left((M \otimes L)^{*}\right) \otimes\left(N \otimes L^{\otimes d}\right)$ by defining it to act as the identity on L. In this way, we find a homomorphism $\boldsymbol{\operatorname { A u t }}(f) \rightarrow \boldsymbol{\operatorname { A u t }}\left(f^{\prime}\right)$. Viewing M as $(M \otimes L) \otimes L^{*}$ and N as $\left(N \otimes L^{\otimes d}\right) \otimes\left(L^{*}\right)^{\otimes d}$, and repeating this construction, we find an inverse mapping $\boldsymbol{\operatorname { A u t }}\left(f^{\prime}\right) \rightarrow \boldsymbol{\operatorname { A u t }}(f)$.

4. BACKGROUND ON COMPOSITION ALGEBRAS

A not-necessarily-associative R-algebra C is an R-module with an R-linear map $C \otimes_{R}$ $C \rightarrow C$, which we view as a multiplication and write as juxtaposition. Such a C is unital if it has an element $1_{C} \in C$ such that $1_{C} c=c 1_{C}=c$ for all $c \in C$. See e.g. [Sch94]. A composition R-algebra as in [Pet93] is such a C that is finitely generated projective as an R-module, is unital, and has a quadratic form $n_{C}: C \rightarrow R$ that allows composition (that is, such that $n_{C}(x y)=n_{C}(x) n_{C}(y)$ for all $\left.x, y \in C\right)$, satisfies $n_{C}\left(1_{C}\right)=1$, and whose bilinearization defined by $n_{C}(x, y):=n_{C}(x+y)-n_{C}(x)-n_{C}(y)$ gives an isomorphism $C \rightarrow C^{*}$ via $x \mapsto n_{C}(x, \cdot)$. We say that a symmetric bilinear form with this property is regular. The quadratic form n_{C} (which is unique by Proposition 4.5 below) is called the norm of C.

Remark 4.1. In the definition above, one can swap the condition $n_{C}\left(1_{C}\right)=1$ with the requirement that the rank of C is nowhere zero.

We put $\operatorname{Tr}_{C}(x):=n_{C}\left(x, 1_{C}\right)$, a linear map $C \rightarrow R$, called the trace of C. Trivially, $\operatorname{Tr}_{C}\left(1_{C}\right)=2$. Lemma 3.1 gives that 1_{C} is unimodular, so we may identify R with $R 1_{C}$, and C is a faithful R-module. The unimodularity of 1_{C} is equivalent to the existence of some $\lambda \in C^{*}$ such that $\lambda\left(1_{C}\right)=1$, i.e., some $x \in C$ such that $\operatorname{Tr}_{C}(x)=1$, whence $\operatorname{Tr}_{C}: C \rightarrow R$ is surjective.

The class of composition algebras is stable under base change. That is, if C is a composition R-algebra with norm n_{C}, then for every $S \in R$-alg, $C \otimes S$ is a composition S-algebra with norm $n_{C} \otimes S$. The following two results are essentially well known [Pet93, 1.2-1.4]. For convenience, we include their proof.

Lemma 4.2 ("Cayley-Hamilton"). Let C be a composition algebra with norm n_{C} and define Tr_{C} as above. Then

$$
x^{2}-\operatorname{Tr}_{C}(x) x+n_{C}(x) 1_{C}=0
$$

for all $x \in C$.
Proof. Linearizing the composition law $n_{C}(x y)=n_{C}(x) n_{C}(y)$, we find

$$
\begin{gather*}
n_{C}(x y, x)=n_{C}(x) \operatorname{Tr}_{C}(y) \quad \text { and } \tag{4.3}\\
n_{C}(x y, w z)+n_{C}(w y, x z)=n_{C}(x, w) n_{C}(y, z) \tag{4.4}
\end{gather*}
$$

for all $x, y, z, w \in C$. Setting $z=x$ and $w=1_{C}$ in (4.4), we find:

$$
n_{C}(x y, x)+n_{C}\left(y, x^{2}\right)=\operatorname{Tr}_{C}(x) n_{C}(x, y) .
$$

Combining these with (4.3), we find:

$$
n_{C}\left(x^{2}-\operatorname{Tr}_{C}(x) x+n_{C}(x) 1_{C}, y\right)=0 \quad \text { for all } x, y \in C
$$

Since the bilinear form n_{C} is regular, the claim follows.
A priori, a composition algebra is a unital algebra together with a quadratic form, the norm. The next result shows that this data is redundant.

Proposition 4.5. If C is a composition algebra, then the norm n_{C} is uniquely determined by the algebra structure of C.
Proof. Let $n^{\prime}: C \rightarrow R$ be any quadratic form making C a composition algebra and write $\operatorname{Tr}^{\prime}$ for the corresponding trace $\operatorname{Tr}^{\prime}(x):=n^{\prime}\left(x+1_{C}\right)-n^{\prime}(x)-n^{\prime}\left(1_{C}\right)$. Then $\lambda:=$ $\operatorname{Tr}_{C}-\operatorname{Tr}^{\prime}$ (resp., $q:=n_{C}-n^{\prime}$) is a linear (resp., quadratic) form on C and the CayleyHamilton property yields

$$
\begin{equation*}
\lambda(x) x=q(x) 1_{C} \quad \text { for all } x \in C \tag{4.6}
\end{equation*}
$$

We aim to prove that $q=0$. Because 1_{C} is unimodular, it suffices to prove $\lambda=0$. This can be checked locally, so we may assume that R is local and in particular $C=R 1_{C} \oplus M$ for a free module M. Now, $\operatorname{Tr}_{C}\left(1_{C}\right)=2=\operatorname{Tr}^{\prime}\left(1_{C}\right)$, so $\lambda\left(1_{C}\right)=0$. For $m \in M$ a basis vector, $\lambda(m) m$ belongs to $M \cap R 1_{C}$ by (4.6), so it is zero, whence $\lambda(m)=0$, proving the claim.

Corollary 4.7. Let C be a unital R-algebra. If there is a faithfully flat $S \in R$-alg such that $C \otimes S$ is a composition S-algebra, then C is a composition algebra over R.

Proof. Because the norm $n_{C \otimes S}$ of $C \otimes S$ is uniquely determined by the algebra structure, one obtains by faithfully flat descent a quadratic form $n_{C}: C \rightarrow R$ such that $n_{C} \otimes S=$ $n_{C \otimes S}$. Because $n_{C \otimes S}$ satisfies the properties required to make $C \otimes S$ a composition algebra and S is faithfully flat over R, it follows that the same properties hold for n_{C}.

The following facts are standard, see for example [Knu91, §V.7]: Composition algebras are alternative algebras. The map ${ }^{-}: C \rightarrow C$ defined by $\bar{x}:=\operatorname{Tr}_{C}(x) 1_{C}-x$ is an involution, i.e., an R-linear anti-automorphism of period 2.
Composition algebras of constant rank. In case R is connected, a composition R-algebra has rank 2^{e} for $e \in\{0,1,2,3\}$ [Knu91, p. 206, Th. V.7.1.6]. Therefore, specifying a composition R-algebra C is equivalent to writing

$$
\begin{equation*}
R=\prod_{e=0}^{3} R_{e} \quad \text { and } \quad C=\prod_{e=0}^{3} C_{e} \tag{4.8}
\end{equation*}
$$

where C_{e} is a composition R_{e}-algebra of constant rank 2^{e}.
If C is a composition algebra of rank 1 , then since 1_{C} is unimodular, C is equal to R. The bilinear form $n_{C}(\cdot, \cdot)$ gives an isomorphism $C \rightarrow C^{*}$ and $n_{C}\left(1_{C}, \alpha 1_{C}\right)=2 \alpha$, we deduce that 2 is invertible in R. Conversely, if 2 is invertible, then R is a composition algebra by setting $n_{C}(\alpha)=\alpha^{2}$.

A composition algebra whose rank is 2 is not just an associative and commutative ring, it is an étale algebra [Knu91, p. 43, Th. I.7.3.6]. Conversely, every rank 2 étale algebra is a composition algebra. Among rank 2 étale algebras, there is a distinguished one, $R \times R$, which is said to be split.

A composition algebra whose rank is 4 is associative and is an Azumaya algebra, commonly known as a quaternion algebra. (Note that our notion of quaternion algebra is more restrictive than the one in the books [Knu91, see p. 43] and [Voi21].) Among quaternion R-algebras, there is a distinguished one, the 2-by-2 matrices $\operatorname{Mat}_{2}(R)$, which is said to be split.

A composition algebras whose rank is 8 is known as an octonion algebra. Among octonion R-algebras, there is a distinguished one that is said to be split, called the Zorn vector matrices and denoted $\operatorname{Zor}(R)$, see [LPR08, 4.2]. As a module, we view it as $\left(\begin{array}{cc}R & R^{3} \\ R^{3} & R\end{array}\right)$ with multiplication

$$
\left(\begin{array}{cc}
\alpha_{1} & u \\
x & \alpha_{2}
\end{array}\right)\left(\begin{array}{cc}
\beta_{1} & v \\
y & \beta_{2}
\end{array}\right)=\left(\begin{array}{cc}
\alpha_{1} \beta_{1}-u^{\top} y & \alpha_{1} v+\beta_{2} u+x \times y \\
\beta_{1} x+\alpha_{2} y+u \times v & -x^{\top} v+\alpha_{2} \beta_{2}
\end{array}\right)
$$

where \times is the ordinary cross product on R^{3}. The quadratic form is

$$
n_{\operatorname{Zor}(R)}\left(\begin{array}{cc}
\alpha_{1} & u \\
x & \alpha_{2}
\end{array}\right)=\alpha_{1} \alpha_{2}+u^{\top} x .
$$

One says that a composition R-algebra C is split if, when we write R and C as in (4.8), C_{e} is isomorphic to the split composition R_{e}-algebra for $e \geq 1$.

Example 4.9. The real octonions \mathbb{O} are a composition \mathbb{R}-algebra with basis $1_{\mathbb{O}}, e_{1}, e_{2}, \ldots$, e_{7} which is orthonormal with respect to the quadratic form $n_{\mathbb{O}}$ with multiplication table

$$
e_{r}^{2}=-1 \quad \text { and } \quad e_{r} e_{r+1} e_{r+3}=-1
$$

for all r with subscripts taken modulo 7 , and the displayed triple product is associative.
The \mathbb{Z}-sublattice \mathcal{O} of \mathbb{O} spanned by $1_{\mathbb{O}}$, the e_{r}, and

$$
\begin{gathered}
h_{1}=\left(1+e_{1}+e_{2}+e_{4}\right) / 2, \quad h_{2}=\left(1+e_{1}+e_{3}+e_{7}\right) / 2, \\
h_{3}=\left(1+e_{1}+e_{5}+e_{6}\right) / 2, \quad \text { and } \quad h_{4}=\left(e_{1}+e_{2}+e_{3}+e_{5}\right) / 2
\end{gathered}
$$

is a composition \mathbb{Z}-algebra. It is a maximal order in $\mathcal{O} \otimes \mathbb{Q}$, and all such are conjugate under the automorphism group of $\mathcal{O} \otimes \mathbb{Q}$. (As a consequence, there is some choice in the way one presents this algebra. We have followed [EG96].) As a subring of \mathbb{O}, it has no zero divisors. For more on this, see [Dic23, §19], [Cox], [ConwS, §9], or [Con, §5].

5. Background on Jordan algebras

Para-quadratic and Jordan algebras. A (unital) para-quadratic algebra over a ring R is an R-module J together with a quadratic map $U: R \rightarrow \operatorname{End}_{R}(J)$ - i.e., U is an element of $\mathscr{P}^{2}\left(R, \operatorname{End}_{R}(J)\right)$ - called the U-operator, and a distinguished element $1_{J} \in J$, such that $U_{1_{J}}=\operatorname{Id}_{J}$. As a notational convenience, we define a linear map $J \otimes J \otimes J \rightarrow J$ denoted $x \otimes y \otimes z \mapsto\{x y z\}$ via

$$
\begin{equation*}
\{x y z\}:=\left(U_{x+z}-U_{x}-U_{z}\right) y . \tag{5.1}
\end{equation*}
$$

Evidently, $\{x y z\}=\{z y x\}$ for all $x, y, z \in J$.
A para-quadratic R-algebra J is a Jordan R-algebra if the identities

$$
\begin{equation*}
U_{U_{x} y}=U_{x} U_{y} U_{x} \quad \text { and } \quad U_{x}\{y x z\}=\left\{\left(U_{x} y\right) z x\right\} \tag{5.2}
\end{equation*}
$$

hold for all $x, y, z \in J \otimes S$ for all $S \in R$-alg. (Alternatively, one can define a Jordan R-algebra entirely in terms of identities concerning elements of J, avoiding the "for all $S \in R$-alg", at the cost of requiring a longer list of identities, see [McC66, §1].) Note that if J is a Jordan R-algebra, then $J \otimes T$ is a Jordan T-algebra for every $T \in R$-alg ("Jordan algebras are closed under base change"). If J is a para-quadratic algebra and $J \otimes T$ is Jordan for some faithfully flat $T \in R$-alg, then J is Jordan.

For x in a Jordan algebra J and $n \geq 0$, we define the n-th power x^{n} via

$$
\begin{equation*}
x^{0}:=1_{J}, \quad x^{1}:=x, \quad x^{n}=U_{x} x^{n-2} \text { for } n \geq 2 . \tag{5.3}
\end{equation*}
$$

An element $x \in J$ is invertible with inverse y if $U_{x} y=x$ and $U_{x} y^{2}=1$ [McC66, §5]. It turns out that x is invertible if and only if U_{x} is invertible if and only if 1 is in the image of U_{x}; when these hold, the inverse of x is $y=U_{x}^{-1} x$, which we denote by x^{-1}. It follows from (5.2) that $x, y \in J$ are both invertible if and only if $U_{x} y$ is invertible, and in this case $\left(U_{x} y\right)^{-1}=U_{x^{-1}} y^{-1}$.

Example 5.4. Let A be an associative and unital R-algebra. Define $U_{x} y:=x y x$ for $x, y \in A$. Then $\{x y z\}=x y z+z y x$ and A endowed with this U-operator is a Jordan algebra denoted by A^{+}. Note that for $x \in A$ and $n \geq 0$, the n-th powers of x in A and A^{+} are the same.

Relations with other kinds of algebras. Suppose for this paragraph that 2 is invertible in R. Given a para-quadratic algebra J as in the preceding paragraph, one can define a commutative (bilinear) product \bullet on J via

$$
\begin{equation*}
x \bullet y:=\frac{1}{2}\left\{x 1_{J} y\right\} \quad \text { for } x, y \in J . \tag{5.5}
\end{equation*}
$$

(In the case where J is constructed from an associative algebra as in Example 5.4, one finds that $x \bullet y=\frac{1}{2}(x y+y x)$. If additionally the associative algebra is commutative, \bullet equals the product in that associative algebra.) If J is Jordan, then \bullet satisfies

$$
\begin{equation*}
(x \bullet y) \bullet(x \bullet x)=x \bullet(y \bullet(x \bullet x)), \tag{5.6}
\end{equation*}
$$

which is the axiom classically called the "Jordan identity".
In the opposite direction, given an R-module J with a commutative product \bullet with identity element 1_{J}, we obtain a para-quadratic algebra by setting

$$
\begin{equation*}
U_{x} y:=2 x \bullet(x \bullet y)-(x \bullet x) \bullet y \quad \text { for } x, y \in J \tag{5.7}
\end{equation*}
$$

If the original product satisfied the Jordan identity, then the para-quadratic algebra so obtained satisfies (5.2), i.e., is a Jordan algebra in our sense, see for example [McC04, p. 202].

Definition 5.8 (hermitian matrix algebras). Let C be a composition R-algebra and $\Gamma=$ $\left\langle\gamma_{1}, \gamma_{2}, \gamma_{3}\right\rangle \in \mathrm{GL}_{3}(R)$. We define $\operatorname{Her}_{3}(C, \Gamma)$ to be the R-submodule of $\operatorname{Mat}_{3}(C)$ consisting of elements fixed by the involution $x \mapsto \Gamma^{-1} \bar{x}^{\top} \Gamma$ and with diagonal entries in R. Note that, as an R-module, $\operatorname{Her}_{3}(C, \Gamma)$ is a sum of 3 copies of C and 3 copies of R, so it is finitely generated projective.

In the special case where 2 is invertible in R, one can define a multiplication \bullet on $\operatorname{Her}_{3}(C, \Gamma)$ via $x \bullet y:=\frac{1}{2}(x y+y x)$, where juxtaposition denotes the usual product of matrices in $\mathrm{Mat}_{3}(C)$. It satisfies the Jordan identity [Jac68, p. 61, Cor.], and therefore the U-operator defined via (5.7) makes $\operatorname{Her}_{3}(C, \Gamma)$ into a Jordan algebra.

6. Cubic Jordan algebras

In this section, we define cubic Jordan algebras and the closely related notion of cubic norm structure. They provide a useful alternative language for computation.

Definition 6.1. Following [McC69] (see [PR86, p. 212] for the terminology), we define a cubic norm R-structure as a quadruple $\mathbf{M}=\left(M, 1_{\mathbf{M}}, \sharp, N_{\mathbf{M}}\right)$ consisting of an R-module M, a distinguished element $1_{\mathrm{M}} \in M$ (the base point), a quadratic map $\sharp: M \rightarrow M$, $x \mapsto x^{\sharp}$ (the adjoint), with (symmetric bilinear) polarization $x \times y:=(x+y)^{\sharp}-x^{\sharp}-y^{\sharp}$, a
cubic form $N_{\mathrm{M}}: M \rightarrow R$ (the norm) such that the following axioms are fulfilled. Defining a bilinear form $T_{\mathrm{M}}: M \times M \rightarrow R$ by

$$
\begin{equation*}
T_{\mathbf{M}}(x, y):=\left(\nabla_{x} N_{\mathbf{M}}\right)\left(1_{\mathbf{M}}\right)\left(\nabla_{y} N_{\mathbf{M}}\right)\left(1_{\mathbf{M}}\right)-\left(\nabla_{x} \nabla_{y} N_{\mathbf{M}}\right)\left(1_{\mathbf{M}}\right) \tag{6.2}
\end{equation*}
$$

(the bilinear trace), which is symmetric since the directional derivatives ∇_{x}, ∇_{y} commute [Rob63, p. 241, Prop. II.5], and a linear form $\operatorname{Tr}_{M}: M \rightarrow R$ by

$$
\begin{equation*}
\operatorname{Tr}_{\mathbf{M}}(x):=T_{\mathbf{M}}\left(x, 1_{\mathbf{M}}\right) \tag{6.3}
\end{equation*}
$$

(the linear trace), the identities

$$
\begin{gather*}
1_{\mathbf{M}}^{\sharp}=1_{\mathbf{M}}, \quad N_{\mathbf{M}}\left(1_{\mathbf{M}}\right)=1, \tag{6.4}\\
1_{\mathbf{M}} \times x=\operatorname{Tr}_{\mathbf{M}}(x) 1_{\mathbf{M}}-x,\left(\nabla_{y} N_{\mathbf{M}}\right)(x)=T_{\mathbf{M}}\left(x^{\sharp}, y\right), x^{\sharp \sharp}=N_{\mathbf{M}}(x) x \tag{6.5}
\end{gather*}
$$

hold in all scalar extensions $M \otimes S, S \in R$-alg.
For such a cubic norm structure \mathbf{M}, we then define a U-operator by

$$
\begin{equation*}
U_{x} y:=T_{\mathbf{M}}(x, y) x-x^{\sharp} \times y \tag{6.6}
\end{equation*}
$$

which together with $1_{\mathbf{M}}$ converts the R-module M into a Jordan R-algebra $J=J(\mathbf{M})$ [McC69, Th. 1]. In the sequel, we rarely distinguish carefully between the cubic norm structure \mathbf{M} and the Jordan algebra $J(\mathbf{M})$. By abuse of notation, we write $1_{J}=1_{\mathbf{M}}$, $N_{J}=N_{\mathbf{M}}, T_{J}=T_{\mathbf{M}}$, and $\operatorname{Tr}_{J}:=\operatorname{Tr}_{\mathbf{M}}$ if there is no danger of confusion, even though, in general, J does not determine \mathbf{M} uniquely [PR86, p. 216].

A Jordan R-algebra J is said to be cubic if there exists a cubic norm R-structure \mathbf{M} as above such that (i) $J=J(\mathbf{M})$ and (ii) $J=M$ is a finitely generated projective R module. With the quadratic form $S_{J}: M \rightarrow R$ defined by $S_{J}(x):=\operatorname{Tr}_{J}\left(x^{\sharp}\right)$ for $x \in J$ (the quadratic trace), the cubic Jordan algebra J satisfies the identities

$$
\begin{gather*}
\left(U_{x} y\right)^{\sharp}=U_{x^{\sharp}} y^{\sharp}, \quad N_{J}\left(U_{x} y\right) U_{x} y=N_{J}(x)^{2} N_{J}(y) U_{x} y, \tag{6.7}\\
U_{x} x^{\sharp}=N_{J}(x) x, \quad U_{x}\left(x^{\sharp}\right)^{2}=N_{J}(x)^{2} 1_{J}, \tag{6.8}\\
x^{\sharp}=x^{2}-\operatorname{Tr}_{J}(x) x+S_{J}(x) 1_{J}=0, \quad \text { and } \tag{6.9}
\end{gather*}
$$

$$
\begin{equation*}
x^{3}-\operatorname{Tr}_{J}(x) x^{2}+S_{J}(x) x-N_{J}(x) 1_{J}=0=x^{4}-\operatorname{Tr}_{J}(x) x^{3}+S_{J}(x) x^{2}-N_{J}(x) x \tag{6.10}
\end{equation*}
$$

for all $x \in J$. For (6.7)-(6.9) and the first equation of (6.10), see [McC69, p. 499], while the second equation of (6.10) follows from the first, (6.8), and (6.9) via $x^{4}=U_{x} x^{2}=$ $U_{x} x^{\sharp}+\operatorname{Tr}_{J}(x) U_{x} x-S_{J}(x) U_{x} 1_{J}=\operatorname{Tr}_{J}(x) x^{3}-S_{J}(x) x^{2}+N_{J}(x) x$.

Remark 6.11. Note that the second equality of (6.10) derives from the first through formal multiplication by x. But, due to the para-quadratic character of Jordan algebras, this is not a legitimate operation unless 2 is invertible in R. In fact, cubic Jordan algebras exist that contain elements x satisfying $x^{2}=0 \neq x^{3}$ [Jac69, 1.31-1.32].

Lemma 6.12. Let J be a cubic Jordan R-algebra and $x, y \in J$.
(1) x is invertible in J if and only if $N_{J}(x)$ is invertible in R. In this case

$$
x^{-1}=N_{J}(x)^{-1} x^{\sharp} \quad \text { and } \quad N_{J}\left(x^{-1}\right)=N_{J}(x)^{-1} .
$$

(2) Invertible elements of J are unimodular.
(3) $N_{J}\left(U_{x} y\right)=N_{J}(x)^{2} N_{J}(y)$ and $N_{J}\left(x^{2}\right)=N_{J}(x)^{2}=N_{J}\left(x^{\sharp}\right)$.

Proof. (1): If $N_{J}(x)$ is invertible in R, then (6.8) shows that so is x, with inverse $x^{-1}=$ $N_{J}(x)^{-1} x^{\sharp}$. Conversely, assume x is invertible in J. Then $y:=\left(x^{-1}\right)^{2}$ satisfies $U_{x} y=$ 1_{J}, and (6.7) yields $1_{J}=N_{J}\left(U_{x} y\right) U_{x} y=N_{J}(x)^{2} N_{J}(y) 1_{J}$, hence

$$
N_{J}(x)^{2} N_{J}(y)=1
$$

since 1_{J} is unimodular by Lemma 3.1 and (6.4). Thus $N_{J}(x) \in R^{\times}$. Before proving the final formula of (1), we deal with (2), (3).
(2) follows immediately from Lemma 3.1 combined with the first part of (1).
(3): Applying Lemma 3.2 to the polynomial law $g: J \times J \rightarrow \operatorname{End}_{R}(J)$ defined by $g(x, y):=U_{U_{x} y}$ in all scalar extensions, we may assume that $U_{x} y$ is invertible. By (2), therefore, $U_{x} y$ is unimodular, and the first equality follows from (6.7). The second equality follows from the first for $y=1_{J}$, while in the third equality we may again assume that x is invertible, hence unimodular. Then (6.8) combines with the first equality to imply $N_{J}(x)^{4}=N_{J}\left(N_{J}(x) x\right)=N_{J}\left(U_{x} x^{\sharp}\right)=N_{J}(x)^{2} N_{J}\left(x^{\sharp}\right)$, as desired.

Now the second equality of (1) follows from the first and (3) via

$$
N_{J}\left(x^{-1}\right)=N_{J}(x)^{-3} N_{J}\left(x^{\sharp}\right)=N_{J}(x)^{-1} .
$$

Without the assumption that J is finitely generated projective as an R-module, Lemma 6.12 would be false [PR85, Th. 10].

Example 6.13. We endow the R-module $M:=\operatorname{Her}_{3}(C, \Gamma)$ from Definition 5.8 with a cubic norm R-structure $\mathbf{M}=\left(M, 1_{\mathbf{M}}, \sharp, N_{\mathbf{M}}\right)$, where $1_{\mathbf{M}}$ is the 3-by-3 identity matrix. An element of $x \in \operatorname{Her}_{3}(C, \Gamma)$ may be written as

$$
x=\left(\begin{array}{ccc}
\alpha_{1} & \gamma_{2} c_{3} & \gamma_{3} \bar{c}_{2} \\
\gamma_{1} \bar{c}_{3} & \alpha_{2} & \gamma_{3} c_{1} \\
\gamma_{1} c_{2} & \gamma_{2} \bar{c}_{1} & \alpha_{3}
\end{array}\right)
$$

for $\alpha_{i} \in R$ and $c_{i} \in C$. Because three of the entries are determined by symmetry, we may denote such an element by

$$
\begin{equation*}
x:=\sum_{i=1}^{3}\left(\alpha_{i} \varepsilon_{i}+\delta_{i}^{\Gamma}\left(c_{i}\right)\right) \tag{6.14}
\end{equation*}
$$

where ε_{i} has a 1 in the (i, i) entry and zeros elsewhere, and $\delta_{i}^{\Gamma}(c)$ has $\gamma_{i+2} c$ in the $(i+$ $1, i+2)$ entry - where the symbols $i+1$ and $i+2$ are taken modulo 3 - and zeros in the other entries not determined by symmetry. In the literature on Jordan algebras, one finds the notation $c[(i+1)(i+2)]$ for what we denote $\delta_{i}(c)$.

We define the adjoint \sharp by

$$
x^{\sharp}:=\sum_{i=1}^{3}\left(\left(\alpha_{i+1} \alpha_{i+2}-\gamma_{i+1} \gamma_{i+2} n_{C}\left(c_{i}\right)\right) \varepsilon_{i}+\delta_{i}^{\Gamma}\left(-\alpha_{i} c_{i}+\gamma_{i} \overline{c_{i+1} c_{i+2}}\right)\right)
$$

with indices $\bmod 3$, and the norm N_{M} by

$$
\begin{equation*}
N_{\mathbf{M}}(x):=\alpha_{1} \alpha_{2} \alpha_{3}-\sum_{i=1}^{3} \gamma_{i+1} \gamma_{i+2} \alpha_{i} n_{C}\left(c_{i}\right)+\gamma_{1} \gamma_{2} \gamma_{3} \operatorname{Tr}_{C}\left(c_{1} c_{2} c_{3}\right) \tag{6.15}
\end{equation*}
$$

in all scalar extensions, where the last summand on the right of (6.15) is unambiguous since $\operatorname{Tr}_{C}\left(\left(c_{1} c_{2}\right) c_{3}\right)=\operatorname{Tr}_{C}\left(c_{1}\left(c_{2} c_{3}\right)\right)$ [McC85, Th. 3.5]. By [McC69, Th. 3], \mathbf{M} is indeed a cubic norm structure. The corresponding cubic Jordan algebra will again be denoted by $J:=\operatorname{Her}_{3}(C, \Gamma):=J(\mathbf{M})$.
(In case 2 is invertible in R, the commutative product \bullet on $\operatorname{Her}_{3}(C, \Gamma)$ defined from the U-operator by (5.5) equals the product $x \bullet y:=\frac{1}{2}(x y+y x)$ from Definition 5.8. In order to see this, it suffices to note that the square of $x \in \operatorname{Her}_{3}(C, \Gamma)$ as defined in (5.3) is the same as the square of x in the matrix algebra $\operatorname{Mat}_{3}(C)$. This in turn follows immediately from (6.9), (6.15), and the definition of the adjoint.)

For x as above and $y=\sum\left(\beta_{i} \varepsilon_{i}+\delta_{i}^{\Gamma}\left(v_{i}\right)\right)$, with $\beta_{i} \in R, v_{i} \in C$, evaluating the bilinear trace at x, y yields

$$
\begin{equation*}
T_{J}(x, y)=\sum_{i=1}^{3}\left(\alpha_{i} \beta_{i}+\gamma_{i+1} \gamma_{i+2} n_{C}\left(u_{i}, v_{i}\right)\right) \tag{6.16}
\end{equation*}
$$

Since the bilinear trace n_{C} is regular, so is T_{J}.
For the special case where $\Gamma=\mathrm{Id}$, we define $\operatorname{Her}_{3}(C):=\operatorname{Her}_{3}(C, \mathrm{Id})$ and write δ_{i} for δ_{i}^{Γ}. It can be useful to write elements of $\operatorname{Her}_{3}(C)$ as

$$
\left(\begin{array}{lll}
\alpha_{1} & c_{3} & \dot{c} \\
\dot{c_{2}} & \alpha_{2} & c_{1} \\
c_{2} & \alpha_{3}
\end{array}\right)
$$

where • denotes an entry that is omitted because it is determined by symmetry. As an example of the triple product defined from (5.1) and (6.6), we mention that for $x=\sum \alpha_{i} \varepsilon_{i}$ diagonal, we have

$$
\begin{equation*}
\left\{\delta_{i}(a) \delta_{i+1}(b) x\right\}=\delta_{i+2}(\overline{a b}) \alpha_{i} \quad \text { and } \quad\left\{\delta_{i+1}(b) \delta_{i}(a) x\right\}=\delta_{i+2}(\overline{a b}) \alpha_{i+1} \tag{6.17}
\end{equation*}
$$

for $i \in 1,2,3$ taken $\bmod 3$ and $a, b \in C$.
Note that, for the Jordan algebra $\operatorname{Her}_{3}(C, \Gamma)$ just defined, if we multiply Γ by an element of R^{\times}or any entry in Γ by the square of an element of R^{\times}, we obtain an algebra isomorphic to the original. Therefore, replacing Γ by $\left\langle(\operatorname{det} \Gamma)^{-1} \gamma_{1},(\operatorname{det} \Gamma) \gamma_{2},(\operatorname{det} \Gamma) \gamma_{3}\right\rangle$ does not change the isomorphism class of $\operatorname{Her}_{3}(C, \Gamma)$ and we may assume that $\gamma_{1} \gamma_{2} \gamma_{3}=1$.

Example 6.18. In case $R=\mathbb{R}$, the preceding paragraph shows that it is sufficient to consider two choices for Γ, namely $\langle 1,1, \pm 1\rangle$. We compute $T_{\operatorname{Her}_{3}(C, \Gamma)}$ for each choice of C and Γ. Regular symmetric bilinear forms over \mathbb{R} are classified by their dimension and signature (an integer), so it suffices to specify the signature. If $C=\mathbb{R}, \mathbb{C}, \mathbb{H}$, or \mathbb{O}, the signature of n_{C} is 2^{r} for $r=0,1,2,3$ respectively. By (6.16), T_{J} has signature $3\left(1+2^{r}\right)$ for $J=\operatorname{Her}_{3}(C)$ and $3-2^{r}$ for $J=\operatorname{Her}_{3}(C,\langle 1,1,-1\rangle)$. For J the split Freudenthal algebra of rank $3\left(1+2^{r}\right)$ with $r=1$, 2 , or 3 , the signature of T_{J} is 3 .

Remark 6.19. Alternatively, one could define the Jordan algebra structure on $\operatorname{Her}_{3}(C, \Gamma)$ for an arbitrary ring R without referring to cubic norm structures as follows. Writing out the formulas for the U-operator from Definition 5.8 in case $R=\mathbb{Q}$, one finds that the formulas do not involve any denominators other than γ_{i} terms and therefore make sense for any R regardless of whether 2 is invertible. This makes $\operatorname{Her}_{3}(C, \Gamma)$ a para-quadratic algebra. Because it is a Jordan algebra in case $R=\mathbb{Q}$ as in Definition 5.8, we conclude that $\operatorname{Her}_{3}(C, \Gamma)$ is a Jordan algebra with no hypothesis on R by extension of identities [Bour, §IV.2.3, Th. 2]. This alternative definition gives the same objects, but is much harder to work with.

7. Albert algebras are Freudenthal algebras are Jordan algebras

Definition 7.1. A split Freudenthal R-algebra is a Jordan algebra $\operatorname{Her}_{3}(C)$ as in Example 6.13 for some split composition R-algebra C. Because split composition algebras are determined up to isomorphism by their rank function, so are split Freudenthal algebras.

A para-quadratic R-algebra J is a Freudenthal algebra if $J \otimes S$ is a split Freudenthal S algebra for some faithfully flat $S \in R$-alg. It is immediate that every Freudenthal algebra is a Jordan algebra.

Since every split Freudenthal R-algebra is finitely generated projective as an R-module for every R, the same is true for every Freudenthal R-algebra J [Sta18, Tags 03C4, 05A9], and by the same reasoning we see that the identity element 1_{J} is unimodular. Because the
rank of a composition algebra takes values in $\{1,2,4,8\}$, the rank of a Freudenthal algebra takes values in $\{6,9,15,27\}$. An Albert R-algebra is a Freudenthal R-algebra of rank 27.
Proposition 7.2. For every composition R-algebra C and every $\Gamma \in \operatorname{GL}_{3}(R), \operatorname{Her}_{3}(C, \Gamma)$ is a Freudenthal algebra.
Proof. Replacing R with R_{e} as in (4.8), we may assume that C has constant rank. There is a faithfully flat $S \in R$-alg such that $C \otimes S$ is a split composition algebra.

Consider $T:=S\left[t_{1}, t_{2}, t_{3}\right] /\left(t_{1}^{2}-\gamma_{1}, t_{2}^{2}-\gamma_{2}, t_{3}^{2}-\gamma_{3}\right)$. It is a free S-module, so faithfully flat. Then $\operatorname{Her}_{3}(C, \Gamma) \otimes T$ is isomorphic to $\operatorname{Her}_{3}(C \otimes T)$ as cubic Jordan algebras, and the latter is a split Freudenthal algebra.

The Freudenthal algebras $\operatorname{Her}_{3}(C, \Gamma)$ are said to be reduced.
Example 7.3. Let J be a Freudenthal R-algebra. If $x \in J$ has $U_{x}=\operatorname{Id}_{J}$, then $x=\zeta 1_{J}$ for $\zeta \in R$ such that $\zeta^{2}=1$. To see this, first suppose that J is $\operatorname{Her}_{3}(C)$ for some composition algebra C and write $x=\sum\left(\alpha_{i} \varepsilon_{i}+\delta_{i}\left(c_{i}\right)\right)$ for $\alpha_{i} \in R$ and $c_{i} \in C$. We find

$$
U_{x} \varepsilon_{i}=\alpha_{i}^{2} \varepsilon_{i}+\delta_{i+2}\left(\alpha_{i} c_{i+2}\right)+\cdots
$$

for each i, so $\alpha_{i}^{2}=1$ and $c_{i+2}=0$ for all i. Then

$$
U_{x} \delta_{i}\left(1_{C}\right)=\delta_{i}\left(\alpha_{i+1} \alpha_{i+2} 1_{C}\right)
$$

Since 1_{C} is unimodular, $\alpha_{i+1} \alpha_{i+2}=1$ for all i, proving the claim for this J.
For general J, let $S \in R$-alg be faithfully flat such that $J \otimes S$ is split. Then $x \in J$ maps to an element of $R 1_{J} \otimes S \subseteq J \otimes S$ and so belongs to $R 1_{J} \subseteq J$. Since $U_{\zeta 1_{J}}=\zeta^{2} \operatorname{Id}_{J}$ for $\zeta \in R$, the claim follows.

The following result is well known when R is a field or perhaps a local ring, see for example [Pet19, Prop. 20]. We impose no hypothesis on R.
Proposition 7.4. Suppose C is a split composition R-algebra of constant rank at least 2 , i.e., C is $R \times R$, $\operatorname{Mat}_{2}(R)$, or $\operatorname{Zor}(R)$. Then $\operatorname{Her}_{3}(C, \Gamma) \cong \operatorname{Her}_{3}(C)$ for all Γ.

Proof. Since n_{C} is universal, there are invertible $p, q \in C$ such that $\gamma_{2}=n_{C}\left(q^{-1}\right)$ and $\gamma_{3}=n_{C}\left(p^{-1}\right)$, so $\gamma_{1}=n_{C}(p q)$. We define $C^{(p, q)}$ to be a not-necessarily associative R algebra with the same underlying R-module structure and with multiplication ${ }_{(p, q)}$ defined by

$$
x \cdot(p, q) y:=(x p)(q y),
$$

where the multiplication on the right is the multiplication in C. Certainly $(p q)^{-1}$ is an identity element in $C^{(p, q)}$. The algebra $C^{(p, q)}$ is called an isotope of C and is studied in [McC71a], where it is proved to be alternative. One checks that it is a composition algebra with quadratic form $n_{C^{(p, q)}}=n_{C}(p q) n_{C}$, see [McC71a, Prop. 5] for a more general statement in case R is a field.

Define $\phi: \operatorname{Her}_{3}\left(C^{(p, q)}\right) \rightarrow \operatorname{Her}_{3}(C, \Gamma)$ via $\phi\left(\sum x_{i} \varepsilon_{i}+\delta_{i}\left(c_{i}\right)\right)=\sum x_{i} \varepsilon_{i}+\delta_{i}^{\Gamma}\left(c_{i}^{\prime}\right)$, where

$$
c_{1}^{\prime}=(p q) c_{1}(p q), \quad c_{2}^{\prime}=c_{2} p, \quad \text { and } \quad c_{3}^{\prime}=q c_{3}
$$

It is evidently an isomorphism of R-modules and one checks that it is an isomorphism of Jordan algebras, compare [McC71a, Th. 3]. Therefore, we are reduced to verifying that $C^{(p, q)}$ is split.

If C is associative, then the R-linear map

$$
L_{p q}: C^{(p, q)} \rightarrow C \quad \text { such that } \quad L_{p q}(x)=p q x
$$

is an isomorphism of R-algebras. So assume $C=\operatorname{Zor}(R)$.

At the beginning, when we chose p and q, we were free to pick $\xi_{i}, \eta_{i} \in R^{\times}$such that $p=\left(\begin{array}{cc}\xi_{1} & 0 \\ 0 & \xi_{2}\end{array}\right)$ and $q=\left(\begin{array}{cc}\eta_{1} & 0 \\ 0 & \eta_{2}\end{array}\right)$. Let $A \in \operatorname{Mat}_{3}(R)$ be any matrix such that $\operatorname{det} A=$ $\left(\xi_{1} \xi_{2}^{2} \eta_{1}^{2} \eta\right)^{-1}$ and put $B:=\xi_{2} \eta_{1}\left(A^{\sharp}\right)^{\top}$, where \sharp denotes the classical adjoint. With $\zeta_{i}:=$ $\left(\xi_{i} \eta_{i}\right)^{-1}$, one checks, using the formula $(S x) \times(S y)=\left(S^{\sharp}\right)^{\top}(x \times y)$ for \times the usual cross product in R^{3}, that the assignment

$$
\left(\begin{array}{cc}
\alpha_{1} & u_{1} \\
u_{2} & \alpha_{2}
\end{array}\right) \mapsto\left(\begin{array}{cc}
\zeta_{1} \alpha_{1} & A u_{1} \\
B u_{2} & \zeta_{2} \alpha_{2}
\end{array}\right)
$$

defines an isomorphism $C \xrightarrow{\sim} C^{(p, q)}$.
Remark 7.5. We have defined Albert algebras by a sort of descent condition in Definition 7.1. In view of Proposition 10.2 below, one could alternatively define an Albert algebra as a cubic Jordan algebra that is projective of rank 27 as an R-module such that $J \otimes F$ is a simple Jordan F-algebra for every field F; this is the definition used in [Pet19] and [Als], for example. The two notions lead to the same objects.

8. The ideal structure of Freudenthal algebras

It is a standard exercise to show that every (two-sided) ideal in the matrix algebra $\operatorname{Mat}_{n}(R)$ is of the form $\operatorname{Mat}_{n}(\mathfrak{a})$ for some ideal \mathfrak{a} in R. More generally, every ideal in an Azumaya R-algebra A is of the form $\mathfrak{a} A$ some ideal \mathfrak{a} of R [KO74, p. 95, Cor. III.5.2].

A similar result holds for every octonion R-algebra C : Every one-sided ideal in C is a two-sided ideal that is stable under the involution on C. The maps $I \mapsto I \cap R$ and $\mathfrak{a} C \longleftrightarrow \mathfrak{a}$ are bijections between the set of ideals of C and ideals in R. See [Pet21, §4] for a proof in this generality and the references therein for earlier results of this type going back to [Mah42].

We now prove a similar result for Freudenthal algebras.
Definition 8.1. An ideal in a para-quadratic R-algebra J is the kernel of a homomorphism, i.e., an R-submodule I such that

$$
U_{I} J+U_{J} I+\{J J I\}=I
$$

where we have written $U_{I} J$ for the R-span of $U_{x} y$ with $x \in I$ and $y \in J$. (This is sometimes written with a \subseteq instead of $=$, but the two are equivalent since $U_{J} I \supseteq U_{1_{J}} I=$ I.) An R-submodule I is an outer ideal if

$$
\begin{equation*}
U_{J} I+\{J J I\}=I \tag{8.2}
\end{equation*}
$$

Here are some observations about outer ideals:
(1) Every ideal is an outer ideal.
(2) If 2 is invertible in R, then for every $x \in I$ and $y \in J, U_{x} y=\frac{1}{2}\{x y x\} \in\{J J I\}$, so the notions of ideal and outer ideal coincide.
(3) For every ideal \mathfrak{a} in R, the R-submodule $\mathfrak{a} J$ is an ideal of J.
(4) If 1_{J} is unimodular, then for every outer ideal I of $J, I \cap R 1_{J}$ is an ideal in R, for the trivial reason that I is an R-module.
(5) If \mathfrak{a} is an ideal in R and 1_{J} is unimodular, then $\mathfrak{a} 1_{J}=(\mathfrak{a} J) \cap R 1_{J}$. The containment \subseteq is clear. To see the opposite containment, suppose $\alpha 1_{J} \in \mathfrak{a} J \cap R 1_{J}$ for some $\alpha \in R$ and write $\alpha 1_{J}=\sum \alpha_{i} y_{i}$ with $\alpha_{i} \in \mathfrak{a}$ and $y_{i} \in J$. There is some R-linear $\lambda: J \rightarrow R$ such that $\lambda\left(1_{J}\right)=1$. Then $\alpha=\lambda\left(\alpha 1_{J}\right)=\sum \alpha_{i} \lambda\left(y_{i}\right)$ is in \mathfrak{a}.
Theorem 8.3. Let J be a Freudenthal R-algebra. Every outer ideal of J is an ideal. The maps $I \mapsto I \cap R 1_{J}$ and $\mathfrak{a} J \leftrightarrow \mathfrak{a}$ are bijections between the set of outer ideals of J and the set of ideals of R.

Proof. It suffices to show that the stated maps are bijections, because then observation (3) implies that every outer ideal is of the form $\mathfrak{a} J$ and therefore an ideal. In view of (5) (noting that 1_{J} is unimodular), it suffices to verify that $\left(I \cap R 1_{J}\right) J=I$ for every outer ideal I.

First suppose that $J=\operatorname{Her}_{3}(C)$ for some composition R-algebra C and write $\mathfrak{a}:=I \cap$ $R 1_{J}$. The Peirce projections relative to the diagonal frame of J, i.e., $U_{\varepsilon_{i}}$ and $x \mapsto\left\{\varepsilon_{j} x \varepsilon_{l}\right\}$ for $i, j, l=1,2,3$ [McC66, p. 1074] stabilize I, and we find

$$
I=\sum_{i}\left(I \cap R \varepsilon_{i}\right)+\left(I \cap \delta_{i}(C)\right) .
$$

Set $B:=\left\{c \in C \mid \delta_{1}(c) \in I\right\}$. We claim that B is an ideal in C. Note that $U_{\delta_{1}\left(1_{C}\right)} \delta_{1}(b)=\delta_{1}(b)$, so B is stable under the involution.

We leverage (6.17). Repeatedly applying this with $a=1_{C}$ and using that B is stable under the involution, we conclude that $\delta_{i}(B)=I \cap \delta_{i}(C)$ for all i. For $c \in C$ and $b \in B$, I contains $\left\{1_{J} \delta_{2}(\bar{c}) \delta_{1}(\bar{b})\right\}=\delta_{3}(c b)$, so $c B \subseteq B$, i.e., B is an ideal in C and therefore $B=\mathfrak{a} C$ for some ideal \mathfrak{a} of R.

For $c \in C, I$ contains $\left\{\delta_{i}\left(1_{C}\right) \varepsilon_{i+1} \delta_{i}(\mathfrak{a c})\right\}=\operatorname{Tr}_{C}(\mathfrak{a} c) \varepsilon_{i+2}$. Since Tr_{C} is surjective, $\mathfrak{a} \varepsilon_{j} \subseteq I$ for all j.

In the other direction, if $\alpha_{i} \varepsilon_{i} \in I$, then so is

$$
\left\{\delta_{i+1}\left(1_{C}\right) 1_{J}\left(\alpha_{i} \varepsilon_{i}\right)\right\}=\delta_{i+1}\left(\alpha_{i} 1_{C}\right)
$$

It follows that $I \cap R \varepsilon_{i}=\mathfrak{a} R$ for all i and in particular, $I \cap R 1_{J}=\mathfrak{a} R$ and $I=\mathfrak{a} J$.
We now treat the general case. Suppose I is an outer ideal in a Freudenthal R-algebra J. There is a faithfully flat $S \in R$-alg such that $J \otimes S$ is a split Freudenthal algebra. We have

$$
\left(\left(I \cap R 1_{J}\right) J\right) \otimes S=\left(I \otimes S \cap S 1_{J}\right)(J \otimes S)=I \otimes S
$$

where the first equality is because S is faithfully flat and the second is by the previous case, since $I \otimes S$ is an outer ideal. It follows that $I=\left(I \cap R 1_{J}\right) J$ as desired.

Remark. In the proof above, the inclusion $\left(I \cap R 1_{J}\right) J \subseteq I$ could instead have been argued as follows. Define $\mathrm{Sq}(J)$ as the R-submodule of J generated by x^{2} for $x \in J$. Since 1_{J} is unimodular, one finds that $\left(I \cap R 1_{J}\right) \mathrm{Sq}(J) \subseteq I$. Then, one argues that $\mathrm{Sq}(J)=J$ for a split Freudenthal algebra, and that $\mathrm{Sq}(J \otimes S)=\mathrm{Sq}(J) \otimes S$ for all flat $S \in R$-alg.

Corollary 8.4. Every homomorphism $J \rightarrow J^{\prime}$ of Freudenthal R-algebras is injective.
Proof. Write ϕ for such a homomorphism. The kernel of ϕ is an ideal of J and therefore $\mathfrak{a} J$ for some ideal \mathfrak{a} of R. For $\alpha \in \mathfrak{a}$, we have $0=\phi\left(\alpha 1_{J}\right)=\alpha \phi\left(1_{J}\right)=\alpha 1_{J}^{\prime}$, so $\alpha=0$ because $1_{J^{\prime}}$ is unimodular (Lemma 6.12). $0=\phi\left(\alpha 1_{J}\right)=\alpha \phi\left(1_{J}\right)=\alpha 1_{J^{\prime}}$, so $\alpha=0$ because $1_{J^{\prime}}$ is unimodular.

Remark. There is also the notion of an inner ideal in a Jordan algebra, see [McC71b, Th. 8] for a description of them for $\mathrm{Her}_{3}(\mathrm{Zor}(R))$. The inner ideals are related to the projective homogeneous varieties associated with the group of isometries described in $\S 14$ and "outer automorphisms" relating these varieties, see [Rac77] and [CarrG].

9. Groups of type F_{4} and C_{3}

In the following, for a Jordan R-algebra J, we write $\operatorname{Aut}(J)$ for the ordinary group of R-linear automorphisms of J and $\operatorname{Aut}(J)$ for the functor from R-alg to groups such that $S \mapsto \operatorname{Aut}(J \otimes S)$. Recall that for every simple root datum, there is a unique simple group scheme over \mathbb{Z} called a Chevalley group [DG70, Cor. XXIII.5.4], and every split simple
algebraic group over a field is obtained from a unique Chevalley group by base change [Mil17, §23g].

Lemma 9.1. Let J be a Freudenthal algebra of rank 15 or 27 over a ring k. Then $\operatorname{Aut}(J)$ is a semisimple k-group scheme that is adjoint (i.e., its center is the trivial group scheme). Its root system has type C_{3} if J has rank 15 and type F_{4} if J has rank 27. If J is the split Freudenthal algebra, then the group scheme $\operatorname{Aut}(J)$ is obtained from the Chevalley group over \mathbb{Z} by base change.

Proof. First suppose that $R=\mathbb{Z}$ and J is split. If J has rank 15 , then the proof of 14.19 in [Spr73] shows that the automorphisms of $J \otimes F$ for every field F are exactly the automorphisms of the algebra $\operatorname{Mat}_{6}(F)$ with the split symplectic involution, which is the split adjoint group PGSp_{6}. For J of rank 27, $\operatorname{Aut}(J) \times F$ is split of type F_{4} by [Jac71, §6] (written for Lie algebras), [Fre85, Satz 4.11] (written for \mathbb{R}), [SV00, Th. 7.2.1] (if char $F \neq 2,3$), or [Spr73, 14.24] in general.

Note that $\boldsymbol{A u t}(J) \times F$ is connected and smooth as a group scheme over F, and $\boldsymbol{\operatorname { A u t }}(J)$ is finitely presented (because \mathbb{Z} is noetherian and J is a finitely generated module), so it follows by [AlsG, Lemma B.1] that $\operatorname{Aut}(J)$ is smooth as a scheme over the Dedekind domain \mathbb{Z}. In summary, $\operatorname{Aut}(J)$ is semisimple and adjoint of the specified type. Moreover, because $\boldsymbol{\operatorname { A u t }}(J) \times \mathbb{Q}$ is split, $\operatorname{Aut}(J)$ is a Chevalley group [Con, Th. 1.4].

In the case of general R and J, let $S \in R$-alg be faithfully flat such that $J \otimes S$ is split. Then $\operatorname{Aut}(J) \times S$ is semisimple adjoint of the specified type. Certainly, $\operatorname{Aut}(J)$ is also smooth. Moreover, for each $\mathfrak{p} \in \operatorname{Spec} R$, there is a $\mathfrak{q} \in \operatorname{Spec} S$ such that $\mathfrak{q} \cap R=\mathfrak{p}$. Then the field of fractions $R(\mathfrak{p})$ of R / \mathfrak{p} embeds in the field $S(\mathfrak{q})$, so the algebraic closure $\overline{R(\mathfrak{p})}$ includes in the algebraic closure $\overline{S(\mathfrak{q})}$. Because $\operatorname{Aut}(J) \times \overline{S(\mathfrak{q})}$ is adjoint semisimple of the specified type and this property is unchanged by replacing one algebraically closed field by a smaller one, the same holds over $\overline{R(\mathfrak{p})}$. Since this holds for every \mathfrak{p}, the claim is verified.

Remark 9.2. In case R is a field, the automorphism group of the split Freudenthal algebra of rank 6 or 9 can be deduced in a similar manner, referring to 14.17 and 14.16 in [Spr73]. The automorphism group of the split Freudenthal algebra of rank 9 is $\mathrm{PGL}_{3} \rtimes \mathbb{Z} / 2$. The automorphism group of the split Freudenthal algebra of rank 6 is the special orthogonal group of the quadratic form $x^{2}+y^{2}+z^{2}$, i.e., the group commonly denoted $\mathrm{SO}(3)$. In particular, it is not smooth when R is a field of characteristic 2 and indeed one can give examples of Freudenthal algebras of rank 6 over a field of characteristic 2 that are not split by any étale cover.

For J, J_{0} Jordan R-algebras, we define $\operatorname{Iso}\left(J, J_{0}\right)$ to be the set of R-linear isomorphisms $J \rightarrow J_{0}$ and $\operatorname{Iso}\left(J, J_{0}\right)$ to be the corresponding functor from R-alg to sets defined by $S \mapsto \operatorname{Iso}\left(J \otimes S, J_{0} \otimes S\right)$. If J and J_{0} become isomorphic over a faithfully flat $S \in R$-alg, then $\operatorname{Iso}\left(J, J_{0}\right)$ is naturally an $\operatorname{Aut}\left(J_{0}\right)$-torsor in the fpqc topology.

The statement of the following result is similar to statements over a field that can be found in [Ser02]. Its proof amounts to combining the lemma with the general machinery of descent.

Theorem 9.3. Let J_{0} be a Freudenthal R-algebra of rank $r=15$ or 27. In the diagram

all arrows are bijections.
Proof. The facts that the arrows are well defined, the diagram commutes, and the diagonal arrows are injective are general feature of the machinery of descent. The lower left arrow is surjective because every Freudenthal algebra is split by some faithfully flat R-algebra by definition. The lower right arrow is surjective because every semisimple group scheme is split by some faithfully flat R-algebra (even an étale cover) [DG70, Cor. XXIV.4.1.6].

In the theorem, the set $H^{1}\left(R, \boldsymbol{\operatorname { A u t }}\left(J_{0}\right)\right)$ is naturally a pointed set and the bijections are actually of pointed sets, where the distinguished elements are J_{0} in the upper left and Aut $\left(J_{0}\right)$ in the upper right.

In case R is a field of characteristic different from 2, 3 and $r=27$, the theorem goes back to [Hij63]. Or see [KMRT98, 26.18].

Corollary 9.4. For each Freudenthal R-algebra J of rank 15 or 27, there is an étale cover $S \in R$-alg such that $J \otimes S$ is a split Freudenthal algebra.

Proof. Let J_{0} be the split Freudenthal R-algebra of the same rank as J. The image $\operatorname{Iso}\left(J, J_{0}\right)$ of J in $H^{1}\left(R, \operatorname{Aut}\left(J_{0}\right)\right)$ is a $\boldsymbol{A u t}\left(J_{0}\right)$-torsor. Since $\boldsymbol{A u t}\left(J_{0}\right)$ is smooth (Lemma 9.1), there is an étale cover of R that trivializes $\operatorname{Iso}\left(J, J_{0}\right)$.

Note that exactly the same kind of argument gives analogues of Lemma 9.1 and Theorem 9.3 for composition algebras, where $r=4$ or 8 , and the group is of type A_{1} or G_{2} respectively.

10. GEnERIC minimal polynomial of a Freudenthal algebra

Polynomials with polynomial-law coefficients. Let J be a Jordan R-algebra, $\mathscr{P}(J, R)$ the R-algebra of polynomial laws from J to R, and t a variable. Consider a polynomial $\mathbf{p}(t)=\sum_{i=0}^{n} f_{i} t^{i}$ with $f_{i} \in \mathscr{P}(J, R)$ for $0 \leq i \leq n$. For $S \in R$-alg, $x \in J \otimes S$, we have $\mathbf{p}(t, x):=\sum_{i=0}^{n} f_{i S}(x) t^{i} \in S[t]$, and we define

$$
\mathbf{p}(x, x):=\sum_{i=0}^{n} f_{i S}(x) x^{i} \in J \otimes S .
$$

The algebra J is said to satisfy \mathbf{p} if $\mathbf{p}(x, x)=0=(t \mathbf{p})(x, x)$ for all $x \in J \otimes S, S \in R$-alg. Note that the second equation follows from the first if 2 is invertible in R but not in general, see Remark 6.11.

The generic minimal polynomial. Let $J:=\operatorname{Her}_{3}(C, \Gamma)$ as in Example 6.13. With a variable t we recall from (6.10) that J satisfies the monic polynomial

$$
\begin{equation*}
\mathbf{m}_{J}=t^{3}-\operatorname{Tr}_{J} \cdot t^{2}+S_{J} \cdot t-N_{J} \in \mathscr{P}(J)[t] . \tag{10.1}
\end{equation*}
$$

More precisely, by [Loo06, 2.4(b)], J is generically algebraic of degree 3 in the sense of $[L o o 06,2.2]$ and \mathbf{m}_{J} is the generic minimal polynomial of J, i.e., the unique monic polynomial in $\mathscr{P}(J, R)[t]$ of minimal degree satisfied by J [Loo06, 2.7]. It follows that the Jordan algebra J determines the polynomial \mathbf{m}_{J} uniquely. In particular, the generic norm N_{J}, the generic trace T_{J} (or Tr_{J}) and, in fact, the cubic norm structure underlying J in the sense of Definition 6.1 are uniquely determined by J as a Jordan algebra.

By faithfully flat descent, every Freudenthal algebra J has a uniquely determined generic minimal polynomial of the form (10.1), and a uniquely determined underlying cubic norm structure. We conclude:

Proposition 10.2. Every Freudenthal algebra is a cubic Jordan algebra.

The preceding discussion shows that, for a Freudenthal R-algebra J, the Jordan algebra structure of J alone (ignoring that J is a cubic Jordan algebra) determines the bilinear form T_{J}. (For example, the 11 Freudenthal \mathbb{R}-algebras discussed in Example 6.18 have distinct trace forms and therefore are distinct.) When R is a field of characteristic $\neq 2,3$ and J and J^{\prime} are reduced Freudenthal algebras, Springer proved that the converse also holds, i.e., $J \cong J^{\prime}$ if and only if $T_{J} \cong T_{J^{\prime}}$ [SV00, Th. 5.8.1]. We do not use Springer's result in this paper.

The following result can also be found in [Pet19, Cor. 18(b)], based on the different definition of Albert algebra appearing there.

Lemma 10.3. Let J and J^{\prime} be Freudenthal R-algebras. An R-linear map $\phi: J \rightarrow J^{\prime}$ is an isomorphism of J and J^{\prime} as Jordan algebras if and only if ϕ is surjective, $\phi\left(1_{J}\right)=1_{J^{\prime}}$, and $N_{J^{\prime}}=N_{J} \phi$ as polynomial laws.

Proof. The "only if" direction follows from the uniqueness of the generic minimal polynomial as in $\S 10$, so we show "if". The equality $N_{J^{\prime}}=N_{J} \phi$ of polynomial laws and the definition of the directional derivative in $\S 3$ gives formulas such as

$$
\nabla_{y} N_{J}(x)=\nabla_{\phi(y)} N_{J^{\prime}}(\phi(x)) .
$$

Since $\phi\left(1_{J}\right)=1_{J^{\prime}}$, the definition of the bilinear forms T_{J} and $T_{J^{\prime}}$ in (6.2) give:

$$
T_{J^{\prime}}(\phi(x), \phi(y))=T_{J}(x, y)
$$

for all x, y. Therefore, on the one hand we have

$$
\nabla_{y} N_{J}(x)=T_{J}\left(x^{\sharp}, y\right)=T_{J^{\prime}}\left(\phi\left(x^{\sharp}\right), \phi(y)\right) .
$$

On the other hand, we have

$$
\nabla_{y} N_{J}(x)=\nabla_{\phi(y)} N_{J^{\prime}}(\phi(x))=T_{J^{\prime}}\left((\phi(x))^{\sharp}, \phi(y)\right) .
$$

Therefore, $\phi\left(x^{\sharp}\right)=\phi(x)^{\sharp}$ for all x. In summary, ϕ commutes with \sharp and preserves T_{J}. Therefore, by (6.6), ϕ is a homomorphism of Jordan algebras.

Suppose that x is in $\operatorname{ker} \phi$. Then for all $y \in J, T_{J}(x, y)=T_{J^{\prime}}(\phi(x), \phi(y))=0$, so $x=0$ since the bilinear form T_{J} is regular. Since ϕ is both surjective and injective, it is an isomorphism.

11. BASIC CLASSIFICATION RESULTS FOR ALBERT ALGEBRAS

In the case where R is a field such as the real numbers, a finite field, a local field, or a global field, one can find in many places in the literature classifications of Albert algebras proved using techniques involving algebras as in [SV00, §5.8]. For such an R, groups of type F_{4} can be classified using techniques from algebraic groups, such as in [PR94, Ch. 6] or [Gil19]. The two approaches are equivalent by Theorem 9.3.

Example 11.1 (Albert algebras over \mathbb{R}). Up to isomorphism, there are three Albert \mathbb{R} algebras, namely the split one $\operatorname{Her}_{3}(\operatorname{Zor}(\mathbb{R}))$, $\operatorname{Her}_{3}(\mathbb{O},\langle 1,1,-1\rangle)$, and $\operatorname{Her}_{3}(\mathbb{O})$. Rather than proving this in the language of Jordan algebras as in [AlbJ, Th. 10], one may leverage Theorem 9.3 as follows. The three algebras are pairwise non-isomorphic because their trace forms are (Example 6.18). At the same time, a computation in the Weyl group of F_{4} as in [Ser02, §III.4.5], [BoroE, 14.1], or [AdT, Table 3] shows that $H^{1}\left(\mathbb{R}, \operatorname{Aut}\left(\operatorname{Her}_{3}(\operatorname{Zor}(\mathbb{R}))\right)\right)$ has three elements. That is, there are exactly three isomorphism classes of simple affine group schemes over \mathbb{R} of type F_{4}, so we have found all of them.

Below, we will focus our attention on classification results in the case where R is not a field. We translate known results about cohomology of affine group schemes into the language of Albert algebras.

Proposition 11.2. If R is (1) a complete discrete valuation ring whose residue field is finite or (2) a finite ring, then every Freudenthal R-algebra of rank 15 or 27 and every quaternion or octonion R-algebra is split.

Proof. In view of Theorem 9.3 and its analogue for composition algebras, it suffices to prove that $H^{1}(R, \mathbf{G})=0$ for \mathbf{G} a simple R-group scheme of type F_{4} or C_{3} obtained by base change from a Chevalley group over \mathbb{Z}. In case (1), this is [Con, Prop. 3.10]. In case (2), we apply the following lemma.

Lemma 11.3. If R is a finite ring and \mathbf{G} is a smooth connected R-group scheme, then $H^{1}(R, \mathbf{G})=0$.

Proof. If R is not connected, then it is a finite product $R=\prod R_{i}$ where each ring R_{i} is finite, so $H^{1}(R, \mathbf{G})=\prod H^{1}\left(R_{i}, \mathbf{G} \times R_{i}\right)$. Therefore it suffices to assume that R is connected.

Suppose \mathbf{X} is a G-torsor. Our aim is to show that \mathbf{X} is the trivial torsor, i.e., $\mathbf{X}(R)$ is nonempty. Put \mathfrak{a} for the nil radical $\operatorname{Nil}(R)$ of R. Because R is finite, there is some minimal $m \geq 1$ such that $\mathfrak{a}^{m}=0$. We proceed by induction on m. If $m=1$, then R is reduced and connected, so it is a finite field and $H^{1}(R, \mathbf{G})=0$ by Lang's Theorem. For the case $m \geq 2$, put $I:=\mathfrak{a}^{m-1}$. The ring R / I has $\operatorname{Nil}(R / I)^{m-1}=(\operatorname{Nil}(R) / I)^{m-1}=0$, so by induction $\mathbf{X}(R / I)$ is nonempty. On the other hand, $I^{2}=\mathfrak{a}^{2 m-2}=\mathfrak{a}^{m} \cdot \mathfrak{a}^{m-2}=0$ and \mathbf{X} is smooth, so the natural map $\mathbf{X}(R) \rightarrow \mathbf{X}(R / I)$ is surjective.

Example 11.4. Suppose R is a Dedekind ring and write F for its field of fractions. For \mathbf{G} a Chevalley group of type $\mathrm{G}_{2}, \mathrm{~F}_{4}$, or E_{8}, the map $H^{1}(R, \mathbf{G}) \rightarrow H^{1}(F, \mathbf{G})$ has zero kernel [Har67, Satz 3.3]. Consequently, if A is an Albert or octonion R-algebra and $A \otimes F$ is split, then the R-algebra A is split.

In particular, if F is a global field with no real embeddings, then every Albert or octonion F-algebra is split, so every Albert or octonion R-algebra is split.

In the case where F is a number field with a real embedding, we provide the following partial result, which relies on Example 11.1.

Proposition 11.5. Suppose F is a number field and R is a localization of its ring of integers at finitely many primes. If A is an Albert (resp., octonion) F-algebra such that $A \otimes \mathbb{R}$ is not isomorphic to $\operatorname{Her}_{3}(\mathbb{O})$ (resp., (\mathbb{O}) for every embedding $F \hookrightarrow \mathbb{R}$, then there is an Albert (resp., octonion) R-algebra B such that $B \otimes F \cong A$ and B is uniquely determined up to R-isomorphism.

Proof. Write \mathbf{G} for the automorphism group of the split Albert (resp., octonion) F-algebra. Write $H_{\mathrm{ind}}^{1}(R, \mathbf{G}) \subseteq H^{1}(R, \mathbf{G})$ for the isomorphism classes of R-algebras B such that $B \otimes F_{v}$ is not $\operatorname{Her}_{3}(\mathbb{O})($ resp., $\mathbb{O})$, i.e., such that $\operatorname{Aut}(B) \times F_{v}$ is not compact, for all real places v of F. Since \mathbf{G} is simply connected, Strong Approximation gives that the natural map $H_{\mathrm{ind}}^{1}(R, \mathbf{G}) \rightarrow H_{\mathrm{ind}}^{1}(F, \mathbf{G})$ is an isomorphism [Har67, Satz 4.2.4], which is what is claimed.

12. ISOTOPY

The aim of this section is to discuss the notion of isotopy of Jordan algebras, which will pay off later in the paper when we discuss groups of type E_{6} in $\S 14$ and E_{7} in $\S 16$. We include this material at this point in the paper because Corollary 12.9 is needed in the following section.

Definition 12.1. Let J be a Jordan R-algebra and suppose $u \in J$ is invertible. We define a Jordan algebra $J^{(u)}$ with the same underlying R-module, with U-operator $U_{x}^{(u)}=U_{x} U_{u}$ (where the unadorned U on the right denotes the U-operator in J), and with identity element $1^{(u)}=u^{-1}$. One checks that $J^{(u)}$ is indeed a Jordan algebra and for u, v invertible, we have $\left(J^{(u)}\right)^{(v)}=J^{\left(U_{u} v\right)}$. A Jordan R-algebra J^{\prime} is an isotope of J if it is isomorphic to $J^{(u)}$ for some invertible $u \in J$; equivalently one says that J and J^{\prime} are isotopic. This defines an equivalence relation on Jordan algebras, which is a priori weaker than isomorphism.

We have presented the notion of isotopy here for Jordan algebras. However, there are analogous notions for other classes of algebras, which go back at least to [Alb 42]. For associative algebras, isotopy is the same as isomorphism. For octonion algebras, isotopy amounts to norm equivalence [AlsG, Cor. 6.7], which is a weaker condition than isomorphism, see [Gil14] and [AsHW].

Isotopes of cubic Jordan algebras. if J is a cubic Jordan R-algebra and $u \in J$ is invertible, then [McC69, Th. 2] and its proof show that the isotope $J^{(u)}$ is a cubic Jordan algebra as well whose identity element, adjoint and norm are given by

$$
\begin{equation*}
1_{J^{(u)}}=u^{-1}, \quad x^{\sharp(u)}=N_{J}(u) U_{u}^{-1} x^{\sharp}, \quad N_{J^{(u)}}(x)=N_{J}(u) N_{J}(x) . \tag{12.2}
\end{equation*}
$$

Moreover, the (bi-)linear and quadratic trace of $J^{(u)}$ have the form

$$
\begin{equation*}
T_{J^{(u)}}(x, y)=T_{J}\left(U_{u} x, y\right), \quad \operatorname{Tr}_{J^{(u)}}(x)=T_{J}(u, x), \quad S_{J^{(u)}}(x)=T_{J}\left(u^{\sharp}, x^{\sharp}\right) . \tag{12.3}
\end{equation*}
$$

The first equation of (12.3) is in [McC69, p. 500] while the second one follow from (12.2), the first, and Lemma 6.12 (1) via $\operatorname{Tr}_{J^{(u)}}(x)=T_{J^{(u)}}\left(u^{-1}, x\right)=T_{J}\left(U_{u} u^{-1}, x\right)=$ $T_{J}(u, x)$. Similarly,
$S_{J^{(u)}}(x)=\operatorname{Tr}_{J^{(u)}}\left(x^{\sharp(u)}\right)=T_{J}\left(u, N_{J}(u) U_{u}^{-1} x^{\sharp}\right)=T_{J}\left(N_{J}(u) U_{u}^{-1} u, x^{\sharp}\right)=T_{J}\left(u^{\sharp}, x^{\sharp}\right)$.
Example 12.4. $\operatorname{Her}_{3}(C, \Gamma)$ is isotopic to $\operatorname{Her}_{3}(C)$ for every Γ. Indeed, for

$$
u:=\left(\begin{array}{ccc}
\gamma_{1} & 0 & 0 \\
0 & \gamma_{2} & 0 \\
0 & 0 & \gamma_{3}
\end{array}\right) \quad \in \operatorname{Her}_{3}(C, \Gamma),
$$

the map $\phi: \operatorname{Her}_{3}(C, \Gamma)^{(u)} \rightarrow \operatorname{Her}_{3}(C)$ defined by
is an isomorphism of Jordan algebras. One can also turn this around:

$$
\operatorname{Her}_{3}(C, \Gamma)=\left(\operatorname{Her}_{3}(C, \Gamma)^{(u)}\right)^{\left(u^{-2}\right)} \cong \operatorname{Her}_{3}(C)^{\left(\phi\left(u^{-2}\right)\right)}=\operatorname{Her}_{3}(C)^{\left(u^{-1}\right)}
$$

Jordan algebras isotopic to a split Freudenthal algebra. In the special case where R is a field, a Jordan algebra that is isotopic to the split Albert algebra $\operatorname{Her}_{3}(\operatorname{Zor}(R))$ is necessarily isomorphic to it, see for example [Jac71, p. 53, Th. 9]. Some hypothesis on R is necessary for the conclusion to hold. Alsaody has shown in [Als, Th. 2.7] that there exists a ring R finitely generated over \mathbb{C} and an Albert R-algebra that is isotopic to the split Albert R-algebra but is not isomorphic to it. We now show that it suffices to assume that R is local, see Corollary 12.8.

Theorem 12.5. Suppose J is a Jordan R-algebra, where R is a local ring. If J is isotopic to $\operatorname{Her}_{3}(C)$ for some composition R-algebra C, then J is isomorphic to $\operatorname{Her}_{3}(C, \Gamma)$ for some Γ.

Proof. By hypothesis, $J \cong \operatorname{Her}_{3}(C)^{\left(u^{-1}\right)}$ for some invertible $u \in \operatorname{Her}_{3}(C)$. Example 12.4 shows we are done if u is diagonal.

Write N for the cubic form on $\operatorname{Her}_{3}(C)$. In case u is not diagonal, we will apply successive elements $\eta \in \mathrm{GL}\left(\operatorname{Her}_{3}(C)\right)$ such that $N \eta=N$ as polynomial laws. (In the notation of $\S 14$ below, $\eta \in \operatorname{Isom}\left(\operatorname{Her}_{3}(C)\right)(R)$.) Note that each such η defines an isomorphism of R-modules

$$
\begin{equation*}
\eta: \operatorname{Her}_{3}(C)^{\left(u^{-1}\right)} \rightarrow \operatorname{Her}_{3}(C)^{\left(\eta(u)^{-1}\right)} \tag{12.6}
\end{equation*}
$$

We have

$$
N\left(\eta(u)^{-1}\right)=N(\eta(u))^{-1}=N(u)^{-1}=N\left(u^{-1}\right)
$$

so we have by (12.2) that

$$
N_{\operatorname{Her}_{3}(C)^{(u-1)}}=N(u)^{-1} N=N\left(\eta(u)^{-1}\right) N \eta=N_{\operatorname{Her}_{3}(C)^{\left(\eta(u)^{-1}\right)}} \eta
$$

Since η is a norm isometry that maps the identity element u^{-1} in the domain of (12.6) to the identity element in the codomain, it is an isomorphism of algebras by Lemma 10.3. Thus, if successive elements η transform u into a diagonal element, the proof will be complete.

We employ the transformation $\tau_{s t}(q)$ for $1 \leq s \neq t \leq 3$ and $q \in C$ defined by

$$
\tau_{s t}(q) A \mapsto\left(I_{3}+q E_{s t}\right) A\left(I_{3}+\bar{q} E_{t s}\right)
$$

where I_{3} is the identity matrix, $E_{s t}$ is the 3-by- 3 matrix with a 1 in the (s, t)-entry and 0 elsewhere, and juxtaposition defines naive multiplication of 3-by-3 matrices with entries in C. For example,

$$
\tau_{12}(q)\left(\begin{array}{ccc}
\alpha_{1} & c_{3} & \cdot \\
\cdot & \alpha_{2} & c_{1} \\
c_{2} & \cdot & \alpha_{3}
\end{array}\right)=\left(\begin{array}{ccc}
\alpha_{1}+\operatorname{Tr}_{C}\left(q \bar{c}_{3}\right)+\alpha_{2} N_{C}(q) & c_{3}+\alpha_{2} q & \cdot \\
\cdot c_{2} & \alpha_{2} & c_{1} \\
c_{2}+\bar{c}_{1} \bar{q} & \cdot & \alpha_{3}
\end{array}\right)
$$

These transformations appear in [Jac61, §5] and [Kru02, §2]; the argument in either reference shows that $\tau_{s t}(q)$ preserves N for all choices of s, t, and q. Additionally, for every permutation π of $\{1,2,3\}$, there is a linear transformation that preserves N (actually, an automorphism of the algebra) that maps

$$
\left(\begin{array}{ccc}
\alpha_{1} & c_{3} & \dot{ } \tag{12.7}\\
\dot{c_{2}} & \alpha_{2} & c_{1} \\
c_{2} & & \alpha_{3}
\end{array}\right) \mapsto\left(\begin{array}{ccc}
\alpha_{\pi(1)} & c_{\pi(3)}^{\prime} & \cdot \\
\cdot & \alpha_{\pi(2)}^{\prime} & c_{\pi(1)}^{\prime} \\
c_{\pi(2)}^{\prime} & \cdot & \alpha_{\pi(3)}
\end{array}\right)
$$

where $c_{\pi(i)}^{\prime}$ is a linear function of c_{i} for each i.
Write

$$
u=\left(\begin{array}{ccc}
\alpha_{1} & c_{3} & \dot{r} \\
\dot{c_{2}} & \alpha_{2} & c_{1} \\
c_{3} & \alpha_{3}
\end{array}\right) .
$$

By hypothesis $N(u)$ is invertible, i.e., does not lie in the maximal ideal \mathfrak{m}. We first argue that we may suppose $\alpha_{1} \notin \mathfrak{m}$. If any α_{i} is invertible, then we may apply a transformation as in (12.7). If no α_{i} is invertible, then by (6.15) we have

$$
N(u) \equiv \operatorname{Tr}_{C}\left(c_{1} c_{2} c_{3}\right) \bmod \mathfrak{m}
$$

whence $c_{1} \notin \mathfrak{m} C$. Since n_{C} continues to be regular when changing scalars to R / \mathfrak{m}, some $q \in C$ has $n_{C}\left(q, c_{1}\right) \notin \mathfrak{m}$. Applying $\tau_{12}(q)$, we may arrange $\alpha_{1} \notin \mathfrak{m}$.

Next we argue that we may assume that $c_{2}=c_{3}=0$. We note that $\tau_{21}(q)\left(\begin{array}{ccc}\alpha_{1} & c_{3} & \dot{1} \\ c_{2} & \alpha_{2} & c_{1} \\ c_{2} & \alpha_{3}\end{array}\right)$ has top row entries $\alpha_{1}, c_{3}+\alpha_{1} \bar{q}, \overline{c_{2}}$. Taking $q=-\bar{c}_{3} a^{-1}$ shows that we may assume $c_{2}=0$. The argument that we may assume $c_{3}=0$ is similar, with the role of τ_{21} replaced by τ_{31}.

We have transformed u to an element of the form $\left(\begin{array}{ccc}\alpha_{1} & 0 & \dot{c} \\ 0 & \alpha_{2} & c_{1} \\ 0 & . & \alpha_{3}\end{array}\right)$ of norm $\alpha_{1}\left(\alpha_{2} \alpha_{3}-\right.$ $\left.N_{C}\left(c_{1}\right)\right) \notin \mathfrak{m}$, therefore at least one of α_{2}, α_{3}, or $N_{C}\left(c_{1}\right)$ is not in \mathfrak{m}. The same argument as two paragraphs above, with $\tau_{i(i+1)}$ replaced by τ_{23}, shows that we may assume that $\alpha_{2} \notin \mathfrak{m}$. The same argument as in the preceding paragraph, with τ_{21} replaced by τ_{32}, shows that we may assume that $c_{1}=0$. Thus, we have transformed u into a diagonal element, completing the proof.

Corollary 12.8. Suppose J is a Jordan R-algebra over a local ring R. If J is isotopic to a split Freudenthal algebra whose rank does not take the value 6 , then J is itself a split Freudenthal algebra.

Proof. Combine the theorem and Proposition 7.4.
The hypothesis that J does not have rank 6 is necessary, because $\operatorname{Her}_{3}(\mathbb{R},\langle 1,1,-1\rangle)$ is isotopic to the split Freudenthal algebra $\operatorname{Her}_{3}(\mathbb{R})$ (Example 12.4) but is not isomorphic to it (Example 6.18).

Corollary 12.9. Every isotope of a Freudenthal algebra is itself a Freudenthal algebra.
Proof. Suppose J is an isotope of a Freudenthal algebra. After base change to a faithfully flat extension, J is an isotope of a split Freudenthal algebra.

The R-algebra $S:=\prod_{\mathfrak{m}} R_{\mathfrak{m}}$, where \mathfrak{m} ranges over maximal ideals of R, is faithfully flat. For each $\mathfrak{m}, J \otimes S_{\mathfrak{m}}$ is $\operatorname{Her}_{3}(C, \Gamma)$ for C a split composition $S_{\mathfrak{m}}$-algebra and some Γ by Theorem 12.5. By Proposition 7.2, there is a faithfully flat $S_{\mathfrak{m}}$-algebra T such that $J \otimes T$ is a split Freudenthal algebra. The product of these T 's is a faithfully flat R-algebra over which J is the split Freudenthal algebra.

We close this section by making explicit the relationship between isotopy and norm similarity between Freudenthal algebras, extending Lemma 10.3.

Proposition 12.10. Let J and J^{\prime} be Freudenthal R-algebras. For an R-linear map ϕ : $J \rightarrow J^{\prime}$, the following are equivalent:
(1) ϕ is an isomorphism $J \rightarrow\left(J^{\prime}\right)^{(u)}$ for some invertible $u \in J^{\prime}$ (" ϕ is an isotopy").
(2) $N_{J^{\prime}} \phi=\alpha N_{J}$ as polynomial laws for some $\alpha \in R^{\times}$, and ϕ is surjective (" ϕ is a norm similarity").

Proof. Since $\left(J^{\prime}\right)^{(u)}$ is a Freudenthal algebra by Corollary 12.9, condition (2) follows from (1) by Lemma 10.3 and (12.2). Conversely, we assume (2) and prove (1). Because $N_{J^{\prime}}\left(\phi\left(1_{J}\right)\right)=\alpha$, the element $\phi\left(1_{J}\right)$ is invertible in J^{\prime}. We set $u:=\phi\left(1_{J}\right)^{-1}$ and $J^{\prime \prime}:=$ $\left(J^{\prime}\right)^{(u)}$. We have

$$
\phi\left(1_{J}\right)=u^{-1}=1_{J^{\prime \prime}} .
$$

Also, $N_{J^{\prime}}(u)=N_{J^{\prime}}\left(\phi\left(1_{J}\right)\right)^{-1}=\alpha^{-1}$. Then

$$
N_{J^{\prime \prime}} \phi=N_{J^{\prime}}(u) N_{J^{\prime}} \phi=N_{J}
$$

as polynomial laws. Lemma 10.3 implies that ϕ is an isomorphism $J \xrightarrow{\sim} J^{\prime \prime}$, as desired.

13. Classification of Albert algebras over \mathbb{Z}

In this section, we study Albert algebras over the integers.
Definition 13.1. In the notation of Example 4.9, consider the element

$$
\beta:=\left(-1+e_{1}+e_{2}+\cdots+e_{7}\right) / 2=h_{1}+h_{2}+h_{3}-\left(2+e_{1}\right) \quad \in \mathcal{O}
$$

as was done in $[E G 96,(5.2)]$. That element has

$$
\operatorname{Tr}_{\mathcal{O}}(\beta)=-1, \quad n_{\mathcal{O}}(\beta)=2, \quad \text { and } \quad \beta^{2}+\beta+2=0
$$

Put

$$
v:=\left(\begin{array}{ccc}
2 & \beta & \dot{c} \\
\dot{B} & 2 & \beta \\
\beta & 2 & 2
\end{array}\right) \quad \in \operatorname{Her}_{3}(\mathcal{O})
$$

Since $\operatorname{Tr}_{\mathcal{O}}\left(\beta^{3}\right)=5$, we find that $N_{\operatorname{Her}_{3}(\mathcal{O})}(v)=1$. In particular, v is invertible with inverse v^{\sharp}. We define $\Lambda:=\operatorname{Her}_{3}(\mathcal{O})^{(v)}$; it is an Albert algebra by Corollary 12.9.
Proposition 13.2. $\operatorname{Her}_{3}(\mathcal{O}) \not \models \Lambda$ as Jordan \mathbb{Z}-algebras, but $\operatorname{Her}_{3}(\mathcal{O}) \otimes \mathbb{Q} \cong \Lambda \otimes \mathbb{Q}$ as Jordan \mathbb{Q}-algebras.
Proof. We first prove the claim over \mathbb{Z}, which amounts to a computation from [EG96]. The isomorphism class of a Freudenthal algebra determines its cubic norm form and also its trace linear form. From (12.2) we deduce for $x \in \operatorname{Her}_{3}(\mathcal{O})$ that $x^{\sharp(v)}=0$ if and only if $x^{\sharp}=0$. Hence [EG96, Prop. 5.5] says that $\operatorname{Her}_{3}(\mathcal{O})$ contains exactly 3 elements x such that $x^{\sharp}=0$ and $\operatorname{Tr}_{\operatorname{Her}_{3}(\mathcal{O})}(x)=1$, whereas Λ has no elements x such that $x^{\sharp(v)}=0$ and

$$
T_{\operatorname{Her}_{3}(\mathcal{O})}(v, x)=1
$$

where the left side is $\operatorname{Tr}_{\Lambda}(x)$ by (12.3). This proves that $\operatorname{Her}_{3}(\mathcal{O}) \not \approx \Lambda$.
Now consider $\operatorname{Her}_{3}(\mathcal{O}) \otimes \mathbb{R}$. It is called a "euclidean" Jordan algebra or, in older references, a "formally real" Jordan algebra, because every sum of nonzero squares is not zero [BrK, p. 331]. The element v has generic minimal polynomial, in the sense of (10.1), $(x-1)\left(x^{2}-5 x+1\right)$, which has three positive real roots. Therefore, there is some $u \in \operatorname{Her}_{3}(\mathcal{O}) \otimes \mathbb{R}$ such that $u^{2}=v[\mathrm{BrK}, \S X I .3, \mathrm{~S} .3 .6$ and 3.7]. From this, it is trivial to see that

$$
\Lambda \otimes \mathbb{R} \cong\left(\operatorname{Her}_{3}(\mathcal{O}) \otimes \mathbb{R}\right)^{(v)} \cong \operatorname{Her}_{3}(\mathcal{O}) \otimes \mathbb{R}
$$

Since $\mathbf{G}:=\boldsymbol{\operatorname { A u t }}\left(\operatorname{Her}_{3}(\mathcal{O})\right)$ is simple and simply connected, the natural map $H^{1}(\mathbb{Q}, \mathbf{G}) \rightarrow$ $H^{1}(\mathbb{R}, \mathbf{G})$ is a bijection, see [Har66] or [PR94, Th. 6.6]. Theorem 9.3 gives that $\operatorname{Her}_{3}(\mathcal{O}) \otimes$ $\mathbb{Q} \cong \Lambda \otimes \mathbb{Q}$.

Theorem 13.3. Over \mathbb{Z} :

(a) There are exactly two isomorphism classes of octonion algebras: $\operatorname{Zor}(\mathbb{Z})$ and \mathcal{O}.
(b) There are exactly four isomorphism classes of Albert algebras: $\operatorname{Her}_{3}(\operatorname{Zor}(\mathbb{Z}))$, $\operatorname{Her}_{3}(\mathcal{O},\langle 1,-1,1\rangle), \operatorname{Her}_{3}(\mathcal{O})$, and the algebra Λ.
(c) There are exactly two isotopy classes of Albert algebras: $\operatorname{Her}_{3}(\operatorname{Zor}(\mathbb{Z}))$ and $\operatorname{Her}_{3}(\mathcal{O})$.

Proof. No pair of the listed algebras are isomorphic to another one. For $\operatorname{Her}_{3}(\mathcal{O})$ and Λ, this is Prop. 13.2. For any other pair, base change to \mathbb{Q} yields non-isomorphic \mathbb{Q}-algebras.

Suppose that B is an octonion or Albert \mathbb{Z}-algebra. If B is indefinite, then it is determined by $B_{\mathbb{Q}}$ by Proposition 11.5. Since the indefinite octonion or Albert \mathbb{Q}-algebras are $\operatorname{Zor}(\mathbb{Q}), \operatorname{Her}_{3}(\operatorname{Zor}(\mathbb{Q}))$, and $\operatorname{Her}_{3}(\mathcal{O} \otimes \mathbb{Q},\langle 1,-1,1\rangle), B$ is isomorphic to one of the algebras listed in the statement.

On the other hand, Gross's mass formula [Gro96, Prop. 5.3] shows that there is only one composition \mathbb{Z}-algebra and two Albert \mathbb{Z}-algebras whose base change to \mathbb{Q} is definite. This shows that we have captured all the definite algebras as well, completing the proof of (a) and (b).

For (c), note that the three algebras in (b) that are not $\operatorname{Her}_{3}(\operatorname{Zor}(\mathbb{Z}))$ are all isotopic, see Example 12.4, so the two algebras listed in (c) represent all of the isotopy classes of Albert \mathbb{Z}-algebras. The base change of these two algebras to \mathbb{Q} have distinct co-ordinate algebras and therefore are not isotopic (Example 12.4), consequently they are not isotopic as \mathbb{Z}-algebras.

Note that part (a) of the theorem can be proved entirely in the language of octonion algebras, see [vdBS59].

In view of Theorem 9.3, part (b) is equivalent to a classification of the group schemes of type F_{4} over \mathbb{Z}, which was done in Sections 6 and 7 of [Con], especially Examples 6.7 and 7.4. The innovation here is that we can use the language of Albert algebras also in the case of \mathbb{Z} where 2 is not invertible. Because of this extra flexibility, we can substitute results from the literature over algebraically closed fields (including characteristic 2) for some of the computations over \mathbb{Z} done in [Con].

Part (c) corresponds to the classification of groups of type E_{6} over \mathbb{Z} up to isogeny, see §17.

Remark 13.4 (the Tits construction). The examples of Albert algebras exhibited so far have all been reduced algebras, i.e., Albert algebras of the kind described in Example 6.13. Such algebras are not division algebras, for example the element ε_{i} is not invertible. Historically speaking, it took many years after Albert algebras were defined - all the way until 1958 - for the first Albert division algebra to be exhibited in [Alb 58]. One reason for the difficulty is that, for there to exist an Albert division algebra over a field F of characteristic $\neq 3$, one needs $H^{3}(F, \mathbb{Z} / 3) \neq 0$, see [Ros91], [PR96], or [Gar09, §8]. Conversely, if $H^{3}(F, \mathbb{Z} / 3) \neq 0$, as happens when $F=\mathbb{Q}(t)$ for example, then one can construct an Albert division algebra via the so-called first Tits construction. This construction was first described in print in [Jac68, §IX.12] and later extended in various ways, including to the case of an arbitrary base ring in [PR86].

14. Groups of type E_{6}

Roundness of the norm. We note that the cubic norm of a Freudenthal algebra has the following special property. A quadratic form with this property is called "round", see [EKM08, §9.A].

Lemma 14.1 (roundness). For every Freudenthal R-algebra J,

$$
\left\{\alpha \in R^{\times} \mid \alpha N_{J} \cong N_{J}\right\}=\left\{N_{J}(x) \in R^{\times} \mid x \text { invertible in } J\right\}
$$

Proof. If $\alpha \in R^{\times}$and $\phi \in \mathrm{GL}(J)$ are such that $\alpha N_{J}=N_{J} \phi$, then for $x:=\phi\left(1_{J}\right)$ we have $N_{J}(x)=\alpha$. Conversely, if x is invertible in J, put $\alpha:=N_{J}(x)$ and define $\phi:=\alpha U_{x^{-1}}$. Then $N_{J} \phi=\alpha^{3} N_{J}\left(x^{-1}\right)^{2} N_{J}$ by Lemma 6.12(3), so $N_{J} \phi=\alpha N_{J}$.

Example 14.2. For $J=\operatorname{Her}_{3}(C, \Gamma)$, the sets displayed in Lemma 14.1 equal R^{\times}. To see this for the right side, take $\alpha \in R^{\times}$and note that $N_{J}\left(\alpha \varepsilon_{1}+\varepsilon_{2}+\varepsilon_{3}\right)=\alpha$. For the left side, consider $\phi \in \mathrm{GL}(J)$ defined by

$$
\begin{gathered}
\phi\left(\varepsilon_{i}\right)=\alpha \varepsilon_{i} \quad \text { and } \quad \phi\left(\delta_{i}(c)\right)=\delta_{i}(c) \quad \text { for } i=1,2, \\
\phi\left(\varepsilon_{3}\right)=\alpha^{-1} \varepsilon_{3} \quad \text { and } \quad \phi\left(\delta_{3}(c)\right)=\delta_{3}(\alpha c) .
\end{gathered}
$$

Then $N_{J} \phi=\alpha N_{J}$ as polynomial laws.
Example 14.3. In contrast to the preceding example, we now show that the sets displayed in Lemma 14.1 may be properly contained in R^{\times}. Suppose F is a field and J is a Freudenthal F-algebra such that N_{J} is anisotropic, i.e., $N_{J}(x)=0$ if and only if $x=0$. (For example, such a J exists if F is Laurent series or rational functions in one variable over a global field, see Remark 13.4.) We claim that, for t an indeterminate, every nonzero element in the image of $N_{J \otimes F((t))}$ has lowest term of degree divisible by 3. Because the norm is a homogeneous form, it suffices to prove this claim for $J \otimes F[[t]]$.

Let $x \in J \otimes F[[t]]$ be nonzero, so $x=\sum_{j \geq j_{0}} x_{j} t^{j}$ for some $j_{0} \geq 0$ with $x_{j_{0}} \neq 0$. Since N_{J} is anisotropic, $N_{J}\left(x_{0}\right) \neq 0$. If $j_{0}=0$, then the homomorphism $F[[t]] \rightarrow F$ such that $t \mapsto 0$ sends $x \mapsto x_{0}$ and $N_{J \otimes F[t t]]}(x) \mapsto N_{J}\left(x_{0}\right) \neq 0$, therefore $N_{J \otimes F[[t]]}(x)$ has lowest degree term $N_{J}\left(x_{0}\right) t^{0}$. If $j_{0}>0$, then

$$
N_{J \otimes F[[t]]}(x)=N_{J \otimes F[[t]]}\left(t^{j_{0}}\left(x t^{-j_{0}}\right)\right)=t^{3 j_{0}}\left(N_{J}\left(x_{j_{0}}\right) t^{0}+\cdots\right)
$$

proving the claim.
Corollary 14.4. For Freudenthal R-algebras J and J^{\prime}, the following are equivalent:
(1) J and J^{\prime} are isotopic.
(2) $N_{J} \cong \alpha N_{J^{\prime}}$ for some $\alpha \in R^{\times}$.
(3) $N_{J} \cong N_{J^{\prime}}$.

Proof. The equivalence of (1) and (2) is Proposition 12.10.
Supposing (2), let $\phi: J^{\prime} \rightarrow J$ be an R-module isomorphism such that $\alpha N_{J^{\prime}}=N_{J} \phi$. Take $x:=\phi\left(1_{J^{\prime}}\right)$. Since $N_{J}(x)=\alpha$, Lemma 14.1 gives that $\alpha N_{J} \cong N_{J}$. As N_{J} is also isomorphic to $\alpha N_{J^{\prime}}$, we conclude (3). The converse is trivial.

In the corollary, the inclusion of (3) seems to be new, even in the case where R is a field. Omitting that, in the special case where R is a field of characteristic $\neq 2,3$, the equivalence of (1) and (2) and Proposition 14.7 below can be found as Theorems 7 and 10 in [Jac71].

Albert algebras and groups of type E_{6}. The stabilizer of the cubic form N_{J} in $\mathbf{G L}(J)$ is a closed sub-group-scheme denoted $\operatorname{Isom}(J)$. It contains Aut (J) as a natural sub-groupscheme. Arguing as in the proof of Lemma 9.1, one finds that $\operatorname{Isom}(J)$ is a simple affine group scheme that is simply connected of type E_{6}. (In the case where R is an algebraically closed field, this claim is verified in [Spr73, 11.20, 12.4], or see [SV00, Th. 7.3.2] for the case where R is a field of characteristic different from 2, 3.) Compare [Als, Lemma 2.3] or [Con, App. C]. Moreover, $\operatorname{Isom}(J)$ is a "pure inner form" in the sense of [Con, §3], resp. "strongly inner" in [CalF, Def. 2.2.4.9], meaning that it is obtained by twisting the group scheme $\operatorname{Isom}\left(J_{0}\right)$ for the split Albert algebra J_{0} by a class with values in $\operatorname{Isom}(J)$.

We note that the center of $\operatorname{Isom}(J)$ is the group scheme μ_{3} of cube roots of unity operating on J by scalar multiplication

Faithfully flat descent shows that the set $H^{1}(R, \operatorname{Isom}(J))$ is in bijection with isomorphism classes of pairs (M, f), where M is a projective module of the same rank as J and f is a cubic form on M - i.e., an element of $\mathrm{S}^{3}\left(M^{*}\right)$ - such that $f \otimes S$ is isomorphic to the norm on $\operatorname{Her}_{3}(\operatorname{Zor}(S))$ for some faithfully flat $S \in R$-alg. For every Albert R-algebra J and every $\alpha \in R^{\times},\left(J, \alpha N_{J}\right)$ is such a pair by Example 14.2. In the special case where R is a field, every such pair (M, f) - i.e., every element of $H^{1}(R, \operatorname{Isom}(J))$ - is of the form $\left(J, \alpha N_{J}\right)$ for some J and $\alpha \in R^{\times}$, see [Gar09, 9.12] in general or [Spr62] for the case of characteristic $\neq 2,3$.

Outer automorphism of $\operatorname{Isom}(J)$. Suppose J and J^{\prime} are Freudenthal R-algebras and $\phi: J \rightarrow J^{\prime}$ is an isomorphism of R-modules. Since the bilinear form $T_{J^{\prime}}$ is regular, there is a unique R-linear map $\phi^{\dagger}: J \rightarrow J^{\prime}$ such that $T_{J^{\prime}}\left(\phi x, \phi^{\dagger} y\right)=T_{J}(x, y)$ for all $x, y \in J$. Because T_{J} and $T_{J^{\prime}}$ are symmetric, we have $\left(\phi^{\dagger}\right)^{\dagger}=\phi$ for all ϕ. If $J^{\prime \prime}$ is another Freudenthal R-algebra and $\psi: J^{\prime} \rightarrow J^{\prime \prime}$ is an R-linear bijection, then $(\phi \psi)^{\dagger}=\phi^{\dagger} \psi^{\dagger}$.

Proposition 14.5. Let J be a Freudenthal R-algebra.
(1) If $\phi \in \mathrm{GL}(J)$ is such that $N_{J} \phi=\alpha N_{J}$ for some $\alpha \in R^{\times}$, then $N_{J} \phi^{\dagger}=\alpha^{-1} N_{J}$.
(2) The map $\phi \mapsto \phi^{\dagger}$ is an automorphism of $\operatorname{Isom}(J)$ of order 2 that is not an inner automorphism.
(3) For ϕ as in (1) or in $\operatorname{Isom}(J), \phi^{\dagger}=\phi$ if and only if ϕ is an automorphism of J.

Proof. (1): Put $u:=\phi\left(1_{J}\right)^{-1}$. On the one hand,

$$
T_{J}(x, y)=T_{J^{(u)}}(\phi(x), \phi(y))
$$

for all $x, y \in J$, because ϕ is an isomorphism $J \rightarrow J^{(u)}$ by Proposition 12.10. On the other hand, (12.3) yields

$$
T_{J^{(u)}}(\phi(x), \phi(y))=T_{J}\left(U_{u} \phi(x), \phi(y)\right) .
$$

Therefore,

$$
\begin{equation*}
\phi^{\dagger}=U_{\phi\left(1_{J}\right)}^{-1} \phi \tag{14.6}
\end{equation*}
$$

To complete the proof of (1), we note by Lemma 6.12(3) that

$$
N_{J} \phi^{\dagger}=N_{J} U_{u} \phi=N_{J}(u)^{2} N_{J} \phi=\alpha^{-1} N_{J}
$$

For (2), we only have to check that the map is not an inner automorphism. Let $S \in$ R-alg be such that there exists $\zeta \in \mu_{3}(S)$ such that $\zeta \neq 1$. Then $\zeta^{\dagger}=\zeta^{-1} \neq \zeta$ and ζ is in the center of $\operatorname{Iso}(J)$, proving that the automorphism is not inner (and not the identity).

For (3), suppose $\phi^{\dagger}=\phi$. Then $N_{J} \phi=N_{J}$. By (14.6), $U_{\phi\left(1_{J}\right)}=\operatorname{Id}_{J}$, so $\phi\left(1_{J}\right)=\zeta 1_{J}$ for some $\zeta \in R$ with $\zeta^{2}=1$ (Example 7.3). Yet $1=N_{J}\left(1_{J}\right)=N_{J} \phi\left(1_{J}\right)$, so ζ^{3} also equals 1 , whence $\phi\left(1_{J}\right)=1_{J}$. Lemma 10.3 shows that ϕ is an automorphism of J. Conversely, if ϕ is an automorphism of J, then $u=1_{J}$, so $\phi^{\dagger}=\phi$ by (14.6).
Proposition 14.7. Let J and J^{\prime} be Albert R-algebras. Among the statements
(1) $\operatorname{Isom}(J) \cong \operatorname{Isom}\left(J^{\prime}\right)$.
(2) There is a line bundle L and isomorphism $h: L^{\otimes 3} \rightarrow R$ such that $\left(J^{\prime}, N_{J^{\prime}}\right) \cong$ $[L, h] \cdot\left(J, N_{J}\right)$ for \cdot as defined in $\S 3$.
(3) J and J^{\prime} are isotopic.
we have the implications $(1) \Leftrightarrow(2) \Leftarrow(3)$. If Pic R has no 3-torsion other than zero, then all three statements are equivalent.

Proof. Suppose (1); we prove (2). We may assume R is connected.
The conjugation action gives a homomorphism $\operatorname{Isom}(J) \rightarrow \operatorname{Aut}(\operatorname{Isom}(J))$, which gives a map of pointed sets

$$
\begin{equation*}
H^{1}(R, \operatorname{Isom}(J)) \rightarrow H^{1}(R, \operatorname{Aut}(\operatorname{Isom}(J))) \tag{14.8}
\end{equation*}
$$

where the second set is in bijection with isomorphism classes of R-group schemes that become isomorphic to Isom (J) after base change to an fppf R-algebra. By hypothesis, the class of $N_{J^{\prime}} \in H^{1}(R, \operatorname{Isom}(J))$ is in the kernel of (14.8).

There is an exact sequence

$$
1 \rightarrow \operatorname{Isom}(J) / \mu_{3} \rightarrow \boldsymbol{\operatorname { A u t }}(\operatorname{Isom}(J)) \rightarrow \mathbb{Z} / 2 \rightarrow 1
$$

of fppf sheaves by [DG70, Th. XXIV.1.3]. Since R is connected, $(\mathbb{Z} / 2)(R)$ has one nonidentity element, and it is the image of the map \dagger from Lemma 14.5. That is, in the exact sequence
$\operatorname{Aut}(\operatorname{Isom}(J))(R) \rightarrow(\mathbb{Z} / 2)(R) \rightarrow H^{1}\left(R, \operatorname{Isom}(J) / \mu_{3}\right) \rightarrow H^{1}(R, \operatorname{Aut}(\operatorname{Isom}(J)))$,
the first map is surjective, so the third map has zero kernel and we deduce that the image of $N_{J^{\prime}}$ in $H^{1}\left(R, \operatorname{Isom}(J) / \mu_{3}\right)$ is the zero class. It follows that $N_{J^{\prime}}$ is in the image of the map

$$
H^{1}\left(R, \mu_{3}\right) \rightarrow H^{1}(R, \text { Isom }(J))
$$

which is the orbit of the zero class N_{J} under the action of the group $H^{1}\left(R, \mu_{3}\right)$, which is (2).

That (2) implies (1) is Lemma 3.6. The claimed implications between (3) and (2) are Corollary 14.4.

15. FREUDENTHAL TRIPLE SYSTEMS

In this section, we define Freudenthal triple systems, also known as FT systems. We will see in Theorem 16.4 in the next section that they play the same role relative to groups of type E_{7} that forms of the norm on an Albert algebra play for groups of type E_{6}.

For any Albert R-algebra J, define $Q(J)$ to be the rank 56 projective R-module $R \oplus$ $R \oplus J \oplus J$ endowed with a 4-linear form Ψ and an alternating bilinear form b, defined as follows.

We write a generic element of $Q(J)$ as $\left(\begin{array}{cc}\alpha & x \\ x^{\prime} & \alpha^{\prime}\end{array}\right)$ for $\alpha, \alpha^{\prime} \in R$ and $x, x^{\prime} \in J$. We define

$$
b_{J}\left(\left(\begin{array}{cc}
\alpha & x \tag{15.1}\\
x^{\prime} & \alpha^{\prime}
\end{array}\right),\left(\begin{array}{cc}
\beta & y \\
y^{\prime} & \beta^{\prime}
\end{array}\right)\right):=\alpha \beta^{\prime}-\alpha^{\prime} \beta+T_{J}\left(x, y^{\prime}\right)-T_{J}\left(x^{\prime}, y\right)
$$

As an intermediate step to defining Ψ, define a quartic form

$$
q_{J}\left(\begin{array}{cc}
\alpha & x \tag{15.2}\\
x^{\prime} & \alpha^{\prime}
\end{array}\right)=-4 T_{J}\left(x^{\sharp}, x^{\prime \sharp}\right)+4 \alpha N_{J}(x)+4 \alpha^{\prime} N_{J}\left(x^{\prime}\right)+\left(T_{J}\left(x, x^{\prime}\right)-\alpha \alpha^{\prime}\right)^{2},
$$

compare [Brown, p. 87] or [Kru07, p. 940].
To define the 4-linear form, consider first the case $R=\mathbb{Z}$ and $J:=\operatorname{Her}_{3}(\operatorname{Zor}(\mathbb{Z}))$. (The following definitions are inspired by [Lur01, §6].) Putting X_{i} for an element of $Q(J)$ and t_{i} for an indeterminate, the coefficient of $t_{1} t_{2} t_{3} t_{4}$ in $q\left(\sum t_{i} X_{i}\right)$, equivalently, the 4-linear form

$$
\left(X_{1}, X_{2}, X_{3}, X_{4}\right) \mapsto \nabla_{X_{1}} \nabla_{X_{2}} \nabla_{X_{3}} q\left(X_{4}\right)
$$

on $Q(J)$, equals 2Θ for a symmetric 4-linear form Θ. Define 4-linear forms Φ_{i} via

$$
\begin{align*}
& \Phi_{1}\left(X_{1}, X_{2}, X_{3}, X_{4}\right)=b\left(X_{1}, X_{2}\right) b\left(X_{3}, X_{4}\right) \tag{15.3}\\
& \Phi_{2}\left(X_{1}, X_{2}, X_{3}, X_{4}\right)=b\left(X_{1}, X_{3}\right) b\left(X_{4}, X_{2}\right) \tag{15.4}\\
& \Phi_{3}\left(X_{1}, X_{2}, X_{3}, X_{4}\right)=b\left(X_{1}, X_{4}\right) b\left(X_{2}, X_{3}\right) . \tag{15.5}
\end{align*}
$$

Then $\Theta+\sum \Phi_{i}$ is divisible by 2 as a 4 -linear function on $Q(\operatorname{Zor}(\mathbb{Z}))$ and we set

$$
\begin{equation*}
\Psi_{\operatorname{Her}_{3}(\operatorname{Zor}(\mathbb{Z}))}:=\frac{1}{2}\left(\Theta+\sum \Phi_{i}\right) \tag{15.6}
\end{equation*}
$$

As Θ is symmetric, Ψ is evidently stable under even permutations of its arguments, and we have:

$$
\Psi\left(X_{1}, X_{2}, X_{3}, X_{4}\right)-\Psi\left(X_{2}, X_{1}, X_{3}, X_{4}\right)=\sum \Phi_{i}
$$

For any ring R, we define $\Psi_{\operatorname{Her}_{3}(\operatorname{Zor}(R))}:=\Psi_{\operatorname{Her}_{3}(\operatorname{Zor}(\mathbb{Z}))} \otimes R$, and we define Ψ_{J} for an Albert R-algebra J by descent.
Definition 15.7. A Freudenthal triple system ${ }^{1}$ or $F T \operatorname{system}(M, \Psi, b)$ is an R-module M endowed with a 4-linear form Ψ and an alternating bilinear form b, such that $(M, \Psi, b) \otimes S$ is isomorphic (in an obvious sense) to $Q(J)$ for some faithfully flat $S \in R$-alg and some Albert S-algebra J.

Comparison with other definitions. Suppose for this paragraph that 6 is invertible in R. Given an FT system (M, Ψ, b), we may define 4-linear forms Φ_{i} on M via (15.4) and recover Θ and q via

$$
\begin{equation*}
\Theta:=2 \Psi-\sum \Phi_{i} \quad \text { and } \quad \Theta(X, X, X, X)=12 q(X) \tag{15.8}
\end{equation*}
$$

as polynomial laws in X. (This last is a special case of the general fact that going from a homogeneous form of degree d to a d-linear form and back to a homogeneous form of degree d equals multiplication by d ! [Bour, §IV.5.8, Prop. 12(i)].) Since the form b is regular and Θ is symmetric, the equation

$$
\Theta\left(X_{1}, X_{2}, X_{3}, X_{4}\right)=b\left(X_{1}, t\left(X_{2}, X_{3}, X_{4}\right)\right)
$$

implicitly defines a symmetric 3-linear form $t: M \times M \times M \rightarrow M$, and $\operatorname{Aut}(M, \Psi, b)$ equals $\operatorname{Aut}(M, t, b)$. That is, under the hypothesis that 6 is invertible in R, we would obtain an equivalent class of objects if we replaced the asymmetric 4 -linear form Ψ in the definition of FT systems with the quartic form q (the version studied in [Brown]) or with the trilinear form t (the version studied in [Mey68]).

Similarity of FT systems. For a d-linear form f on an R-module M, i.e., an R-linear map $f: M^{\otimes d} \rightarrow R$, and a d-trivialized line bundle $[L, h] \in H^{1}\left(R, \mu_{d}\right)$, we define a d-linear form $[L, h] \cdot f$ on $M \otimes L$ via the composition

$$
(M \otimes L)^{\otimes d} \xrightarrow{\sim} M^{\otimes d} \otimes L^{\otimes d} \xrightarrow{f \otimes h} R .
$$

For $Q:=(M, \Psi, b)$ an FT system and a discriminant module $[L, h] \in H^{1}\left(R, \mu_{2}\right)$, we define $[L, h] \cdot Q$ to be the triple consisting of the module $M \otimes L$, the 4-linear form $\left[L, h^{\otimes 2}\right]$. Ψ for $\left[L, h^{\otimes 2}\right] \in H^{1}\left(R, \mu_{4}\right)$, and the bilinear form $[L, h] \cdot b$. Since $\langle 1\rangle \cdot Q$ is Q itself, we deduce that $[L, h] \cdot Q$ is also an FT system. We say that FT systems Q, Q^{\prime} are similar if $Q^{\prime} \cong[L, h] \cdot Q$ for some $[L, h] \in H^{1}\left(R, \mu_{2}\right)$. For example, for any FT system (M, Ψ, b) and any $\alpha \in R^{\times},(M, \Psi, b)$ and $\left(M, \alpha^{2} \Psi, \alpha b\right)$ are similar.

Example 15.9. Suppose $(M, \Psi, b)=Q(J)$ for some Albert R-algebra J. Then for every $\mu \in R^{\times}$, the map

$$
\left(\begin{array}{cc}
\alpha & x \\
x^{\prime} & \alpha^{\prime}
\end{array}\right) \mapsto\left(\begin{array}{cc}
\alpha / \mu & \mu x \\
x^{\prime} & \mu^{2} \alpha^{\prime}
\end{array}\right)
$$

is an isomorphism $\langle\mu\rangle \cdot Q(J) \xrightarrow{\sim} Q(J)$. One checks this for $R=\mathbb{Z}$ and $J=\operatorname{Her}_{3}(\operatorname{Zor}(\mathbb{Z}))$ using (15.1) and (15.2). It follows for general R and J by base change and twisting.

[^1]
16. Groups of type E_{7}

We will now relate FT systems as defined in the previous section to affine group schemes of type E_{7}. Here is a tool that allows us to work with the quartic form q as in (15.2) rather than the less-convenient 4-linear form Ψ, while still getting results that hold when 6 is not invertible.

Lemma 16.1. Let (M, Ψ, b) be an FT system over \mathbb{Z}, let \mathbf{G} be a closed subgroup of $\mathbf{G L}(M)$, and let F be a field of characteristic zero. If $\mathbf{G}(F)$ is dense in \mathbf{G} (which holds if \mathbf{G} is connected) and $\mathbf{G}(F)$ preserves $b \otimes F$ and the quartic form q over F defined by (15.8), then G is a closed sub-group-scheme of $\operatorname{Aut}(M, \Psi, b)$.

Proof. Since $\mathbf{G}(F)$ is dense in \mathbf{G}, the group scheme $\mathbf{G} \times F$ preserves $b \otimes F$ and q, whence also $\Psi \otimes F$. Viewing b and Ψ as elements of the representation $V:=\left(M^{*}\right)^{\otimes d}$ of \mathbf{G} for $d=2$ or 4 , the natural map $V^{\mathbf{G}} \otimes F \rightarrow(V \otimes F)^{\mathbf{G} \times F}$ is an isomorphism because F is flat over \mathbb{Z} [Ses77, Lemma 2], so \mathbf{G} preserves b and Ψ.

Corollary 16.2. For every Freudenthal R-algebra J, there is an inclusion f : $\operatorname{Isom}(J) \hookrightarrow$ $\operatorname{Aut}(Q(J))$ via

$$
f(\phi)\left(\begin{array}{cc}
\alpha & x \\
x^{\prime} & \alpha^{\prime}
\end{array}\right)=\left(\begin{array}{cc}
\alpha & \phi(x) \\
\phi^{\dagger}\left(x^{\prime}\right) & \alpha^{\prime}
\end{array}\right) .
$$

Proof. Consider the case $J=\operatorname{Her}_{3}(\operatorname{Zor}(\mathbb{Z}))$. For $\phi \in \operatorname{Isom}(J)(\mathbb{Q})$, it follows from the definition of ϕ^{\dagger} and Proposition 14.5(1) that $f(\phi)$ is an isomorphism of the bilinear and quartic forms $b \otimes \mathbb{Q}$ and q defined by (15.2) for $J \otimes \mathbb{Q}$. The lemma gives the claim in this case. Base change and twisting gives the claim for every R and every Albert R-algebra J.

Corollary 16.3. Suppose J and J^{\prime} are Albert R-algebras. If J and J^{\prime} are isotopic, then $\boldsymbol{\operatorname { A u t }}(Q(J)) \cong \boldsymbol{\operatorname { A u t }}\left(Q\left(J^{\prime}\right)\right)$.

Proof. The inclusions $\boldsymbol{\operatorname { A u t }}(J) \hookrightarrow \operatorname{Isom}(J) \hookrightarrow \operatorname{Aut}(Q(J))$ induce maps

$$
H^{1}(R, \boldsymbol{\operatorname { A u t }}(J)) \rightarrow H^{1}(R, \operatorname{Isom}(J)) \rightarrow H^{1}(R, \boldsymbol{\operatorname { A u t }}(Q(J))),
$$

where the last set classifies FT systems over R. The class of J^{\prime} in $H^{1}(R, \operatorname{Aut}(J))$ maps to the class of $N_{J^{\prime}}$ in $H^{1}(R, \operatorname{Isom}(J))$, and by hypothesis and by Proposition 14.7 this is the trivial class. Therefore, the image of J^{\prime} in $H^{1}(R, \boldsymbol{\operatorname { u u t }}(Q(J)))$, which is $Q\left(J^{\prime}\right)$, is the trivial class.

In case R is a field of characteristic $\neq 2,3$, the converse of Corollary 16.3 is true by [Fer72, Cor. 6.9]. That is, if $Q(J) \cong Q\left(J^{\prime}\right)$, then J and J^{\prime} are isotopic.

Theorem 16.4. The group scheme $\operatorname{Aut}\left(Q\left(\operatorname{Her}_{3}(\operatorname{Zor}(R))\right)\right)$ over R is obtained from the simply connected Chevalley group of type E_{7} over \mathbb{Z} by base change. Every strongly inner and simply connected simple R-group scheme of type E_{7} over R is of the form $\operatorname{Aut}(Q)$ for some FT system Q. For FT systems Q and $Q^{\prime}, \boldsymbol{\operatorname { A u t }}(Q) \cong \boldsymbol{\operatorname { A u t }}\left(Q^{\prime}\right)$ if and only if Q and Q^{\prime} are similar.

Proof. Put $J_{R}:=\operatorname{Her}_{3}(\operatorname{Zor}(R))$ and $Q_{R}:=Q\left(J_{R}\right)$. We will show that $\operatorname{Aut}\left(Q_{R}\right)$ is isomorphic to the base change to R of the simply connected Chevalley group E_{7} over \mathbb{Z}.

In addition to the sub-group-scheme $\operatorname{Isom}\left(J_{R}\right)$ of $\operatorname{Aut}\left(Q_{R}\right)$ provided by Corollary 16.2 , we consider \mathbb{G}_{m} defined by

$$
\beta\left(\begin{array}{cc}
\alpha & x \\
x^{\prime} & \alpha^{\prime}
\end{array}\right)=\left(\begin{array}{cc}
\beta^{-3} \alpha & \beta x \\
\beta^{-1} x^{\prime} & \beta^{3} \alpha^{\prime}
\end{array}\right) \quad \text { for } \beta \in R^{\times}
$$

and two copies of J_{R} (as group schemes under addition) through which an element $y \in J_{R}$ acts via

$$
y\left(\begin{array}{cc}
\alpha & x \\
x^{\prime} & \alpha^{\prime}
\end{array}\right)=\left(\begin{array}{cc}
\alpha+b\left(x^{\prime}, y\right) & x+\alpha^{\prime} y \\
x^{\prime}+x \times y & \alpha^{\prime}
\end{array}\right) \quad \text { or } \quad\left(\begin{array}{cc}
\alpha & x+x^{\prime} \times y \\
x^{\prime}+\alpha y & \alpha^{\prime}+b\left(x^{\prime}, y\right)
\end{array}\right) .
$$

These preserve b and q, see for example [Brown, p. 95] or [Kru07, p. 942], and so by Lemma 16.1 do belong to $\operatorname{Aut}\left(Q_{R}\right)$. Considering the Lie algebras of $\operatorname{Isom}\left(J_{R}\right), \mathbb{G}_{\mathrm{m}}$, and the two copies of J, as subalgebras of $\operatorname{Lie}\left(\mathbf{G L}\left(Q_{R}\right)\right)$, one can identify the subalgebra L_{R} they generate with the Lie algebra of $E_{7} \times R$ by picking out specific root subalgebras and so on as in [Fre54] or [Sel63], or see [Gar01, §7] for partial information. Note that $\operatorname{Lie}\left(\operatorname{Aut}\left(Q_{R}\right)\right) \supseteq L_{R}$. For F any algebraically closed field, we may identify the smooth closed subgroup of $\operatorname{Aut}\left(Q_{F}\right)$ generated by $\operatorname{Isom}\left(J_{F}\right), \mathbb{G}_{\mathrm{m}}$, and the two copies of J_{F} with $E_{7} \times F$.

In [Lur01], Lurie begins with $L_{\mathbb{Z}}$ and defines $L_{\mathbb{Z}}$-invariant 4-linear forms Θ^{L}, Φ_{i}^{L}, and Ψ^{L} and alternating bilinear form b^{L} on the 56-dimensional Weyl module of $L_{\mathbb{Z}}$. Over $\mathbb{C}, \operatorname{Aut}\left(Q_{\mathbb{C}}\right)$ is simply connected of type E_{7} by the references in the previous paragraph, so it preserves the base change of Lurie's forms $\Theta^{L} \otimes \mathbb{C}$, etc. Because $\operatorname{Aut}\left(Q_{\mathbb{C}}\right)(\mathbb{C})$ is dense in $\operatorname{Aut}\left(Q_{\mathbb{C}}\right)$, Lemma 16.1 shows that $\operatorname{Aut}\left(Q_{\mathbb{Z}}\right)$ preserves Θ^{L}, the Φ_{i}^{L}, Ψ^{L}, and b^{L}. By the uniqueness of E_{7} invariant bilinear and symmetric 4-linear forms on M (which follows from the uniqueness over \mathbb{C} as in the proof of Lemma 16.1), we find that $b^{L}= \pm b$ and $\Theta^{L}= \pm \Theta$. Note that regardless of the sign on b in the preceding sentence, we find $\Phi_{i}^{L}=\Phi_{i}$ for all i and $\operatorname{Aut}\left(Q_{F}\right)$ preserves b^{L}. Now let F be an algebraically closed field. If F has characteristic different from 2, then $\operatorname{Aut}\left(Q_{F}\right)$ preserves $2 \Psi=\Theta+\sum \Phi_{i}$ and the Φ_{i}, so it preserves Θ, hence Θ^{L}, hence Ψ^{L}. If F has characteristic 2 , then although $\Psi^{L}=\frac{1}{2}\left(\pm \Theta+\sum \Phi_{i}\right)$ for some choice of sign as polynomials over \mathbb{Z}, we have $\Psi^{L} \otimes F=$ $\Psi \otimes F$. In either case, $\boldsymbol{A u t}\left(Q_{F}\right)$ preserves $b^{L} \otimes F$ and $\Psi^{L} \otimes F$, whence so does its Lie algebra, so $\operatorname{dim} \operatorname{Lie} \operatorname{Aut}\left(Q_{F}\right) \leq \operatorname{dim} L_{F}$ by [Lur01, Th. 6.2.3]. Putting this together with the previous paragraph, we see that $\boldsymbol{\operatorname { A u t }}\left(Q_{F}\right)$, an affine group scheme over the field F, is smooth with identity component $E_{7} \times F$.

We claim that $\operatorname{Aut}\left(Q_{F}\right)$ is connected. Since its identity component E_{7} has no outer automorphisms, every element of $\boldsymbol{\operatorname { A u t }}\left(Q_{F}\right)(F)$ is a product of an element of $E_{7}(F)$ and a linear transformation centralizing E_{7}. The action of $E_{7} \times F$ on Q_{F} is irreducible (it is the 56-dimensional minuscule representation), so the centralizer of E_{7} consists of scalar transformations. Finally, we note that the intersection of $\operatorname{Aut}\left(Q_{F}\right)$ and the scalar transformations is the group scheme μ_{2} of square roots of unity, which is contained in E_{7}. In summary, $\boldsymbol{A u t}\left(Q_{F}\right)=E_{7} \times F$ for every algebraically closed field F.

As in the proof of Lemma 9.1, it follows that $\operatorname{Aut}\left(Q_{\mathbb{Z}}\right)$ is a simple affine group scheme that is simply connected of type E_{7}, and we deduce from the fact that $\boldsymbol{\operatorname { A u t }}\left(Q_{\mathbb{R}}\right)$ is split that $\operatorname{Aut}\left(Q_{\mathbb{Z}}\right)$ is in fact the Chevalley group.

The second claim now follows by descent.
The third claim is proved in the same manner as Proposition 14.7, although the current situation is somewhat easier due to the absence of nontrivial automorphisms of the Dynkin diagram of E_{7} and therefore the absence of outer automorphisms for semisimple groups of that type. Therefore, the sequence

$$
\begin{equation*}
H^{1}\left(R, \mu_{2}\right) \rightarrow H^{1}(R, \boldsymbol{\operatorname { A u t }}(Q)) \rightarrow H^{1}(R, \boldsymbol{\operatorname { A u t }}(\boldsymbol{\operatorname { A u t }}(Q))) \tag{16.5}
\end{equation*}
$$

is exact, where μ_{2} is the center of $\boldsymbol{\operatorname { A u t }}(Q)$ and $\boldsymbol{\operatorname { A u t }}(\boldsymbol{\operatorname { A u t }}(Q)) \cong \boldsymbol{\operatorname { A u t }}\left(Q_{R}\right) / \mu_{2}$ is the adjoint group. We have $\boldsymbol{\operatorname { A u t }}\left(Q^{\prime}\right) \cong \boldsymbol{\operatorname { A u t }}(Q)$ if and only if the element Q^{\prime} in $H^{1}(R, \boldsymbol{A u t}(Q))$ is in the kernel of the second map in (16.5), if and only if Q^{\prime} is in the image of the first
map. To complete the proof, it suffices to calculate by descent that the action of $H^{1}\left(R, \mu_{2}\right)$ on $H^{1}(R, \boldsymbol{A u t}(Q))$ is exactly by the similarity action defined in $\S 15$.

Corollary 16.6. If R is (1) a complete discrete valuation ring whose residue field is finite; (2) a finite ring; or (3) a Dedekind domain whose field of fractions F is a global field with no real embeddings, then the the split FT system is the only one over R, up to isomorphism.

Proof. Imitate the arguments in Proposition 11.2 or Example 11.4, where \mathbf{G} is the base change to R of the simply connected Chevalley group $\operatorname{Aut}(Q(\operatorname{Zor}(\mathbb{Z})))$.

Remarks. A previous work that considered groups of type E_{7} over rings is [Luz13]. Aschbacher [Asch] studied the 4-linear form in the case where R is a field of characteristic 2. The paper [MW19] studied the case of fields of any characteristic, organized around a polynomial law $\Theta \in \mathscr{P}(Q, R)$ that is not homogeneous.

For a field F of characteristic $\neq 2,3$, FT systems have been studied in this century in [Cl], [Hel12], [Kru07], [Spr06], and $\left[\mathrm{BorsDF}^{+}\right]$to name a few. They arise naturally in the context of the bottom row of the magic triangle from [DG02, Table 2], in connection with the existence of extraspecial parabolic subgroups as in [Röh93] or [Gar09, $\S 12$], or from groups with a BC_{1} grading [GG21, p. 995]. For every Albert F-algebra J, the group scheme $\operatorname{Aut}(Q(J))$ is isotropic, see for example [Spr06, Lemma 5.6(i)]. Yet there exist strongly inner groups of type E_{7} that are anisotropic, see [Tit90, 3.1] or [Gar09, App. A], and therefore there exist FT systems Q that are not isomorphic to $Q(J)$ for any J. A construction that produces all FT systems can be obtained by considering a subgroup $\operatorname{Isom}(J) \rtimes \mu_{4}$ of $\operatorname{Aut}(Q(J))$, which leads to a surjection $H^{1}\left(F, \operatorname{Isom}(J) \rtimes \mu_{4}\right) \rightarrow$ $H^{1}(F, \operatorname{Aut}(Q(J)))$, see [Gar09, 12.13], [Gar01, Lemma 4.15], or [Spr06, §4].

17. EXCEPTIONAL GROUPS OVER \mathbb{Z}

We now give an explicit description of the isomorphism classes of semisimple affine group schemes over \mathbb{Z} of types F_{4}, G_{2}, E_{6}, and E_{7}.

There are four such group schemes of type F_{4}, namely $\boldsymbol{\operatorname { A u t }}(J)$ for each of the four Albert \mathbb{Z}-algebras listed in Theorem 13.3(b). The proof of this fact is intertwined with the proof of that theorem. Similarly, there are two such group schemes of type G_{2}, namely $\operatorname{Aut}(C)$ for $C=\operatorname{Zor}(\mathbb{Z})$ or \mathcal{O}.

Proposition 17.1. Regarding isomorphism classes of semisimple and simply connected affine group schemes over \mathbb{Z} :
(1) there are two of type E_{6}, namely $\operatorname{Isom}\left(\operatorname{Her}_{3}(C)\right)$ and
(2) there are two of type E_{7}, namely $\operatorname{Aut}\left(Q\left(\operatorname{Her}_{3}(C)\right)\right)$
for $C=\operatorname{Zor}(\mathbb{Z})$ or \mathcal{O}.
Proof. Put \mathbf{G} for the simply connected Chevalley group scheme over \mathbb{Z} of type E_{n}, for $n=6$ or 7 . By [Con, Remark 4.8], \mathbb{Z} forms of absolutely simple and simply connected \mathbb{Q}-group schemes are purely inner forms, i.e., are obtained by twisting \mathbf{G} by a class $\xi \in$ $H^{1}(\mathbb{Z}, \mathbf{G})$.

For the split Albert algebra $J=\operatorname{Her}_{3}(\operatorname{Zor}(\mathbb{Z}))$, the natural inclusions $\operatorname{Aut}(J) \subset$ $\operatorname{Isom}(J) \subset \boldsymbol{A u t}(Q(J))$ give maps $H^{1}(R, \boldsymbol{A u t}(J)) \rightarrow H^{1}(R, \mathbf{G})$ for every ring R, where the domain is in bijection with the isomorphism classes of Albert R-algebras. The groups in the statement we are aiming to prove are the image of $\operatorname{Her}_{3}(C)$ for $C=\operatorname{Zor}(\mathbb{Z})$ or \mathcal{O}. The two choices for C, i.e., the two groups in the statement, give non-isomorphic groups over \mathbb{R}, so it suffices to show that there are no others defined over \mathbb{Z}.

Now the compact real form of type E_{n} is not a pure inner form, so $G_{\xi} \times \mathbb{R}$ is not compact for all $\xi \in H^{1}(\mathbb{Z}, \mathbf{G})$. Therefore, the natural map $H^{1}(\mathbb{Z}, \mathbf{G}) \rightarrow H^{1}(\mathbb{Q}, \mathbf{G})$ is a bijection by [Har67, Satz 4.2.4]. The natural map $H^{1}(\mathbb{Q}, \mathbf{G}) \rightarrow H^{1}(\mathbb{R}, \mathbf{G})$ is also a bijection, a fact we have already used in the proof of Proposition 13.2. Since $H^{1}(\mathbb{R}, \mathbf{G})$ has two elements — see [BoroE], [BoroT, esp. §15], or [AdT, Table 3] — we have produced both elements of $H^{1}(\mathbb{Z}, \mathbf{G})$.

The proof provides the following corollary.
Corollary 17.2. There are two isomorphism classes of FT systems over \mathbb{Z}, namely $Q\left(\operatorname{Her}_{3}(C)\right)$ for $C=\operatorname{Zor}(\mathbb{Z})$ or \mathcal{O}.

We have addressed now all the simple types that are usually called "exceptional", apart from E_{8}. A classification of \mathbb{Z}-groups of type E_{8} like Proposition 17.1 appears currently out of reach, because among those group schemes \mathbf{G} over \mathbb{Z} such that $\mathbf{G} \times \mathbb{R}$ is the compact group of type E_{8}, there are at least 13,935 distinct isomorphism classes [Gro96, Prop. 5.3]. Among those \mathbf{G} over \mathbb{Z} of type E_{8} such that $\mathbf{G} \times \mathbb{R}$ is not compact, the same argument as int he proof of Proposition 17.1 shows that there are two isomorphism classes.

References

[ABB14] A. Auel, M. Bernardara, and M. Bolognesi, Fibrations in complete intersections of quadrics, clifford algebras, derived categories, and rationality problems, J. Math. Pures Appl. 102 (2014), 249-291. 5
[AG19] S. Alsaody and P. Gille, Isotopes of octonion algebras, \mathbf{G}_{2}-torsors and triality, Adv. Math. 343 (2019), 864-909. 16, 20
[AHW19] A. Asok, M. Hoyois, and M. Wendt, Generically split octonion algebras and \mathbb{A}^{1}-homotopy theory, Algebra \& Number Theory 13 (2019), no. 3, 695-747. 20
[AJ57] A.A. Albert and N. Jacobson, On reduced exceptional simple Jordan algebras, Ann. of Math. (2) 66 (1957), 400-417, (= Jacobson, Oe. 58). 19
[Alb42] A.A. Albert, Non-associative algebras. I. Fundamental concepts and isotopy, Annals Math. (2) 43 (1942), 687-707. 20
[Alb58] , A construction of exceptional Jordan division algebras, Annals of Mathematics 67 (1958), 1-28. 24
[Als21] S. Alsaody, Albert algebras over rings and related torsors, Canad. J. Math. 73 (2021), no. 3, 875898. 2, 14, 21, 25
[Asc88] M. Aschbacher, Some multilinear forms with large isometry groups, Geometriae Dedicata 25 (1988), 417-465. 31
[AT18] J. Adams and O. Taïbi, Galois and Cartan cohomology of real groups, Duke Math. J. 167 (2018), no. 6, 1057-1097. 19, 32
[BC12] P. Balmer and B. Calmès, Bases of total Witt groups and lax-similitude, J. Algebra Appl. 11 (2012), no. 3, 1250045. 5
$\left[\mathrm{BDF}^{+} 14\right]$ L. Borsten, M.J. Duff, S. Ferrara, A. Marrani, and W. Rubens, Explicit orbit classification of reducible Jordan algebras and Freudenthal triple systems, Comm. Math. Phys. 325 (2014), 17-39. 31
[BE16] M. Borovoi and Z. Evenor, Real homogeneous spaces, Galois cohomology, and Reeder puzzles, J. Algebra 467 (2016), 307-365. 19, 32
[BK66] H. Braun and M. Koecher, Jordan-Algebren, Springer-Verlag, Berlin, 1966. 23
[Bou88] N. Bourbaki, Algebra II: Chapters 4-7, Springer-Verlag, 1988. 5, 12, 28
[Bro69] R.B. Brown, Groups of type E_{7}, J. Reine Angew. Math. 236 (1969), 79-102. 27, 28, 30
[BT21] M. Borovoi and D.A. Timashev, Galois cohomology of real semisimple groups via Kac labelings, Transf. Groups 26 (2021), no. 2, 443-477. 32
[CF15] B. Calmès and J. Fasel, Groupes classiques, Panoramas \& Synthèses 46 (2015), 1-133. 3, 5, 25
[CG06] M. Carr and S. Garibaldi, Geometries, the principle of duality, and algebraic groups, Expo. Math. 24 (2006), 195-234. 15
[CG21] M. Chayet and S. Garibaldi, A class of continuous non-associative algebras arising from algebraic groups including E_{8}, Forum of Mathematics: Sigma 9 (2021), no. e6. 2
[Cle03] J.-L. Clerc, Special prehomogeneous vector spaces associated to $F_{4}, E_{6}, E_{7}, E_{8}$ and simple Jordan algebras of rank 3, J. Algebra 264 (2003), 98-128. 31
[Con14] B. Conrad, Non-split reductive groups over Z, Autour des Schémas en Groupes II, Panoramas et synthèses, vol. 46, Société Mathématique de France, 2014, pp. 193-253. 2, 8, 16, 19, 24, 25, 31
[Cox46] H.S.M. Coxeter, Integral Cayley numbers, Duke Math. J. 13 (1946), 561-578. 8
[CS03] J.H. Conway and D.A. Smith, On quaternions and octonions: their geometry, arithmetic, and symmetry, A K Peters, Ltd., Natick, MA, 2003. 8
[DG70] M. Demazure and A. Grothendieck, Schémas en groupes III: Structure des schemas en groupes reductifs, Lecture Notes in Mathematics, vol. 153, Springer, 1970. 15, 17, 27
[DG02] P. Deligne and B.H. Gross, On the exceptional series, and its descendants, C. R. Math. Acad. Sci. Paris 335 (2002), no. 11, 877-881. 31
[Dic23] L.E. Dickson, A new simple theory of hypercomplex integers, Journal de Mathématiques Pures et Appliquées 29 (1923), 281-326. 8
[EG96] N.D. Elkies and B.H. Gross, The exceptional cone and the Leech lattice, Internat. Math. Res. Notices (1996), no. 14, 665-698. 2, 8, 23
[EKM08] R.S. Elman, N. Karpenko, and A. Merkurjev, The algebraic and geometric theory of quadratic forms, Colloquium Publications, vol. 56, Amer. Math. Soc., 2008. 24
[Fer72] J.C. Ferrar, Strictly regular elements in Freudenthal triple systems, Trans. Amer. Math. Soc. 174 (1972), 313-331. 29
[Fre54] H. Freudenthal, Beziehungen der E_{7} und E_{8} zur Oktavenebene. I, Nederl. Akad. Wetensch. Proc. Ser. A 57 (1954), 218-230. 30
[Fre85] , Oktaven, Ausnahmegruppen und Oktavengeometrie, Geom. Dedicata 19 (1985), 7-63, (Reprint of Utrecht Lecture Notes, 1951). 16
[Gar01] S. Garibaldi, Structurable algebras and groups of type E_{6} and E_{7}, J. Algebra 236 (2001), no. 2, 651-691. 30, 31
[Gar09] , Cohomological invariants: exceptional groups and spin groups, Memoirs Amer. Math. Soc., no. 937, Amer. Math. Soc., Providence, RI, 2009, with an appendix by Detlev W. Hoffmann. 24, 26, 31
[GG21] B.H. Gross and S. Garibaldi, Minuscule embeddings, Indag. Math. 32 (2021), no. 5, 987-1004. 31
[Gil14] P. Gille, Octonion algebras over rings are not determined by their norms, Canad. Math. Bull. 57 (2014), no. 2, 303-309. 20
[Gil19] , Groupes algébriques semi-simples en dimension cohomologique ≤ 2, Lecture Notes in Math., no. 2238, Springer, 2019. 19
[Gir71] J. Giraud, Cohomologie non abélienne, Die Grundlehren der mathematischen Wissenschaften, vol. 179, Springer-Verlag, Berlin, 1971. 3
[Gro96] B.H. Gross, Groups over Z, Invent. Math. 124 (1996), no. 1-3, 263-279. 2, 24, 32
[Har66] G. Harder, Über die Galoiskohomologie halbeinfacher Matrizengruppen. II, Math. Z. 92 (1966), 396-415. 23
[Har67] _ Halbeinfache Gruppenschemata über Dedekindringen, Invent. Math. 4 (1967), 165-191. 19, 20, 32
[Hel12] F. Helenius, Freudenthal triple systems by root system methods, J. Algebra 357 (2012), 116-137. 31
[Hij63] H. Hijikata, A remark on the groups of type G_{2} and F_{4}, J. Math. Soc. Japan 15 (1963), 159-164. 17
[Jac61] N. Jacobson, Some groups of transformations defined by Jordan algebras. III, J. Reine Angew. Math. 207 (1961), 61-85, (= Coll. Math. Papers 65). 21
[Jac68] , Structure and representations of Jordan algebras, Coll. Pub., vol. 39, Amer. Math. Soc., Providence, RI, 1968. 2, 9, 24
[Jac69] , Lectures on quadratic Jordan algebras, Tata Institute of Fundamental Research, Bombay, 1969, Tata Institute of Fundamental Research Lectures on Mathematics, No. 45. 10
[Jac71] , Exceptional Lie algebras, Lecture notes in pure and applied mathematics, vol. 1, MarcelDekker, New York, 1971. 16, 21, 25
[KMRT98] M.-A. Knus, A.S. Merkurjev, M. Rost, and J.-P. Tignol, The book of involutions, Colloquium Publications, vol. 44, Amer. Math. Soc., 1998. 2, 17
[Knu91] M.-A. Knus, Quadratic and Hermitian forms over rings, Springer-Verlag, Berlin, 1991. 5, 7, 8
[KO74] M.-A. Knus and M. Ojanguren, Théorie de la descente et algèbras d'Azumaya, Lecture Notes in Mathematics, vol. 389, Springer-Verlag, 1974. 5, 14
[Kru02] S. Krutelevich, On a canonical form of a 3×3 Hermitian matrix over the ring of integral split octonions, J. Algebra 253 (2002), 276-295. 21
[Kru07] , Jordan algebras, exceptional groups, and Bhargava composition, J. Algebra 314 (2007), no. 2, 924-977. 27, 30, 31
[Loo06] O. Loos, Generically algebraic Jordan algebras over commutative rings, J. Algebra 297 (2006), 474-529. 3, 18
[LPR08] O. Loos, H.P. Petersson, and M.L. Racine, Inner derivations of alternative algebras over commutative rings, Algebra Number Theory 2 (2008), no. 8, 927-968. 2, 8
[Lur01] J. Lurie, On simply laced Lie algebras and their minuscule representations, Comment. Math. Helv. 76 (2001), 515-575. 27, 30
[Luz13] A.Yu. Luzgarev, Fourth-degree invariants for $G\left(E_{7}, R\right)$ not depending on the characteristic, Vestnik St. Petersburg University. Mathematics 46 (2013), no. 1, 29-34. 31
[Mah42] K. Mahler, On ideals in the Cayley-Dickson algebra, Proc. Roy. Irish Acad. Sect. A. 48 (1942), 123-133. 14
[McC66] K. McCrimmon, A general theory of Jordan rings, Proc. Nat. Acad. Sci. U.S.A. 56 (1966), 10721079. 8, 9, 15
[McC69] , The Freudenthal-Springer-Tits constructions of exceptional Jordan algebras, Trans. Amer. Math. Soc. 139 (1969), 495-510. 9, 10, 11, 20
[McC71a] , Homotopes of alternative algebras, Math. Ann. 191 (1971), 253-262. 13
[McC71b] \qquad , Inner ideals in quadratic Jordan algebras, Trans. Amer. Math. Soc. 159 (1971), 445-468. 15
[McC85] , Nonassociative algebras with scalar involution, Pacific J. Math. 116 (1985), no. 1, 85-109. 11
[McC04] , A taste of Jordan algebras, Universitext, Springer-Verlag, New York, 2004. 9
[Mey68] K. Meyberg, Eine Theorie der Freudenthalschen Tripelsysteme. I, II, Nederl. Akad. Wetensch. Proc. Ser. A 71 = Indag. Math. 30 (1968), 162-190. 28
[Mil17] J.S. Milne, Algebraic groups: the theory of group schemes of finite type over a field, Cambridge studies in Advanced Math., vol. 170, Cambridge University Press, 2017. 16
[MW19] B. Mühlherr and R.M. Weiss, Freudenthal triple systems in arbitrary characteristic, J. Algebra $\mathbf{5 2 0}$ (2019), 237-275. 31
[MZ88] K. McCrimmon and E. Zel'manov, The structure of strongly prime quadratic Jordan algebras, Adv. in Math. 69 (1988), no. 2, 133-222. 2
[Pet93] H.P. Petersson, Composition algebras over algebraic curves of genus zero, Trans. Amer. Math. Soc. 337 (1993), no. 1, 473-493. 6
[Pet19] , A survey on Albert algebras, Transf. Groups 24 (2019), no. 1, 219-278. 2, 13, 14, 18
[Pet21] , Norm equivalences and ideals of composition algebras, Münster J. of Math. 14 (2021), 283-293. 14
[PR85] H.P. Petersson and M.L. Racine, Radicals of Jordan algebras of degree 3, Radical theory (Eger, 1982), Colloq. Math. Soc. János Bolyai, vol. 38, North-Holland, Amsterdam, 1985, pp. 349-377. 11
[PR86] , Jordan algebras of degree 3 and the Tits process, J. Algebra 98 (1986), no. 1, 211-243. 9, 10, 24
[PR94] V.P. Platonov and A. Rapinchuk, Algebraic groups and number theory, Academic Press, Boston, 1994. 19, 23
[PR96] H.P. Petersson and M.L. Racine, An elementary approach to the Serre-Rost invariant of Albert algebras, Indag. Math. (N.S.) 7 (1996), no. 3, 343-365. 24
[Rac77] M.L. Racine, Point spaces in exceptional quadratic Jordan algebras, J. Algebra 46 (1977), 22-36. 15
[Rob63] N. Roby, Lois polynomes et lois formelles in théorie des modules, Ann. Sci. École Norm. Sup. (3) 80 (1963), no. 3, 213-348. 3, 5, 10
[Röh93] G. Röhrle, On extraspecial parabolic subgroups, Linear algebraic groups and their representations (Los Angeles, CA, 1992), Contemp. Math., vol. 153, Amer. Math. Soc., Providence, RI, 1993, pp. 143-155. 31
[Ros91] M. Rost, A (mod 3) invariant for exceptional Jordan algebras, C. R. Acad. Sci. Paris Sér. I Math. 313 (1991), 823-827. 24
[Sch94] R. Schafer, An introduction to nonassociative algebras, Dover, 1994. 6
[Sel63] G.B. Seligman, On the split exceptional Lie algebra E_{7}, dittoed notes, 28 pages, 1963. 30
[Ser02] J-P. Serre, Galois cohomology, Springer-Verlag, 2002, originally published as Cohomologie galoisienne (1965). 3, 16, 19
[Ses77] C.S. Seshadri, Geometric reductivity over arbitrary base, Adv. Math. 26 (1977), 225-274. 29
[Spr62] T.A. Springer, Characterization of a class of cubic forms, Nederl. Akad. Wetensch. 65 (1962), 259265. 26
[Spr73] , Jordan algebras and algebraic groups, Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 75, Springer-Verlag, 1973. 16, 25
[Spr06] , Some groups of type E_{7}, Nagoya Math. J. 182 (2006), 259-284. 28, 31
[Sta18] The Stacks Project Authors, Stacks project, https://stacks.math.columbia.edu, 2018. 5, 12
[SV00] T.A. Springer and F.D. Veldkamp, Octonions, Jordan algebras and exceptional groups, SpringerVerlag, Berlin, 2000. 16, 18, 19, 25
[Tit90] J. Tits, Strongly inner anisotropic forms of simple algebraic groups, J. Algebra 131 (1990), 648-677. 31
[vdBS59] F. van der Blij and T.A. Springer, The arithmetics of octaves and of the group G_{2}, Nederl. Akad. Wetensch. 62 (1959), 406-418. 24
[Voi21] J. Voight, Quaternion algebras, Springer, 2021. 8
[Wat79] W.C. Waterhouse, Introduction to affine group schemes, Graduate Texts in Mathematics, vol. 66, Springer, 1979. 3
[Wei60] A. Weil, Algebras with involution and the classical groups, J. Indian Math. Soc. 24 (1960), 589-623. 2

[^0]: 1991 Mathematics Subject Classification. Primary 17C40; Secondary 17C30, 20G41.

[^1]: ${ }^{1}$ See p. 273 of [Spr06] for remarks on the history of this term.

