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ABSTRACT. Albert algebras, a specific kind of Jordan algebra, are naturally distinguished
objects among commutative non-associative algebras and also arise naturally in the context
of simple affine group schemes of type F4, E6, or E7. We study these objects over an arbi-
trary base ring R, with particular attention to the case R = Z. We prove in this generality
results previously in the literature in the special case where R is a field of characteristic
different from 2 and 3.
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1. INTRODUCTION

Albert algebras, a specific kind of Jordan algebra, are naturally distinguished objects
among commutative non-associative algebras and also arise naturally in the context of
simple affine group schemes of type F4, E6, or E7. We study these objects over an arbitrary
base ringR, with particular attention to the caseR = Z. We prove in this generality results
previously in the literature in the special case where R is a field of characteristic different
from 2 and 3.

1991 Mathematics Subject Classification. Primary 17C40; Secondary 17C30, 20G41.
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Why Albert algebras? In the setting of semisimple algebraic groups over a field, a stan-
dard technique for computing with elements of a group — especially an anisotropic group
— is to interpret the group in terms of automorphisms of some algebraic structure, such as
viewing an adjoint group of type Bn as the special orthogonal group of a quadratic form
of dimension 2n + 1, or an adjoint group of type An as the automorphism group of an
Azumaya algebra of rank (n + 1)2. This approach can be seen in many references, from
[Wei60], through [KMRT98] and [Con]. In this vein, Albert algebras appear as a natural
tool for computations related to F4, E6, and E7 groups, as we do below.

In the setting of nonassociative algebras, Albert algebras arise naturally. Among com-
mutative not-necessarily-associative algebras under additional mild hypotheses (the field
has characteristic 6= 2, 3, 5 and the algebra is metrized), every algebra satisfying a poly-
nomial identity of degree ≤ 4 is a Jordan algebra, see [ChG, Prop. A.8]. Jordan algebras
have an analogue of the Wedderburn-Artin theory for associative algebras [Jac68, p. 201,
Cor. 2], and one finds that all the simple Jordan algebras are closely related to associative
algebras (more precisely, “are special”) except for one kind, the Albert algebras, see for
example [Jac68, p. 210, Th. 11] or [MZ88].

Our contribution. In the setting of nonassociative algebras, we prove a classification of
Albert algebras over Z (Theorem 13.3), which was viewed as an open question in the
context of nonassociative algebra; here we see that it is equivalent to the classification of
groups of type F4, which was known, see [Con] which leverages [Gro96] and [EG96]. We
also prove new results about ideals in Albert algebras (Theorem 8.3) and about isotopy of
Albert algebras over local rings (Theorem 12.5). We have not seen Lemma 14.1 in the
literature, even in the case of a base field of characteristic different from 2 and 3.

In the setting of affine group schemes, we present Albert algebras in a streamlined way
in Definition 7.1. Note that this definition is in the context of what was formerly called
a “quadratic” Jordan algebra — because instead of a bilinear multiplication one has a
quadratic map, the U -operator — and that it makes sense whether or not 2 is invertible in
the base ring. Applying this definition here allows one to replace, in some proofs, “global”
computations over Z as one finds in [Con] with “local” computations over an algebraically
closed field that exist in several places in the literature (see, for example, the proof of
Lemma 9.1). We also interpret a clever computation in [EG96] as an example of a general
mechanism known as isotopy, see Definition 13.1. Our classification of groups of type E7

over Z in Proposition 17.1 uses general techniques to reduce the problem to computations
over R.

Comparison with other works. The survey [Pet19] also considers Albert algebras over
rings. It asserts that Aut(J) is a smooth group scheme of type F4 for J an Albert algebra,
saying that the proof is similar to the analogous result for octonion algebras and groups of
type G2 in [LPR08]. We give a different and complete proof here, see Lemma 9.1.

The definition of Freudenthal algebra in [Pet19] is different from here, but the two
definitions are essentially equivalent, see Remark 7.5.

A recent article by Alsaody, [Als], gives several interesting examples about Albert al-
gebras over rings, especially concerning isotopy, compare §12 here. That paper relies on
the assertion about Aut(J) already mentioned.

Changing our viewpoint away from nonassociative algebras and towards group schemes,
this note owes various debts to [Con].
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2. NOTATION

Rings, by definition, have a 1. We put Z-alg for the category of commutative rings,
where Z is an initial object. For any R ∈ Z-alg, we put R-alg for the category of pairs
(S, f) with S ∈ Z-alg and f : R → S, i.e., the coslice category R ↓ Z-alg. Below, R will
typically denote an element of Z-alg. (The interested reader is invited to mentally replace
R by a base scheme X , R-alg with the category of schemes over X , finitely generated
projective R-modules with vector bundles over X , etc., thereby translating results below
into a language closer to that in [CalF].)

We write Matn(R) for the ring of n-by-n matrices with entries from R; its invertible
elements form the group GLn(R). We write 〈α1, . . . , αn〉 ∈ Matn(R) for the diagonal
matrix whose (i, i)-entry is αi.

Suppose now that G is a finitely presented group scheme over R. For each fppf S ∈
R-alg, we write H1(S/R,G) for the collection of G-torsors over R trivialized by S, see
for example [Gir71], [Wat79], or [CalF, §2.2]. It does not depend on the choice of structure
homomorphism R → S [Gir71, Rem. III.3.6.5]. The subcategory of fppf elements of
R-alg has a small skeleton, so the union

H1(R,G) :=
⋃

fppf S ∈ R-alg

H1(S/R,G)

is a set. It is the non-abelian fppf cohomology of G. In case G is smooth, it agrees with
étaleH1. If additionallyR is a field, then it agrees with the non-abelian Galois cohomology
defined in, for example, [Ser02].

Unimodular elements. Let M be an R-module. An element m ∈ M is said to be uni-
modular if Rm is a free R-module of rank 1 and a direct summand of M , equivalently, if
there is some λ ∈M∗ (the dual of M ) such that λ(m) = 1. When M is finitely generated
projective, this is equivalent to: m⊗ 1 is not zero in M ⊗F for every field F ∈ R-alg, see
for example [Loo06, 0.3].

Ifm ∈M is unimodular, then so ism⊗1 ∈M⊗S for every S ∈ R-alg. In the opposite
direction, if M is finitely generated projective, S is a cover of R (i.e., SpecS → SpecR
is surjective), and m ⊗ 1 is unimodular in M ⊗ S, it follows that m is unimodular as an
element of M .

3. BACKGROUND ON POLYNOMIAL LAWS

We may identify an R-module M with a functor W(M) from R-alg to the category of
sets defined via S 7→ M ⊗ S. For R-modules M , N , a polynomial law (in the sense of
[Rob63]) f : W(M) → W(N) is a morphism of functors, i.e., a collection of set maps
fS : M ⊗ S → N ⊗ S varying functorially with S. We put PR(M,N) for the collection
of polynomial laws W(M)→W(N), and omit the subscript R when it is understood.

A polynomial law is homogeneous of degree d ≥ 0 if fS(sx) = sdfS(x) for every
S ∈ R-alg, s ∈ S, and x ∈ M ⊗ S, see [Rob63, p. 226]. A form of degree d on M
is a polynomial law W(M) → W(R) that is homogeneous of degree d. The forms of
degree 0 are constants, i.e., given by an element of R. Those of degree 1 are R-linear
maps M → R. Those of degree 2 are commonly known as quadratic forms on M . We put
Pd
R(M,N) for the submodule of PR(M,N) of polynomial laws that are homogeneous

of degree d.
It is often useful to argue that a polynomial law f is zero, which a priori means checking

a condition for all S ∈ R-alg. However, it suffices to verify that fT = 0 for every local
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ring T ∈ R-alg. Indeed, for m ∈M ⊗S, fS(m) = 0 in N ⊗S if and only if fS(m)⊗1 =
fSm

(m⊗ 1) = 0 in N ⊗ Sm for every maximal ideal m of S.

Lemma 3.1. LetM be a finitely generated projectiveR-module, and suppose f ∈P(M,R)
is such that f(0) = 0. If m ∈M has f(m) ∈ R×, then m is unimodular.

Proof. Ifm is not unimodular, then there is a field F ∈ R-alg such thatm⊗1 = 0 inM ⊗
F , and f(m⊗1) = 0, whence f(m) belongs to the kernel of R→ F , a contradiction. �

Directional derivatives. For f ∈ P(M,N), v ∈ M , and t an indeterminate n ≥ 0, we
define a polynomial law∇nvf as follows. For S ∈ R-alg and x ∈M⊗S, fS[t](x+v⊗t) is
an element of N ⊗ S[t], and we define∇nvfS(x) ∈ N ⊗ S to be the coefficient of tn. This
defines a polynomial law called the n-th directional derivative ∇nvf of f in the direction
v. One finds that ∇0

vf = f regardless of v. We abbreviate∇vf := ∇1
vf ; it is linear in v.

If f is homogeneous of degree d and 0 ≤ n ≤ d, then ∇nvf(x) is homogeneous of
degree d − n in x and degree n in v. The symmetry implicit in the definition of the
directional derivative gives∇nvf(x) = ∇d−nx f(v) for x ∈M .

Lemma 3.2. Suppose M , N are R-modules and A is a unital associative R-algebra and
g ∈P(M,A) is a polynomial law such that there is an element m ∈M such that g(m) ∈
A is invertible. If f ∈Pd(M,N) satisfies

gS(x) ∈ A×S ⇒ fS(x) = 0

for all S ∈ R-alg and x ∈M ⊗ S, then f is identically zero.

Proof. Since the hypotheses are stable under base change, it suffices to show that f(v) = 0
for all v ∈M . Replacing g by L◦g ∈P(M,A), where L ∈ EndR(A) is multiplication in
A on the left by the inverse of g(m), we may assume g(m) = 1A. Set S := R[ε]/(εd+1).
For v ∈M , the element

gS(m+ εv) = 1A +

d∑
n=1

εn∇nv g(m)

is invertible in AS , so by hypothesis,

0 = fS(m+ εv) =

d∑
n=0

εn∇nvf(m).

Focusing on the coefficient of εd in that equation gives

0 = ∇dvf(m) = ∇0
mf(v) = f(v),

as required. �

The module of polynomial laws. In the following, we write SnM for the n-th symmetric
power of M , i.e., the R-module ⊗nM modulo the submodule generated by elements x −
σ(x) for x ∈ ⊗nM and σ a permutation of the n factors.

Lemma 3.3. Let M and N be finitely generated projective R-modules. Then for each
d ≥ 0:

(1) Pd(M,N) is a finitely generated projective R-module.
(2) If T ∈ R-alg is faithfully flat, the natural map Pd

R(M,N) ⊗ T → Pd
T (M ⊗

T,N ⊗ T ) is an isomorphism.
(3) The natural map Sd(M∗)⊗N →Pd(M,N) is an isomorphism.
(4) The natural map Pd(M,R)⊗N →Pd(M,N) is an isomorphism.
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Proof. Pd
R(M,N) is naturally isomorphic to HomR(Γd(M), N) by [Rob63, Th. IV.1],

where Γd(M) denotes the module of degree d divided powers on M . Then Pd
R(M,N)⊗

T ∼= HomR(Γd(M), N)⊗ T , which in turn is HomT (Γd(M)⊗ T,N ⊗ T ) because T is
faithfully flat [KO74, p. 33, Prop. II.2.5]. Now Γd(M)⊗T ∼= Γd(M⊗T ) by [Bour, §IV.5,
Exercise 7], completing the proof of (2).

(3): If M and N are free modules, then the map is an isomorphism by [Rob63, p. 232].
If M and N have constant rank, then there is a faithfully flat T ∈ R-alg such that M ⊗ T
and N ⊗ T are free. Since (3) holds over T by the free case, (2) and faithfully flat descent
give that (3) holds. In the general case, since M and N are finitely generated projective,
we may write R =

∏n
i=0Ri for some n such that M = ⊕Mi and N = ⊕Ni with each

Mi, Ni an Ri-module of finite constant rank. Then Pd(M,N) = ⊕Pd(Mi, Ni) and
Sd(M∗)⊗N = ⊕(Sd(M∗i )⊗Ni) and the claim follows by the constant rank case.

(4) follows trivially from (3). For (1), note that M∗ is finitely generated projective, so
so is Sd(M∗) and also the tensor product Sd(M∗)⊗N . Applying (3) gives the claim. �

One can create new polynomial laws from old by twisting by a line bundle.

Lemma 3.4. Let M and N be finitely generated projective R-modules. Then for every
d ≥ 0 and every line bundle L, we have:

(1) There is a natural isomorphism Pd(M,N)⊗ (L∗)⊗d →Pd(M ⊗ L,N).
(2) There is a natural isomorphism Pd(M,N) ∼= Pd(M ⊗ L,N ⊗ L⊗d).

Proof. For (1), since L∗ is a line bundle, the natural map (L∗)⊗d → Sd(L∗) is an isomor-
phism because it is so after faithfully flat base change. Since Sd(M∗)⊗Sd(L∗) is naturally
identified with Sd((M ⊗ L)∗), combining Lemma 3.3(3),(4) then gives (1).

For (2), there are isomorphisms Pd(M⊗L,N⊗L⊗d) ∼−→Pd(M,N)⊗(L∗)⊗d⊗L⊗d
by (1) and Lemma 3.3(4). Since L⊗d ⊗ (L∗)⊗d ∼= R, the claim follows. �

Example 3.5. Suppose L is a line bundle and there is an isomorphism h : L⊗d → R
for some d ≥ 1. Such pairs [L, h] are called (approximately) d-trivialized line bundles
in [CalF, §2.4.3] and were studied in the case d = 2 in [Knu91], where they are called
discriminant modules. Applying h to identify N ⊗ L⊗d ∼−→ N in Lemma 3.4(2) gives a
construction that takes f ∈ Pd(M,N) and gives an element of Pd(M ⊗ L,N), which
we denote by [L, h] · (M,f).

For example, for each α ∈ R×, define 〈α〉 to be [L, h] as in the preceding paragraph,
where L = R and h is defined by h(`1⊗ · · · ⊗ `d) = α

∏
`i. Clearly,

〈
αβd

〉 ∼= 〈α〉 for all
α, β ∈ R×. Applying the construction in the previous paragraph, we find 〈α〉 · (M,f) ∼=
(M,αf).

Every [L, h] with L = R is necessarily isomorphic to 〈α〉 for some α ∈ R×. In
particular, if Pic(R) has no d-torsion elements other than zero — e.g., if R is a semilocal
ring or a UFD [Sta18, tags 0BCH, 02M9] — then each [L, h] is isomorphic to 〈α〉 for some
α.

The group scheme µd of d-th roots of unity is the automorphism group of each [L, h],
where µd acts by multiplication on L. The group H1(R,µd) classifies pairs (L, h).

We say that homogeneous polynomial laws related by the isomorphism in Lemma 3.4(2)
are projectively similar, imitating the language from [AuBB, §1.2] for the case of quadratic
forms (d = 2). (This relationship was called “lax-similarity” in [BC].) We say that homo-
geneous degree d laws f and [L, h] · f for [L, h] ∈ H1(R,µd) as in the preceding example
are similar. If Pic(R) has no d-torsion elements other than zero, the two notions coincide.
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For f ∈ Pd(M,N), we define Aut(f) to be the subgroup of GL(M) consisting of
elements g such that fg = f as polynomial laws. In case M and N are finitely generated
projective, so is Pd(M,N), whence the functor Aut(f) from R-alg to groups defined by
Aut(f)(T ) = Aut(fT ) is a closed sub-group-scheme of GL(M).

Lemma 3.6. Let f and f ′ be homogeneous polynomial laws on finitely generated pro-
jective modules. If f and f ′ are projectively similar, then their automorphism groups are
isomorphic.

Proof. By hypothesis, f ∈Pd(M,N) and f ′ ∈Pd(M⊗L,N⊗L⊗d) for some modules
M and N ; line bundle L; and d ≥ 0. The group scheme Aut(f) is the closed sub-
group-scheme of GL(M) stabilizing the element f in Sd(M∗)⊗N . Now, any element of
GL(M) acts on Sd((M ⊗ L)∗)⊗ (N ⊗ L⊗d) by defining it to act as the identity on L. In
this way, we find a homomorphism Aut(f) → Aut(f ′). Viewing M as (M ⊗ L) ⊗ L∗
andN as (N⊗L⊗d)⊗(L∗)⊗d, and repeating this construction, we find an inverse mapping
Aut(f ′)→ Aut(f). �

4. BACKGROUND ON COMPOSITION ALGEBRAS

A not-necessarily-associative R-algebra C is an R-module with an R-linear map C ⊗R
C → C, which we view as a multiplication and write as juxtaposition. Such a C is unital
if it has an element 1C ∈ C such that 1Cc = c1C = c for all c ∈ C. See e.g. [Sch94]. A
composition R-algebra as in [Pet93] is such a C that is finitely generated projective as an
R-module, is unital, and has a quadratic form nC : C → R that allows composition (that
is, such that nC(xy) = nC(x)nC(y) for all x, y ∈ C), satisfies nC(1C) = 1, and whose
bilinearization defined by nC(x, y) := nC(x+y)−nC(x)−nC(y) gives an isomorphism
C → C∗ via x 7→ nC(x, ·). We say that a symmetric bilinear form with this property is
regular. The quadratic form nC (which is unique by Proposition 4.5 below) is called the
norm of C.

Remark 4.1. In the definition above, one can swap the condition nC(1C) = 1 with the
requirement that the rank of C is nowhere zero.

We put TrC(x) := nC(x, 1C), a linear map C → R, called the trace of C. Trivially,
TrC(1C) = 2. Lemma 3.1 gives that 1C is unimodular, so we may identify R with R1C ,
and C is a faithful R-module. The unimodularity of 1C is equivalent to the existence of
some λ ∈ C∗ such that λ(1C) = 1, i.e., some x ∈ C such that TrC(x) = 1, whence
TrC : C → R is surjective.

The class of composition algebras is stable under base change. That is, if C is a com-
position R-algebra with norm nC , then for every S ∈ R-alg, C ⊗ S is a composition
S-algebra with norm nC⊗S. The following two results are essentially well known [Pet93,
1.2−1.4]. For convenience, we include their proof.

Lemma 4.2 (“Cayley-Hamilton”). Let C be a composition algebra with norm nC and
define TrC as above. Then

x2 − TrC(x)x+ nC(x)1C = 0

for all x ∈ C.

Proof. Linearizing the composition law nC(xy) = nC(x)nC(y), we find

nC(xy, x) = nC(x) TrC(y) and(4.3)

nC(xy,wz) + nC(wy, xz) = nC(x,w)nC(y, z)(4.4)
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for all x, y, z, w ∈ C. Setting z = x and w = 1C in (4.4), we find:

nC(xy, x) + nC(y, x2) = TrC(x)nC(x, y).

Combining these with (4.3), we find:

nC(x2 − TrC(x)x+ nC(x)1C , y) = 0 for all x, y ∈ C.

Since the bilinear form nC is regular, the claim follows. �

A priori, a composition algebra is a unital algebra together with a quadratic form, the
norm. The next result shows that this data is redundant.

Proposition 4.5. If C is a composition algebra, then the norm nC is uniquely determined
by the algebra structure of C.

Proof. Let n′ : C → R be any quadratic form making C a composition algebra and write
Tr′ for the corresponding trace Tr′(x) := n′(x + 1C) − n′(x) − n′(1C). Then λ :=
TrC −Tr′ (resp., q := nC − n′) is a linear (resp., quadratic) form on C and the Cayley-
Hamilton property yields

(4.6) λ(x)x = q(x)1C for all x ∈ C.

We aim to prove that q = 0. Because 1C is unimodular, it suffices to prove λ = 0. This
can be checked locally, so we may assume that R is local and in particular C = R1C ⊕M
for a free module M . Now, TrC(1C) = 2 = Tr′(1C), so λ(1C) = 0. For m ∈ M a basis
vector, λ(m)m belongs to M ∩R1C by (4.6), so it is zero, whence λ(m) = 0, proving the
claim. �

Corollary 4.7. Let C be a unital R-algebra. If there is a faithfully flat S ∈ R-alg such
that C ⊗ S is a composition S-algebra, then C is a composition algebra over R.

Proof. Because the norm nC⊗S of C ⊗ S is uniquely determined by the algebra structure,
one obtains by faithfully flat descent a quadratic form nC : C → R such that nC ⊗ S =
nC⊗S . Because nC⊗S satisfies the properties required to make C ⊗ S a composition
algebra and S is faithfully flat over R, it follows that the same properties hold for nC . �

The following facts are standard, see for example [Knu91, §V.7]: Composition algebras
are alternative algebras. The map ¯ : C → C defined by x := TrC(x)1C − x is an
involution, i.e., an R-linear anti-automorphism of period 2.

Composition algebras of constant rank. In caseR is connected, a compositionR-algebra
has rank 2e for e ∈ {0, 1, 2, 3} [Knu91, p. 206, Th. V.7.1.6]. Therefore, specifying a com-
position R-algebra C is equivalent to writing

(4.8) R =

3∏
e=0

Re and C =

3∏
e=0

Ce,

where Ce is a composition Re-algebra of constant rank 2e.
If C is a composition algebra of rank 1, then since 1C is unimodular, C is equal to R.

The bilinear form nC(·, ·) gives an isomorphism C → C∗ and nC(1C , α1C) = 2α, we
deduce that 2 is invertible in R. Conversely, if 2 is invertible, then R is a composition
algebra by setting nC(α) = α2.

A composition algebra whose rank is 2 is not just an associative and commutative ring,
it is an étale algebra [Knu91, p. 43, Th. I.7.3.6]. Conversely, every rank 2 étale algebra is
a composition algebra. Among rank 2 étale algebras, there is a distinguished one, R × R,
which is said to be split.
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A composition algebra whose rank is 4 is associative and is an Azumaya algebra, com-
monly known as a quaternion algebra. (Note that our notion of quaternion algebra is more
restrictive than the one in the books [Knu91, see p. 43] and [Voi21].) Among quaternion
R-algebras, there is a distinguished one, the 2-by-2 matrices Mat2(R), which is said to be
split.

A composition algebras whose rank is 8 is known as an octonion algebra. Among octo-
nion R-algebras, there is a distinguished one that is said to be split, called the Zorn vector
matrices and denoted Zor(R), see [LPR08, 4.2]. As a module, we view it as

(
R R3

R3 R

)
with

multiplication

( α1 u
x α2

)
(
β1 v
y β2

)
=
(

α1β1−u>y α1v+β2u+x×y
β1x+α2y+u×v −x>v+α2β2

)
where × is the ordinary cross product on R3. The quadratic form is

nZor(R) ( α1 u
x α2

) = α1α2 + u>x.

One says that a composition R-algebra C is split if, when we write R and C as in (4.8),
Ce is isomorphic to the split composition Re-algebra for e ≥ 1.

Example 4.9. The real octonions O are a composition R-algebra with basis 1O, e1, e2, . . .,
e7 which is orthonormal with respect to the quadratic form nO with multiplication table

e2
r = −1 and erer+1er+3 = −1

for all r with subscripts taken modulo 7, and the displayed triple product is associative.
The Z-sublattice O of O spanned by 1O, the er, and

h1 = (1 + e1 + e2 + e4)/2, h2 = (1 + e1 + e3 + e7)/2,

h3 = (1 + e1 + e5 + e6)/2, and h4 = (e1 + e2 + e3 + e5)/2

is a composition Z-algebra. It is a maximal order in O ⊗ Q, and all such are conjugate
under the automorphism group of O ⊗ Q. (As a consequence, there is some choice in the
way one presents this algebra. We have followed [EG96].) As a subring of O, it has no
zero divisors. For more on this, see [Dic23, §19], [Cox], [ConwS, §9], or [Con, §5].

5. BACKGROUND ON JORDAN ALGEBRAS

Para-quadratic and Jordan algebras. A (unital) para-quadratic algebra over a ringR is
an R-module J together with a quadratic map U : R→ EndR(J) — i.e., U is an element
of P2(R,EndR(J)) — called the U -operator, and a distinguished element 1J ∈ J , such
that U1J = IdJ . As a notational convenience, we define a linear map J ⊗ J ⊗ J → J
denoted x⊗ y ⊗ z 7→ {xyz} via

(5.1) {xyz} := (Ux+z − Ux − Uz)y.
Evidently, {xyz} = {zyx} for all x, y, z ∈ J .

A para-quadratic R-algebra J is a Jordan R-algebra if the identities

(5.2) UUxy = UxUyUx and Ux{yxz} = {(Uxy)zx}
hold for all x, y, z ∈ J ⊗ S for all S ∈ R-alg. (Alternatively, one can define a Jordan
R-algebra entirely in terms of identities concerning elements of J , avoiding the “for all
S ∈ R-alg”, at the cost of requiring a longer list of identities, see [McC66, §1].) Note that
if J is a Jordan R-algebra, then J ⊗T is a Jordan T -algebra for every T ∈ R-alg (“Jordan
algebras are closed under base change”). If J is a para-quadratic algebra and J ⊗ T is
Jordan for some faithfully flat T ∈ R-alg, then J is Jordan.
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For x in a Jordan algebra J and n ≥ 0, we define the n-th power xn via

(5.3) x0 := 1J , x1 := x, xn = Uxx
n−2 for n ≥ 2.

An element x ∈ J is invertible with inverse y if Uxy = x and Uxy2 = 1 [McC66, §5]. It
turns out that x is invertible if and only if Ux is invertible if and only if 1 is in the image of
Ux; when these hold, the inverse of x is y = U−1

x x, which we denote by x−1. It follows
from (5.2) that x, y ∈ J are both invertible if and only if Uxy is invertible, and in this case
(Uxy)−1 = Ux−1y−1.

Example 5.4. Let A be an associative and unital R-algebra. Define Uxy := xyx for
x, y ∈ A. Then {xyz} = xyz + zyx and A endowed with this U -operator is a Jordan
algebra denoted by A+. Note that for x ∈ A and n ≥ 0, the n-th powers of x in A and A+

are the same.

Relations with other kinds of algebras. Suppose for this paragraph that 2 is invertible
in R. Given a para-quadratic algebra J as in the preceding paragraph, one can define a
commutative (bilinear) product • on J via

(5.5) x • y :=
1

2
{x1Jy} for x, y ∈ J .

(In the case where J is constructed from an associative algebra as in Example 5.4, one
finds that x • y = 1

2 (xy + yx). If additionally the associative algebra is commutative, •
equals the product in that associative algebra.) If J is Jordan, then • satisfies

(5.6) (x • y) • (x • x) = x • (y • (x • x)),

which is the axiom classically called the “Jordan identity”.
In the opposite direction, given an R-module J with a commutative product • with

identity element 1J , we obtain a para-quadratic algebra by setting

(5.7) Uxy := 2x • (x • y)− (x • x) • y for x, y ∈ J.

If the original product satisfied the Jordan identity, then the para-quadratic algebra so ob-
tained satisfies (5.2), i.e., is a Jordan algebra in our sense, see for example [McC04, p. 202].

Definition 5.8 (hermitian matrix algebras). Let C be a composition R-algebra and Γ =
〈γ1, γ2, γ3〉 ∈ GL3(R). We define Her3(C,Γ) to be the R-submodule of Mat3(C) con-
sisting of elements fixed by the involution x 7→ Γ−1x̄>Γ and with diagonal entries in R.
Note that, as an R-module, Her3(C,Γ) is a sum of 3 copies of C and 3 copies of R, so it
is finitely generated projective.

In the special case where 2 is invertible in R, one can define a multiplication • on
Her3(C,Γ) via x • y := 1

2 (xy + yx), where juxtaposition denotes the usual product of
matrices in Mat3(C). It satisfies the Jordan identity [Jac68, p. 61, Cor.], and therefore the
U -operator defined via (5.7) makes Her3(C,Γ) into a Jordan algebra.

6. CUBIC JORDAN ALGEBRAS

In this section, we define cubic Jordan algebras and the closely related notion of cubic
norm structure. They provide a useful alternative language for computation.

Definition 6.1. Following [McC69] (see [PR86, p. 212] for the terminology), we define a
cubic norm R-structure as a quadruple M = (M, 1M, ],NM) consisting of an R-module
M , a distinguished element 1M ∈ M (the base point), a quadratic map ] : M → M ,
x 7→ x] (the adjoint), with (symmetric bilinear) polarization x×y := (x+y)]−x]−y], a
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cubic formNM : M → R (the norm) such that the following axioms are fulfilled. Defining
a bilinear form TM : M ×M → R by

(6.2) TM(x, y) := (∇xNM)(1M)(∇yNM)(1M)− (∇x∇yNM)(1M)

(the bilinear trace), which is symmetric since the directional derivatives∇x,∇y commute
[Rob63, p. 241, Prop. II.5], and a linear form TrM : M → R by

(6.3) TrM(x) := TM(x, 1M)

(the linear trace), the identities

(6.4) 1]M = 1M, NM(1M) = 1,

(6.5) 1M × x = TrM(x)1M − x, (∇yNM)(x) = TM(x], y), x]] = NM(x)x

hold in all scalar extensions M ⊗ S, S ∈ R-alg.
For such a cubic norm structure M, we then define a U -operator by

(6.6) Uxy := TM(x, y)x− x] × y,

which together with 1M converts the R-module M into a Jordan R-algebra J = J(M)
[McC69, Th. 1]. In the sequel, we rarely distinguish carefully between the cubic norm
structure M and the Jordan algebra J(M). By abuse of notation, we write 1J = 1M,
NJ = NM, TJ = TM, and TrJ := TrM if there is no danger of confusion, even though,
in general, J does not determine M uniquely [PR86, p. 216].

A Jordan R-algebra J is said to be cubic if there exists a cubic norm R-structure M
as above such that (i) J = J(M) and (ii) J = M is a finitely generated projective R-
module. With the quadratic form SJ : M → R defined by SJ(x) := TrJ(x]) for x ∈ J
(the quadratic trace), the cubic Jordan algebra J satisfies the identities

(Uxy)] = Ux]y
], NJ(Uxy)Uxy = NJ(x)2NJ(y)Uxy,(6.7)

Uxx
] = NJ(x)x, Ux(x])2 = NJ(x)21J ,(6.8)

x] = x2 − TrJ(x)x+ SJ(x)1J = 0, and(6.9)

x3 − TrJ(x)x2 + SJ(x)x−NJ(x)1J = 0 = x4 − TrJ(x)x3 + SJ(x)x2 −NJ(x)x

(6.10)

for all x ∈ J . For (6.7)−(6.9) and the first equation of (6.10), see [McC69, p. 499], while
the second equation of (6.10) follows from the first, (6.8), and (6.9) via x4 = Uxx

2 =
Uxx

] + TrJ(x)Uxx− SJ(x)Ux1J = TrJ(x)x3 − SJ(x)x2 +NJ(x)x.

Remark 6.11. Note that the second equality of (6.10) derives from the first through formal
multiplication by x. But, due to the para-quadratic character of Jordan algebras, this is not
a legitimate operation unless 2 is invertible in R. In fact, cubic Jordan algebras exist that
contain elements x satisfying x2 = 0 6= x3 [Jac69, 1.31–1.32].

Lemma 6.12. Let J be a cubic Jordan R-algebra and x, y ∈ J .

(1) x is invertible in J if and only if NJ(x) is invertible in R. In this case

x−1 = NJ(x)−1x] and NJ(x−1) = NJ(x)−1.

(2) Invertible elements of J are unimodular.
(3) NJ(Uxy) = NJ(x)2NJ(y) and NJ(x2) = NJ(x)2 = NJ(x]).
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Proof. (1): If NJ(x) is invertible in R, then (6.8) shows that so is x, with inverse x−1 =
NJ(x)−1x]. Conversely, assume x is invertible in J . Then y := (x−1)2 satisfies Uxy =
1J , and (6.7) yields 1J = NJ(Uxy)Uxy = NJ(x)2NJ(y)1J , hence

NJ(x)2NJ(y) = 1

since 1J is unimodular by Lemma 3.1 and (6.4). Thus NJ(x) ∈ R×. Before proving the
final formula of (1), we deal with (2), (3).

(2) follows immediately from Lemma 3.1 combined with the first part of (1).
(3): Applying Lemma 3.2 to the polynomial law g : J × J → EndR(J) defined by

g(x, y) := UUxy in all scalar extensions, we may assume that Uxy is invertible. By (2),
therefore, Uxy is unimodular, and the first equality follows from (6.7). The second equality
follows from the first for y = 1J , while in the third equality we may again assume that
x is invertible, hence unimodular. Then (6.8) combines with the first equality to imply
NJ(x)4 = NJ(NJ(x)x) = NJ(Uxx

]) = NJ(x)2NJ(x]), as desired.
Now the second equality of (1) follows from the first and (3) via

NJ(x−1) = NJ(x)−3NJ(x]) = NJ(x)−1. �

Without the assumption that J is finitely generated projective as anR-module, Lemma 6.12
would be false [PR85, Th. 10].

Example 6.13. We endow the R-module M := Her3(C,Γ) from Definition 5.8 with a
cubic norm R-structure M = (M, 1M, ],NM), where 1M is the 3-by-3 identity matrix.
An element of x ∈ Her3(C,Γ) may be written as

x =
( α1 γ2c3 γ3c̄2
γ1c̄3 α2 γ3c1
γ1c2 γ2c̄1 α3

)
for αi ∈ R and ci ∈ C. Because three of the entries are determined by symmetry, we may
denote such an element by

(6.14) x :=
∑3

i=1

(
αiεi + δΓ

i (ci)
)
,

where εi has a 1 in the (i, i) entry and zeros elsewhere, and δΓ
i (c) has γi+2c in the (i +

1, i+ 2) entry — where the symbols i+ 1 and i+ 2 are taken modulo 3 — and zeros in the
other entries not determined by symmetry. In the literature on Jordan algebras, one finds
the notation c[(i+ 1)(i+ 2)] for what we denote δi(c).

We define the adjoint ] by

x] :=
∑3

i=1

((
αi+1αi+2 − γi+1γi+2nC(ci)

)
εi + δΓ

i

(
−αici + γici+1ci+2

))
with indices mod 3, and the norm NM by

(6.15) NM(x) := α1α2α3 −
∑3

i=1
γi+1γi+2αinC(ci) + γ1γ2γ3TrC(c1c2c3)

in all scalar extensions, where the last summand on the right of (6.15) is unambiguous since
TrC((c1c2)c3) = TrC(c1(c2c3)) [McC85, Th. 3.5]. By [McC69, Th. 3], M is indeed a
cubic norm structure. The corresponding cubic Jordan algebra will again be denoted by
J := Her3(C,Γ) := J(M).

(In case 2 is invertible in R, the commutative product • on Her3(C,Γ) defined from the
U -operator by (5.5) equals the product x • y := 1

2 (xy + yx) from Definition 5.8. In order
to see this, it suffices to note that the square of x ∈ Her3(C,Γ) as defined in (5.3) is the
same as the square of x in the matrix algebra Mat3(C). This in turn follows immediately
from (6.9), (6.15), and the definition of the adjoint.)
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For x as above and y =
∑

(βiεi+ δΓ
i (vi)), with βi ∈ R, vi ∈ C, evaluating the bilinear

trace at x, y yields

(6.16) TJ(x, y) =
∑3

i=1

(
αiβi + γi+1γi+2nC(ui, vi)

)
.

Since the bilinear trace nC is regular, so is TJ .
For the special case where Γ = Id, we define Her3(C) := Her3(C, Id) and write δi for

δΓ
i . It can be useful to write elements of Her3(C) as(

α1 c3 ·
· α2 c1
c2 · α3

)
where · denotes an entry that is omitted because it is determined by symmetry. As an
example of the triple product defined from (5.1) and (6.6), we mention that for x =

∑
αiεi

diagonal, we have

(6.17) {δi(a)δi+1(b)x} = δi+2(ab)αi and {δi+1(b)δi(a)x} = δi+2(ab)αi+1

for i ∈ 1, 2, 3 taken mod 3 and a, b ∈ C.

Note that, for the Jordan algebra Her3(C,Γ) just defined, if we multiply Γ by an element
ofR× or any entry in Γ by the square of an element ofR×, we obtain an algebra isomorphic
to the original. Therefore, replacing Γ by

〈
(det Γ)−1γ1, (det Γ)γ2, (det Γ)γ3

〉
does not

change the isomorphism class of Her3(C,Γ) and we may assume that γ1γ2γ3 = 1.

Example 6.18. In case R = R, the preceding paragraph shows that it is sufficient to
consider two choices for Γ, namely 〈1, 1,±1〉. We compute THer3(C,Γ) for each choice of
C and Γ. Regular symmetric bilinear forms over R are classified by their dimension and
signature (an integer), so it suffices to specify the signature. If C = R, C, H, or O, the
signature of nC is 2r for r = 0, 1, 2, 3 respectively. By (6.16), TJ has signature 3(1 + 2r)
for J = Her3(C) and 3 − 2r for J = Her3(C, 〈1, 1,−1〉). For J the split Freudenthal
algebra of rank 3(1 + 2r) with r = 1, 2, or 3, the signature of TJ is 3.

Remark 6.19. Alternatively, one could define the Jordan algebra structure on Her3(C,Γ)
for an arbitrary ring R without referring to cubic norm structures as follows. Writing out
the formulas for the U -operator from Definition 5.8 in case R = Q, one finds that the
formulas do not involve any denominators other than γi terms and therefore make sense
for any R regardless of whether 2 is invertible. This makes Her3(C,Γ) a para-quadratic
algebra. Because it is a Jordan algebra in caseR = Q as in Definition 5.8, we conclude that
Her3(C,Γ) is a Jordan algebra with no hypothesis on R by extension of identities [Bour,
§IV.2.3, Th. 2]. This alternative definition gives the same objects, but is much harder to
work with.

7. ALBERT ALGEBRAS ARE FREUDENTHAL ALGEBRAS ARE JORDAN ALGEBRAS

Definition 7.1. A split Freudenthal R-algebra is a Jordan algebra Her3(C) as in Example
6.13 for some split composition R-algebra C. Because split composition algebras are
determined up to isomorphism by their rank function, so are split Freudenthal algebras.

A para-quadraticR-algebra J is a Freudenthal algebra if J⊗S is a split Freudenthal S-
algebra for some faithfully flat S ∈ R-alg. It is immediate that every Freudenthal algebra
is a Jordan algebra.

Since every split Freudenthal R-algebra is finitely generated projective as an R-module
for everyR, the same is true for every FreudenthalR-algebra J [Sta18, Tags 03C4, 05A9],
and by the same reasoning we see that the identity element 1J is unimodular. Because the
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rank of a composition algebra takes values in {1, 2, 4, 8}, the rank of a Freudenthal algebra
takes values in {6, 9, 15, 27}. An Albert R-algebra is a Freudenthal R-algebra of rank 27.

Proposition 7.2. For every compositionR-algebra C and every Γ ∈ GL3(R), Her3(C,Γ)
is a Freudenthal algebra.

Proof. Replacing R with Re as in (4.8), we may assume that C has constant rank. There
is a faithfully flat S ∈ R-alg such that C ⊗ S is a split composition algebra.

Consider T := S[t1, t2, t3]/(t21−γ1, t
2
2−γ2, t

2
3−γ3). It is a free S-module, so faithfully

flat. Then Her3(C,Γ) ⊗ T is isomorphic to Her3(C ⊗ T ) as cubic Jordan algebras, and
the latter is a split Freudenthal algebra. �

The Freudenthal algebras Her3(C,Γ) are said to be reduced.

Example 7.3. Let J be a FreudenthalR-algebra. If x ∈ J has Ux = IdJ , then x = ζ1J for
ζ ∈ R such that ζ2 = 1. To see this, first suppose that J is Her3(C) for some composition
algebra C and write x =

∑
(αiεi + δi(ci)) for αi ∈ R and ci ∈ C. We find

Uxεi = α2
i εi + δi+2(αici+2) + · · ·

for each i, so α2
i = 1 and ci+2 = 0 for all i. Then

Uxδi(1C) = δi(αi+1αi+21C).

Since 1C is unimodular, αi+1αi+2 = 1 for all i, proving the claim for this J .
For general J , let S ∈ R-alg be faithfully flat such that J⊗S is split. Then x ∈ J maps

to an element of R1J ⊗ S ⊆ J ⊗ S and so belongs to R1J ⊆ J . Since Uζ1J = ζ2 IdJ for
ζ ∈ R, the claim follows.

The following result is well known when R is a field or perhaps a local ring, see for
example [Pet19, Prop. 20]. We impose no hypothesis on R.

Proposition 7.4. Suppose C is a split composition R-algebra of constant rank at least 2,
i.e., C is R×R, Mat2(R), or Zor(R). Then Her3(C,Γ) ∼= Her3(C) for all Γ.

Proof. Since nC is universal, there are invertible p, q ∈ C such that γ2 = nC(q−1) and
γ3 = nC(p−1), so γ1 = nC(pq). We define C(p,q) to be a not-necessarily associative R-
algebra with the same underlyingR-module structure and with multiplication ·(p,q) defined
by

x ·(p,q) y := (xp)(qy),

where the multiplication on the right is the multiplication in C. Certainly (pq)−1 is an
identity element in C(p,q). The algebra C(p,q) is called an isotope of C and is studied in
[McC71a], where it is proved to be alternative. One checks that it is a composition algebra
with quadratic form nC(p,q) = nC(pq)nC , see [McC71a, Prop. 5] for a more general
statement in case R is a field.

Define φ : Her3(C(p,q)) → Her3(C,Γ) via φ(
∑
xiεi + δi(ci)) =

∑
xiεi + δΓ

i (c′i),
where

c′1 = (pq)c1(pq), c′2 = c2p, and c′3 = qc3.

It is evidently an isomorphism of R-modules and one checks that it is an isomorphism of
Jordan algebras, compare [McC71a, Th. 3]. Therefore, we are reduced to verifying that
C(p,q) is split.

If C is associative, then the R-linear map

Lpq : C(p,q) → C such that Lpq(x) = pqx

is an isomorphism of R-algebras. So assume C = Zor(R).
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At the beginning, when we chose p and q, we were free to pick ξi, ηi ∈ R× such that
p =

(
ξ1 0
0 ξ2

)
and q =

( η1 0
0 η2

)
. Let A ∈ Mat3(R) be any matrix such that detA =

(ξ1ξ
2
2η

2
1η)−1 and put B := ξ2η1(A])>, where ] denotes the classical adjoint. With ζi :=

(ξiηi)
−1, one checks, using the formula (Sx) × (Sy) = (S])>(x × y) for × the usual

cross product in R3, that the assignment

( α1 u1
u2 α2

) 7→
(
ζ1α1 Au1

Bu2 ζ2α2

)
defines an isomorphism C

∼−→ C(p,q). �

Remark 7.5. We have defined Albert algebras by a sort of descent condition in Definition
7.1. In view of Proposition 10.2 below, one could alternatively define an Albert algebra as
a cubic Jordan algebra that is projective of rank 27 as an R-module such that J ⊗ F is a
simple Jordan F -algebra for every field F ; this is the definition used in [Pet19] and [Als],
for example. The two notions lead to the same objects.

8. THE IDEAL STRUCTURE OF FREUDENTHAL ALGEBRAS

It is a standard exercise to show that every (two-sided) ideal in the matrix algebra
Matn(R) is of the form Matn(a) for some ideal a in R. More generally, every ideal in an
Azumaya R-algebra A is of the form aA some ideal a of R [KO74, p. 95, Cor. III.5.2].

A similar result holds for every octonion R-algebra C: Every one-sided ideal in C is a
two-sided ideal that is stable under the involution on C. The maps I 7→ I∩R and aC ←[ a
are bijections between the set of ideals of C and ideals in R. See [Pet21, §4] for a proof
in this generality and the references therein for earlier results of this type going back to
[Mah42].

We now prove a similar result for Freudenthal algebras.

Definition 8.1. An ideal in a para-quadraticR-algebra J is the kernel of a homomorphism,
i.e., an R-submodule I such that

UIJ + UJI + {JJI} = I,

where we have written UIJ for the R-span of Uxy with x ∈ I and y ∈ J . (This is
sometimes written with a ⊆ instead of =, but the two are equivalent since UJI ⊇ U1J I =
I .) An R-submodule I is an outer ideal if

(8.2) UJI + {JJI} = I.

Here are some observations about outer ideals:
(1) Every ideal is an outer ideal.
(2) If 2 is invertible in R, then for every x ∈ I and y ∈ J , Uxy = 1

2{xyx} ∈ {JJI},
so the notions of ideal and outer ideal coincide.

(3) For every ideal a in R, the R-submodule aJ is an ideal of J .
(4) If 1J is unimodular, then for every outer ideal I of J , I ∩R1J is an ideal in R, for

the trivial reason that I is an R-module.
(5) If a is an ideal in R and 1J is unimodular, then a1J = (aJ) ∩ R1J . The contain-

ment ⊆ is clear. To see the opposite containment, suppose α1J ∈ aJ ∩ R1J for
some α ∈ R and write α1J =

∑
αiyi with αi ∈ a and yi ∈ J . There is some

R-linear λ : J → R such that λ(1J) = 1. Then α = λ(α1J) =
∑
αiλ(yi) is in a.

Theorem 8.3. Let J be a Freudenthal R-algebra. Every outer ideal of J is an ideal. The
maps I 7→ I ∩R1J and aJ ← [ a are bijections between the set of outer ideals of J and the
set of ideals of R.
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Proof. It suffices to show that the stated maps are bijections, because then observation (3)
implies that every outer ideal is of the form aJ and therefore an ideal. In view of (5) (noting
that 1J is unimodular), it suffices to verify that (I ∩R1J)J = I for every outer ideal I .

First suppose that J = Her3(C) for some composition R-algebra C and write a := I ∩
R1J . The Peirce projections relative to the diagonal frame of J , i.e., Uεi and x 7→ {εjxεl}
for i, j, l = 1, 2, 3 [McC66, p. 1074] stabilize I , and we find

I =
∑
i

(I ∩Rεi) + (I ∩ δi(C)).

Set B := {c ∈ C | δ1(c) ∈ I}. We claim that B is an ideal in C. Note that
Uδ1(1C)δ1(b) = δ1(b̄), so B is stable under the involution.

We leverage (6.17). Repeatedly applying this with a = 1C and using that B is stable
under the involution, we conclude that δi(B) = I ∩ δi(C) for all i. For c ∈ C and b ∈ B,
I contains {1Jδ2(c̄)δ1(b̄)} = δ3(cb), so cB ⊆ B, i.e., B is an ideal in C and therefore
B = aC for some ideal a of R.

For c ∈ C, I contains {δi(1C)εi+1δi(ac)} = TrC(ac)εi+2. Since TrC is surjective,
aεj ⊆ I for all j.

In the other direction, if αiεi ∈ I , then so is

{δi+1(1C)1J(αiεi)} = δi+1(αi1C).

It follows that I ∩Rεi = aR for all i and in particular, I ∩R1J = aR and I = aJ .
We now treat the general case. Suppose I is an outer ideal in a Freudenthal R-algebra

J . There is a faithfully flat S ∈ R-alg such that J ⊗ S is a split Freudenthal algebra. We
have

((I ∩R1J)J)⊗ S = (I ⊗ S ∩ S1J)(J ⊗ S) = I ⊗ S
where the first equality is because S is faithfully flat and the second is by the previous case,
since I ⊗ S is an outer ideal. It follows that I = (I ∩R1J)J as desired. �

Remark. In the proof above, the inclusion (I∩R1J)J ⊆ I could instead have been argued
as follows. Define Sq(J) as the R-submodule of J generated by x2 for x ∈ J . Since 1J is
unimodular, one finds that (I ∩ R1J) Sq(J) ⊆ I . Then, one argues that Sq(J) = J for a
split Freudenthal algebra, and that Sq(J ⊗ S) = Sq(J)⊗ S for all flat S ∈ R-alg.

Corollary 8.4. Every homomorphism J → J ′ of Freudenthal R-algebras is injective.

Proof. Write φ for such a homomorphism. The kernel of φ is an ideal of J and therefore
aJ for some ideal a of R. For α ∈ a, we have 0 = φ(α1J) = αφ(1J) = α1′J , so α = 0
because 1J′ is unimodular (Lemma 6.12). 0 = φ(α1J) = αφ(1J) = α1J′ , so α = 0
because 1J′ is unimodular. �

Remark. There is also the notion of an inner ideal in a Jordan algebra, see [McC71b, Th. 8]
for a description of them for Her3(Zor(R)). The inner ideals are related to the projective
homogeneous varieties associated with the group of isometries described in §14 and “outer
automorphisms” relating these varieties, see [Rac77] and [CarrG].

9. GROUPS OF TYPE F4 AND C3

In the following, for a Jordan R-algebra J , we write Aut(J) for the ordinary group of
R-linear automorphisms of J and Aut(J) for the functor from R-alg to groups such that
S 7→ Aut(J ⊗ S). Recall that for every simple root datum, there is a unique simple group
scheme over Z called a Chevalley group [DG70, Cor. XXIII.5.4], and every split simple
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algebraic group over a field is obtained from a unique Chevalley group by base change
[Mil17, §23g].

Lemma 9.1. Let J be a Freudenthal algebra of rank 15 or 27 over a ring k. Then Aut(J)
is a semisimple k-group scheme that is adjoint (i.e., its center is the trivial group scheme).
Its root system has type C3 if J has rank 15 and type F4 if J has rank 27. If J is the split
Freudenthal algebra, then the group scheme Aut(J) is obtained from the Chevalley group
over Z by base change.

Proof. First suppose that R = Z and J is split. If J has rank 15, then the proof of
14.19 in [Spr73] shows that the automorphisms of J ⊗ F for every field F are exactly
the automorphisms of the algebra Mat6(F ) with the split symplectic involution, which
is the split adjoint group PGSp6. For J of rank 27, Aut(J) × F is split of type F4 by
[Jac71, §6] (written for Lie algebras), [Fre85, Satz 4.11] (written for R), [SV00, Th. 7.2.1]
(if charF 6= 2, 3), or [Spr73, 14.24] in general.

Note that Aut(J)×F is connected and smooth as a group scheme over F , and Aut(J)
is finitely presented (because Z is noetherian and J is a finitely generated module), so it
follows by [AlsG, Lemma B.1] that Aut(J) is smooth as a scheme over the Dedekind
domain Z. In summary, Aut(J) is semisimple and adjoint of the specified type. Moreover,
because Aut(J)×Q is split, Aut(J) is a Chevalley group [Con, Th. 1.4].

In the case of general R and J , let S ∈ R-alg be faithfully flat such that J ⊗ S is split.
Then Aut(J) × S is semisimple adjoint of the specified type. Certainly, Aut(J) is also
smooth. Moreover, for each p ∈ SpecR, there is a q ∈ SpecS such that q ∩R = p. Then
the field of fractions R(p) of R/p embeds in the field S(q), so the algebraic closure R(p)

includes in the algebraic closure S(q). Because Aut(J) × S(q) is adjoint semisimple
of the specified type and this property is unchanged by replacing one algebraically closed
field by a smaller one, the same holds over R(p). Since this holds for every p, the claim is
verified. �

Remark 9.2. In case R is a field, the automorphism group of the split Freudenthal algebra
of rank 6 or 9 can be deduced in a similar manner, referring to 14.17 and 14.16 in [Spr73].
The automorphism group of the split Freudenthal algebra of rank 9 is PGL3 oZ/2. The
automorphism group of the split Freudenthal algebra of rank 6 is the special orthogonal
group of the quadratic form x2 + y2 + z2, i.e., the group commonly denoted SO(3). In
particular, it is not smooth when R is a field of characteristic 2 and indeed one can give
examples of Freudenthal algebras of rank 6 over a field of characteristic 2 that are not split
by any étale cover.

For J , J0 Jordan R-algebras, we define Iso(J, J0) to be the set of R-linear isomor-
phisms J → J0 and Iso(J, J0) to be the corresponding functor from R-alg to sets defined
by S 7→ Iso(J⊗S, J0⊗S). If J and J0 become isomorphic over a faithfully flat S ∈ R-alg,
then Iso(J, J0) is naturally an Aut(J0)-torsor in the fpqc topology.

The statement of the following result is similar to statements over a field that can be
found in [Ser02]. Its proof amounts to combining the lemma with the general machinery
of descent.
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Theorem 9.3. Let J0 be a Freudenthal R-algebra of rank r = 15 or 27. In the diagram

Isomorphism classes
of rank r Freudenthal
R-algebras

J 7→Aut(J) //

J 7→Iso(J,J0)
''

Isomorphism classes of
adjoint semisimple R-
group schemes of type C3

(r = 15) or F4 (r = 27)

G7→Iso(G,Aut(J0))
ww

H1(R,Aut(J0))

all arrows are bijections.

Proof. The facts that the arrows are well defined, the diagram commutes, and the diagonal
arrows are injective are general feature of the machinery of descent. The lower left arrow
is surjective because every Freudenthal algebra is split by some faithfully flatR-algebra by
definition. The lower right arrow is surjective because every semisimple group scheme is
split by some faithfully flat R-algebra (even an étale cover) [DG70, Cor. XXIV.4.1.6]. �

In the theorem, the set H1(R,Aut(J0)) is naturally a pointed set and the bijections
are actually of pointed sets, where the distinguished elements are J0 in the upper left and
Aut(J0) in the upper right.

In case R is a field of characteristic different from 2, 3 and r = 27, the theorem goes
back to [Hij63]. Or see [KMRT98, 26.18].

Corollary 9.4. For each FreudenthalR-algebra J of rank 15 or 27, there is an étale cover
S ∈ R-alg such that J ⊗ S is a split Freudenthal algebra.

Proof. Let J0 be the split Freudenthal R-algebra of the same rank as J . The image
Iso(J, J0) of J in H1(R,Aut(J0)) is a Aut(J0)-torsor. Since Aut(J0) is smooth
(Lemma 9.1), there is an étale cover of R that trivializes Iso(J, J0). �

Note that exactly the same kind of argument gives analogues of Lemma 9.1 and The-
orem 9.3 for composition algebras, where r = 4 or 8, and the group is of type A1 or G2

respectively.

10. GENERIC MINIMAL POLYNOMIAL OF A FREUDENTHAL ALGEBRA

Polynomials with polynomial-law coefficients. Let J be a Jordan R-algebra, P(J,R)
the R-algebra of polynomial laws from J to R, and t a variable. Consider a polynomial
p(t) =

∑n
i=0 fit

i with fi ∈P(J,R) for 0 ≤ i ≤ n. For S ∈ R-alg, x ∈ J ⊗ S, we have
p(t, x) :=

∑n
i=0 fiS(x)ti ∈ S[t], and we define

p(x, x) :=

n∑
i=0

fiS(x)xi ∈ J ⊗ S.

The algebra J is said to satisfy p if p(x, x) = 0 = (tp)(x, x) for all x ∈ J⊗S, S ∈ R-alg.
Note that the second equation follows from the first if 2 is invertible inR but not in general,
see Remark 6.11.
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The generic minimal polynomial. Let J := Her3(C,Γ) as in Example 6.13. With a
variable t we recall from (6.10) that J satisfies the monic polynomial

(10.1) mJ = t3 − TrJ ·t2 + SJ · t−NJ ∈P(J)[t].

More precisely, by [Loo06, 2.4(b)], J is generically algebraic of degree 3 in the sense
of [Loo06, 2.2] and mJ is the generic minimal polynomial of J , i.e., the unique monic
polynomial in P(J,R)[t] of minimal degree satisfied by J [Loo06, 2.7]. It follows that
the Jordan algebra J determines the polynomial mJ uniquely. In particular, the generic
norm NJ , the generic trace TJ (or TrJ ) and, in fact, the cubic norm structure underlying
J in the sense of Definition 6.1 are uniquely determined by J as a Jordan algebra.

By faithfully flat descent, every Freudenthal algebra J has a uniquely determined generic
minimal polynomial of the form (10.1), and a uniquely determined underlying cubic norm
structure. We conclude:

Proposition 10.2. Every Freudenthal algebra is a cubic Jordan algebra. �

The preceding discussion shows that, for a Freudenthal R-algebra J , the Jordan algebra
structure of J alone (ignoring that J is a cubic Jordan algebra) determines the bilinear form
TJ . (For example, the 11 Freudenthal R-algebras discussed in Example 6.18 have distinct
trace forms and therefore are distinct.) When R is a field of characteristic 6= 2, 3 and J
and J ′ are reduced Freudenthal algebras, Springer proved that the converse also holds, i.e.,
J ∼= J ′ if and only if TJ ∼= TJ′ [SV00, Th. 5.8.1]. We do not use Springer’s result in this
paper.

The following result can also be found in [Pet19, Cor. 18(b)], based on the different
definition of Albert algebra appearing there.

Lemma 10.3. Let J and J ′ be Freudenthal R-algebras. An R-linear map φ : J → J ′ is
an isomorphism of J and J ′ as Jordan algebras if and only if φ is surjective, φ(1J) = 1J′ ,
and NJ′ = NJφ as polynomial laws.

Proof. The “only if” direction follows from the uniqueness of the generic minimal poly-
nomial as in §10, so we show “if”. The equality NJ′ = NJφ of polynomial laws and the
definition of the directional derivative in §3 gives formulas such as

∇yNJ(x) = ∇φ(y)NJ′(φ(x)).

Since φ(1J) = 1J′ , the definition of the bilinear forms TJ and TJ′ in (6.2) give:

TJ′(φ(x), φ(y)) = TJ(x, y)

for all x, y. Therefore, on the one hand we have

∇yNJ(x) = TJ(x], y) = TJ′(φ(x]), φ(y)).

On the other hand, we have

∇yNJ(x) = ∇φ(y)NJ′(φ(x)) = TJ′((φ(x))], φ(y)).

Therefore, φ(x]) = φ(x)] for all x. In summary, φ commutes with ] and preserves TJ .
Therefore, by (6.6), φ is a homomorphism of Jordan algebras.

Suppose that x is in kerφ. Then for all y ∈ J , TJ(x, y) = TJ′(φ(x), φ(y)) = 0, so
x = 0 since the bilinear form TJ is regular. Since φ is both surjective and injective, it is an
isomorphism. �
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11. BASIC CLASSIFICATION RESULTS FOR ALBERT ALGEBRAS

In the case where R is a field such as the real numbers, a finite field, a local field, or a
global field, one can find in many places in the literature classifications of Albert algebras
proved using techniques involving algebras as in [SV00, §5.8]. For such an R, groups of
type F4 can be classified using techniques from algebraic groups, such as in [PR94, Ch. 6]
or [Gil19]. The two approaches are equivalent by Theorem 9.3.

Example 11.1 (Albert algebras over R). Up to isomorphism, there are three Albert R-
algebras, namely the split one Her3(Zor(R)), Her3(O, 〈1, 1,−1〉), and Her3(O). Rather
than proving this in the language of Jordan algebras as in [AlbJ, Th. 10], one may lever-
age Theorem 9.3 as follows. The three algebras are pairwise non-isomorphic because their
trace forms are (Example 6.18). At the same time, a computation in the Weyl group of F4 as
in [Ser02, §III.4.5], [BoroE, 14.1], or [AdT, Table 3] shows thatH1(R,Aut(Her3(Zor(R))))
has three elements. That is, there are exactly three isomorphism classes of simple affine
group schemes over R of type F4, so we have found all of them.

Below, we will focus our attention on classification results in the case where R is not
a field. We translate known results about cohomology of affine group schemes into the
language of Albert algebras.

Proposition 11.2. If R is (1) a complete discrete valuation ring whose residue field is
finite or (2) a finite ring, then every Freudenthal R-algebra of rank 15 or 27 and every
quaternion or octonion R-algebra is split.

Proof. In view of Theorem 9.3 and its analogue for composition algebras, it suffices to
prove that H1(R,G) = 0 for G a simple R-group scheme of type F4 or C3 obtained by
base change from a Chevalley group over Z. In case (1), this is [Con, Prop. 3.10]. In case
(2), we apply the following lemma. �

Lemma 11.3. If R is a finite ring and G is a smooth connected R-group scheme, then
H1(R,G) = 0.

Proof. If R is not connected, then it is a finite product R =
∏
Ri where each ring Ri

is finite, so H1(R,G) =
∏
H1(Ri,G × Ri). Therefore it suffices to assume that R is

connected.
Suppose X is a G-torsor. Our aim is to show that X is the trivial torsor, i.e., X(R) is

nonempty. Put a for the nil radical Nil(R) ofR. BecauseR is finite, there is some minimal
m ≥ 1 such that am = 0. We proceed by induction on m. If m = 1, then R is reduced
and connected, so it is a finite field and H1(R,G) = 0 by Lang’s Theorem. For the case
m ≥ 2, put I := am−1. The ring R/I has Nil(R/I)m−1 = (Nil(R)/I)m−1 = 0, so by
induction X(R/I) is nonempty. On the other hand, I2 = a2m−2 = am · am−2 = 0 and X
is smooth, so the natural map X(R)→ X(R/I) is surjective. �

Example 11.4. Suppose R is a Dedekind ring and write F for its field of fractions. For G
a Chevalley group of type G2, F4, or E8, the map H1(R,G)→ H1(F,G) has zero kernel
[Har67, Satz 3.3]. Consequently, if A is an Albert or octonion R-algebra and A ⊗ F is
split, then the R-algebra A is split.

In particular, if F is a global field with no real embeddings, then every Albert or octo-
nion F -algebra is split, so every Albert or octonion R-algebra is split.

In the case where F is a number field with a real embedding, we provide the following
partial result, which relies on Example 11.1.
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Proposition 11.5. Suppose F is a number field andR is a localization of its ring of integers
at finitely many primes. If A is an Albert (resp., octonion) F -algebra such that A ⊗ R is
not isomorphic to Her3(O) (resp., O) for every embedding F ↪→ R, then there is an Albert
(resp., octonion) R-algebra B such that B ⊗ F ∼= A and B is uniquely determined up to
R-isomorphism.

Proof. Write G for the automorphism group of the split Albert (resp., octonion) F -algebra.
Write H1

ind(R,G) ⊆ H1(R,G) for the isomorphism classes of R-algebras B such that
B ⊗Fv is not Her3(O) (resp., O), i.e., such that Aut(B)×Fv is not compact, for all real
places v of F . Since G is simply connected, Strong Approximation gives that the natural
map H1

ind(R,G) → H1
ind(F,G) is an isomorphism [Har67, Satz 4.2.4], which is what is

claimed. �

12. ISOTOPY

The aim of this section is to discuss the notion of isotopy of Jordan algebras, which
will pay off later in the paper when we discuss groups of type E6 in §14 and E7 in §16.
We include this material at this point in the paper because Corollary 12.9 is needed in the
following section.

Definition 12.1. Let J be a Jordan R-algebra and suppose u ∈ J is invertible. We define
a Jordan algebra J (u) with the same underlying R-module, with U -operator U (u)

x = UxUu
(where the unadorned U on the right denotes the U -operator in J), and with identity ele-
ment 1(u) = u−1. One checks that J (u) is indeed a Jordan algebra and for u, v invertible,
we have (J (u))(v) = J (Uuv). A Jordan R-algebra J ′ is an isotope of J if it is isomorphic
to J (u) for some invertible u ∈ J ; equivalently one says that J and J ′ are isotopic. This
defines an equivalence relation on Jordan algebras, which is a priori weaker than isomor-
phism.

We have presented the notion of isotopy here for Jordan algebras. However, there are
analogous notions for other classes of algebras, which go back at least to [Alb 42]. For
associative algebras, isotopy is the same as isomorphism. For octonion algebras, isotopy
amounts to norm equivalence [AlsG, Cor. 6.7], which is a weaker condition than isomor-
phism, see [Gil14] and [AsHW].

Isotopes of cubic Jordan algebras. if J is a cubic Jordan R-algebra and u ∈ J is invert-
ible, then [McC69, Th. 2] and its proof show that the isotope J (u) is a cubic Jordan algebra
as well whose identity element, adjoint and norm are given by

(12.2) 1J(u) = u−1, x](u) = NJ(u)U−1
u x], NJ(u)(x) = NJ(u)NJ(x).

Moreover, the (bi-)linear and quadratic trace of J (u) have the form

(12.3) TJ(u)(x, y) = TJ(Uux, y), TrJ(u)(x) = TJ(u, x), SJ(u)(x) = TJ(u], x]).

The first equation of (12.3) is in [McC69, p. 500] while the second one follow from
(12.2), the first, and Lemma 6.12 (1) via TrJ(u)(x) = TJ(u)(u−1, x) = TJ(Uuu

−1, x) =
TJ(u, x). Similarly,

SJ(u)(x) = TrJ(u)(x](u)) = TJ(u,NJ(u)U−1
u x]) = TJ(NJ(u)U−1

u u, x]) = TJ(u], x]).

Example 12.4. Her3(C,Γ) is isotopic to Her3(C) for every Γ. Indeed, for

u :=

(
γ1 0 0
0 γ2 0
0 0 γ3

)
∈ Her3(C,Γ),
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the map φ : Her3(C,Γ)(u) → Her3(C) defined by

φ
( α1 γ2c3 γ3c̄2
γ1c̄3 α2 γ3c1
γ1c2 γ2c̄1 α3

)
=
( γ1α1 γ1γ2c3 ·

· γ2α2 γ2γ3c1
γ1γ3c2 · γ3α3

)
is an isomorphism of Jordan algebras. One can also turn this around:

Her3(C,Γ) = (Her3(C,Γ)(u))(u−2) ∼= Her3(C)(φ(u−2)) = Her3(C)(u−1).

Jordan algebras isotopic to a split Freudenthal algebra. In the special case where R
is a field, a Jordan algebra that is isotopic to the split Albert algebra Her3(Zor(R)) is
necessarily isomorphic to it, see for example [Jac71, p. 53, Th. 9]. Some hypothesis on
R is necessary for the conclusion to hold. Alsaody has shown in [Als, Th. 2.7] that there
exists a ringR finitely generated over C and an AlbertR-algebra that is isotopic to the split
Albert R-algebra but is not isomorphic to it. We now show that it suffices to assume that
R is local, see Corollary 12.8.

Theorem 12.5. Suppose J is a Jordan R-algebra, where R is a local ring. If J is isotopic
to Her3(C) for some composition R-algebra C, then J is isomorphic to Her3(C,Γ) for
some Γ.

Proof. By hypothesis, J ∼= Her3(C)(u−1) for some invertible u ∈ Her3(C). Example
12.4 shows we are done if u is diagonal.

Write N for the cubic form on Her3(C). In case u is not diagonal, we will apply
successive elements η ∈ GL(Her3(C)) such that Nη = N as polynomial laws. (In
the notation of §14 below, η ∈ Isom(Her3(C))(R).) Note that each such η defines an
isomorphism of R-modules

(12.6) η : Her3(C)(u−1) → Her3(C)(η(u)−1).

We have
N(η(u)−1) = N(η(u))−1 = N(u)−1 = N(u−1),

so we have by (12.2) that

NHer3(C)(u−1) = N(u)−1N = N(η(u)−1)Nη = NHer3(C)(η(u)−1)η.

Since η is a norm isometry that maps the identity element u−1 in the domain of (12.6) to the
identity element in the codomain, it is an isomorphism of algebras by Lemma 10.3. Thus,
if successive elements η transform u into a diagonal element, the proof will be complete.

We employ the transformation τst(q) for 1 ≤ s 6= t ≤ 3 and q ∈ C defined by

τst(q)A 7→ (I3 + qEst)A(I3 + q̄Ets),

where I3 is the identity matrix, Est is the 3-by-3 matrix with a 1 in the (s, t)-entry and 0
elsewhere, and juxtaposition defines naive multiplication of 3-by-3 matrices with entries
in C. For example,

τ12(q)
(
α1 c3 ·
· α2 c1
c2 · α3

)
=
(
α1+TrC(qc̄3)+α2NC(q) c3+α2q ·

· α2 c1
c2+c̄1q̄ · α3

)
.

These transformations appear in [Jac61, §5] and [Kru02, §2]; the argument in either refer-
ence shows that τst(q) preserves N for all choices of s, t, and q. Additionally, for every
permutation π of {1, 2, 3}, there is a linear transformation that preserves N (actually, an
automorphism of the algebra) that maps

(12.7)
(
α1 c3 ·
· α2 c1
c2 · α3

)
7→

(
απ(1) c

′
π(3) ·

· απ(2) c
′
π(1)

c′π(2) · απ(3)

)
,
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where c′π(i) is a linear function of ci for each i.
Write

u =
(
α1 c3 ·
· α2 c1
c2 · α3

)
.

By hypothesis N(u) is invertible, i.e., does not lie in the maximal ideal m. We first argue
that we may suppose α1 6∈ m. If any αi is invertible, then we may apply a transformation
as in (12.7). If no αi is invertible, then by (6.15) we have

N(u) ≡ TrC(c1c2c3) mod m,

whence c1 /∈ mC. Since nC continues to be regular when changing scalars to R/m, some
q ∈ C has nC(q, c1) /∈ m. Applying τ12(q), we may arrange α1 /∈ m.

Next we argue that we may assume that c2 = c3 = 0. We note that τ21(q)
(
α1 c3 ·
· α2 c1
c2 · α3

)
has top row entries α1, c3 + α1q̄, c̄2. Taking q = −c̄3a−1 shows that we may assume
c2 = 0. The argument that we may assume c3 = 0 is similar, with the role of τ21 replaced
by τ31.

We have transformed u to an element of the form
(
α1 0 ·
· α2 c1
0 · α3

)
of norm α1(α2α3 −

NC(c1)) 6∈ m, therefore at least one of α2, α3, or NC(c1) is not in m. The same argument
as two paragraphs above, with τi(i+1) replaced by τ23, shows that we may assume that
α2 6∈ m. The same argument as in the preceding paragraph, with τ21 replaced by τ32,
shows that we may assume that c1 = 0. Thus, we have transformed u into a diagonal
element, completing the proof. �

Corollary 12.8. Suppose J is a Jordan R-algebra over a local ring R. If J is isotopic to
a split Freudenthal algebra whose rank does not take the value 6, then J is itself a split
Freudenthal algebra.

Proof. Combine the theorem and Proposition 7.4. �

The hypothesis that J does not have rank 6 is necessary, because Her3(R, 〈1, 1,−1〉) is
isotopic to the split Freudenthal algebra Her3(R) (Example 12.4) but is not isomorphic to
it (Example 6.18).

Corollary 12.9. Every isotope of a Freudenthal algebra is itself a Freudenthal algebra.

Proof. Suppose J is an isotope of a Freudenthal algebra. After base change to a faithfully
flat extension, J is an isotope of a split Freudenthal algebra.

The R-algebra S :=
∏

mRm, where m ranges over maximal ideals of R, is faithfully
flat. For each m, J ⊗ Sm is Her3(C,Γ) for C a split composition Sm-algebra and some
Γ by Theorem 12.5. By Proposition 7.2, there is a faithfully flat Sm-algebra T such that
J ⊗ T is a split Freudenthal algebra. The product of these T ’s is a faithfully flat R-algebra
over which J is the split Freudenthal algebra. �

We close this section by making explicit the relationship between isotopy and norm
similarity between Freudenthal algebras, extending Lemma 10.3.

Proposition 12.10. Let J and J ′ be Freudenthal R-algebras. For an R-linear map φ :
J → J ′, the following are equivalent:

(1) φ is an isomorphism J → (J ′)(u) for some invertible u ∈ J ′ (“φ is an isotopy”).
(2) NJ′φ = αNJ as polynomial laws for some α ∈ R×, and φ is surjective (“φ is a

norm similarity”).
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Proof. Since (J ′)(u) is a Freudenthal algebra by Corollary 12.9, condition (2) follows
from (1) by Lemma 10.3 and (12.2). Conversely, we assume (2) and prove (1). Because
NJ′(φ(1J)) = α, the element φ(1J) is invertible in J ′. We set u := φ(1J)−1 and J ′′ :=
(J ′)(u). We have

φ(1J) = u−1 = 1J′′ .

Also, NJ′(u) = NJ′(φ(1J))−1 = α−1. Then

NJ′′φ = NJ′(u)NJ′φ = NJ

as polynomial laws. Lemma 10.3 implies that φ is an isomorphism J
∼−→ J ′′, as desired.

�

13. CLASSIFICATION OF ALBERT ALGEBRAS OVER Z

In this section, we study Albert algebras over the integers.

Definition 13.1. In the notation of Example 4.9, consider the element

β := (−1 + e1 + e2 + · · ·+ e7)/2 = h1 + h2 + h3 − (2 + e1) ∈ O,
as was done in [EG96, (5.2)]. That element has

TrO(β) = −1, nO(β) = 2, and β2 + β + 2 = 0.

Put

v :=

(
2 β ·
· 2 β
β · 2

)
∈ Her3(O).

Since TrO(β3) = 5, we find that NHer3(O)(v) = 1. In particular, v is invertible with
inverse v]. We define Λ := Her3(O)(v); it is an Albert algebra by Corollary 12.9.

Proposition 13.2. Her3(O) 6∼= Λ as Jordan Z-algebras, but Her3(O) ⊗ Q ∼= Λ ⊗ Q as
Jordan Q-algebras.

Proof. We first prove the claim over Z, which amounts to a computation from [EG96].
The isomorphism class of a Freudenthal algebra determines its cubic norm form and also
its trace linear form. From (12.2) we deduce for x ∈ Her3(O) that x](v) = 0 if and only
if x] = 0. Hence [EG96, Prop. 5.5] says that Her3(O) contains exactly 3 elements x such
that x] = 0 and TrHer3(O)(x) = 1, whereas Λ has no elements x such that x](v) = 0 and

THer3(O)(v, x) = 1,

where the left side is TrΛ(x) by (12.3). This proves that Her3(O) 6∼= Λ.
Now consider Her3(O) ⊗ R. It is called a “euclidean” Jordan algebra or, in older

references, a “formally real” Jordan algebra, because every sum of nonzero squares is
not zero [BrK, p. 331]. The element v has generic minimal polynomial, in the sense of
(10.1), (x− 1)(x2 − 5x+ 1), which has three positive real roots. Therefore, there is some
u ∈ Her3(O)⊗ R such that u2 = v [BrK, §XI.3, S. 3.6 and 3.7]. From this, it is trivial to
see that

Λ⊗ R ∼= (Her3(O)⊗ R)(v) ∼= Her3(O)⊗ R.
Since G := Aut(Her3(O)) is simple and simply connected, the natural mapH1(Q,G)→

H1(R,G) is a bijection, see [Har66] or [PR94, Th. 6.6]. Theorem 9.3 gives that Her3(O)⊗
Q ∼= Λ⊗Q. �

Theorem 13.3. Over Z:
(a) There are exactly two isomorphism classes of octonion algebras: Zor(Z) and O.
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(b) There are exactly four isomorphism classes of Albert algebras: Her3(Zor(Z)),
Her3(O, 〈1,−1, 1〉), Her3(O), and the algebra Λ.

(c) There are exactly two isotopy classes of Albert algebras: Her3(Zor(Z)) and Her3(O).

Proof. No pair of the listed algebras are isomorphic to another one. For Her3(O) and Λ,
this is Prop. 13.2. For any other pair, base change to Q yields non-isomorphic Q-algebras.

Suppose that B is an octonion or Albert Z-algebra. If B is indefinite, then it is de-
termined by BQ by Proposition 11.5. Since the indefinite octonion or Albert Q-algebras
are Zor(Q), Her3(Zor(Q)), and Her3(O ⊗ Q, 〈1,−1, 1〉), B is isomorphic to one of the
algebras listed in the statement.

On the other hand, Gross’s mass formula [Gro96, Prop. 5.3] shows that there is only
one composition Z-algebra and two Albert Z-algebras whose base change to Q is definite.
This shows that we have captured all the definite algebras as well, completing the proof of
(a) and (b).

For (c), note that the three algebras in (b) that are not Her3(Zor(Z)) are all isotopic,
see Example 12.4, so the two algebras listed in (c) represent all of the isotopy classes of
Albert Z-algebras. The base change of these two algebras to Q have distinct co-ordinate
algebras and therefore are not isotopic (Example 12.4), consequently they are not isotopic
as Z-algebras. �

Note that part (a) of the theorem can be proved entirely in the language of octonion
algebras, see [vdBS59].

In view of Theorem 9.3, part (b) is equivalent to a classification of the group schemes of
type F4 over Z, which was done in Sections 6 and 7 of [Con], especially Examples 6.7 and
7.4. The innovation here is that we can use the language of Albert algebras also in the case
of Z where 2 is not invertible. Because of this extra flexibility, we can substitute results
from the literature over algebraically closed fields (including characteristic 2) for some of
the computations over Z done in [Con].

Part (c) corresponds to the classification of groups of type E6 over Z up to isogeny, see
§17.

Remark 13.4 (the Tits construction). The examples of Albert algebras exhibited so far have
all been reduced algebras, i.e., Albert algebras of the kind described in Example 6.13. Such
algebras are not division algebras, for example the element εi is not invertible. Historically
speaking, it took many years after Albert algebras were defined — all the way until 1958
— for the first Albert division algebra to be exhibited in [Alb 58]. One reason for the
difficulty is that, for there to exist an Albert division algebra over a field F of characteristic
6= 3, one needs H3(F,Z/3) 6= 0, see [Ros91], [PR96], or [Gar09, §8]. Conversely, if
H3(F,Z/3) 6= 0, as happens when F = Q(t) for example, then one can construct an
Albert division algebra via the so-called first Tits construction. This construction was first
described in print in [Jac68, §IX.12] and later extended in various ways, including to the
case of an arbitrary base ring in [PR86].

14. GROUPS OF TYPE E6

Roundness of the norm. We note that the cubic norm of a Freudenthal algebra has the
following special property. A quadratic form with this property is called “round”, see
[EKM08, §9.A].

Lemma 14.1 (roundness). For every Freudenthal R-algebra J ,

{α ∈ R× | αNJ ∼= NJ} = {NJ(x) ∈ R× | x invertible in J}.
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Proof. If α ∈ R× and φ ∈ GL(J) are such that αNJ = NJφ, then for x := φ(1J)
we have NJ(x) = α. Conversely, if x is invertible in J , put α := NJ(x) and define
φ := αUx−1 . Then NJφ = α3NJ(x−1)2NJ by Lemma 6.12(3), so NJφ = αNJ . �

Example 14.2. For J = Her3(C,Γ), the sets displayed in Lemma 14.1 equal R×. To see
this for the right side, take α ∈ R× and note that NJ(αε1 + ε2 + ε3) = α. For the left
side, consider φ ∈ GL(J) defined by

φ(εi) = αεi and φ(δi(c)) = δi(c) for i = 1, 2,

φ(ε3) = α−1ε3 and φ(δ3(c)) = δ3(αc).

Then NJφ = αNJ as polynomial laws.

Example 14.3. In contrast to the preceding example, we now show that the sets displayed
in Lemma 14.1 may be properly contained inR×. Suppose F is a field and J is a Freuden-
thal F -algebra such that NJ is anisotropic, i.e., NJ(x) = 0 if and only if x = 0. (For
example, such a J exists if F is Laurent series or rational functions in one variable over
a global field, see Remark 13.4.) We claim that, for t an indeterminate, every nonzero
element in the image of NJ⊗F ((t)) has lowest term of degree divisible by 3. Because the
norm is a homogeneous form, it suffices to prove this claim for J ⊗ F [[t]].

Let x ∈ J ⊗ F [[t]] be nonzero, so x =
∑
j≥j0 xjt

j for some j0 ≥ 0 with xj0 6= 0.
Since NJ is anisotropic, NJ(x0) 6= 0. If j0 = 0, then the homomorphism F [[t]] → F
such that t 7→ 0 sends x 7→ x0 and NJ⊗F [[t]](x) 7→ NJ(x0) 6= 0, therefore NJ⊗F [[t]](x)

has lowest degree term NJ(x0)t0. If j0 > 0, then

NJ⊗F [[t]](x) = NJ⊗F [[t]](t
j0(xt−j0)) = t3j0(NJ(xj0)t0 + · · · ),

proving the claim.

Corollary 14.4. For Freudenthal R-algebras J and J ′, the following are equivalent:

(1) J and J ′ are isotopic.
(2) NJ ∼= αNJ′ for some α ∈ R×.
(3) NJ ∼= NJ′ .

Proof. The equivalence of (1) and (2) is Proposition 12.10.
Supposing (2), let φ : J ′ → J be an R-module isomorphism such that αNJ′ = NJφ.

Take x := φ(1J′). Since NJ(x) = α, Lemma 14.1 gives that αNJ ∼= NJ . As NJ is also
isomorphic to αNJ′ , we conclude (3). The converse is trivial. �

In the corollary, the inclusion of (3) seems to be new, even in the case whereR is a field.
Omitting that, in the special case whereR is a field of characteristic 6= 2, 3, the equivalence
of (1) and (2) and Proposition 14.7 below can be found as Theorems 7 and 10 in [Jac71].

Albert algebras and groups of type E6. The stabilizer of the cubic form NJ in GL(J) is
a closed sub-group-scheme denoted Isom(J). It contains Aut(J) as a natural sub-group-
scheme. Arguing as in the proof of Lemma 9.1, one finds that Isom(J) is a simple affine
group scheme that is simply connected of type E6. (In the case where R is an algebraically
closed field, this claim is verified in [Spr73, 11.20, 12.4], or see [SV00, Th. 7.3.2] for the
case where R is a field of characteristic different from 2, 3.) Compare [Als, Lemma 2.3]
or [Con, App. C]. Moreover, Isom(J) is a “pure inner form” in the sense of [Con, §3],
resp. “strongly inner” in [CalF, Def. 2.2.4.9], meaning that it is obtained by twisting the
group scheme Isom(J0) for the split Albert algebra J0 by a class with values in Isom(J).
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We note that the center of Isom(J) is the group scheme µ3 of cube roots of unity operating
on J by scalar multiplication

Faithfully flat descent shows that the set H1(R, Isom(J)) is in bijection with isomor-
phism classes of pairs (M,f), where M is a projective module of the same rank as J and
f is a cubic form on M — i.e., an element of S3(M∗) — such that f ⊗ S is isomorphic to
the norm on Her3(Zor(S)) for some faithfully flat S ∈ R-alg. For every Albert R-algebra
J and every α ∈ R×, (J, αNJ) is such a pair by Example 14.2. In the special case where
R is a field, every such pair (M,f) — i.e., every element of H1(R, Isom(J)) — is of the
form (J, αNJ) for some J and α ∈ R×, see [Gar09, 9.12] in general or [Spr62] for the
case of characteristic 6= 2, 3.

Outer automorphism of Isom(J). Suppose J and J ′ are Freudenthal R-algebras and
φ : J → J ′ is an isomorphism of R-modules. Since the bilinear form TJ′ is regular,
there is a unique R-linear map φ† : J → J ′ such that TJ′(φx, φ†y) = TJ(x, y) for all
x, y ∈ J . Because TJ and TJ′ are symmetric, we have (φ†)† = φ for all φ. If J ′′ is another
Freudenthal R-algebra and ψ : J ′ → J ′′ is an R-linear bijection, then (φψ)† = φ†ψ†.

Proposition 14.5. Let J be a Freudenthal R-algebra.
(1) If φ ∈ GL(J) is such that NJφ = αNJ for some α ∈ R×, then NJφ† = α−1NJ .
(2) The map φ 7→ φ† is an automorphism of Isom(J) of order 2 that is not an inner

automorphism.
(3) For φ as in (1) or in Isom(J), φ† = φ if and only if φ is an automorphism of J .

Proof. (1): Put u := φ(1J)−1. On the one hand,

TJ(x, y) = TJ(u)(φ(x), φ(y))

for all x, y ∈ J , because φ is an isomorphism J → J (u) by Proposition 12.10. On the
other hand, (12.3) yields

TJ(u)(φ(x), φ(y)) = TJ(Uuφ(x), φ(y)).

Therefore,

(14.6) φ† = U−1
φ(1J )φ.

To complete the proof of (1), we note by Lemma 6.12(3) that

NJφ
† = NJUuφ = NJ(u)2NJφ = α−1NJ .

For (2), we only have to check that the map is not an inner automorphism. Let S ∈
R-alg be such that there exists ζ ∈ µ3(S) such that ζ 6= 1. Then ζ† = ζ−1 6= ζ and ζ is in
the center of Iso(J), proving that the automorphism is not inner (and not the identity).

For (3), suppose φ† = φ. Then NJφ = NJ . By (14.6), Uφ(1J ) = IdJ , so φ(1J) = ζ1J
for some ζ ∈ R with ζ2 = 1 (Example 7.3). Yet 1 = NJ(1J) = NJφ(1J), so ζ3

also equals 1, whence φ(1J) = 1J . Lemma 10.3 shows that φ is an automorphism of J .
Conversely, if φ is an automorphism of J , then u = 1J , so φ† = φ by (14.6). �

Proposition 14.7. Let J and J ′ be Albert R-algebras. Among the statements
(1) Isom(J) ∼= Isom(J ′).
(2) There is a line bundle L and isomorphism h : L⊗3 → R such that (J ′, NJ′) ∼=

[L, h] · (J,NJ) for · as defined in §3.
(3) J and J ′ are isotopic.

we have the implications (1)⇔ (2)⇐ (3). If PicR has no 3-torsion other than zero, then
all three statements are equivalent.
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Proof. Suppose (1); we prove (2). We may assume R is connected.
The conjugation action gives a homomorphism Isom(J) → Aut(Isom(J)), which

gives a map of pointed sets

(14.8) H1(R, Isom(J))→ H1(R,Aut(Isom(J))),

where the second set is in bijection with isomorphism classes of R-group schemes that
become isomorphic to Isom(J) after base change to an fppf R-algebra. By hypothesis,
the class of NJ′ ∈ H1(R, Isom(J)) is in the kernel of (14.8).

There is an exact sequence

1→ Isom(J)/µ3 → Aut(Isom(J))→ Z/2→ 1

of fppf sheaves by [DG70, Th. XXIV.1.3]. Since R is connected, (Z/2)(R) has one non-
identity element, and it is the image of the map † from Lemma 14.5. That is, in the exact
sequence

Aut(Isom(J))(R)→ (Z/2)(R)→ H1(R, Isom(J)/µ3)→ H1(R,Aut(Isom(J))),

the first map is surjective, so the third map has zero kernel and we deduce that the image
of NJ′ in H1(R, Isom(J)/µ3) is the zero class. It follows that NJ′ is in the image of the
map

H1(R,µ3)→ H1(R, Isom(J)),

which is the orbit of the zero class NJ under the action of the group H1(R,µ3), which is
(2).

That (2) implies (1) is Lemma 3.6. The claimed implications between (3) and (2) are
Corollary 14.4. �

15. FREUDENTHAL TRIPLE SYSTEMS

In this section, we define Freudenthal triple systems, also known as FT systems. We
will see in Theorem 16.4 in the next section that they play the same role relative to groups
of type E7 that forms of the norm on an Albert algebra play for groups of type E6.

For any Albert R-algebra J , define Q(J) to be the rank 56 projective R-module R ⊕
R ⊕ J ⊕ J endowed with a 4-linear form Ψ and an alternating bilinear form b, defined as
follows.

We write a generic element of Q(J) as ( α x
x′ α′ ) for α, α′ ∈ R and x, x′ ∈ J . We define

(15.1) bJ

(
( α x
x′ α′ ) ,

(
β y
y′ β′

))
:= αβ′ − α′β + TJ(x, y′)− TJ(x′, y).

As an intermediate step to defining Ψ, define a quartic form

(15.2) qJ ( α x
x′ α′ ) = −4TJ(x], x′]) + 4αNJ(x) + 4α′NJ(x′) + (TJ(x, x′)− αα′)2,

compare [Brown, p. 87] or [Kru07, p. 940].
To define the 4-linear form, consider first the caseR = Z and J := Her3(Zor(Z)). (The

following definitions are inspired by [Lur01, §6].) Putting Xi for an element of Q(J) and
ti for an indeterminate, the coefficient of t1t2t3t4 in q(

∑
tiXi), equivalently, the 4-linear

form
(X1, X2, X3, X4) 7→ ∇X1∇X2∇X3q(X4)

on Q(J), equals 2Θ for a symmetric 4-linear form Θ. Define 4-linear forms Φi via

Φ1(X1, X2, X3, X4) = b(X1, X2) b(X3, X4)(15.3)

Φ2(X1, X2, X3, X4) = b(X1, X3) b(X4, X2)(15.4)

Φ3(X1, X2, X3, X4) = b(X1, X4) b(X2, X3).(15.5)
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Then Θ +
∑

Φi is divisible by 2 as a 4-linear function on Q(Zor(Z)) and we set

(15.6) ΨHer3(Zor(Z)) :=
1

2
(Θ +

∑
Φi).

As Θ is symmetric, Ψ is evidently stable under even permutations of its arguments, and we
have:

Ψ(X1, X2, X3, X4)−Ψ(X2, X1, X3, X4) =
∑

Φi.

For any ring R, we define ΨHer3(Zor(R)) := ΨHer3(Zor(Z)) ⊗ R, and we define ΨJ for
an Albert R-algebra J by descent.

Definition 15.7. A Freudenthal triple system1 or FT system (M,Ψ, b) is an R-module M
endowed with a 4-linear form Ψ and an alternating bilinear form b, such that (M,Ψ, b)⊗S
is isomorphic (in an obvious sense) to Q(J) for some faithfully flat S ∈ R-alg and some
Albert S-algebra J .

Comparison with other definitions. Suppose for this paragraph that 6 is invertible in R.
Given an FT system (M,Ψ, b), we may define 4-linear forms Φi on M via (15.4) and
recover Θ and q via

(15.8) Θ := 2Ψ−
∑

Φi and Θ(X,X,X,X) = 12q(X)

as polynomial laws in X . (This last is a special case of the general fact that going from
a homogeneous form of degree d to a d-linear form and back to a homogeneous form of
degree d equals multiplication by d! [Bour, §IV.5.8, Prop. 12(i)].) Since the form b is
regular and Θ is symmetric, the equation

Θ(X1, X2, X3, X4) = b(X1, t(X2, X3, X4))

implicitly defines a symmetric 3-linear form t : M ×M ×M → M , and Aut(M,Ψ, b)
equals Aut(M, t, b). That is, under the hypothesis that 6 is invertible in R, we would
obtain an equivalent class of objects if we replaced the asymmetric 4-linear form Ψ in the
definition of FT systems with the quartic form q (the version studied in [Brown]) or with
the trilinear form t (the version studied in [Mey68]).

Similarity of FT systems. For a d-linear form f on anR-moduleM , i.e., anR-linear map
f : M⊗d → R, and a d-trivialized line bundle [L, h] ∈ H1(R,µd), we define a d-linear
form [L, h] · f on M ⊗ L via the composition

(M ⊗ L)⊗d
∼−→M⊗d ⊗ L⊗d f⊗h−−−→ R.

For Q := (M,Ψ, b) an FT system and a discriminant module [L, h] ∈ H1(R,µ2), we
define [L, h]·Q to be the triple consisting of the moduleM⊗L, the 4-linear form [L, h⊗2]·
Ψ for [L, h⊗2] ∈ H1(R,µ4), and the bilinear form [L, h] · b. Since 〈1〉 ·Q is Q itself, we
deduce that [L, h] · Q is also an FT system. We say that FT systems Q, Q′ are similar if
Q′ ∼= [L, h] ·Q for some [L, h] ∈ H1(R,µ2). For example, for any FT system (M,Ψ, b)
and any α ∈ R×, (M,Ψ, b) and (M,α2Ψ, αb) are similar.

Example 15.9. Suppose (M,Ψ, b) = Q(J) for some Albert R-algebra J . Then for every
µ ∈ R×, the map

( α x
x′ α′ ) 7→

(
α/µ µx

x′ µ2α′

)
is an isomorphism 〈µ〉·Q(J)

∼−→ Q(J). One checks this forR = Z and J = Her3(Zor(Z))
using (15.1) and (15.2). It follows for general R and J by base change and twisting.

1See p. 273 of [Spr06] for remarks on the history of this term.
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16. GROUPS OF TYPE E7

We will now relate FT systems as defined in the previous section to affine group schemes
of type E7. Here is a tool that allows us to work with the quartic form q as in (15.2) rather
than the less-convenient 4-linear form Ψ, while still getting results that hold when 6 is not
invertible.

Lemma 16.1. Let (M,Ψ, b) be an FT system over Z, let G be a closed subgroup of
GL(M), and let F be a field of characteristic zero. If G(F ) is dense in G (which holds
if G is connected) and G(F ) preserves b ⊗ F and the quartic form q over F defined by
(15.8), then G is a closed sub-group-scheme of Aut(M,Ψ, b).

Proof. Since G(F ) is dense in G, the group scheme G×F preserves b⊗F and q, whence
also Ψ ⊗ F . Viewing b and Ψ as elements of the representation V := (M∗)⊗d of G for
d = 2 or 4, the natural map V G⊗F → (V ⊗F )G×F is an isomorphism because F is flat
over Z [Ses77, Lemma 2], so G preserves b and Ψ. �

Corollary 16.2. For every FreudenthalR-algebra J , there is an inclusion f : Isom(J) ↪→
Aut(Q(J)) via

f(φ) ( α x
x′ α′ ) =

(
α φ(x)

φ†(x′) α′

)
.

Proof. Consider the case J = Her3(Zor(Z)). For φ ∈ Isom(J)(Q), it follows from the
definition of φ† and Proposition 14.5(1) that f(φ) is an isomorphism of the bilinear and
quartic forms b⊗Q and q defined by (15.2) for J ⊗Q. The lemma gives the claim in this
case. Base change and twisting gives the claim for every R and every Albert R-algebra
J . �

Corollary 16.3. Suppose J and J ′ are Albert R-algebras. If J and J ′ are isotopic, then
Aut(Q(J)) ∼= Aut(Q(J ′)).

Proof. The inclusions Aut(J) ↪→ Isom(J) ↪→ Aut(Q(J)) induce maps

H1(R,Aut(J))→ H1(R, Isom(J))→ H1(R,Aut(Q(J))),

where the last set classifies FT systems over R. The class of J ′ in H1(R,Aut(J)) maps
to the class of NJ′ in H1(R, Isom(J)), and by hypothesis and by Proposition 14.7 this is
the trivial class. Therefore, the image of J ′ in H1(R,Aut(Q(J))), which is Q(J ′), is the
trivial class. �

In case R is a field of characteristic 6= 2, 3, the converse of Corollary 16.3 is true by
[Fer72, Cor. 6.9]. That is, if Q(J) ∼= Q(J ′), then J and J ′ are isotopic.

Theorem 16.4. The group scheme Aut(Q(Her3(Zor(R)))) over R is obtained from the
simply connected Chevalley group of type E7 over Z by base change. Every strongly inner
and simply connected simpleR-group scheme of type E7 overR is of the form Aut(Q) for
some FT system Q. For FT systems Q and Q′, Aut(Q) ∼= Aut(Q′) if and only if Q and
Q′ are similar.

Proof. Put JR := Her3(Zor(R)) and QR := Q(JR). We will show that Aut(QR) is
isomorphic to the base change to R of the simply connected Chevalley group E7 over Z.

In addition to the sub-group-scheme Isom(JR) of Aut(QR) provided by Corollary
16.2, we consider Gm defined by

β ( α x
x′ α′ ) =

(
β−3α βx

β−1x′ β3α′

)
for β ∈ R×
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and two copies of JR (as group schemes under addition) through which an element y ∈ JR
acts via

y ( α x
x′ α′ ) =

(
α+b(x′,y) x+α′y

x′+x×y α′

)
or

(
α x+x′×y

x′+αy α′+b(x′,y)

)
.

These preserve b and q, see for example [Brown, p. 95] or [Kru07, p. 942], and so by
Lemma 16.1 do belong to Aut(QR). Considering the Lie algebras of Isom(JR), Gm,
and the two copies of J , as subalgebras of Lie(GL(QR)), one can identify the subalgebra
LR they generate with the Lie algebra of E7 × R by picking out specific root subalgebras
and so on as in [Fre54] or [Sel63], or see [Gar01, §7] for partial information. Note that
Lie(Aut(QR)) ⊇ LR. For F any algebraically closed field, we may identify the smooth
closed subgroup of Aut(QF ) generated by Isom(JF ), Gm, and the two copies of JF
with E7 × F .

In [Lur01], Lurie begins with LZ and defines LZ-invariant 4-linear forms ΘL, ΦLi , and
ΨL and alternating bilinear form bL on the 56-dimensional Weyl module of LZ. Over
C, Aut(QC) is simply connected of type E7 by the references in the previous paragraph,
so it preserves the base change of Lurie’s forms ΘL ⊗ C, etc. Because Aut(QC)(C) is
dense in Aut(QC), Lemma 16.1 shows that Aut(QZ) preserves ΘL, the ΦLi , ΨL, and
bL. By the uniqueness of E7 invariant bilinear and symmetric 4-linear forms on M (which
follows from the uniqueness over C as in the proof of Lemma 16.1), we find that bL = ±b
and ΘL = ±Θ. Note that regardless of the sign on b in the preceding sentence, we find
ΦLi = Φi for all i and Aut(QF ) preserves bL. Now let F be an algebraically closed field.
If F has characteristic different from 2, then Aut(QF ) preserves 2Ψ = Θ +

∑
Φi and

the Φi, so it preserves Θ, hence ΘL, hence ΨL. If F has characteristic 2, then although
ΨL = 1

2 (±Θ +
∑

Φi) for some choice of sign as polynomials over Z, we have ΨL⊗F =

Ψ ⊗ F . In either case, Aut(QF ) preserves bL ⊗ F and ΨL ⊗ F , whence so does its Lie
algebra, so dim LieAut(QF ) ≤ dimLF by [Lur01, Th. 6.2.3]. Putting this together with
the previous paragraph, we see that Aut(QF ), an affine group scheme over the field F , is
smooth with identity component E7 × F .

We claim that Aut(QF ) is connected. Since its identity component E7 has no outer
automorphisms, every element of Aut(QF )(F ) is a product of an element of E7(F ) and
a linear transformation centralizing E7. The action of E7 × F on QF is irreducible (it is
the 56-dimensional minuscule representation), so the centralizer of E7 consists of scalar
transformations. Finally, we note that the intersection of Aut(QF ) and the scalar trans-
formations is the group scheme µ2 of square roots of unity, which is contained in E7. In
summary, Aut(QF ) = E7 × F for every algebraically closed field F .

As in the proof of Lemma 9.1, it follows that Aut(QZ) is a simple affine group scheme
that is simply connected of type E7, and we deduce from the fact that Aut(QR) is split
that Aut(QZ) is in fact the Chevalley group.

The second claim now follows by descent.
The third claim is proved in the same manner as Proposition 14.7, although the current

situation is somewhat easier due to the absence of nontrivial automorphisms of the Dynkin
diagram of E7 and therefore the absence of outer automorphisms for semisimple groups of
that type. Therefore, the sequence

(16.5) H1(R,µ2)→ H1(R,Aut(Q))→ H1(R,Aut(Aut(Q)))

is exact, where µ2 is the center of Aut(Q) and Aut(Aut(Q)) ∼= Aut(QR)/µ2 is the ad-
joint group. We have Aut(Q′) ∼= Aut(Q) if and only if the elementQ′ inH1(R,Aut(Q))
is in the kernel of the second map in (16.5), if and only if Q′ is in the image of the first
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map. To complete the proof, it suffices to calculate by descent that the action ofH1(R,µ2)
on H1(R,Aut(Q)) is exactly by the similarity action defined in §15. �

Corollary 16.6. If R is (1) a complete discrete valuation ring whose residue field is finite;
(2) a finite ring; or (3) a Dedekind domain whose field of fractions F is a global field with
no real embeddings, then the the split FT system is the only one overR, up to isomorphism.

Proof. Imitate the arguments in Proposition 11.2 or Example 11.4, where G is the base
change to R of the simply connected Chevalley group Aut(Q(Zor(Z))). �

Remarks. A previous work that considered groups of type E7 over rings is [Luz13]. As-
chbacher [Asch] studied the 4-linear form in the case where R is a field of characteristic
2. The paper [MW19] studied the case of fields of any characteristic, organized around a
polynomial law Θ ∈P(Q,R) that is not homogeneous.

For a field F of characteristic 6= 2, 3, FT systems have been studied in this century
in [Cl], [Hel12], [Kru07], [Spr06], and [BorsDF+] to name a few. They arise naturally
in the context of the bottom row of the magic triangle from [DG02, Table 2], in con-
nection with the existence of extraspecial parabolic subgroups as in [Röh93] or [Gar09,
§12], or from groups with a BC1 grading [GG21, p. 995]. For every Albert F -algebra J ,
the group scheme Aut(Q(J)) is isotropic, see for example [Spr06, Lemma 5.6(i)]. Yet
there exist strongly inner groups of type E7 that are anisotropic, see [Tit90, 3.1] or [Gar09,
App. A], and therefore there exist FT systems Q that are not isomorphic to Q(J) for any
J . A construction that produces all FT systems can be obtained by considering a sub-
group Isom(J)oµ4 of Aut(Q(J)), which leads to a surjection H1(F, Isom(J)oµ4)→
H1(F,Aut(Q(J))), see [Gar09, 12.13], [Gar01, Lemma 4.15], or [Spr06, §4].

17. EXCEPTIONAL GROUPS OVER Z

We now give an explicit description of the isomorphism classes of semisimple affine
group schemes over Z of types F4, G2, E6, and E7.

There are four such group schemes of type F4, namely Aut(J) for each of the four
Albert Z-algebras listed in Theorem 13.3(b). The proof of this fact is intertwined with the
proof of that theorem. Similarly, there are two such group schemes of type G2, namely
Aut(C) for C = Zor(Z) or O.

Proposition 17.1. Regarding isomorphism classes of semisimple and simply connected
affine group schemes over Z:

(1) there are two of type E6, namely Isom(Her3(C)) and
(2) there are two of type E7, namely Aut(Q(Her3(C)))

for C = Zor(Z) or O.

Proof. Put G for the simply connected Chevalley group scheme over Z of type En, for
n = 6 or 7. By [Con, Remark 4.8], Z forms of absolutely simple and simply connected
Q-group schemes are purely inner forms, i.e., are obtained by twisting G by a class ξ ∈
H1(Z,G).

For the split Albert algebra J = Her3(Zor(Z)), the natural inclusions Aut(J) ⊂
Isom(J) ⊂ Aut(Q(J)) give maps H1(R,Aut(J)) → H1(R,G) for every ring R,
where the domain is in bijection with the isomorphism classes of Albert R-algebras. The
groups in the statement we are aiming to prove are the image of Her3(C) for C = Zor(Z)
or O. The two choices for C, i.e., the two groups in the statement, give non-isomorphic
groups over R, so it suffices to show that there are no others defined over Z.
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Now the compact real form of type En is not a pure inner form, soGξ×R is not compact
for all ξ ∈ H1(Z,G). Therefore, the natural map H1(Z,G) → H1(Q,G) is a bijection
by [Har67, Satz 4.2.4]. The natural map H1(Q,G)→ H1(R,G) is also a bijection, a fact
we have already used in the proof of Proposition 13.2. Since H1(R,G) has two elements
— see [BoroE], [BoroT, esp. §15], or [AdT, Table 3] — we have produced both elements
of H1(Z,G). �

The proof provides the following corollary.

Corollary 17.2. There are two isomorphism classes of FT systems over Z, namelyQ(Her3(C))
for C = Zor(Z) or O. �

We have addressed now all the simple types that are usually called “exceptional”, apart
from E8. A classification of Z-groups of type E8 like Proposition 17.1 appears currently
out of reach, because among those group schemes G over Z such that G×R is the compact
group of type E8, there are at least 13,935 distinct isomorphism classes [Gro96, Prop. 5.3].
Among those G over Z of type E8 such that G× R is not compact, the same argument as
int he proof of Proposition 17.1 shows that there are two isomorphism classes.
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synthèses, vol. 46, Société Mathématique de France, 2014, pp. 193–253. 2, 8, 16, 19, 24, 25, 31

[Cox46] H.S.M. Coxeter, Integral Cayley numbers, Duke Math. J. 13 (1946), 561–578. 8
[CS03] J.H. Conway and D.A. Smith, On quaternions and octonions: their geometry, arithmetic, and sym-

metry, A K Peters, Ltd., Natick, MA, 2003. 8
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