Some forms of exceptional Lie algebras

John R. Faulkner
University of Virginia
Department of Mathematics
Kerchof Hall, P. O. Box 400137
Charlottesville VA 22904-4137
USA
email: jrf@virginia.edu

April 29, 2013

Abstract

Some forms of Lie algebras of types E_{6}, E_{7}, and E_{8} are constructed using the exterior cube of a rank 9 finitely generated projective module.

1 Introduction

Let $\mathcal{G}(\mathbb{C})$ be a simple Lie algebra over \mathbb{C} of type X_{l} and let $\mathcal{G}(\mathbb{Z})$ be the \mathbb{Z}-span of a Chevalley basis of $\mathcal{G}(\mathbb{C})$. We say that a Lie algebra \mathcal{G} over a unitary commutative ring k is a form of X_{l} if there is a faithfully flat, commutative, unital k-algebra F with $\mathcal{G}_{F} \cong \mathcal{G}(\mathbb{Z})_{F}$ where $\mathcal{G}_{F}=\mathcal{G} \otimes_{k} F$ as a F-module. The main purpose of this paper is the construction of some forms of E_{6}, E_{7}, and E_{8} using the exterior cube of a rank 9 finitely generated projective module. In $\S 2$, we develop the necessary exterior algebra and localization machinery. In §3, we construct a Lie algebra from the exterior cube of a rank 9 finitely generated projective module, and then give a twisted version of the construction. In $\S 4$, we show that the Lie algebras are forms of E_{8} and identify some subalgebras which are forms of E_{6} and E_{7}.

2 Preliminary results

Let k be a unitary commutative ring. Throughout, we require that a k-module M be unital; i.e., $1 x=x$ for $x \in M$. Let $M^{*}=\operatorname{Hom}_{k}(M, k)$, the dual module. Recall that a k-module M is projective if M is a direct summand of a free module ([B88],II.2.2). Moreover, M is a finitely generated projective module if and only if M is a direct summand of a free module of finite rank
([B88],II.2.2). Let M and N be finitely generated projective modules. Then M^{*} and $M \otimes N$ are also finitely generated projective (([B88],II.2.6,II.3.7), and we may identify M with $M^{* *}$ where $m(\phi)=\phi(m)$ for $m \in M$ and $\phi \in M^{*}$ ([B88],II.2.7). Moreover, the linear map

$$
M \otimes M^{*} \rightarrow \operatorname{End}(M)
$$

with $m \otimes \phi \rightarrow m \phi$ where $(m \phi)\left(m^{\prime}\right)=\phi\left(m^{\prime}\right) m$ is bijective ([B88],II.4.2). Thus, we can define the trace function tr on $\operatorname{End}(M)$ as the unique linear map with $\operatorname{tr}(m \phi)=\phi(m)$. Since

$$
\operatorname{tr}\left((m \phi)\left(m^{\prime} \phi^{\prime}\right)\right)=\phi^{\prime}(m) \phi\left(m^{\prime}\right)
$$

we see that $\operatorname{tr}(\alpha \beta)=\operatorname{tr}(\beta \alpha)$ for $\alpha, \beta \in \operatorname{End}(M)$. Letting $g l(M)=\operatorname{End}(M)$ with Lie product $[\alpha, \beta]=\alpha \beta-\beta \alpha$, we see

$$
[g l(M), g l(M)] \subset \operatorname{sl}(M):=\{\alpha \in g l(M): \operatorname{tr}(\alpha)=0\}
$$

so $s l(M)$ is an ideal in $g l(M)$.
Let k-alg denote the category of commutative unital k-algebras. If $K \in$ k-alg and M, N are k-modules, let $M_{K}=M \otimes_{k} K$ as a K-module. If M is a finitely generated projective k-module, then

$$
\begin{aligned}
\left(M \otimes_{k} N\right)_{K} & \cong M_{K} \otimes_{K} N_{K}, \\
\left(M^{*}\right)_{K} & \cong\left(M_{K}\right)^{*}, \\
g l(M)_{K} & \cong g l\left(M_{K}\right)
\end{aligned}
$$

via canonical isomorphisms ([B88],II.5.1,II.5.4).
If \mathfrak{p} is a prime ideal of k, let $k_{\mathfrak{p}}=(k \backslash \mathfrak{p})^{-1} k$ be the localization of k at \mathfrak{p} and $M_{\mathfrak{p}}=M_{k_{\mathfrak{p}}}$ be the localization of M at \mathfrak{p} ([B89],II). If M is finitely generated projective, then $M_{\mathfrak{p}}$ is a free $k_{\mathfrak{p}}$-module of finite rank ([B89],II.5.2). If $M_{\mathfrak{p}}$ has rank n for all prime ideals \mathfrak{p} of k, we say M has rank n. In this case, M_{K} has rank n for all $K \in k$-alg ([B89],II.5.3). Moreover, if M, N are finitely generated projective modules and $\alpha \in \operatorname{Hom}(M, N)$, then α is injective (respectively, surjective, bijective, zero) if and only if $\alpha_{\mathfrak{p}}=\alpha \otimes \operatorname{Id} d_{k_{\mathfrak{p}}} \in \operatorname{Hom}\left(M_{\mathfrak{p}}, N_{\mathfrak{p}}\right)$ is injective (respectively, surjective, bijective, zero) for each prime ideal \mathfrak{p} ([B89], II.3.3). This allows the transfer of multilinear identities using localization as follows: if M_{1}, \ldots, M_{l}, N are finite generated projective modules and

$$
\mu: M_{1} \times \cdots \times M_{l} \rightarrow N
$$

is a k-multilinear map, then for $K \in k$-alg there is a unique K-multilinear map

$$
\mu_{K}: M_{1 K} \times \cdots \times M_{l K} \rightarrow N_{K}
$$

with

$$
\begin{equation*}
\mu_{K}\left(m_{1} \otimes 1, \ldots, m_{l} \otimes 1\right)=\mu\left(m_{1}, \ldots, m_{l}\right) \otimes 1 \tag{1}
\end{equation*}
$$

We claim $\mu_{\mathfrak{p}}=0$ for each prime ideal \mathfrak{p} implies $\mu=0$. Indeed, $M_{1} \otimes \cdots \otimes M_{l}$ is finitely generated projective and μ induces a linear map

$$
\tilde{\mu}: M_{1} \otimes \cdots \otimes M_{l} \rightarrow N
$$

with each $(\tilde{\mu})_{\mathfrak{p}}=\widetilde{\left(\mu_{\mathfrak{p}}\right)}=0$, so $\tilde{\mu}=0$ and $\mu=0$.
Recall $F \in k$-alg is faithfully flat provided a sequence $M^{\prime} \rightarrow M \rightarrow M^{\prime \prime}$ is exact if and only if the induced sequence $M_{F}^{\prime} \rightarrow M_{F} \rightarrow M_{F}^{\prime \prime}$ is exact. We shall need the following example of a faithfully flat algebra. Recall a quadratic form q on M is nonsingular if $a \rightarrow q(a$,$) is an isomorphism M \rightarrow M^{*}$ where

$$
q(a, b):=q(a+b)-q(a)-q(b)
$$

We say that $K \in k$-alg is a quadratic étale algebra if K is a finitely generated projective k-module of rank 2 with a nonsingular quadratic form n admitting composition; i.e.,

$$
n(a b)=n(a) n(b)
$$

We did not find a suitable reference for the following result, so we include a proof communicated to us by H. Petersson.

Proposition 1 If K is a quadratic étale algebra over k, then K is faithfully flat and $K_{K} \cong K \oplus K$.

Proof. For each maximal ideal m of k, K_{m} is a nonzero free k_{m}-module, and hence faithfully flat ([B89], II.3.1). Thus, K is faithfully flat over k ([B89], II.3.4). Let $t(a)=n(a, 1)$ and $\bar{a}=t(a) 1-a$, for $a \in K$. We claim $\eta: K_{K} \rightarrow$ $K \oplus K$ with $\eta(a \otimes b)=a b \oplus \bar{a} b$ is a K-algebra isomorphism. Using localization, it suffices to assume that k is a field. In this case, it is well-known that K is commutative, $n(1)=1, a \rightarrow \bar{a}$ is an involution, and $a^{-1}=n(a)^{-1} \bar{a}$, if $n(a) \neq 0$. Thus, η is a homomorphism of K-algebras with involution where $K \oplus K$ has the exchange involution. By dimensions, it suffices to show η is surjective. Let $1, u$ be a k-basis of K. We see

$$
\begin{aligned}
n(\bar{u}-u) & =n(t(u) 1-2 u) \\
& =4 n(u)-t(u)^{2} \\
& =\operatorname{det}\left[\begin{array}{ll}
n(1,1) & n(1, u) \\
n(u, 1) & n(u, u)
\end{array}\right] \neq 0
\end{aligned}
$$

since n is nonsingular, so $\bar{u}-u$ is invertible. Now $\eta(u \otimes 1-1 \otimes u)=0 \oplus(\bar{u}-u)$, so $\eta\left(K_{K}\right)$ contains $0 \oplus 1,1 \oplus 0=\overline{0 \oplus 1}$, and hence $K \oplus K$.

We now recall some facts about exterior algebras. For more details see [B88]. Let M be a k-module and form the exterior algebra $\Lambda(M)$ with the standard \mathbb{Z}-grading

$$
\Lambda(M)=\sum_{i \geq 0} \Lambda_{i}(M)
$$

and write $|x|=i$, if $x \in \Lambda_{i}(M)$. For simplicity of notation, we write the product in $\Lambda(M)$ as $x y$ rather than the usual $x \wedge y$. We have $\Lambda(M)_{K} \cong \Lambda\left(M_{K}\right)$ via a canonical isomorphism ([B88],III.7.5). If M is finitely generated projective, then so is $\Lambda(M)$ ([B88],III.7.8). If $\alpha \in \operatorname{Hom}(M, N)$, then α extends uniquely to a graded algebra homomorphism $\theta_{\alpha}: \Lambda(M) \rightarrow \Lambda(N)$. Also, if $\alpha \in \operatorname{gl}(M)$, then there is a unique extension of α to a derivation D_{α} of $\Lambda(M)$. Thus, $\Lambda(M)$ is a module for the Lie algebra $g l(M)$ via $(\alpha, x) \rightarrow D_{\alpha}(x)$. Similarly, if $\phi \in M^{*}$, then there is a unique extension of ϕ to an anti-derivation (or odd super derivation) Δ_{ϕ} of $\Lambda(M)$. Recall Δ is an anti-derivation if

$$
\Delta(x y)=\Delta(x) y+(-1)^{|x|} x \Delta(y)
$$

if x is homogeneous. One can show by induction on i that

$$
\begin{equation*}
\Delta_{\phi}\left(\Lambda_{i}(M)\right) \subset \Lambda_{i-1}(M) \tag{2}
\end{equation*}
$$

where $\Lambda_{l}(M)=0$ for $l<0$, and $\Delta_{\phi}^{2}=0$. Thus, the universal property for $\Lambda\left(M^{*}\right)$ shows that $\phi \rightarrow \Delta_{\phi}$ extends to a homomorphism $\Delta: \Lambda\left(M^{*}\right)$ into $E n d_{k}(\Lambda(M))$, so we can view $\Lambda(M)$ as a left module for the associative algebra $\Lambda\left(M^{*}\right)$ with $\xi \cdot x=\Delta_{\xi}(x)$ for $\xi \in \Lambda\left(M^{*}\right), x \in \Lambda(M)$. Using (2), we see

$$
\Lambda_{i}\left(M^{*}\right) \cdot \Lambda_{j}(M) \subset \Lambda_{j-i}(M)
$$

Let M be a finitely generated projective k-module. Since $M^{* *}=M$, we can reverse the roles of M and M^{*} and see that $\Lambda\left(M^{*}\right)$ is a left module for $\Lambda(M)$ via $x \cdot \xi$. Also, we can identify $\Lambda_{i}\left(M^{*}\right)$ with $\Lambda_{i}(M)^{*}$ where $\xi(x)=\xi \cdot x$ for $\xi \in \Lambda_{i}\left(M^{*}\right), x \in \Lambda_{i}(M)([\mathrm{B} 88], \mathrm{III} .11 .5)$.

For $\alpha \in \operatorname{Hom}(M, N)$, let $\alpha^{*} \in \operatorname{Hom}\left(N^{*}, M^{*}\right)$ with $\alpha^{*}(\phi)=\phi \alpha$ for $\phi \in N^{*}$. Thus, $\alpha \rightarrow-\alpha^{*}$ is a Lie algebra homomorphism $g l(M) \rightarrow g l\left(M^{*}\right)$ and $\Lambda\left(M^{*}\right)$ is a module for $g l(M)$ via $(\alpha, \xi) \rightarrow D_{-\alpha^{*}}(\xi)$.

Lemma 2 Let $l \leq n$ and let $S \subset S_{n}$ be such that $\left.\sigma \rightarrow \sigma\right|_{\{1, \ldots, l\}}$ is a bijection of S with the set of all injections

$$
\{1, \ldots, l\} \rightarrow\{1, \ldots, n\}
$$

For $\phi_{i} \in M^{*}, m_{j} \in M$, we have

$$
\left(\phi_{l} \phi_{l-1} \cdots \phi_{1}\right) \cdot\left(m_{1} m_{2} \cdots m_{n}\right)=\sum_{\sigma \in S}(-1)^{\sigma} \phi_{1}\left(m_{\sigma 1}\right) \cdots \phi_{l}\left(m_{\sigma l}\right) m_{\sigma(l+1)} \cdots m_{\sigma n}
$$

Proof. Applying $\Delta_{\phi_{l}} \cdots \Delta_{\phi_{1}}$ to $m_{1} m_{2} \cdots m_{n}$, we get terms

$$
\pm \phi_{1}\left(m_{i_{1}}\right) \cdots \phi_{l}\left(m_{i_{l}}\right) m_{i_{l+1}} \cdots m_{i_{n}}
$$

with the sign depending only on i_{1}, \ldots, i_{n}. There is a unique $\sigma \in S$ with $\sigma(j)=i_{j}$ for $1 \leq j \leq l$. After suitably rearranging the factors of $m_{i_{l+1}} \cdots m_{i_{n}}$, we can assume $i_{j}=\sigma(j)$ for all j. Thus,

$$
\left(\phi_{l} \phi_{l-1} \cdots \phi_{1}\right) \cdot\left(m_{1} m_{2} \cdots m_{n}\right)=\sum_{\sigma \in S} \varepsilon_{\sigma} \phi_{1}\left(m_{\sigma 1}\right) \cdots \phi_{l}\left(m_{\sigma l}\right) m_{\sigma(l+1)} \cdots m_{\sigma(n)}
$$

for some $\varepsilon_{\sigma}= \pm 1$, depending only on σ In particular, if m_{1}, \ldots, m_{n} is the basis of a vector space V over a field of characteristic not 2 and $\phi_{i} \in V^{*}$ with $\phi_{i}\left(m_{j}\right)=\delta_{i j}$, then for $\tau \in S$, we have

$$
\begin{aligned}
m_{l+1} \cdots m_{n} & =\left(\phi_{l} \cdots \phi_{1}\right) \cdot\left(m_{1} \cdots m_{n}\right) \\
& =(-1)^{\tau}\left(\phi_{l} \cdots \phi_{1}\right) \cdot\left(m_{\tau^{-1} 1} \cdots m_{\tau^{-1} n}\right) \\
& =(-1)^{\tau} \sum_{\sigma \in S} \varepsilon_{\sigma} \phi_{1}\left(m_{\tau^{-1} \sigma 1}\right) \cdots \phi_{l}\left(m_{\tau^{-1} \sigma l}\right) m_{\tau^{-1} \sigma(l+1)} \cdots m_{\tau^{-1} \sigma(n)} \\
& =(-1)^{\tau} \varepsilon_{\tau} m_{l+1} \cdots m_{n}
\end{aligned}
$$

and $\varepsilon_{\tau}=(-1)^{\tau}$.
We remark that if $l=1$ in Lemma 2, we can take $S=C_{n}$, the cyclic group generated by the permutation $(1, \ldots, n)$.

If $\alpha \in g l(M)$ and $\phi \in M^{*}$, then $\left[D_{\alpha}, \Delta_{\phi}\right]$ is an antiderivation with

$$
\left[D_{\alpha}, \Delta_{\phi}\right](m)=D_{\alpha}(\phi(m))-\phi(\alpha m)=\Delta_{-\alpha^{*}(\phi)}(m)
$$

for $m \in M \quad$ Thus, $\left[D_{\alpha}, \Delta_{\phi}\right]=\Delta_{-\alpha^{*}(\phi)}=\Delta_{D_{-\alpha^{*}}(\phi)}$. Since Δ is a homomorphism, we have

$$
\left[D_{\alpha}, \Delta_{\xi}\right]=\Delta_{D_{-\alpha^{*}}(\xi)}
$$

for all $\xi \in \Lambda\left(M^{*}\right)$, so

$$
\begin{equation*}
D_{\alpha}(\xi \cdot x)=D_{-\alpha^{*}}(\xi) \cdot x+\xi \cdot D_{\alpha}(x) \tag{3}
\end{equation*}
$$

for all $x \in \Lambda(M)$.
Let M be finitely generated projective. For $x \in \Lambda_{l}(M), \xi \in \Lambda_{l}\left(M^{*}\right)$, define $e(x, \xi) \in \operatorname{End}(M)$ by

$$
e(x, \xi)(m)=(m \cdot \xi) \cdot x \in \Lambda_{l-1}\left(M^{*}\right) \cdot \Lambda_{l}(M) \subset M
$$

for $m \in M$. We also have $e(\xi, x) \in \operatorname{End}\left(M^{*}\right)$.
Lemma 3 Let M be a finitely generated projective module, and let $x, y, z \in$ $\Lambda_{l}(M), \xi \in \Lambda_{l}\left(M^{*}\right)$, and $\mu \in \Lambda_{3 l}\left(M^{*}\right)$. We have
(i) $x \cdot \xi=\xi \cdot x$,
(ii) $e(x, \xi)^{*}=e(\xi, x)$,
(iii) if $\phi_{1}, \ldots, \phi_{l} \in M^{*}$, then

$$
D_{e\left(x, \phi_{1} \cdots \phi_{l}\right)}=\sum_{\sigma \in C_{l}}(-1)^{\sigma}\left(\left(\phi_{\sigma 2} \cdots \phi_{\sigma l}\right) \cdot x\right) \Delta_{\phi_{\sigma 1}}
$$

where C_{l} is the cyclic group generated by the permutation $(1, \ldots, l)$,
(iv) $\operatorname{tr}(e(x, \xi))=l \xi \cdot x$,
(v) $e(x y z, \mu)=\sum_{x, y, z \circlearrowleft} e(x,(y z) \cdot \mu)$, where the sum is over all cyclic permutations of x, y, z,
(vi) if $l=3$, then $\xi \cdot(x y)=(\xi \cdot x) y-D_{e(x, \xi)} y+D_{e(y, \xi)} x-(\xi \cdot y) x$.

Proof. Using Lemma 2, we have

$$
\begin{aligned}
\left(\phi_{l} \phi_{l-1} \cdots \phi_{1}\right) \cdot\left(m_{1} m_{2} \cdots m_{l}\right) & =\sum_{\sigma \in S_{l}}(-1)^{\sigma} \phi_{1}\left(m_{\sigma 1}\right) \cdots \phi_{l}\left(m_{\sigma l}\right) \\
& =\sum_{\sigma \in S_{l}}(-1)^{\sigma} m_{\sigma 1}\left(\phi_{1}\right) \cdots m_{\sigma l}\left(\phi_{l}\right) \\
& =\sum_{\sigma \in S_{l}}(-1)^{\sigma} m_{1}\left(\phi_{\sigma 1}\right) \cdots m_{l}\left(\phi_{\sigma l}\right) \\
& =\left(m_{1} m_{2} \cdots m_{l}\right) \cdot\left(\phi_{l} \phi_{l-1} \cdots \phi_{1}\right)
\end{aligned}
$$

for $m_{i} \in M, \phi_{i} \in M^{*}$, showing (i). For $\phi \in M^{*}, m \in M$, we have

$$
\begin{aligned}
\left(e(x, \xi)^{*}(\phi)\right)(m) & =\phi(e(x, \xi)(m)) \\
& =\phi \cdot((m \cdot \xi) \cdot x)=(\phi(m \cdot \xi)) \cdot x \\
& =(-1)^{l-1}((m \cdot \xi) \phi) \cdot x=(-1)^{l-1}(m \cdot \xi) \cdot(\phi \cdot x) \\
& =(-1)^{l-1}(\phi \cdot x) \cdot(m \cdot \xi)=m \cdot((\phi \cdot x) \cdot \xi) \\
& =(e(\xi, x)(\phi))(m)
\end{aligned}
$$

showing (ii).
If $m \in M, \phi \in M^{*}$ it is easy to see that $m \Delta_{\phi}: x \rightarrow m(\phi \cdot x)$ is a derivation of $\Lambda(M)$, so $m \Delta_{\phi}=D_{m \phi}$. By Lemma 2, we have

$$
\begin{aligned}
e\left(x, \phi_{1} \cdots \phi_{l}\right) m & =\left(m \cdot\left(\phi_{1} \cdots \phi_{l}\right)\right) \cdot x \\
& =\sum_{\sigma \in C_{l}}(-1)^{\sigma}\left(\left(m \cdot \phi_{\sigma 1}\right)\left(\phi_{\sigma 2} \cdots \phi_{\sigma l}\right)\right) \cdot x \\
& =\sum_{\sigma \in C_{l}}(-1)^{\sigma}\left(\left(\phi_{\sigma 2} \cdots \phi_{\sigma l}\right) \cdot x\right) \Delta_{\phi_{\sigma 1}}(m),
\end{aligned}
$$

for $m \in M$, and (iii) follows. Also,

$$
\begin{aligned}
\operatorname{tr}\left(e\left(x, \phi_{1} \cdots \phi_{l}\right)\right) & =\sum_{\sigma \in C_{l}}(-1)^{\sigma} \phi_{\sigma 1}\left(\left(\phi_{\sigma 2} \cdots \phi_{\sigma l}\right) \cdot x\right) \\
& =\sum_{\sigma \in C_{l}}(-1)^{\sigma} \phi_{\sigma 1} \cdot\left(\left(\phi_{\sigma 2} \cdots \phi_{\sigma l}\right) \cdot x\right) \\
& =\sum_{\sigma \in C_{l}}(-1)^{\sigma}\left(\phi_{\sigma 1} \phi_{\sigma 2} \cdots \phi_{\sigma l}\right) \cdot x \\
& =l\left(\phi_{1} \cdots \phi_{l}\right) \cdot x
\end{aligned}
$$

showing (iv). For (v), we see

$$
\phi \cdot(x y z)=(\phi \cdot x) y z+(-1)^{l} x(\phi \cdot y) z+x y(\phi \cdot z)=\sum_{x, y, z \circlearrowleft}(\phi \cdot x) y z,
$$

for $\phi \in M^{*}$, so

$$
\begin{aligned}
e(\mu, x y z) \phi & =\left(\sum_{x, y, z \circlearrowleft}(\phi \cdot x) y z\right) \cdot \mu \\
& =\sum_{x, y, z \circlearrowleft}(\phi \cdot x) \cdot((y z) \cdot \mu) \\
& =\sum_{x, y, z \circlearrowleft} e((y z) \cdot \mu, x) \phi .
\end{aligned}
$$

Thus, $e(\mu, x y z)=\sum_{x, y, z \circlearrowleft} e((y z) \cdot \mu, x)$, and (v) follows from (ii). Finally, if $\xi=\phi_{1} \phi_{2} \phi_{3}$, then

$$
\begin{aligned}
\xi \cdot(x y)= & (\xi \cdot x) y-\sum_{\sigma \in C_{3}}(-1)^{\sigma}\left(\left(\phi_{\sigma 1} \phi_{\sigma 2}\right) \cdot x\right)\left(\phi_{\sigma 3} \cdot y\right) \\
& +\sum_{\sigma \in C_{3}}(-1)^{\sigma}\left(\phi_{\sigma 1} \cdot x\right)\left(\left(\phi_{\sigma 2} \phi_{\sigma 3}\right) \cdot y\right)-x(\xi \cdot y) \\
= & (\xi \cdot x) y-D_{e(x, \xi)} y+D_{e(y, \xi)} x-(\xi \cdot y) x
\end{aligned}
$$

showing (vi).

Lemma 4 Let M be a finitely generated projective module of rank n.
(i) $(x \cdot \mu) \cdot u=(\mu \cdot u) x$, for $x \in \Lambda(M), u \in \Lambda_{n}(M), \mu \in \Lambda_{n}\left(M^{*}\right)$.
(ii) The following are equivalent:
(a) there exist $u \in \Lambda_{n}(M)$ and $\mu \in \Lambda_{n}\left(M^{*}\right)$ with $\mu \cdot u=1$,
(b) $\Lambda_{n}(M)$ is free of rank 1 .
(iii) $D_{\alpha}(u)=\operatorname{tr}(\alpha) u$ for $\alpha \in g l(M), u \in \Lambda_{n}(M)$.

Proof. We first show (i) in case M is a free module of rank n. Since $\Lambda_{n}(M)$ is free of rank 1, we may assume $x=m_{l} \cdots m_{1}, u=m_{n} \cdots m_{1}$, and $\mu=\phi_{1} \cdots \phi_{n}$ where m_{1}, \ldots, m_{n} is a basis for M and $\phi_{1}, \ldots, \phi_{n}$ is the dual basis of M^{*}; i.e., $\phi_{i}\left(m_{j}\right)=\delta_{i j}$. We have

$$
\begin{aligned}
\left(\left(m_{l} \cdots m_{1}\right) \cdot\left(\phi_{1} \cdots \phi_{n}\right)\right) \cdot\left(m_{n} \cdots m_{1}\right) & =\left(\phi_{l+1} \cdots \phi_{n}\right) \cdot\left(m_{n} \cdots m_{1}\right) \\
& =m_{l} \cdots m_{1} \\
& =\left(\left(\phi_{1} \cdots \phi_{n}\right) \cdot\left(m_{n} \cdots m_{1}\right)\right) m_{l} \cdots m_{1}
\end{aligned}
$$

showing (i) in this case. To show the general case, we observe that $\Lambda(M)$, $\Lambda_{n}\left(M^{*}\right)$, and $\Lambda_{n}(M)$ are finitely generated projective, and that we can identify $\Lambda_{l}(M)_{\mathfrak{p}}$ with $\Lambda_{l}\left(M_{\mathfrak{p}}\right)$. Since the trilinear identity (i) holds for the free $k_{\mathfrak{p}}$-module $M_{\mathfrak{p}}$ of rank n for each \mathfrak{p}, it holds for M.

If (a) holds, then $q=(q \cdot \mu) \cdot u=(\mu \cdot q) u$ for $q \in \Lambda_{n}(M)$ by (i). Thus, $q \rightarrow \mu \cdot q$ is a linear map $\Lambda_{n}(M) \rightarrow k$ with inverse $a \rightarrow a u$, and (b) holds. Conversely, if $\mu: \Lambda_{n}(M) \rightarrow k$ is an isomorphism, then $\mu \in \Lambda_{n}(M)^{*}=\Lambda_{n}\left(M^{*}\right)$ and $\mu \cdot u=\mu(u)=1$, so (a) holds, showing (ii). Let

$$
\lambda: g l(M) \otimes \Lambda_{n}(M) \rightarrow \Lambda_{n}(M)
$$

be the linear map with $\lambda(\alpha \otimes u)=D_{\alpha}(u)-\operatorname{tr}(\alpha) u$. Since (iii) holds for free modules, $\lambda_{\mathfrak{p}}=0$ for all prime ideals \mathfrak{p} of k, so $\lambda=0$ and (iii) holds.

We remark that if condition (ii)(a) in Lemma 4 holds, then $\{u\}$ is a basis for $\Lambda_{n}(M),\{\mu\}$ is a basis for $\Lambda_{n}\left(M^{*}\right)$, and μ is uniquely determined by u.

3 Constructions of Lie algebras

Let M be a finitely generated projective module of rank 9 and suppose there exist $u \in \Lambda_{9}(M)$ and $\mu \in \Lambda_{9}\left(M^{*}\right)$ with $\mu \cdot u=1$. The Lie algebra $g l(M)$ acts on $\Lambda_{3}(M)$ via $\rho_{M}:\left.\alpha \rightarrow D_{\alpha}\right|_{\Lambda_{3}(M)}$. Clearly, $\widetilde{g l}(M):=\rho_{M}(g l(M))+k I d_{\Lambda_{3}(M)}$ is a Lie algebra. Since $\rho_{M}\left(I d_{M}\right)=3 I d_{\Lambda_{3}(M)}$, we see that $\tilde{g l}(M)=\rho_{M}(g l(M))$ if $\frac{1}{3} \in k$. Suppose $\beta \in g l\left(\Lambda_{3}(M)\right)$ extends to a derivation d_{β} of the subalgebra

$$
\Lambda_{(3)}(M):=k \oplus \Lambda_{3}(M) \oplus \Lambda_{6}(M) \oplus \Lambda_{9}(M)
$$

of $\Lambda(M)$. Since β uniquely determines d_{β}, we can define $T(\beta)=\mu \cdot d_{\beta}(u)$. If $\alpha \in g l(M)$, then $\rho_{M}(\alpha)$ and $I d_{\Lambda_{3}(M)}$ extend to derivations of $\Lambda_{(3)}(M)$ with $d_{\rho_{M}(\alpha)}=\left.D_{\alpha}\right|_{\Lambda_{(3)}(M)}$ and $d_{I d_{\Lambda_{3}(M)}}(x)=r x$ for $x \in \Lambda_{3 r}(M)$. Thus, each $\beta \in$ $\widetilde{g l}(M)$ extends to a derivation d_{β} of $\Lambda_{(3)}(M)$, and we have defined a linear map $T: \widetilde{g l}(M) \rightarrow k$ with $T\left(\rho_{M}(\alpha)\right)=\operatorname{tr}(\alpha)$ by Lemma $4($ iii $)$ and $T\left(I d_{\Lambda_{3}(M)}\right)=3$. Set $\widetilde{s l}(M)=\{\beta \in \widetilde{g l}(M): T(\beta)=0\}$, so $\widetilde{s l}(M)=\rho_{M}(s l(M))$ if $\frac{1}{3} \in k$. Note that

$$
[\tilde{g l}(M), \tilde{g l}(M)] \subset \rho_{M}([g l(M), g l(M)]) \subset \rho_{M}(s l(M)) \subset \tilde{s l}(M)
$$

so $\tilde{s l}(M)$ is an ideal of $\tilde{g l}(M)$. Note that $\tilde{g l}(M)$ is a Lie algebra of linear transformations of $\Lambda_{3}(M)$ with the contragredient action on $\Lambda_{3}(M)^{*}=\Lambda_{3}\left(M^{*}\right)$. In particular, (3) shows

$$
\begin{equation*}
\rho_{M}(\alpha)^{*}=\left.D_{\alpha^{*}}\right|_{\Lambda_{3}\left(M^{*}\right)}=\rho_{M^{*}}\left(\alpha^{*}\right) \text { for } \alpha \in g l(M) \tag{4}
\end{equation*}
$$

Theorem 5 Let M be a finitely generated projective module of rank 9 and suppose there exist $u \in \Lambda_{9}(M)$ and $\mu \in \Lambda_{9}\left(M^{*}\right)$ with $\mu \cdot u=1$. Then

$$
\mathcal{G}(M, u)=\widetilde{\operatorname{sl}}(M) \oplus \Lambda_{3}(M) \oplus \Lambda_{3}\left(M^{*}\right)
$$

is a Lie algebra with skew symmetric product given by

$$
\begin{aligned}
{[\alpha, \beta] } & =\alpha \beta-\beta \alpha \\
{[\alpha, x] } & =\alpha(x),[\alpha, \xi]=-\alpha^{*}(\xi) \\
{[x, y] } & =(x y) \cdot \mu,[\xi, \psi]=(\xi \psi) \cdot u \\
{[x, \xi] } & =\delta(x, \xi):=\rho(e(x, y))-(x \cdot \xi) I d_{\Lambda_{3}(M)}
\end{aligned}
$$

for $\alpha, \beta \in \widetilde{s l}(M), x, y \in \Lambda_{3}(M)$, and $\xi, \psi \in \Lambda_{3}\left(M^{*}\right)$.

Proof. We recall that Lemma 4(ii) shows that μ is uniquely determined by u. Also, Lemma 3(iv) shows that $\delta(x, y) \in \widetilde{s l}(M)$. It suffices to check the Jacobi identity

$$
J\left(z_{1}, z_{2}, z_{3}\right)=\left[\left[z_{1} z_{2}\right] z_{3}\right]+\left[\left[z_{2} z_{3}\right] z_{1}\right]+\left[\left[z_{3} z_{1}\right] z_{2}\right]=0
$$

for $z_{i} \in \widetilde{s l}(M) \cup \Lambda_{3}(M) \cup \Lambda_{3}\left(M^{*}\right)$. Moreover, since the product is skewsymmetric,

$$
J\left(z_{1}, z_{2}, z_{3}\right)=0 \text { implies } J\left(z_{\pi 1}, z_{\pi 2}, z_{\pi 3}\right)=0
$$

for any $\pi \in S_{3}$. Since $\widetilde{s l}(M)$ is a Lie algebra of linear transformations of $\Lambda_{3}(M)$ with the contragredient action on $\Lambda_{3}(M)^{*}=\Lambda_{3}\left(M^{*}\right)$, the Jacobi identity holds if two or more of z_{i} are in $\widetilde{s l}(M)$. Interchanging the roles of M and M^{*}, if necessary, we are left with the following cases with $\alpha \in \tilde{s l}(M), x, y, z \in \Lambda_{3}(M)$, $\xi \in \Lambda_{3}\left(M^{*}\right):$

Case 1: $J(\alpha, x, \xi)$. We know that $g l(M)$ acts as derivations of $\Lambda(M)$ via $\gamma \rightarrow D_{\gamma}$, and as derivations of $\Lambda\left(M^{*}\right)$ via $\gamma \rightarrow-D_{\gamma^{*}}$. Also, these actions are derivations of the products $\Lambda\left(M^{*}\right) \cdot \Lambda(M)$ and $\Lambda(M) \cdot \Lambda\left(M^{*}\right)$ by (3). Thus, $g l(M)$ acts as derivations of the triple product

$$
\delta(x, \xi)(y)=D_{e(x, \xi)}(y)-(x \cdot \xi) y
$$

Now $\operatorname{End}\left(\Lambda_{3}(M)\right)$ acts on $\Lambda_{3}\left(M^{*}\right)$ via $\alpha \rightarrow-\alpha^{*}$. Since $\rho_{M}(\gamma)^{*}=\left.D_{\gamma^{*}}\right|_{\Lambda_{3}\left(M^{*}\right)}$ for $\gamma \in g l(M)$, we see that $\rho_{M}(g l(M))$ also acts as derivations of $\delta(x, \xi)(y)$. Clearly, $I d_{\Lambda_{3}(M)}$ acts as derivations of the triple product, so $[\alpha, \delta(x, \xi)]=$ $\delta(\alpha x, \xi)+\delta\left(x,-\alpha^{*} \xi\right)$, showing case 1 .

Case 2: $J(\alpha, x, y)$. As above, $\widetilde{s l}(M)$ acts as derivations of $\mu \cdot u=1$ and $(x y) \cdot \mu$. Thus,

$$
0=\left(d_{-\alpha^{*}} \mu\right) \cdot u+\mu \cdot\left(d_{\alpha} u\right)=\left(d_{-\alpha^{*}} \mu\right) \cdot u
$$

so $d_{-\alpha^{*}} \mu=0$, and

$$
\alpha((x y) \cdot \mu)=((\alpha x) y) \cdot \mu+(x(\alpha y)) \cdot \mu+(x y) \cdot\left(d_{-\alpha^{*}} \mu\right)
$$

so $[\alpha[x, y]]=[\alpha x, y]+[x, \alpha y]$.
Case $3: J(x, y, \xi)$. We see by Lemma $3(v i)$ that

$$
\begin{aligned}
{[[x, y], \xi] } & =(((x y) \cdot \mu) \xi) \cdot u=-(\xi((x y) \cdot \mu)) \cdot u \\
& =-\xi \cdot(((x y) \cdot \mu) \cdot u)=-\xi \cdot(x y) \\
& =-(\xi \cdot x) y+D_{e(x, \xi)} y-D_{e(y, \xi)} x+(\xi \cdot y) x \\
& =\delta(x, \xi)(y)-\delta(y, \xi)(x) \\
& =[[x, \xi], y]-[[y, \xi], x] .
\end{aligned}
$$

Case 4: $J(x, y, z)$. We have

$$
\begin{aligned}
{[[x, y], z] } & =-\delta(z,(x y) \cdot \mu)=-\rho_{M}(e(z,(x y) \cdot \mu))+z \cdot((x y) \cdot \mu) I d_{\Lambda_{3}(M)} \\
& =-\rho_{M}(e(z,(x y) \cdot \mu))+((x y z) \cdot \mu) I d_{\Lambda_{3}(M)}
\end{aligned}
$$

Also, by Lemma 3(v) and Lemma 4(i),

$$
\sum_{x, y, z \circlearrowleft} e(x,(y z) \cdot \mu)=e(x y z, \mu)=((x y z) \cdot \mu) I d_{M} .
$$

Thus,

$$
\sum_{x, y, z \circlearrowleft}[[x, y], z]=-((x y z) \cdot \mu) \rho_{M}\left(I d_{M}\right)+3((x y z) \cdot \mu) I d_{\Lambda_{3}(M)}=0
$$

Suppose $\omega: M \rightarrow N$ is a σ-semilinear homomorphism where σ is an automorphism of k. Extending the definition for linear maps, we define the σ^{-1}-semilinear map $\omega^{*}: N^{*} \rightarrow M^{*}$ with $\omega^{*}(\phi)=\sigma^{-1} \phi \omega$. Let θ_{ω} be the unique extension of ω to a σ-semilinear homomorphism $\Lambda(M) \rightarrow \Lambda(N)$. Note $\theta_{\omega}(a)=\sigma(a)$ for $a \in k$.

Lemma 6 Let M, u be as in Theorem 5. The map

$$
\begin{equation*}
\alpha \oplus x \oplus \xi \rightarrow-\alpha^{*} \oplus \xi \oplus x \tag{5}
\end{equation*}
$$

for $\alpha \in \widetilde{\operatorname{sl}}(M), x \in \Lambda_{3}(M), \xi \in \Lambda_{3}\left(M^{*}\right)$ is an isomorphism $\mathcal{G}(M, u) \rightarrow$ $\mathcal{G}\left(M^{*}, \mu\right)$. If $\omega: M \rightarrow N$ is a σ-semilinear isomorphism, then

$$
\begin{equation*}
\alpha \oplus x \oplus \xi \rightarrow \theta_{\omega} \alpha \theta_{\omega}^{-1} \oplus \theta_{\omega} x \oplus \theta_{\omega^{*-1}} \xi \tag{6}
\end{equation*}
$$

for $\alpha \in \widetilde{\operatorname{sl}}(M), x \in \Lambda_{3}(M), \xi \in \Lambda_{3}\left(M^{*}\right)$ is a σ-semilinear isomorphism $\mathcal{G}(M, u) \rightarrow \mathcal{G}\left(N, \theta_{\omega} u,\right)$.

Proof. Using (4) and Lemma 3, we see $\delta(x, \xi)^{*}=\delta(\xi, x)$. It is then clear that (5) is an isomorphism.

The Lie product on $\mathcal{G}(M, u)$ is completely determined by the graded products on $\Lambda(M)$ and $\Lambda\left(M^{*}\right)$, the actions of $\Lambda\left(M^{*}\right)$ on $\Lambda(M)$ and $\Lambda(M)$ on $\Lambda\left(M^{*}\right)$, the actions $\beta \rightarrow \rho_{M}(\beta)=\left.D_{\beta}\right|_{\Lambda_{3}(M)}$ and $\beta \rightarrow-\rho_{M}(\beta)^{*}$ of $g l(M)$ on $\Lambda_{3}(M)$ and $\Lambda_{3}\left(M^{*}\right)$, and the elements $u \in \Lambda_{9}(M), \mu \in \Lambda\left(M^{*}\right)$. Thus, if $\eta: \Lambda(M) \rightarrow \Lambda(N)$ and $\eta^{\prime}: \Lambda\left(M^{*}\right) \rightarrow \Lambda\left(N^{*}\right)$ are graded ring isomorphisms and $\breve{\eta}: g l(M) \rightarrow g l(N)$ is a Lie ring isomorphism with

$$
\begin{align*}
\eta(\xi \cdot x) & =\eta^{\prime}(\xi) \cdot \eta(x) \tag{7}\\
\eta^{\prime}(x \cdot \xi) & =\eta(x) \cdot \eta^{\prime}(\xi), \tag{8}\\
\rho_{N}(\breve{\eta}(\beta)) & =\eta \rho_{M}(\beta) \eta^{-1} \tag{9}\\
\rho_{N}(\breve{\eta}(\beta))^{*} & =\eta^{\prime} \rho_{M}(\beta)^{*} \eta^{\prime-1}, \tag{10}
\end{align*}
$$

for $x \in \Lambda_{3}(M), \xi \in \Lambda_{3}\left(M^{*}\right)$, and $\beta \in g l(M)$, then

$$
\alpha \oplus x \oplus \xi \rightarrow \eta \alpha \eta^{-1} \oplus \eta x \oplus \eta^{\prime} \xi
$$

is a Lie ring isomorphism $\mathcal{G}(M, u) \rightarrow \mathcal{G}(N, \eta u)$. Now let $\eta=\theta_{\omega}, \eta^{\prime}=\theta_{\omega^{*-1}}$, and $\breve{\eta}(\beta)=\omega \beta \omega^{-1}$. We can rewrite (7) as

$$
\begin{equation*}
\theta_{\omega} \Delta_{\xi} \theta_{\omega}^{-1}=\Delta_{\theta_{\omega^{*-1}}(\xi)} \tag{11}
\end{equation*}
$$

Since both sides of (11) are multiplicative in ξ, we can assume $\xi \in M^{*}$. In that case, both sides are antiderivations of $\Lambda(N)$, so it suffices to apply both sides to $\theta_{\omega}(M)=N$. We have

$$
\begin{aligned}
\Delta_{\theta_{\omega^{*-1}}(\xi)} \theta_{\omega}(m) & =\omega^{*-1}(\xi)(\omega(m))=\left(\sigma \xi \omega^{-1}\right)(\omega(m)) \\
& =\sigma \xi(m)=\theta_{\omega}(\xi(m))=\theta_{\omega} \Delta_{\xi}(m)
\end{aligned}
$$

and (7) follows. Reversing the roles of M and M^{*} gives (8). If $\beta \in \operatorname{gl}(M)$, then $\theta_{\omega} D_{\beta} \theta_{\omega}^{-1}=D_{\omega \beta \omega^{-1}}$ since they are derivations agreeing on $\theta_{\omega}(M)=N$. This shows (9). Finally,

$$
\begin{aligned}
\rho_{N}\left(\omega \beta \omega^{-1}\right)^{*} & =\rho_{N^{*}}\left(\left(\omega \beta \omega^{-1}\right)^{*}\right)=\rho_{N^{*}}\left(\omega^{*-1} \beta^{*} \omega^{*}\right) \\
& =\theta_{\omega^{*-1}} \rho_{M}(\beta)^{*} \theta_{\omega^{*}}
\end{aligned}
$$

showing (10). Thus, the σ-semilinear map (6) is a Lie isomorphism.
Let K be a unital commutative ring with involution $a \rightarrow \bar{a}$ and let k be the subring of fixed elements. Let M be a finite generated projective K module.of rank 9 with a nonsingular hermitian form h; i.e., $\eta: m \rightarrow h(m$,$) is a$ semilinear isomorphism $M \rightarrow M^{*}$. Define the semilinear involution τ on $\operatorname{gl}(M)$ by $h(m, \alpha n)=h(\tau(\alpha) m, n)$; i.e., $\tau(\alpha)=\eta^{-1} \alpha^{*} \eta$. Let

$$
\begin{aligned}
u(M, h) & =\{\alpha \in g l(M): \tau(\alpha)=-\alpha\} \\
s u(M, h) & =u(M, h) \cap \operatorname{sl}(M) \\
s k(K) & =\{a \in K: \bar{a}=-a\} \\
\tilde{u}(M, h) & =\rho_{M}(u(M, h))+s k(K) I d_{\Lambda_{3}(M)} .
\end{aligned}
$$

Clearly, $\tilde{u}(M, h)$ is a subalgebra of $\tilde{g l}(M)$. Note, $s k(K) I d_{M} \subset u(M, h)$, so $\tilde{u}(M, h)=\rho_{M}(u(M, h))$ if $\frac{1}{3} \in K$. Finally, set

$$
\widetilde{s u}(M, h)=\tilde{u}(M, h) \cap \tilde{s l}(M)
$$

We also set $x \cdot y=\theta_{\eta}(x) \cdot y$ for $x, y \in \Lambda(M)$ and $\delta(x, y)=\delta\left(x, \theta_{\eta}(y)\right)$ for $x, y \in \Lambda_{3}(M)$.

Theorem 7 Let K be a unital commutative ring with involution $a \rightarrow \bar{a}$ and let k be the subring of fixed elements. Let M be a finite generated projective K-module.of rank 9 with a nonsingular hermitian form h. If $u \in \Lambda_{9}(M)$ with $u \cdot u=1$ and $\mu=\theta_{\eta}(u)$, then

$$
\zeta(\alpha \oplus x \oplus \xi)=-\theta_{\eta}^{-1} \alpha^{*} \theta_{\eta} \oplus \theta_{\eta}^{-1}(\xi) \oplus \theta_{\eta}(x)
$$

for $\alpha \in \widetilde{\operatorname{sl}}(M), x \in \Lambda_{3}(M), \xi \in \Lambda_{3}\left(M^{*}\right)$ is a semi-linear automorphism of $\mathcal{G}(M, u)$. Moreover, $\alpha \oplus x \oplus \theta_{\eta}(x) \rightarrow \alpha \oplus x$ is an isomorphism of the Lie algebra $\mathcal{G}(\zeta)$ over k of fixed points of ζ to

$$
\mathcal{G}(M, h, u)=\widetilde{s u}(M, h) \oplus \Lambda_{3}(M)
$$

with skew-symmetric product given by

$$
\begin{aligned}
{[\alpha, \beta] } & =\alpha \beta-\beta \alpha \\
{[\alpha, x] } & =\alpha x \\
{[x, y] } & =(\delta(x, y)-\delta(y, x)) \oplus(x y) \cdot u
\end{aligned}
$$

for $\alpha, \beta \in \widetilde{s u}(M, h), x, y \in \Lambda_{3}(M)$.
Proof. Since h is hermitian, it is easy to see that $\eta^{*}=\eta$ and $\left(\theta_{\eta} \alpha \theta_{\eta}^{-1}\right)^{*}=$ $\theta_{\eta}^{-1} \alpha^{*} \theta_{\eta}$. Thus, ζ is the product of the semilinear isomorphism $\mathcal{G}(M, u) \rightarrow$ $\mathcal{G}\left(M^{*}, \mu\right)$ given by (6) with $N=M^{*}$ and $\omega=\eta$ and the inverse of the isomorphism (5). Since

$$
\begin{aligned}
\theta_{\eta}^{-1} \rho_{M}(\alpha)^{*} \theta_{\eta} & =\rho_{M}\left(\eta^{-1} \alpha^{*} \eta\right)=\rho_{M}(\tau(\alpha)), \\
\theta_{\eta}^{-1}\left(a I d_{\Lambda_{3}(M)}^{*}\right) \theta_{\eta} & =\bar{a} I d_{\Lambda_{3}(M)}
\end{aligned}
$$

we see that the Lie algebra $\mathcal{G}(\zeta)$ of fixed points of ζ is

$$
\mathcal{G}(\zeta)=\left\{\alpha \oplus x \oplus \theta_{\eta}(x): \alpha \in \widetilde{s u}(M, h), x \in \Lambda_{3}(M)\right\} .
$$

The $\widetilde{s u}(M, h)$ component of $\left[x \oplus \theta_{\eta}(x), y \oplus \theta_{\eta}(y)\right]$ is

$$
\left[x, \theta_{\eta}(y)\right]-\left[y, \theta_{\eta}(x)\right]=\delta(x, y)-\delta(y, x)
$$

while the $\Lambda_{3}(M)$ component is

$$
\begin{aligned}
{\left[\theta_{\eta}(x), \theta_{\eta}(y)\right] } & =\left(\theta_{\eta}(x) \theta_{\eta}(y)\right) \cdot u=\theta_{\eta}(x y) \cdot u \\
& =(x y) \cdot u
\end{aligned}
$$

Thus, $\alpha \oplus x \oplus \theta_{\eta}(x) \rightarrow \alpha \oplus x$ is an isomorphism of $\mathcal{G}(\zeta)$ with $\mathcal{G}(M, h, u)$.

4 Forms of exceptional Lie algebras

Lemma 8 If $F \in k$-alg is faithfully flat, then there are canonical isomorphisms

$$
\begin{aligned}
\mathcal{G}(M, u)_{F} & \cong \mathcal{G}\left(M_{F}, u_{F}\right) \\
\mathcal{G}(M, h, u)_{F} & \cong \mathcal{G}\left(M_{F}, h_{F}, u_{F}\right)
\end{aligned}
$$

where u_{F} is the image of $u \otimes 1$ in the canonical isomorphism $\Lambda_{9}(M)_{F} \rightarrow \Lambda_{9}\left(M_{F}\right)$ and h_{F} is the extension of the k-bilinear map h given by (1).

Proof. Since M is finitely generated projective, we have seen that there are canonical isomorphisms

$$
\begin{align*}
\Lambda_{3}(M)_{K} & \cong \Lambda_{3}\left(M_{K}\right) \tag{12}\\
\Lambda_{3}\left(M^{*}\right)_{K} & \cong \Lambda_{3}\left(M_{K}^{*}\right) \tag{13}\\
g l(M)_{K} & \cong g l\left(M_{K}\right) \tag{14}
\end{align*}
$$

for $K \in k$-alg. Moreover, $(\rho(g l(M)))_{K} \cong \rho_{K}\left(g l\left(M_{K}\right)\right)$ for $\rho:\left.\alpha \rightarrow D_{\alpha}\right|_{\Lambda_{3}(M)}$, so

$$
\tilde{g l}(M)_{K} \cong \tilde{g l}\left(M_{K}\right)
$$

If $F \in k$-alg is faithfully flat, then the exact sequence

$$
\tilde{s l}(M) \rightarrow \tilde{g l}(M) \xrightarrow{T} k
$$

implies that

$$
\tilde{s l}(M)_{F} \rightarrow \tilde{g l}(M)_{F} \xrightarrow{T_{F}} F
$$

is exact. Thus, $\widetilde{s l}(M)_{F}=\operatorname{ker}\left(T_{F}\right) \cong \widetilde{s l}\left(M_{F}\right)$. Similarly, $\widetilde{s u}(M, h)$ is the kernel of the map $\alpha \rightarrow(\alpha+\tau(\alpha)) \oplus T(\alpha)$, so $\widetilde{s u}(M, h)_{F} \cong \widetilde{s u}\left(M_{F}, h_{F}\right)$. The canonical isomorphisms of the lemma are now obvious.

Suppose $K=k_{+} \oplus k_{-}$where k_{σ} is an isomorphic copy of k via $a \rightarrow a_{\sigma}$ and $\bar{a}_{\sigma}=a_{-\sigma}$ for $\sigma= \pm$. We shall identify $a \in k$ with $a_{+} \oplus a_{-} \in K$, and write $M_{\sigma}=1_{\sigma} M$ and $m_{\sigma}=1_{\sigma} m$ where M is a K-module and $m \in M$.

Lemma 9 If M, h, u and ζ are as in Theorem 7 for $K=k_{+} \oplus k_{-}$, then

$$
\alpha \oplus x \rightarrow \alpha_{+} \oplus x_{+} \oplus \theta_{\eta}\left(x_{-}\right)
$$

is an isomorphism of $\mathcal{G}(M, h, u)$ with $\mathcal{G}\left(M_{+}, u_{+}\right)$.
Proof. Clearly, $\mathcal{G}(M, u)=\mathcal{G}(M, u)_{+} \oplus \mathcal{G}(M, u)_{-}$as Lie algebras over K. Moreover, since ζ is semilinear, ζ interchanges $\mathcal{G}(M, u)_{+}$with $\mathcal{G}(M, u)_{-}$, so

$$
\mathcal{G}(\zeta)=\left\{z+\zeta(z): z \in \mathcal{G}(M, u)_{+}\right\}
$$

Thus, $z \rightarrow z_{+}$is a Lie algebra isomorphism $\mathcal{G}(\zeta) \rightarrow \mathcal{G}(M, u)_{+}$over k. Using Theorem 7, we see that

$$
\alpha \oplus x \rightarrow\left(\alpha \oplus x \oplus \theta_{\eta}(x)\right)_{+}=\alpha_{+} \oplus x_{+} \oplus \theta_{\eta}\left(x_{-}\right)
$$

is a Lie algebra isomorphism $\mathcal{G}(M, h, u) \rightarrow \mathcal{G}(M, u)_{+}$over k. On the other hand, $M_{k_{+}}=1_{+} \otimes M_{+}$can be identified with M_{+}as k_{+}-modules. Thus,

$$
\mathcal{G}(M, u)_{+}=\mathcal{G}(M, u)_{k_{+}}=\mathcal{G}\left(M_{k_{+}}, 1_{+} \otimes u\right)_{+}=\mathcal{G}\left(M_{+}, u_{+}\right)
$$

as Lie algebra over k_{+}and hence over k.

Suppose M, u, μ are as in Theorem 5 and M is free over k. Let $B=$ $\left\{m_{1}, \ldots, m_{9}\right\}$ be a basis for M and $\phi_{1}, \ldots, \phi_{9}$ the dual basis of M^{*}; i.e., $\phi_{i}\left(m_{j}\right)=$ $\delta_{i j}$. For

$$
S=\left\{i_{1}<\cdots<i_{l}\right\} \subset\{1, \ldots, 9\}
$$

let

$$
\begin{aligned}
m_{S} & =m_{i_{1}} \cdots m_{i_{l}} \\
\phi_{S} & =\phi_{i_{l}} \cdots \phi_{i_{1}}
\end{aligned}
$$

so $\left\{m_{S}:|S|=l\right\}$ and $\left\{\phi_{S}:|S|=l\right\}$ are dual bases for $\Lambda_{l}(M)$ and $\Lambda_{l}\left(M^{*}\right)$. Set $u_{B}=m_{\{1, \ldots, 9\}}$ and $\mu_{B}=\phi_{\{1, \ldots, 9\}}$. Since $u=a u_{B}, \mu=b \mu_{B}$ and $1=\mu \cdot u=a b$, so a and b are invertible, we may replace m_{1} by $a m_{1}$ and ϕ_{1} by $b \phi_{1}$ to assume that $u=u_{B}$ and $\mu=\mu_{B}$. Now $e_{i j}:=e\left(m_{i}, \phi_{j}\right), 1 \leq i, j \leq 9$ is a basis for $g l(M)$ and the matrix of $e_{i j}$ relative to the basis for M is just the usual matrix unit. Let

$$
\begin{aligned}
h_{1} & =\rho\left(e_{11}+e_{22}+e_{33}\right)-I d_{\Lambda_{3}(M)} \\
h_{i} & =\rho\left(e_{i i}-e_{i-1, i-1}\right) \text { for } 2 \leq i \leq 8
\end{aligned}
$$

Lemma 10 If M is a free module with basis $B=\left\{m_{1}, \ldots, m_{9}\right\}$, then

$$
\tilde{B}=\left\{h_{i}: 1 \leq i \leq 8\right\} \cup\left\{\rho\left(e_{i j}\right): i \neq j\right\}
$$

is a basis for $\tilde{s l}(M)$ and

$$
\hat{B}=\tilde{B} \cup\left\{m_{S}:|S|=3\right\} \cup\left\{\phi_{S}:|S|=3\right\}
$$

is a basis for $\mathcal{G}\left(M, u_{B}\right)$. Thus, $\mathcal{G}\left(M, u_{B}\right)_{K}$ is canonically isomorphic to $\mathcal{G}\left(M_{K}, u_{B \otimes 1}\right.$.) for any $K \in k$-alg.

Proof. First, note $T\left(h_{1}\right)=3-3=0$, so $h_{1} \in \widetilde{s l}(M)$. Suppose $\alpha=\sum_{i, j} a_{i j} e_{i j} \in$ $g l(M)$ and $b \in k$ with $\rho(\alpha)+b I d_{\Lambda_{3}(M)}=0$. If $i \neq j$, choose k, s with i, j, k, s distinct. We see that $\beta=\rho\left(e_{i j}\right)$ is the only element among $\rho\left(e_{p q}\right), I d_{\Lambda_{3}(M)}$ with $\beta\left(m_{j} m_{k} m_{s}\right)$ having a nonzero coefficient of $m_{i} m_{k} m_{s}$. Thus, $a_{i j}=0$ for $i \neq j$. Also,

$$
\rho(\alpha) m_{i} m_{j} m_{k}=\sum_{p=1}^{9} a_{p p} \rho\left(e_{p p}\right) m_{i} m_{j} m_{k}=\left(a_{i i}+a_{j j}+a_{k k}\right) m_{i} m_{j} m_{k}
$$

so $a_{i i}+a_{j j}+a_{k k}=-b$ for distinct i, j, k. Thus, $a_{i i}=a$ and $b=-3 a$ for $a=a_{11}$. Now suppose

$$
\sum_{i=1}^{8} c_{i} h_{i}+\sum_{1 \leq i \neq j \leq 9} c_{i j} \rho\left(e_{i j}\right)=0
$$

Letting

$$
\begin{aligned}
\alpha & =c_{1}\left(e_{11}+e_{22}+e_{33}\right)+\sum_{i=2}^{8} c_{i}\left(e_{i i}-e_{i-1, i-1}\right)+\sum_{1 \leq i \neq j \leq 9} c_{i j} e_{i j} \\
& =\sum_{i, j} a_{i j} e_{i j}
\end{aligned}
$$

we have $\rho(\alpha)-c_{1} I d_{\Lambda_{3}(M)}=0$. Thus, $c_{i j}=a_{i j}=0$ for $i \neq j$. Also, $a_{99}=0$, so all $a_{i i}=0$ and $c_{1}=-3 a_{11}=0$. Moreover, $\sum_{i=2}^{8} c_{i}\left(e_{i i}-e_{i-1, i-1}\right)=0$ forces all $c_{i}=0$. Thus, \tilde{B} is independent. To show that it spans $\tilde{s l}(M)$, suppose $\alpha=\sum_{i, j} a_{i j} e_{i j}$ and $x=\rho(\alpha)+b I d_{\Lambda_{3}(M)} \in \widetilde{s l}(M)$; i.e., $\operatorname{tr}(\alpha)+3 b=0$. After subtracting $a_{99}\left(\rho\left(I d_{M}\right)-3 I d_{\Lambda_{3}(M)}\right)=0$, we may assume $a_{99}=0$. Subtracting $a_{i j} \rho\left(e_{i j}\right)$ for $i \neq j$ and $-b h_{1}$, we can also assume $a_{i j}=0$ for $i \neq j$ and $b=0$. Thus, $\operatorname{tr}(\alpha)=0$ and $\rho(\alpha)$ is in the span of h_{2}, \ldots, h_{8}. Thus, \tilde{B} is a basis for $\widetilde{s l}(M)$, and hence \hat{B} is a basis for $\mathcal{G}\left(M, u_{B}\right)$.

Now $B \otimes 1:=\{m \otimes 1: m \in B\}$ is a basis for M_{K} and $\hat{B} \otimes 1$ is a basis for $\mathcal{G}\left(M, u_{B}\right)_{K}$. The natural bijection between $\hat{B} \otimes 1$ and the basis $\widehat{B \otimes 1}$ of $\mathcal{G}\left(M_{K}, u_{B \otimes 1}\right)$ induces a canonical isomorphism $\mathcal{G}\left(M, u_{B}\right)_{K} \rightarrow \mathcal{G}\left(M_{K}, u_{B \otimes 1}\right)$.

We remark that the rank of $\mathcal{G}(M, u)$ is $8+9 \cdot 8+\binom{9}{3}+\binom{9}{3}=80+2 \cdot 84=248$.

Theorem 11 Let \mathbb{C}^{9} be the complex vector space of dimension 9 with standard basis C. Then $\mathcal{G}\left(\mathbb{C}^{9}, u_{C}\right)$ is a simple Lie algebra of type E_{8} and \hat{C} is a Chevalley basis.

Proof. Let $M=\mathbb{C}^{9}, C=\left\{m_{1}, \ldots, m_{9}\right\}, u=u_{C}$, and $\mu=\mu_{C}$. Since $\frac{1}{3} \in \mathbb{C}$, $\rho: \operatorname{sl}(M) \rightarrow \widetilde{s l}(M)$ is an isomorphism. Now $\widetilde{s l}(M), \Lambda_{3}(M)$, and $\Lambda_{3}\left(M^{*}\right)$ are nonisomorphic irreducible $\widetilde{s l}(M)$-modules, so they are the only irreducible $\tilde{s l}(M)$-modules in $\mathcal{G}(M, u)$. Thus, if I is a nonzero ideal of $\mathcal{G}(M, u)$, then complete reducibility shows that I contains at least one of these submodules. Moreover,

$$
\begin{aligned}
0 & \neq\left[\widetilde{s l}(M), \Lambda_{3}(M)\right] \subset \Lambda_{3}(M) \\
0 & \neq\left[\tilde{s l}(M), \Lambda_{3}\left(M^{*}\right)\right] \subset \Lambda_{3}\left(M^{*}\right) \\
0 & \neq\left[\Lambda_{3}(M), \Lambda_{3}\left(M^{*}\right)\right] \subset \widetilde{s l}(M)
\end{aligned}
$$

so I contains each of these submodules. Thus, $\mathcal{G}(M, u)$ is simple. Let \mathcal{H} be the trace 0 diagonal maps of M relative to the given basis, so \mathcal{H} is a Cartan subalgebra of $s l(M)$, and $\tilde{\mathcal{H}}=\rho(\mathcal{H})$ is a Cartan subalgebra of $\widetilde{s l}(M)$. Since $h_{1}=\rho\left(e_{11}+e_{22}+e_{33}-\frac{1}{3} I d_{M}\right)$, we see $h_{i}, 1 \leq i \leq 8$ is a basis for $\tilde{\mathcal{H}}$. The centralizer of $\tilde{\mathcal{H}}$ in $\mathcal{G}(M, u)$ is contained in $\tilde{s l}(M)$ and is hence $\tilde{\mathcal{H}}$. Thus, $\tilde{\mathcal{H}}$ is a Cartan subalgebra of $\mathcal{G}(M, u)$. Let $\varepsilon_{i} \in \tilde{\mathcal{H}}^{*}$ with $\varepsilon_{i}(h)=a_{i}$ where $\rho^{-1}(h)=\operatorname{diag}\left(a_{1}, \ldots, a_{9}\right) \in \mathcal{H}$, as a diagonal matrix. Clearly, $\sum_{i=1}^{9} \varepsilon_{i}=0$.

We see that the roots Σ of $\tilde{\mathcal{H}}$ for $\mathcal{G}(M, u)$ are all $\varepsilon_{i}-\varepsilon_{j}$ for $i \neq j$ (in $\left.\widetilde{s l}(M)\right)$ and all $\pm\left(\varepsilon_{i}+\varepsilon_{j}+\varepsilon_{k}\right)$ for distinct i, j, k (in $\Lambda_{3}(M)$ and $\left.\Lambda_{3}\left(M^{*}\right)\right)$. Let $\alpha_{1}=\varepsilon_{1}+\varepsilon_{2}+\varepsilon_{3}$ and $\alpha_{i}=\varepsilon_{i}-\varepsilon_{i-1}$ for $2 \leq i \leq 8$. Now $\Pi=\left\{\alpha_{1}, \ldots, \alpha_{8}\right\}$ is a basis of $\tilde{\mathcal{H}}^{*}$. Moreover, an examination of the α_{j}-string through α_{i} shows that Π is a fundamental system of roots with Dynkin diagram E_{8} with $\alpha_{2}, \ldots, \alpha_{8}$ forming a diagram of type A_{7} and α_{1} connected to α_{4}. Hence, $\mathcal{G}(M, u)$ is a Lie algebra of type E_{8}. To show that \hat{C} is a Chevalley basis, we need to show ([H72], p. 147)
(a) for each root α, there is $x_{\alpha} \in \hat{C} \cap \mathcal{G}(M, u)_{\alpha}$,
(b) $\left[x_{\alpha}, x_{-\alpha}\right]=h_{\alpha}$ with $\left[h_{\alpha}, x_{\alpha}\right]=2 x_{\alpha}$,
(c) $h_{\alpha_{i}}=h_{i}$,
(d) the linear map with $x_{\alpha} \rightarrow-x_{-\alpha}, h_{i} \rightarrow-h_{i}$ is an automorphism of $\mathcal{G}(M, u)$.
Clearly, $x_{\alpha}=\rho\left(e_{i j}\right)$ for $\alpha=\varepsilon_{i}-\varepsilon_{j}, x_{\alpha}=m_{S}$ and $x_{-\alpha}=\phi_{S}$ for $\alpha=\varepsilon_{i}+\varepsilon_{j}+\varepsilon_{k}$ and $S=\{i<j<k\}$ satisfies (a). Now $\left[\left[e_{i j}, e_{j i}\right], e_{i j}\right]=\left[e_{i i}-e_{j j}, e_{i j}\right]=2 e_{i j}$, so (b) holds for $\alpha=\varepsilon_{i}-\varepsilon_{j}$ and (c) holds for $i \neq 1$. Lemma 3 (v) with $l=1$ shows

$$
\begin{aligned}
e\left(m_{S}, \phi_{S}\right) & =e\left(m_{i} m_{j} m_{k}, \phi_{k} \phi_{j} \phi_{i}\right)=\sum_{i, j, k \circlearrowleft} e\left(m_{i},\left(m_{j} m_{k}\right) \cdot\left(\phi_{k} \phi_{j} \phi_{i}\right)\right) \\
& =e_{i i}+e_{j j}+e_{k k}
\end{aligned}
$$

Thus,

$$
\begin{aligned}
{\left[m_{S}, \phi_{S}\right] } & =\rho\left(e\left(m_{S}, \phi_{S}\right)-\frac{1}{3}\left(m_{S} \cdot \phi_{S}\right) I d_{M}\right) \\
& =\rho\left(e_{i i}+e_{j j}+e_{k k}-\frac{1}{3} I d_{M}\right)
\end{aligned}
$$

so (b) holds for $\alpha= \pm\left(\varepsilon_{i}+\varepsilon_{j}+\varepsilon_{k}\right)$ and (c) holds for $i=1$. Finally, let \mathbb{C} have the trivial involution and let h be the symmetric bilinear form on M with $h\left(m_{i}, m_{j}\right)=\delta_{i j}$. Thus, η as in Theorem 7 has $\eta\left(m_{i}\right)=\phi_{i}$. Now $\theta_{\eta}\left(m_{C}\right)=\phi_{1} \cdots \phi_{9}=\phi_{9} \cdots \phi_{1}=\phi_{C}$, and we have an automorphism ζ given by Theorem 7. Since $\theta_{\eta}^{-1} \rho(\beta)^{*} \theta_{\eta}=\rho(\tau(\beta))$ for $\beta \in \operatorname{sl}(M)$ where $\tau\left(e_{i j}\right)=e_{j i}$, we see that $\zeta\left(h_{i}\right)=-h_{i}$, and $\zeta\left(x_{\alpha}\right)=-x_{-\alpha}$ for $\alpha=\varepsilon_{i}-\varepsilon_{j}$. Also, $\zeta\left(x_{\alpha}\right)=$ $\theta_{\eta}\left(m_{S}\right)=\phi_{i} \phi_{j} \phi_{k}=-\phi_{S}=-x_{-\alpha}$ for $\alpha=\varepsilon_{i}+\varepsilon_{j}+\varepsilon_{k}$ and $S=\{i<j<k\}$. Thus, (d) holds and \hat{C} is a Chevalley basis.

Let $\mathcal{G}(\mathbb{C})$ be a simple Lie algebra over \mathbb{C} of type X_{l} and let $\mathcal{G}(\mathbb{Z})$ be the \mathbb{Z}-span of a Chevalley basis of $\mathcal{G}(\mathbb{C})$. Up to isomorphism, $\mathcal{G}(\mathbb{Z})$ is independent of the choice of Chevalley basis ([H72], p. 150, Exercise 5). Set $\mathcal{G}(k)=\mathcal{G}(\mathbb{Z})_{k}$. We say that a Lie algebra \mathcal{G} over k is a split form of X_{l} if $\mathcal{G} \cong \mathcal{G}(k)$ and that \mathcal{G} is a form of X_{l} if $\mathcal{G}_{F} \cong \mathcal{G}(F)$ for some faithfully flat $F \in k$-alg. If $F \in k$-alg and $E \in F$-alg are faithfully flat, then $E \in k$-alg is faithfully flat. Thus, if \mathcal{G}_{F} is a form of X_{l} for some faithfully flat $F \in k$-alg, then \mathcal{G} is a form of X_{l}.

Corollary 12 The Lie algebra $\mathcal{G}(M, u)$ in Theorem 5 is a form of E_{8} and is a split form if M is free. If K is a quadratic étale k-algebra, then the Lie algebra $\mathcal{G}(M, h, u)$ in Theorem 7 is a form of E_{8}.

Proof. If \hat{C} is the Chevalley basis of $\mathcal{G}\left(\mathbb{C}^{9}, u_{C}\right)$ given by Theorem 11, we can identify C with the standard basis of \mathbb{Z}^{9} and \hat{C} with the corresponding basis for $\mathcal{G}\left(\mathbb{Z}^{9}, u_{C}\right)$. In particular, $\mathcal{G}\left(\mathbb{Z}^{9}, u_{C}\right)=\mathcal{G}(\mathbb{Z})$, the \mathbb{Z}-span \hat{C}. If M, u are as in Theorem 5 with M free, we can choose a basis B for M with $u=u_{B}$ and $\mu=\mu_{B}$. The isomorphism $M \rightarrow \mathbb{Z}_{k}^{9} \cong k^{9}$ taking B to $C \otimes 1$ induces an isomorphism $\mathcal{G}\left(M, u_{B}\right) \rightarrow \mathcal{G}\left(\mathbb{Z}_{k}^{9}, u_{C \otimes 1}\right)$. Since

$$
\mathcal{G}(k)=\mathcal{G}(\mathbb{Z})_{k}=\mathcal{G}\left(\mathbb{Z}^{9}, u_{C}\right)_{k} \cong \mathcal{G}\left(\mathbb{Z}_{k}^{9}, u_{C \otimes 1}\right)
$$

by Lemma 10, we see that $\mathcal{G}(M, u)$ is a split form if M is free. For the general case, we know there is a faithfully flat $F \in k$-alg with M_{F} a free k_{F}-module of rank 9 ([B89], II.5, Exercise 8). By Lemma 8 and the result for free M, we see

$$
\mathcal{G}(M, u)_{F} \cong \mathcal{G}\left(M_{F}, u_{F}\right) \cong \mathcal{G}(F)
$$

and $\mathcal{G}(M, u)$ is a form of E_{8}.
For M, h, u as in Theorem 7 with K a quadratic étale k-algebra, we know by Proposition 1 that K is faithfully flat and $K_{K} \cong K \oplus K$. Thus,

$$
\begin{equation*}
\mathcal{G}(M, h, u)_{K} \cong \mathcal{G}\left(M_{K}, h_{K}, u_{K}\right) \cong \mathcal{G}\left(\left(M_{K}\right)_{+},\left(u_{K}\right)_{+}\right) \tag{15}
\end{equation*}
$$

by Lemmas 8 and 9 , so $\mathcal{G}(M, h, u)_{K}$ and hence $\mathcal{G}(M, h, u)$ are forms of E_{8}.

Theorem 13 Let M, u, μ be as in Theorem 5
(i) If $M=M_{1} \oplus M_{2}$ with M_{1} of rank 3 and M_{2} of rank 6 , then

$$
\mathcal{G}\left(M_{1}, M_{2}, u\right)=\left[M_{1} \Lambda_{2}\left(M_{2}\right), M_{1}^{*} \Lambda_{2}\left(M_{2}^{*}\right)\right] \oplus M_{1} \Lambda_{2}\left(M_{2}\right) \oplus M_{1}^{*} \Lambda_{2}\left(M_{2}^{*}\right)
$$

is a Lie subalgebra of $\mathcal{G}(M, u)$ and a form of E_{7}.
(ii) $M=M_{1} \oplus M_{2} \oplus M_{3}$ with each M_{i} of rank 3 , then

$$
\mathcal{G}\left(M_{1}, M_{2}, M_{3}, u\right)=\left[M_{1} M_{2} M_{3}, M_{1}^{*} M_{2}^{*} M_{3}^{*}\right] \oplus M_{1} M_{2} M_{3} \oplus M_{1}^{*} M_{2}^{*} M_{3}^{*}
$$

is a Lie subalgebra of $\mathcal{G}(M, u)$ and a form of E_{6}.
Let M, h, u as in Theorem 7 with K a quadratic étale k-algebra. Set $d(x, y)=\delta(x, y)-\delta(y, x)$ for $x, y \in \Lambda_{3}(M)$.
(iii) If $M=M_{1} \perp M_{2}$ with M_{1} of rank 3 and M_{2} of rank 6 , then

$$
\mathcal{G}\left(M_{1}, M_{2}, h, u\right)=d\left(M_{1} \Lambda_{2}\left(M_{2}\right), M_{1} \Lambda_{2}\left(M_{2}\right)\right) \oplus M_{1} \Lambda_{2}\left(M_{2}\right)
$$

is a Lie subalgebra of $\mathcal{G}(M, h, u)$ and a form of E_{7}.
(iv) $M=M_{1} \perp M_{2} \perp M_{3}$ with each M_{i} of rank 3 , then

$$
\mathcal{G}\left(M_{1}, M_{2}, M_{3}, h, u\right)=d\left(M_{1} M_{2} M_{3}, M_{1} M_{2} M_{3}\right) \oplus M_{1} M_{2} M_{3}
$$

is a Lie subalgebra of $\mathcal{G}(M, h, u)$ and a form of E_{6}.

Proof. We show that $\mathcal{G}\left(M_{1}, M_{2}, M_{3}, u\right)$ is a subalgebra, and the other cases can be handled similarly. Since $M_{i} \cdot M_{j}^{*}=0$ for $i \neq j$, we see

$$
\begin{aligned}
& \left(\left(M_{1} M_{2} M_{3}\right)\left(M_{1} M_{2} M_{3}\right)\right) \cdot \Lambda_{9}(M) \\
= & \left(\left(M_{1} M_{2} M_{3}\right)\left(M_{1} M_{2} M_{3}\right)\right) \cdot \Lambda_{3}\left(M_{1}^{*}\right) \Lambda_{3}\left(M_{2}^{*}\right) \Lambda_{3}\left(M_{3}^{*}\right) \\
\subset & M_{1}^{*} M_{2}^{*} M_{3}^{*} .
\end{aligned}
$$

Thus,

$$
\left[M_{1} M_{2} M_{3}, M_{1} M_{2} M_{3}\right] \subset M_{1}^{*} M_{2}^{*} M_{3}^{*}
$$

and similarly

$$
\left[M_{1}^{*} M_{2}^{*} M_{3}^{*}, M_{1}^{*} M_{2}^{*} M_{3}^{*}\right] \subset M_{1} M_{2} M_{3}
$$

Also,

$$
\left(M_{i} M_{j}\right) \cdot\left(M_{1}^{*} M_{2}^{*} M_{3}^{*}\right) \subset M_{k}^{*}
$$

for $\{i, j, k\}=\{1,2,3\}$. Thus,

$$
e\left(M_{1} M_{2} M_{3}, M_{1}^{*} M_{2}^{*} M_{3}^{*}\right) \subset \sum_{i=1}^{3} e\left(M_{i}, M_{i}^{*}\right)
$$

by Lemma $3(\mathrm{v})$. Since $\rho\left(e\left(M_{i}, M_{i}^{*}\right)\right)$ stabilizes $M_{1} M_{2} M_{3}$ and $\rho\left(e\left(M_{i}, M_{i}^{*}\right)\right)^{*}$ stabilizes $M_{1}^{*} M_{2}^{*} M_{3}^{*}$, we see $\mathcal{G}\left(M_{1}, M_{2}, M_{3}, u\right)$ is a subalgebra.

Since $\mathcal{G}\left(M_{1}, M_{2}, h, u\right)$ is the subalgebra generated by $M_{1} \Lambda_{2}\left(M_{2}\right)$ and $\mathcal{G}\left(M_{1}, M_{2}, M_{3}, h, u\right)$ is the subalgebra generated by $M_{1} M_{2} M_{3}$, we can use the isomorphism (15) to reduce cases (iii) and (iv) to cases (i) and (ii). In cases (i) or (ii), there is a faithfully flat $F \in k$-alg with each $M_{i F}$ free of rank 3 or 6 . We can choose a basis $B=\left\{m_{1}, \ldots, m_{9}\right\}$ for M_{F} with $1 \otimes u=u_{B}$ and $1 \otimes \mu=\mu_{B}$ which is compatible with the direct sum decomposition; i.e., $M_{1 F}=\operatorname{span}_{F}\left(m_{1}, m_{2}, m_{3}\right)$ and $M_{2 F}=\operatorname{span}_{F}\left(m_{4}, \ldots, m_{9}\right)$ or $M_{i F}=\operatorname{span}_{F}\left(m_{3 i-2}, m_{3 i-1}, m_{3 i}\right)$. The isomorphism $\mathcal{G}(M, u)_{F} \cong \mathcal{G}\left(\mathbb{Z}^{9}, u_{C}\right)_{F}$ allows us to reduce to the cases

$$
\begin{aligned}
M & =\mathbb{Z}^{9}=\mathbb{Z}^{(1,3)} \oplus \mathbb{Z}^{(4,9)} \\
M & =\mathbb{Z}^{9}=\mathbb{Z}^{(1,3)} \oplus \mathbb{Z}^{(4,6)} \oplus \mathbb{Z}^{(7,9)}
\end{aligned}
$$

where $\mathbb{Z}^{(i, j)}=\operatorname{span}_{\mathbb{Z}}\left(m_{i}, \ldots, m_{j}\right)$ for $1 \leq i \leq j \leq 9$ and $C=\left\{m_{1}, \ldots, m_{9}\right\}$ is the standard basis for \mathbb{Z}^{9}.

Let $\mathcal{G}=\mathcal{G}\left(\mathbb{C}^{9}, u_{C}\right)$ as in Theorem 11. Let

$$
\begin{aligned}
\beta_{i} & =\alpha_{i}=\varepsilon_{i}-\varepsilon_{i-1} \text { for } i=2,3,5,6,7 \\
\beta_{1} & =\alpha_{9}=\varepsilon_{9}-\varepsilon_{8} \\
\beta_{4} & =\varepsilon_{2}+\varepsilon_{4}+\varepsilon_{8} \\
\beta_{8} & =\varepsilon_{4}+\varepsilon_{5}+\varepsilon_{6}
\end{aligned}
$$

As before, by checking the β_{j}-string through β_{i}, we see that $\tilde{\Pi}=\left\{\beta_{1}, \ldots, \beta_{8}\right\}$ is a fundamental system of roots with Dynkin diagram E_{8} with $\beta_{2}, \ldots, \beta_{8}$ forming
${\underset{\sim}{n}}_{i}^{\text {a diagram of type }} A_{7}$ and β_{1} connected to β_{4}. Moreover, replacing h_{i} in \hat{C} by $\tilde{h}_{i}=h_{\beta_{i}}$, we get a Chevalley basis \tilde{C}. Let

$$
\begin{aligned}
h^{\prime} & =\rho(\operatorname{diag}(-2,-2,-2,1,1,1,1,1,1)) \\
h^{\prime \prime} & =\rho(\operatorname{diag}(1,1,1,-1,-1,-1,0,0,0))
\end{aligned}
$$

Since

$$
\begin{aligned}
& \beta_{i}\left(h^{\prime}\right)=0 \text { for } 1 \leq i \leq 7 \\
& \beta_{8}\left(h^{\prime}\right)=3 \\
& \beta_{i}\left(h^{\prime \prime}\right)=0 \text { for } 1 \leq i \leq 6 \\
& \beta_{7}\left(h^{\prime \prime}\right)=1
\end{aligned}
$$

we see that

$$
\Sigma^{\prime}=\left\{\alpha \in \Sigma: \alpha\left(h^{\prime}\right)=0\right\}
$$

is a root system of type E_{7} and

$$
\Sigma^{\prime \prime}=\left\{\alpha \in \Sigma: \alpha\left(h^{\prime}\right)=\alpha\left(h^{\prime \prime}\right)=0\right\}
$$

is a root system of type E_{6}. Moreover, the subalgebra \mathcal{G}^{\prime} generated by all \mathcal{G}_{α} with $\alpha \in \Sigma^{\prime}$ is a complex simple Lie algebra of type E_{7} with Chevalley basis $\tilde{C} \cap \mathcal{G}^{\prime}$ and the subalgebra $\mathcal{G}^{\prime \prime}$ generated by all \mathcal{G}_{α} with $\alpha \in \Sigma^{\prime \prime}$ is a complex simple Lie algebra of type E_{6} with Chevalley basis $\tilde{C} \cap \mathcal{G}^{\prime \prime}$. We see

$$
\begin{array}{r}
\Sigma^{\prime}=\left\{\varepsilon_{i}-\varepsilon_{j}: 1 \leq i \neq j \leq 3 \text { or } 4 \leq i \neq j \leq 9\right\} \\
\cup\left\{ \pm\left(\varepsilon_{i}+\varepsilon_{j}+\varepsilon_{k}\right): 1 \leq i \leq 3 \text { and } 4 \leq j \neq k \leq 9\right\}, \\
\Sigma^{\prime \prime}=\left\{\varepsilon_{i}-\varepsilon_{j}: 3 l-2 \leq i \neq j \leq 3 l \text { for } l=1,2, \text { or } 3\right\} \\
\cup\left\{ \pm\left(\varepsilon_{i_{1}}+\varepsilon_{i_{2}}+\varepsilon_{i_{3}}\right): 3 l-2 \leq i_{l} \leq 3 l\right\} .
\end{array}
$$

Since $\left[m_{i} m_{k} m_{l}, \phi_{l} \phi_{k} \phi_{j}\right]=\rho\left(e_{i j}\right)$ where $C=\left\{m_{1}, \ldots, m_{9}\right\}$, we see that the \mathbb{Z}-span of $\tilde{C} \cap \mathcal{G}^{\prime}$ is generated as a \mathbb{Z}-algebra by

$$
\tilde{C} \cap\left(\mathbb{Z}^{(1,3)} \Lambda_{2}\left(\mathbb{Z}^{(4,9)}\right) \cup \mathbb{Z}^{(1,3) *} \Lambda_{2}\left(\mathbb{Z}^{(4,9) *}\right)\right)
$$

while the \mathbb{Z}-span of $\tilde{C} \cap \mathcal{G}^{\prime \prime}$ is generated as a \mathbb{Z}-algebra by

$$
\tilde{C} \cap\left(\mathbb{Z}^{(1,3)} \mathbb{Z}^{(4,6)} \mathbb{Z}^{(7,9)} \cup \mathbb{Z}^{(1,3) *} \mathbb{Z}^{(4,6) *} \mathbb{Z}^{(7,9) *}\right)
$$

In other words, $\mathcal{G}\left(\mathbb{Z}^{(1,3)}, \mathbb{Z}^{(4,9)}, u_{C}\right)$ is the \mathbb{Z}-span of $\tilde{C} \cap \mathcal{G}^{\prime}$ and

$$
\mathcal{G}\left(\mathbb{Z}^{(1,3)}, \mathbb{Z}^{(4,6)}, \mathbb{Z}^{(7,9)}, u_{C}\right)
$$

is the \mathbb{Z}-span of $\tilde{C} \cap \mathcal{G}^{\prime \prime}$.

References

[B88] N. Bourbaki, Elements of Mathematics, Algebra I, Chapters 1-3, Hermann, Paris, 1988.
[B89] N. Bourbaki, Elements of Mathematics, Commutative Algebra, Chapters 1-7, Springer-Verlag, Berlin, 1989.
[H72] James E Humphreys, Introduction to Lie Algebras and Representation Theory, Springer-Verlag, New York, 1972.

