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Abstract

Some forms of Lie algebras of types E6, E7, and E8 are constructed
using the exterior cube of a rank 9 �nitely generated projective module.

1 Introduction

Let G(C) be a simple Lie algebra over C of type Xl and let G(Z) be the Z-span
of a Chevalley basis of G(C). We say that a Lie algebra G over a unitary
commutative ring k is a form of Xl if there is a faithfully �at, commutative,
unital k-algebra F with GF �= G(Z)F where GF = G 
k F as a F -module. The
main purpose of this paper is the construction of some forms of E6, E7, and E8
using the exterior cube of a rank 9 �nitely generated projective module. In §2,
we develop the necessary exterior algebra and localization machinery. In §3,
we construct a Lie algebra from the exterior cube of a rank 9 �nitely generated
projective module, and then give a twisted version of the construction. In §4,
we show that the Lie algebras are forms of E8 and identify some subalgebras
which are forms of E6 and E7.

2 Preliminary results

Let k be a unitary commutative ring. Throughout, we require that a k-module
M be unital; i.e., 1x = x for x 2 M . Let M� = Homk(M;k), the dual
module. Recall that a k-module M is projective if M is a direct summand
of a free module ([B88],II.2.2). Moreover, M is a �nitely generated projective
module if and only if M is a direct summand of a free module of �nite rank
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([B88],II.2.2). Let M and N be �nitely generated projective modules. Then
M� and M 
N are also �nitely generated projective (([B88],II.2.6,II.3.7), and
we may identify M with M�� where m(�) = �(m) for m 2 M and � 2 M�

([B88],II.2.7). Moreover, the linear map

M 
M� ! End(M)

with m
 �! m� where (m�)(m0) = �(m0)m is bijective ([B88],II.4.2). Thus,
we can de�ne the trace function tr on End(M) as the unique linear map with
tr(m�) = �(m). Since

tr((m�)(m0�0)) = �0(m)�(m0);

we see that tr(��) = tr(��) for �; � 2 End(M). Letting gl(M) = End(M)
with Lie product [�; �] = �� � ��, we see

[gl(M); gl(M)] � sl(M) := f� 2 gl(M) : tr(�) = 0g;

so sl(M) is an ideal in gl(M).
Let k-alg denote the category of commutative unital k-algebras. If K 2

k-alg and M , N are k-modules, let MK = M 
k K as a K-module. If M is a
�nitely generated projective k-module, then

(M 
k N)K �= MK 
K NK ;

(M�)K �= (MK)
�;

gl(M)K �= gl(MK)

via canonical isomorphisms ([B88],II.5.1,II.5.4).
If p is a prime ideal of k, let kp = (k�p)�1k be the localization of k at p and

Mp = Mkp be the localization of M at p ([B89],II). If M is �nitely generated
projective, then Mp is a free kp-module of �nite rank ([B89],II.5.2). If Mp has
rank n for all prime ideals p of k, we say M has rank n. In this case, MK has
rank n for all K 2 k-alg ([B89],II.5.3). Moreover, ifM;N are �nitely generated
projective modules and � 2 Hom(M;N), then � is injective (respectively, sur-
jective, bijective, zero) if and only if �p = �
 Idkp 2 Hom(Mp; Np) is injective
(respectively, surjective, bijective, zero) for each prime ideal p ([B89], II.3.3).
This allows the transfer of multilinear identities using localization as follows: if
M1; : : : ;Ml; N are �nite generated projective modules and

� :M1 � � � � �Ml ! N

is a k-multilinear map, then for K 2 k-alg there is a unique K-multilinear map

�K :M1K � � � � �MlK ! NK

with
�K(m1 
 1; : : : ;ml 
 1) = �(m1; : : : ;ml)
 1: (1)
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We claim �p = 0 for each prime ideal p implies � = 0. Indeed, M1 
 � � � 
Ml

is �nitely generated projective and � induces a linear map

~� :M1 
 � � � 
Ml ! N

with each (~�)p = g(�p) = 0, so ~� = 0 and � = 0.
Recall F 2 k-alg is faithfully �at provided a sequence M 0 ! M ! M 00 is

exact if and only if the induced sequence M 0
F !MF !M 00

F is exact. We shall
need the following example of a faithfully �at algebra. Recall a quadratic form
q on M is nonsingular if a! q(a; ) is an isomorphism M !M� where

q(a; b) := q(a+ b)� q(a)� q(b):

We say that K 2 k-alg is a quadratic étale algebra if K is a �nitely generated
projective k-module of rank 2 with a nonsingular quadratic form n admitting
composition; i.e.,

n(ab) = n(a)n(b):

We did not �nd a suitable reference for the following result, so we include a
proof communicated to us by H. Petersson.

Proposition 1 If K is a quadratic étale algebra over k, then K is faithfully
�at and KK

�= K �K.

Proof. For each maximal ideal m of k, Km is a nonzero free km-module, and
hence faithfully �at ([B89], II.3.1). Thus, K is faithfully �at over k ([B89],
II.3.4). Let t(a) = n(a; 1) and �a = t(a)1� a, for a 2 K. We claim � : KK !
K�K with �(a
 b) = ab� �ab is a K-algebra isomorphism. Using localization,
it su¢ ces to assume that k is a �eld. In this case, it is well-known that K is
commutative, n(1) = 1, a! �a is an involution, and a�1 = n(a)�1�a, if n(a) 6= 0.
Thus, � is a homomorphism of K-algebras with involution where K � K has
the exchange involution. By dimensions, it su¢ ces to show � is surjective. Let
1; u be a k-basis of K. We see

n(�u� u) = n(t(u)1� 2u)
= 4n(u)� t(u)2

= det

�
n(1; 1) n(1; u)
n(u; 1) n(u; u)

�
6= 0

since n is nonsingular, so �u�u is invertible. Now �(u
1�1
u) = 0� (�u�u),
so �(KK) contains 0� 1,1� 0 = 0� 1, and hence K �K.

We now recall some facts about exterior algebras. For more details see
[B88]. Let M be a k-module and form the exterior algebra �(M) with the
standard Z-grading

�(M) =
X
i�0

�i(M);
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and write jxj = i, if x 2 �i(M). For simplicity of notation, we write the product
in �(M) as xy rather than the usual x ^ y. We have �(M)K �= �(MK) via
a canonical isomorphism ([B88],III.7.5). If M is �nitely generated projective,
then so is �(M) ([B88],III.7.8). If � 2 Hom(M;N), then � extends uniquely
to a graded algebra homomorphism �� : �(M) ! �(N). Also, if � 2 gl(M),
then there is a unique extension of � to a derivation D� of �(M). Thus,
�(M) is a module for the Lie algebra gl(M) via (�; x) ! D�(x). Similarly,
if � 2 M�, then there is a unique extension of � to an anti-derivation (or odd
super derivation) �� of �(M). Recall � is an anti-derivation if

�(xy) = �(x)y + (�1)jxjx�(y)

if x is homogeneous. One can show by induction on i that

��(�i(M)) � �i�1(M); (2)

where �l(M) = 0 for l < 0, and �2� = 0. Thus, the universal property
for �(M�) shows that � ! �� extends to a homomorphism � : �(M�) into
Endk(�(M)), so we can view �(M) as a left module for the associative algebra
�(M�) with � � x = ��(x) for � 2 �(M�), x 2 �(M). Using (2), we see

�i(M
�) � �j(M) � �j�i(M):

LetM be a �nitely generated projective k-module. SinceM�� =M , we can
reverse the roles of M and M� and see that �(M�) is a left module for �(M)
via x � �. Also, we can identify �i(M�) with �i(M)� where �(x) = � � x for
� 2 �i(M�), x 2 �i(M) ([B88],III.11.5).
For � 2 Hom(M;N), let �� 2 Hom(N�;M�) with ��(�) = �� for � 2 N�.

Thus, � ! ��� is a Lie algebra homomorphism gl(M) ! gl(M�) and �(M�)
is a module for gl(M) via (�; �)! D���(�).

Lemma 2 Let l � n and let S � Sn be such that � ! � jf1;:::;lg is a bijection
of S with the set of all injections

f1; : : : ; lg ! f1; : : : ; ng:

For �i 2M�;mj 2M , we have

(�l�l�1 � � ��1) � (m1m2 � � �mn) =
X
�2S

(�1)��1(m�1) � � ��l(m�l)m�(l+1) � � �m�n:

Proof. Applying ��l � � ���1 to m1m2 � � �mn, we get terms

��1(mi1) � � ��l(mil)mil+1 � � �min

with the sign depending only on i1; : : : ; in. There is a unique � 2 S with
�(j) = ij for 1 � j � l. After suitably rearranging the factors of mil+1 � � �min ,
we can assume ij = �(j) for all j. Thus,

(�l�l�1 � � ��1) � (m1m2 � � �mn) =
X
�2S

"��1(m�1) � � ��l(m�l)m�(l+1) � � �m�(n)
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for some "� = �1, depending only on � In particular, if m1; : : : ;mn is the
basis of a vector space V over a �eld of characteristic not 2 and �i 2 V � with
�i(mj) = �ij , then for � 2 S, we have

ml+1 � � �mn = (�l � � ��1) � (m1 � � �mn)

= (�1)� (�l � � ��1) � (m��11 � � �m��1n)

= (�1)�
X
�2S

"��1(m��1�1) � � ��l(m��1�l)m��1�(l+1) � � �m��1�(n)

= (�1)�"�ml+1 � � �mn

and "� = (�1)� .

We remark that if l = 1 in Lemma 2, we can take S = Cn, the cyclic group
generated by the permutation (1; : : : ; n).
If � 2 gl(M) and � 2M�, then [D�;��] is an antiderivation with

[D�;��](m) = D�(�(m))� �(�m) = ����(�)(m);

for m 2 M Thus, [D�;��] = ����(�) = �D��� (�). Since � is a homomor-
phism, we have

[D�;��] = �D��� (�)

for all � 2 �(M�), so

D�(� � x) = D���(�) � x+ � �D�(x); (3)

for all x 2 �(M).

Let M be �nitely generated projective. For x 2 �l(M); � 2 �l(M�), de�ne
e(x; �) 2 End(M) by

e(x; �)(m) = (m � �) � x 2 �l�1(M�) � �l(M) �M

for m 2M . We also have e(�; x) 2 End(M�).

Lemma 3 Let M be a �nitely generated projective module, and let x; y; z 2
�l(M), � 2 �l(M�), and � 2 �3l(M�). We have

(i) x � � = � � x;
(ii) e(x; �)� = e(�; x);
(iii) if �1; : : : ; �l 2M�, then

De(x;�1����l) =
X
�2Cl

(�1)�((��2 � � ���l) � x)���1 ;

where Cl is the cyclic group generated by the permutation (1; : : : ; l),
(iv) tr(e(x; �)) = l� � x;
(v) e(xyz; �) =

P
x;y;z	

e(x; (yz) � �), where the sum is over all cyclic

permutations of x; y; z;
(vi) if l = 3, then � � (xy) = (� � x)y �De(x;�)y +De(y;�)x� (� � y)x:
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Proof. Using Lemma 2, we have

(�l�l�1 � � ��1) � (m1m2 � � �ml) =
X
�2Sl

(�1)��1(m�1) � � ��l(m�l)

=
X
�2Sl

(�1)�m�1(�1) � � �m�l(�l)

=
X
�2Sl

(�1)�m1(��1) � � �ml(��l)

= (m1m2 � � �ml) � (�l�l�1 � � ��1)

for mi 2M;�i 2M�, showing (i). For � 2M�;m 2M , we have

(e(x; �)�(�))(m) = �(e(x; �)(m))

= � � ((m � �) � x) = (�(m � �)) � x
= (�1)l�1((m � �)�) � x = (�1)l�1(m � �) � (� � x)
= (�1)l�1(� � x) � (m � �) = m � ((� � x) � �)
= (e(�; x)(�))(m)

showing (ii).
If m 2 M;� 2 M� it is easy to see that m�� : x! m(� � x) is a derivation

of �(M), so m�� = Dm�. By Lemma 2, we have

e(x; �1 � � ��l)m = (m � (�1 � � ��l)) � x
=

X
�2Cl

(�1)�((m � ��1)(��2 � � ���l)) � x

=
X
�2Cl

(�1)�((��2 � � ���l) � x)���1(m);

for m 2M , and (iii) follows. Also,

tr(e(x; �1 � � ��l)) =
X
�2Cl

(�1)���1((��2 � � ���l) � x)

=
X
�2Cl

(�1)���1 � ((��2 � � ���l) � x)

=
X
�2Cl

(�1)�(��1��2 � � ���l) � x

= l(�1 � � ��l) � x;

showing (iv). For (v), we see

� � (xyz) = (� � x)yz + (�1)lx(� � y)z + xy(� � z) =
X
x;y;z	

(� � x)yz;
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for � 2M�, so

e(�; xyz)� = (
X
x;y;z	

(� � x)yz) � �

=
X
x;y;z	

(� � x) � ((yz) � �)

=
X
x;y;z	

e((yz) � �; x)�:

Thus, e(�; xyz) =
P

x;y;z	
e((yz) � �; x), and (v) follows from (ii). Finally, if

� = �1�2�3, then

� � (xy) = (� � x)y �
X
�2C3

(�1)�((��1��2) � x)(��3 � y)

+
X
�2C3

(�1)�(��1 � x)((��2��3) � y)� x(� � y)

= (� � x)y �De(x;�)y +De(y;�)x� (� � y)x;

showing (vi).

Lemma 4 Let M be a �nitely generated projective module of rank n.
(i) (x � �) � u = (� � u)x, for x 2 �(M), u 2 �n(M), � 2 �n(M�).
(ii) The following are equivalent:

(a) there exist u 2 �n(M) and � 2 �n(M�) with � � u = 1,
(b) �n(M) is free of rank 1.

(iii) D�(u) = tr(�)u for � 2 gl(M), u 2 �n(M).

Proof. We �rst show (i) in case M is a free module of rank n. Since �n(M) is
free of rank 1, we may assume x = ml � � �m1, u = mn � � �m1, and � = �1 � � ��n
where m1; : : : ;mn is a basis for M and �1; : : : ; �n is the dual basis of M

�; i.e.,
�i(mj) = �ij . We have

((ml � � �m1) � (�1 � � ��n)) � (mn � � �m1) = (�l+1 � � ��n) � (mn � � �m1)

= ml � � �m1

= ((�1 � � ��n) � (mn � � �m1))ml � � �m1;

showing (i) in this case. To show the general case, we observe that �(M),
�n(M

�), and �n(M) are �nitely generated projective, and that we can identify
�l(M)p with �l(Mp). Since the trilinear identity (i) holds for the free kp-module
Mp of rank n for each p, it holds for M .
If (a) holds, then q = (q � �) � u = (� � q)u for q 2 �n(M) by (i). Thus,

q ! � � q is a linear map �n(M) ! k with inverse a ! au, and (b) holds.
Conversely, if � : �n(M) ! k is an isomorphism, then � 2 �n(M)� = �n(M�)
and � � u = �(u) = 1, so (a) holds, showing (ii). Let

� : gl(M)
 �n(M)! �n(M)

7



be the linear map with �(� 
 u) = D�(u) � tr(�)u. Since (iii) holds for free
modules, �p = 0 for all prime ideals p of k, so � = 0 and (iii) holds.

We remark that if condition (ii)(a) in Lemma 4 holds, then fug is a basis
for �n(M), f�g is a basis for �n(M�), and � is uniquely determined by u.

3 Constructions of Lie algebras

Let M be a �nitely generated projective module of rank 9 and suppose there
exist u 2 �9(M) and � 2 �9(M�) with � � u = 1. The Lie algebra gl(M) acts
on �3(M) via �M : �! D� j�3(M). Clearly, egl(M) := �M (gl(M)) + kId�3(M)

is a Lie algebra. Since �M (IdM ) = 3Id�3(M), we see that egl(M) = �M (gl(M))

if 13 2 k. Suppose � 2 gl(�3(M)) extends to a derivation d� of the subalgebra

�(3)(M) := k � �3(M)� �6(M)� �9(M)

of �(M). Since � uniquely determines d� , we can de�ne T (�) = � � d�(u).
If � 2 gl(M), then �M (�) and Id�3(M) extend to derivations of �(3)(M) with
d�M (�) = D� j�(3)(M) and dId�3(M)

(x) = rx for x 2 �3r(M). Thus, each � 2egl(M) extends to a derivation d� of �(3)(M), and we have de�ned a linear map
T : egl(M) ! k with T (�M (�)) = tr(�) by Lemma 4(iii) and T (Id�3(M)) = 3.

Set esl(M) = f� 2 egl(M) : T (�) = 0g, so esl(M) = �M (sl(M)) if
1
3 2 k. Note

that
[egl(M); egl(M)] � �M ([gl(M); gl(M)]) � �M (sl(M)) � esl(M);

so esl(M) is an ideal of egl(M). Note that egl(M) is a Lie algebra of linear
transformations of �3(M) with the contragredient action on �3(M)� = �3(M�).
In particular, (3) shows

�M (�)
� = D�� j�3(M�)= �M�(��) for � 2 gl(M): (4)

Theorem 5 Let M be a �nitely generated projective module of rank 9 and sup-
pose there exist u 2 �9(M) and � 2 �9(M�) with � � u = 1. Then

G(M;u) = esl(M)� �3(M)� �3(M�)

is a Lie algebra with skew symmetric product given by

[�; �] = �� � ��;
[�; x] = �(x); [�; �] = ���(�);
[x; y] = (xy) � �; [�;  ] = (� ) � u;
[x; �] = �(x; �) := �(e(x; y))� (x � �)Id�3(M)

for �; � 2 esl(M), x; y 2 �3(M), and �;  2 �3(M�).
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Proof. We recall that Lemma 4(ii) shows that � is uniquely determined by u.
Also, Lemma 3(iv) shows that �(x; y) 2 esl(M). It su¢ ces to check the Jacobi
identity

J(z1; z2; z3) = [[z1z2]z3] + [[z2z3]z1] + [[z3z1]z2] = 0

for zi 2 esl(M) [ �3(M) [ �3(M�). Moreover, since the product is skew-
symmetric,

J(z1; z2; z3) = 0 implies J(z�1; z�2; z�3) = 0

for any � 2 S3. Since esl(M) is a Lie algebra of linear transformations of �3(M)
with the contragredient action on �3(M)� = �3(M�), the Jacobi identity holds
if two or more of zi are in esl(M). Interchanging the roles of M and M�, if
necessary, we are left with the following cases with � 2 esl(M), x; y; z 2 �3(M),
� 2 �3(M�):
Case 1: J(�; x; �). We know that gl(M) acts as derivations of �(M) via

 ! D , and as derivations of �(M�) via  ! �D� . Also, these actions are
derivations of the products �(M�) � �(M) and �(M) � �(M�) by (3). Thus,
gl(M) acts as derivations of the triple product

�(x; �)(y) = De(x;�)(y)� (x � �)y:

Now End(�3(M)) acts on �3(M�) via �! ���. Since �M ()� = D� j�3(M�)

for  2 gl(M), we see that �M (gl(M)) also acts as derivations of �(x; �)(y).
Clearly, Id�3(M) acts as derivations of the triple product, so [�; �(x; �)] =
�(�x; �) + �(x;����), showing case 1.
Case 2: J(�; x; y). As above, esl(M) acts as derivations of � � u = 1 and

(xy) � �. Thus,

0 = (d����) � u+ � � (d�u) = (d����) � u;

so d���� = 0, and

�((xy) � �) = ((�x)y) � �+ (x(�y)) � �+ (xy) � (d����);

so [�[x; y]] = [�x; y] + [x; �y] .
Case 3 : J(x; y; �). We see by Lemma 3(vi) that

[[x; y]; �] = (((xy) � �)�) � u = �(�((xy) � �)) � u
= �� � (((xy) � �) � u) = �� � (xy)
= �(� � x)y +De(x;�)y �De(y;�)x+ (� � y)x
= �(x; �)(y)� �(y; �)(x)
= [[x; �]; y]� [[y; �]; x]:

Case 4: J(x; y; z). We have

[[x; y]; z] = ��(z; (xy) � �) = ��M (e(z; (xy) � �)) + z � ((xy) � �)Id�3(M)

= ��M (e(z; (xy) � �)) + ((xyz) � �)Id�3(M):
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Also, by Lemma 3(v) and Lemma 4(i),X
x;y;z	

e(x; (yz) � �) = e(xyz; �) = ((xyz) � �)IdM :

Thus, X
x;y;z	

[[x; y]; z] = �((xyz) � �)�M (IdM ) + 3((xyz) � �)Id�3(M) = 0:

Suppose ! : M ! N is a �-semilinear homomorphism where � is an au-
tomorphism of k. Extending the de�nition for linear maps, we de�ne the
��1-semilinear map !� : N� ! M� with !�(�) = ��1�!. Let �! be the
unique extension of ! to a �-semilinear homomorphism �(M) ! �(N). Note
�!(a) = �(a) for a 2 k.

Lemma 6 Let M;u be as in Theorem 5. The map

�� x� � ! ��� � � � x (5)

for � 2 esl(M), x 2 �3(M), � 2 �3(M
�) is an isomorphism G(M;u) !

G(M�; �). If ! :M ! N is a �-semilinear isomorphism, then

�� x� � ! �!��
�1
! � �!x� �!��1� (6)

for � 2 esl(M), x 2 �3(M), � 2 �3(M
�) is a �-semilinear isomorphism

G(M;u)! G(N; �!u; ).

Proof. Using (4) and Lemma 3, we see �(x; �)� = �(�; x). It is then clear that
(5) is an isomorphism.
The Lie product on G(M;u) is completely determined by the graded products

on �(M) and �(M�), the actions of �(M�) on �(M) and �(M) on �(M�), the
actions � ! �M (�) = D� j�3(M) and � ! ��M (�)�of gl(M) on �3(M) and
�3(M

�), and the elements u 2 �9(M), � 2 �(M�). Thus, if � : �(M)! �(N)
and �0 : �(M�)! �(N�) are graded ring isomorphisms and �� : gl(M)! gl(N)
is a Lie ring isomorphism with

�(� � x) = �0(�) � �(x); (7)

�0(x � �) = �(x) � �0(�); (8)

�N (��(�)) = ��M (�)�
�1; (9)

�N (��(�))
� = �0�M (�)

��0�1; (10)

for x 2 �3(M), � 2 �3(M�), and � 2 gl(M), then

�� x� � ! ����1 � �x� �0�

10



is a Lie ring isomorphism G(M;u) ! G(N; �u). Now let � = �!, �0 = �!��1 ,
and ��(�) = !�!�1. We can rewrite (7) as

�!���
�1
! = ��!��1 (�): (11)

Since both sides of (11) are multiplicative in �, we can assume � 2M�. In that
case, both sides are antiderivations of �(N), so it su¢ ces to apply both sides to
�!(M) = N . We have

��!��1 (�)�!(m) = !��1(�)(!(m)) = (��!�1)(!(m))

= ��(m) = �!(�(m)) = �!��(m);

and (7) follows. Reversing the roles of M and M� gives (8). If � 2 gl(M),
then �!D��

�1
! = D!�!�1 since they are derivations agreeing on �!(M) = N .

This shows (9). Finally,

�N (!�!
�1)� = �N�((!�!�1)�) = �N�(!��1��!�)

= �!��1�M (�)
��!� ;

showing (10). Thus, the �-semilinear map (6) is a Lie isomorphism.

Let K be a unital commutative ring with involution a ! �a and let k be
the subring of �xed elements. Let M be a �nite generated projective K-
module.of rank 9 with a nonsingular hermitian form h; i.e., � : m! h(m; ) is a
semilinear isomorphismM !M�. De�ne the semilinear involution � on gl(M)
by h(m;�n) = h(�(�)m;n); i.e., �(�) = ��1���. Let

u(M;h) = f� 2 gl(M) : �(�) = ��g;
su(M;h) = u(M;h) \ sl(M);
sk(K) = fa 2 K : �a = �ag;
~u(M;h) = �M (u(M;h)) + sk(K)Id�3(M):

Clearly, ~u(M;h) is a subalgebra of egl(M). Note, sk(K)IdM � u(M;h), so
~u(M;h) = �M (u(M;h)) if 13 2 K. Finally, set

fsu(M;h) = ~u(M;h) \ esl(M):
We also set x � y = ��(x) � y for x; y 2 �(M) and �(x; y) = �(x; ��(y)) for
x; y 2 �3(M).

Theorem 7 Let K be a unital commutative ring with involution a ! �a and
let k be the subring of �xed elements. Let M be a �nite generated projective
K-module.of rank 9 with a nonsingular hermitian form h. If u 2 �9(M) with
u � u = 1 and � = ��(u), then

�(�� x� �) = ���1� ���� � ��1� (�)� ��(x)
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for � 2 esl(M), x 2 �3(M), � 2 �3(M
�) is a semi-linear automorphism of

G(M;u). Moreover, � � x � ��(x) ! � � x is an isomorphism of the Lie
algebra G(�) over k of �xed points of � to

G(M;h; u) =fsu(M;h)� �3(M)

with skew-symmetric product given by

[�; �] = �� � ��;
[�; x] = �x;

[x; y] = (�(x; y)� �(y; x))� (xy) � u

for �; � 2fsu(M;h), x; y 2 �3(M).

Proof. Since h is hermitian, it is easy to see that �� = � and (����
�1
� )� =

��1� ����. Thus, � is the product of the semilinear isomorphism G(M;u) !
G(M�; �) given by (6) with N = M� and ! = � and the inverse of the isomor-
phism (5). Since

��1� �M (�)
��� = �M (�

�1���) = �M (�(�));

��1� (aId��3(M))�� = �aId�3(M);

we see that the Lie algebra G(�) of �xed points of � is

G(�) = f�� x� ��(x) : � 2fsu(M;h); x 2 �3(M)g:

The fsu(M;h) component of [x� ��(x); y � ��(y)] is

[x; ��(y)]� [y; ��(x)] = �(x; y)� �(y; x);

while the �3(M) component is

[��(x); ��(y)] = (��(x)��(y)) � u = ��(xy) � u
= (xy) � u:

Thus, �� x� ��(x)! �� x is an isomorphism of G(�) with G(M;h; u).

4 Forms of exceptional Lie algebras

Lemma 8 If F 2 k-alg is faithfully �at, then there are canonical isomorphisms

G(M;u)F �= G(MF ; uF );

G(M;h; u)F �= G(MF ; hF ; uF );

where uF is the image of u
1 in the canonical isomorphism �9(M)F ! �9(MF )
and hF is the extension of the k-bilinear map h given by (1).
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Proof. Since M is �nitely generated projective, we have seen that there are
canonical isomorphisms

�3(M)K �= �3(MK); (12)

�3(M
�)K �= �3(M

�
K); (13)

gl(M)K �= gl(MK); (14)

for K 2 k-alg. Moreover, (�(gl(M)))K �= �K(gl(MK)) for � : � ! D� j�3(M),
so egl(M)K �= egl(MK):

If F 2 k-alg is faithfully �at, then the exact sequence

esl(M)! egl(M) T! k

implies that esl(M)F ! egl(M)F TF! F

is exact. Thus, esl(M)F = ker(TF ) �= esl(MF ) . Similarly, fsu(M;h) is the kernel
of the map �! (�+�(�))�T (�), so fsu(M;h)F �=fsu(MF ; hF ). The canonical
isomorphisms of the lemma are now obvious.

Suppose K = k+ � k� where k� is an isomorphic copy of k via a! a� and
�a� = a�� for � = �. We shall identify a 2 k with a+ � a� 2 K, and write
M� = 1�M and m� = 1�m where M is a K-module and m 2M .

Lemma 9 If M;h; u and � are as in Theorem 7 for K = k+ � k�, then

�� x! �+ � x+ � ��(x�)

is an isomorphism of G(M;h; u) with G(M+; u+).

Proof. Clearly, G(M;u) = G(M;u)+�G(M;u)� as Lie algebras over K. More-
over, since � is semilinear, � interchanges G(M;u)+ with G(M;u)�, so

G(�) = fz + �(z) : z 2 G(M;u)+g:

Thus, z ! z+ is a Lie algebra isomorphism G(�) ! G(M;u)+ over k. Using
Theorem 7, we see that

�� x! (�� x� ��(x))+ = �+ � x+ � ��(x�)

is a Lie algebra isomorphism G(M;h; u) ! G(M;u)+ over k. On the other
hand, Mk+ = 1+ 
M+ can be identi�ed with M+ as k+-modules. Thus,

G(M;u)+ = G(M;u)k+ = G(Mk+ ; 1+ 
 u)+ = G(M+; u+)

as Lie algebra over k+ and hence over k.
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Suppose M;u; � are as in Theorem 5 and M is free over k. Let B =
fm1; : : : ;m9g be a basis forM and �1; : : : ; �9 the dual basis ofM

�; i.e., �i(mj) =
�ij . For

S = fi1 < � � � < ilg � f1; : : : ; 9g;

let

mS = mi1 � � �mil ;

�S = �il � � ��i1 ;

so fmS : jSj = lg and f�S : jSj = lg are dual bases for �l(M) and �l(M�). Set
uB = mf1;:::;9g and �B = �f1;:::;9g. Since u = auB , � = b�B and 1 = � � u = ab,
so a and b are invertible, we may replace m1 by am1 and �1 by b�1 to assume
that u = uB and � = �B . Now eij := e(mi; �j), 1 � i; j � 9 is a basis for
gl(M) and the matrix of eij relative to the basis for M is just the usual matrix
unit. Let

h1 = �(e11 + e22 + e33)� Id�3(M);

hi = �(eii � ei�1;i�1) for 2 � i � 8:

Lemma 10 If M is a free module with basis B = fm1; : : : ;m9g, then

~B = fhi : 1 � i � 8g [ f�(eij) : i 6= jg

is a basis for esl(M) and
B̂ = ~B [ fmS : jSj = 3g [ f�S : jSj = 3g

is a basis for G(M;uB). Thus, G(M;uB)K is canonically isomorphic to
G(MK ; uB
1.) for any K 2 k-alg.

Proof. First, note T (h1) = 3�3 = 0, so h1 2 esl(M). Suppose � =Pi;j aijeij 2
gl(M) and b 2 k with �(�) + bId�3(M) = 0. If i 6= j, choose k; s with i; j; k; s
distinct. We see that � = �(eij) is the only element among �(epq); Id�3(M)

with �(mjmkms) having a nonzero coe¢ cient of mimkms. Thus, aij = 0 for
i 6= j. Also,

�(�)mimjmk =
9X
p=1

app�(epp)mimjmk = (aii + ajj + akk)mimjmk;

so aii + ajj + akk = �b for distinct i; j; k. Thus, aii = a and b = �3a for
a = a11. Now suppose

8X
i=1

cihi +
X

1�i 6=j�9
cij�(eij) = 0:
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Letting

� = c1(e11 + e22 + e33) +
8X
i=2

ci(eii � ei�1;i�1) +
X

1�i 6=j�9
cijeij

=
X
i;j

aijeij ;

we have �(�) � c1Id�3(M) = 0. Thus, cij = aij = 0 for i 6= j. Also, a99 = 0,
so all aii = 0 and c1 = �3a11 = 0. Moreover,

P8
i=2 ci(eii� ei�1;i�1) = 0 forces

all ci = 0. Thus, ~B is independent. To show that it spans esl(M), suppose
� =

P
i;j aijeij and x = �(�) + bId�3(M) 2 esl(M); i.e., tr(�) + 3b = 0. After

subtracting a99(�(IdM )� 3Id�3(M)) = 0, we may assume a99 = 0. Subtracting
aij�(eij) for i 6= j and �bh1, we can also assume aij = 0 for i 6= j and b = 0.
Thus, tr(�) = 0 and �(�) is in the span of h2; : : : ; h8. Thus, ~B is a basis foresl(M), and hence B̂ is a basis for G(M;uB).
Now B 
 1 := fm 
 1 : m 2 Bg is a basis for MK and B̂ 
 1 is a basis

for G(M;uB)K . The natural bijection between B̂ 
 1 and the basis \B 
 1 of
G(MK ; uB
1) induces a canonical isomorphism G(M;uB)K ! G(MK ; uB
1).

We remark that the rank of G(M;u) is 8+9 �8+
�
9
3

�
+
�
9
3

�
= 80+2 �84 = 248.

Theorem 11 Let C9 be the complex vector space of dimension 9 with standard
basis C. Then G(C9; uC) is a simple Lie algebra of type E8 and Ĉ is a Chevalley
basis.

Proof. Let M = C9, C = fm1; : : : ;m9g, u = uC , and � = �C . Since 1
3 2 C,

� : sl(M) ! esl(M) is an isomorphism. Now esl(M), �3(M), and �3(M�)

are nonisomorphic irreducible esl(M)-modules, so they are the only irreducibleesl(M)-modules in G(M;u). Thus, if I is a nonzero ideal of G(M;u), then
complete reducibility shows that I contains at least one of these submodules.
Moreover,

0 6= [esl(M);�3(M)] � �3(M);
0 6= [esl(M);�3(M�)] � �3(M�);

0 6= [�3(M);�3(M
�)] � esl(M);

so I contains each of these submodules. Thus, G(M;u) is simple. Let H be
the trace 0 diagonal maps of M relative to the given basis, so H is a Cartan
subalgebra of sl(M), and ~H = �(H) is a Cartan subalgebra of esl(M). Since
h1 = �(e11 + e22 + e33 � 1

3IdM ), we see hi, 1 � i � 8 is a basis for ~H. The
centralizer of ~H in G(M;u) is contained in esl(M) and is hence ~H. Thus,
~H is a Cartan subalgebra of G(M;u). Let "i 2 ~H� with "i(h) = ai where
��1(h) = diag(a1; : : : ; a9) 2 H, as a diagonal matrix. Clearly,

P9
i=1 "i = 0.
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We see that the roots � of ~H for G(M;u) are all "i�"j for i 6= j (in esl(M)) and all
�("i+"j+"k) for distinct i; j; k (in �3(M) and �3(M�)). Let �1 = "1+"2+"3
and �i = "i � "i�1 for 2 � i � 8. Now � = f�1; : : : ; �8g is a basis of
~H�. Moreover, an examination of the �j-string through �i shows that � is a
fundamental system of roots with Dynkin diagram E8 with �2; : : : ; �8 forming
a diagram of type A7 and �1 connected to �4. Hence, G(M;u) is a Lie algebra
of type E8. To show that Ĉ is a Chevalley basis, we need to show ([H72], p.
147)

(a) for each root �, there is x� 2 Ĉ \ G(M;u)�,
(b) [x�; x��] = h� with [h�; x�] = 2x�,
(c) h�i = hi,
(d) the linear map with x� ! �x��, hi ! �hi is an automorphism of

G(M;u).
Clearly, x� = �(eij) for � = "i�"j , x� = mS and x�� = �S for � = "i+"j+"k
and S = fi < j < kg satis�es (a). Now [[eij ; eji]; eij ] = [eii � ejj ; eij ] = 2eij , so
(b) holds for � = "i� "j and (c) holds for i 6= 1. Lemma 3(v) with l = 1 shows

e(mS ; �S) = e(mimjmk; �k�j�i) =
X
i;j;k	

e(mi; (mjmk) � (�k�j�i))

= eii + ejj + ekk:

Thus,

[mS ; �S ] = �(e(mS ; �S)�
1

3
(mS � �S)IdM )

= �(eii + ejj + ekk �
1

3
IdM );

so (b) holds for � = �("i + "j + "k) and (c) holds for i = 1. Finally, let
C have the trivial involution and let h be the symmetric bilinear form on M
with h(mi;mj) = �ij . Thus, � as in Theorem 7 has �(mi) = �i. Now
��(mC) = �1 � � ��9 = �9 � � ��1 = �C , and we have an automorphism � given
by Theorem 7. Since ��1� �(�)��� = �(�(�)) for � 2 sl(M) where �(eij) = eji,
we see that �(hi) = �hi, and �(x�) = �x�� for � = "i � "j . Also, �(x�) =
��(mS) = �i�j�k = ��S = �x�� for � = "i + "j + "k and S = fi < j < kg.
Thus, (d) holds and Ĉ is a Chevalley basis.

Let G(C) be a simple Lie algebra over C of type Xl and let G(Z) be the
Z-span of a Chevalley basis of G(C). Up to isomorphism, G(Z) is independent
of the choice of Chevalley basis ([H72], p. 150, Exercise 5). Set G(k) = G(Z)k.
We say that a Lie algebra G over k is a split form of Xl if G �= G(k) and that G
is a form of Xl if GF �= G(F ) for some faithfully �at F 2 k-alg. If F 2 k-alg
and E 2 F -alg are faithfully �at, then E 2 k-alg is faithfully �at. Thus, if GF
is a form of Xl for some faithfully �at F 2 k-alg, then G is a form of Xl.

Corollary 12 The Lie algebra G(M;u) in Theorem 5 is a form of E8 and is a
split form if M is free. If K is a quadratic étale k-algebra, then the Lie algebra
G(M;h; u) in Theorem 7 is a form of E8.
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Proof. If Ĉ is the Chevalley basis of G(C9; uC) given by Theorem 11, we can
identify C with the standard basis of Z9 and Ĉ with the corresponding basis
for G(Z9; uC). In particular, G(Z9; uC) = G(Z), the Z-span Ĉ. If M;u are
as in Theorem 5 with M free, we can choose a basis B for M with u = uB
and � = �B . The isomorphism M ! Z9k �= k9 taking B to C 
 1 induces an
isomorphism G(M;uB)! G(Z9k; uC
1). Since

G(k) = G(Z)k = G(Z9; uC)k �= G(Z9k; uC
1);

by Lemma 10, we see that G(M;u) is a split form if M is free. For the general
case, we know there is a faithfully �at F 2 k-alg with MF a free kF -module of
rank 9 ([B89], II.5, Exercise 8). By Lemma 8 and the result for free M , we see

G(M;u)F �= G(MF ; uF ) �= G(F )

and G(M;u) is a form of E8.
For M;h; u as in Theorem 7 with K a quadratic étale k-algebra, we know

by Proposition 1 that K is faithfully �at and KK
�= K �K. Thus,

G(M;h; u)K �= G(MK ; hK ; uK) �= G((MK)+; (uK)+) (15)

by Lemmas 8 and 9, so G(M;h; u)K and hence G(M;h; u) are forms of E8.

Theorem 13 Let M;u; � be as in Theorem 5
(i) If M =M1 �M2 with M1 of rank 3 and M2 of rank 6, then

G(M1;M2; u) = [M1�2(M2);M
�
1�2(M

�
2 )]�M1�2(M2)�M�

1�2(M
�
2 )

is a Lie subalgebra of G(M;u) and a form of E7.
(ii) M =M1 �M2 �M3 with each Mi of rank 3, then

G(M1;M2;M3; u) = [M1M2M3;M
�
1M

�
2M

�
3 ]�M1M2M3 �M�

1M
�
2M

�
3

is a Lie subalgebra of G(M;u) and a form of E6.
Let M;h; u as in Theorem 7 with K a quadratic étale k-algebra. Set

d(x; y) = �(x; y)� �(y; x) for x; y 2 �3(M).
(iii) If M =M1 ?M2 with M1 of rank 3 and M2 of rank 6, then

G(M1;M2; h; u) = d(M1�2(M2);M1�2(M2))�M1�2(M2)

is a Lie subalgebra of G(M;h; u) and a form of E7.
(iv) M =M1 ?M2 ?M3 with each Mi of rank 3, then

G(M1;M2;M3; h; u) = d(M1M2M3;M1M2M3)�M1M2M3

is a Lie subalgebra of G(M;h; u) and a form of E6.
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Proof. We show that G(M1;M2;M3; u) is a subalgebra, and the other cases
can be handled similarly. Since Mi �M�

j = 0 for i 6= j, we see

((M1M2M3)(M1M2M3)) � �9(M)
= ((M1M2M3)(M1M2M3)) � �3(M�

1 )�3(M
�
2 )�3(M

�
3 )

� M�
1M

�
2M

�
3 :

Thus,
[M1M2M3;M1M2M3] �M�

1M
�
2M

�
3

and similarly
[M�

1M
�
2M

�
3 ;M

�
1M

�
2M

�
3 ] �M1M2M3:

Also,
(MiMj) � (M�

1M
�
2M

�
3 ) �M�

k

for fi; j; kg = f1; 2; 3g. Thus,

e(M1M2M3;M
�
1M

�
2M

�
3 ) �

3X
i=1

e(Mi;M
�
i )

by Lemma 3(v). Since �(e(Mi;M
�
i )) stabilizes M1M2M3 and �(e(Mi;M

�
i ))

�

stabilizes M�
1M

�
2M

�
3 , we see G(M1;M2;M3; u) is a subalgebra.

Since G(M1;M2; h; u) is the subalgebra generated by M1�2(M2) and
G(M1;M2;M3; h; u) is the subalgebra generated by M1M2M3, we can use the
isomorphism (15) to reduce cases (iii) and (iv) to cases (i) and (ii). In cases (i) or
(ii), there is a faithfully �at F 2 k-alg with eachMiF free of rank 3 or 6. We can
choose a basisB = fm1; : : : ;m9g forMF with 1
u = uB and 1
� = �B which is
compatible with the direct sum decomposition; i.e., M1F = spanF (m1;m2;m3)
and M2F = spanF (m4; : : : ;m9) or MiF = spanF (m3i�2;m3i�1;m3i). The
isomorphism G(M;u)F �= G(Z9; uC)F allows us to reduce to the cases

M = Z9 = Z(1;3) � Z(4;9);
M = Z9 = Z(1;3) � Z(4;6) � Z(7;9)

where Z(i;j) = spanZ(mi; : : : ;mj) for 1 � i � j � 9 and C = fm1; : : : ;m9g is
the standard basis for Z9.
Let G = G(C9; uC) as in Theorem 11. Let

�i = �i = "i � "i�1 for i = 2; 3; 5; 6; 7;
�1 = �9 = "9 � "8;
�4 = "2 + "4 + "8;

�8 = "4 + "5 + "6:

As before, by checking the �j-string through �i, we see that ~� = f�1; : : : ; �8g is
a fundamental system of roots with Dynkin diagram E8 with �2; : : : ; �8 forming
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a diagram of type A7 and �1 connected to �4. Moreover, replacing hi in Ĉ by
~hi = h�i , we get a Chevalley basis

~C. Let

h0 = �(diag(�2;�2;�2; 1; 1; 1; 1; 1; 1));
h00 = �(diag(1; 1; 1;�1;�1;�1; 0; 0; 0)):

Since

�i(h
0) = 0 for 1 � i � 7;

�8(h
0) = 3;

�i(h
00) = 0 for 1 � i � 6;

�7(h
00) = 1;

we see that
�0 = f� 2 � : �(h0) = 0g

is a root system of type E7 and

�00 = f� 2 � : �(h0) = �(h00) = 0g

is a root system of type E6. Moreover, the subalgebra G0 generated by all G�
with � 2 �0 is a complex simple Lie algebra of type E7 with Chevalley basis
~C \ G0 and the subalgebra G00 generated by all G� with � 2 �00 is a complex
simple Lie algebra of type E6 with Chevalley basis ~C \ G00. We see

�0 = f"i � "j : 1 � i 6= j � 3 or 4 � i 6= j � 9g
[ f�("i + "j + "k) : 1 � i � 3 and 4 � j 6= k � 9g;
�00 = f"i � "j : 3l � 2 � i 6= j � 3l for l = 1; 2; or 3g

[ f�("i1 + "i2 + "i3) : 3l � 2 � il � 3lg:

Since [mimkml; �l�k�j ] = �(eij) where C = fm1; : : : ;m9g, we see that the
Z-span of ~C \ G0 is generated as a Z-algebra by

~C \ (Z(1;3)�2(Z(4;9)) [ Z(1;3)��2(Z(4;9)�))

while the Z-span of ~C \ G00 is generated as a Z-algebra by

~C \ (Z(1;3)Z(4;6)Z(7;9) [ Z(1;3)�Z(4;6)�Z(7;9)�):

In other words, G(Z(1;3);Z(4;9); uC) is the Z-span of ~C \ G0 and

G(Z(1;3);Z(4;6);Z(7;9); uC)

is the Z-span of ~C \ G00.
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