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Abstract. Let F be a field of arbitrary characteristic. A quadratic Jordan F-algebra
J will be called finitary if UaJ is finite dimensional for any element a ∈ J . We
determine the structure of nondegenerate finitary quadratic Jordan F-algebras.

Introduction

In this paper we deal with quadratic Jordan algebras (definition below) over a field F
of arbitrary characteristic. Any associative F-algebra A gives rise to a Lie algebra A(−)

with Lie product [a, b] = ab − ba, and a quadratic Jordan algebra A(+) with quadratic

mappings a 7→ a2 and a 7→ Ua, Uab = aba for all a, b ∈ A.

Let X be a vector space over F. Denote by F(X) the associative algebra of finite-

rank linear mappings of the vector space X. A Lie F-algebra L is said to be finitary

if it is isomorphic to a subalgebra of the Lie algebra fgl(X) := F(X)(−) for some vec-

tor space X over F. Infinite-dimensional simple finitary Lie algebras over a field of

characteristic 0 were classified by Baranov [2]. Later, Baranov and Strade [3] classi-

fied infinite-dimensional simple finitary Lie algebras over an algebraically closed field of

characteristic not 2 or 3

By analogy with the Lie case, by a finitary associative F-algebra we mean any subal-

gebra A of F(X) for some vector space X over F.

Following the same analogy, we could define a finitary quadratic Jordan F-algebra as

a subalgebra J of F(X)(+) for some vector space X over F. But such a definition would

rule out all exceptional quadratic Jordan algebras. Yet being unsuitable, the above

definition still helps us to find the correct one. A quadratic Jordan F-algebra J will be

called finitary if the inner ideal UaJ is finite-dimensional for every element a ∈ J . As

will be seen, any subalgebra of a quadratic Jordan algebra F(X)(+) is finitary according

to this definition.
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Recall that a quadratic Jordan algebra J is said to be nondegenerate if UaJ = 0

implies a = 0. If J = A(+) for some associative algebra A, then J is nondegenerate if

and only if A is semiprime.

The main result of this paper is a structure theorem for nondegenerate finitary qua-

dratic Jordan algebras over a field F of arbitrary characteristic. Among other results, we

will prove that any infinite dimensional central simple finitary quadratic Jordan algebra

comes from a central simple finitary associative algebra (with or without involution),

so we begin by studying finitary associative algebras.

1. Finitary associative algebras

Throughout this section F will be denote a field and A an associative F-algebra. It is

convenient to introduce some notation.

1.1. Following [7], let (X, Y, 〈·, ·〉) be a pair of dual vector spaces over a division F-

algebra ∆, where X is a left vector space, Y is a right vector space and 〈·, ·〉 : X×Y → ∆

is a nondegenerate bilinear form. A linear mapping a : X → X is adjointable if there

exists a# : Y → Y such that 〈xa, y〉 = 〈x, a#y〉 for all x ∈ X, y ∈ Y . Notice that we

write the mappings of a left vector space on the right (thus composing them from left to

right), and the mappings on a right vector space on the left (thus composing them from

right to left). We denote by LY (X) the associative F-algebra of all adjointable linear

mappings of X, and by FY (X) the ideal of those linear mappings having finite rank.

The algebras FY (X) are precisely those simple algebras containing minimal one-sided

ideals [7].

Any left vector space X over ∆ gives rise to the canonical pair (X,X∗, 〈·, ·〉), where

X∗ stands for the dual of X. Thus, according to the notation above, F(X) = FX∗(X).

Let (X,Y, 〈·, ·〉) be a pair of dual vector spaces over ∆. For x ∈ X, y ∈ Y , write y⊗x

to denote the adjointable linear mapping defined by

x′(y ⊗ x) = 〈x′, y〉x for x′ ∈ X

with adjoint (y ⊗ x)#y′ = y〈x, y′〉.
The following two results can be easily verified. .

1.2. (y ⊗ x)a = y ⊗ xa for all mapping a : X → X and a(y ⊗ x) = a#y ⊗ x for all

adjointable a.

1.3. Every a ∈ FY (X) can be expressed as a =
∑

yi ⊗ xi where both sets {yi} ⊂ Y

and {xi} ⊂ X are linearly independent, which just means that FY (X) is isomorphic as
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an F-vector space to the tensor product Y ⊗∆ X. Actually, FY (X) is isomorphic as an

F-algebra to Y ⊗∆ X under the product

(y ⊗ x)(z ⊗ w) = y〈x, z〉 ⊗ w = y ⊗ 〈x, z〉w.

Definition 1.4. By a finitary associative F-algebra we mean any subalgebra A of F(X)

for some vector space X over F.

Lemma 1.5. If A is finitary, then aAa is finite dimensional for any a ∈ A.

Proof. Let A ≤ F(X), with X being a vector space over F. It follows from (1.2) and

(1.3) that for any a ∈ A, aAa ⊂ aF(X)a ∼= a(X∗ ⊗F X)a = a#X∗ ⊗F Xa is finite

dimensional, with dimF aAa ≤ rank(a)2. ¤

Theorem 1.6. Let A be an associative F-algebra.
(1) If A is semiprime, then A is finitary if and only if for any element a ∈ A the

subspace aAa is finite dimensional.

(2) A is semiprime and finitary if and only if it is isomorphic to a direct sum of

simple finitary F-algebras.
(e) A is simple and finitary if and only it is isomorphic to some FY (X), where

(X, Y, 〈·, ·〉) is a pair of dual vector spaces over a finite-dimensional division F-
algebra ∆, equivalently, A is simple and contains an idempotent e such that eAe

is a finite-dimensional division F-algebra.

Proof. By Lemma 1.5, if A is finitary then for any a ∈ A, dimF aAa < ∞.

Suppose now that A is semiprime and dimF aAa < ∞ for any a ∈ A. By [5, Teorem

2.3], the element a belongs to the socle of A, so, by socle theory for semiprime rings

(see [7] or [4]), A =
⊕

Mi is a direct sum of ideals each of which is a simple algebra

with minimal one-sided ideals. Moreover, for any division idempotent e ∈ Mi the

division algebra eMie = eAe is finite dimensional. Now it follows from the structure

theorem for simple associative rings with minimal one sided ideals (see [4, Theorems

4.3.7 and 4.3.8]) that Mi is isomorphic to some FY (X), where (X,Y, 〈·, ·〉) is a pair of

dual vector spaces over a finite-dimensional division F-algebra ∆. For any a ∈ FY (X),

dimFXa = (dim∆ Xa)(dimF∆) < ∞, so FY (X) ≤ F(XF) is a simple finitary associative

F-algebra, equivalently, A is simple and contains an idempotent e such that eAe is a

finite-dimensional division F-algebra. Finally, it is easy to see that any direct sum of

simple finitary associative F-algebras is a semiprime finitary associative F-algebra. This

completes the proof of the theorem. ¤
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Corollary 1.7. Let R be a simple associative ring. Then R is finitary, as an algebra

over its centroid, if and only if R satisfies a generalized polynomial identity.

Proof. Let F denote the centroid of R, which is a field. By the theorem above, R is

finitary as an algebra over F if and only if it contains an idempotent e such that eRe is

a finite dimensional division F-algebra, equivalently, by [4, Theorem 6.1.6], the simple

ring R satisfies a generalized polynomial identity. ¤

2. general facts on quadratic Jordan algebras

In what follows Φ will denote a ring of scalars, that is, a commutative associative ring

with 1. Following the exposition given in [12], we begin by reminding the reader of the

definition of quadratic Jordan algebra.

2.1. Definitions. A unital quadratic Jordan algebra J = (J, U, 1) over an arbitrary ring

of scalars Φ consists of a Φ-module J , a distinguished element 1 ∈ J , and a quadratic

map U : J → EndΦ(J) such that if we denote the linearization of U by

Vx,y(z) = {x, y, z} = Ux,z(y) (Ux,z = Ux+z − Ux − Uz)

then

(QJ1) U1 = Id

(QJ2) UxVy,x = Vx,yUx = UU(x)y,x

(QJ3) UU(x)y = UxUyUx

hold in all (free) scalar extensions; equivalently, all linearizations of these identities hold

in J itself.

A quadratic Jordan algebra is just a Φ-submodule J = (J, U ; 2) of some unital Jordan

algebra closed under the products Uxy and the square

x2 = Ux1,

in which case J imbeds in the unital hull.

Ĵ = Φ1⊕ J :

Uα1⊕x(β1⊕ y) = α2β ⊕ (α2y + 2αβx + αx ◦ y + βx2 + Uxy),

where we denote the linearization of the square by

Vx(y) = x ◦ y = Ux,y1 (= (x + y)2 − x2 − y2).
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If 1
2
∈ Φ we can characterize these algebras axiomatically as the linear Jordan algebras

with product x · y satisfying

x · y = y · x, (x2 · y) · x = x2 · (x · y)

Every quadratic Jordan algebra J gives rise to a Jordan pair V = (J, J) where Qσ
xy =

Uxy for σ = ± (see [8]). Hence every notion defined by Jordan pairs makes sense for

quadratic Jordan algebras.

In what follows, by a Jordan algebra we will mean a quadratic Jordan algebra.

2.2. Examples. Most Jordan algebras come from associative algebras. Any associative

Φ-algebra A, with product denoted by juxtaposition, yields a Jordan algebra A(+) via

Uxy = xyx, x2 = xx, {x, y, z} = xyz + zyx, x ◦ y = xy + yx

(which is unital if A is). A Jordan algebra J is special if it is isomorphic to a subalgebra

of some A(+); otherwise, J is called exceptional. An importan example of special Jordan

algebras is a hermitian algebra

H(A, ∗) = {x ∈ A : x∗ = x} ≤ A(+)

of self-adjoint elements in an associative algebra A with involution ∗. More generally,

we must consider ample hermitian algebras

H0 = H0(A, ∗) ≤ H(A, ∗)
such that aH0a

∗ ⊂ H0 for all a ∈ A and all traces a + a∗ and norms aa∗ lie in H0. If
1
2
∈ Φ then the only ample subspace is the whole H(A, ∗).
Another important example is a (unital Jordan) Clifford algebra, which lives in the

associative clifford algebra C(Q,X, 1) of a quadratic form Q with base point 1 on a

vector space X over a field F:

J = J(Q,X, 1) ≤ C(Q,X, 1)(+) : Uxy = Q(x, ȳ)x−Q(x)ȳ,

(ȳ = Q(y, 1)1− y, for x, y ∈ X).

More generally, we can consider an outer ideal I of J(Q,X, 1) containing 1, U(J)I +

{J, J, I} ⊂ I. If the characteristic of F is not 2, then an outer ideal is an ideal.

A Jordan algebra is i-special if it satisfies all the identities of special Jordan algebras

(equivalently, is a homomorphic image of a special Jordan algebra). A Jordan algebra

is i-exceptional if it is not i-special. The basic i-exceptional Jordan algebras are the

27-dimensional Albert algebras (see [10]).
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2.3. Alternating algebras. Let (X,Y, 〈·, ·〉) be a pair of dual vector spaces over a

division Φ-algebra ∆. If the Φ-algebra FY (X) has an involution ∗, then ∆ has an invo-

lution −, X has either a nondegenerate hermitian (and nonalternating) inner product

or a nondegenerate alternating inner product, denoted in both cases by 〈·, ·〉, with the

involution ∗ being the adjoint # with respect to the inner product. Notice that (X, 〈·, ·〉)
yields a pair of dual vector spaces (X, X, 〈·, ·〉) where the second X is regarded as right

vector space over ∆ by defining x · α = ᾱx (x ∈ X, α ∈ ∆.

Suppose that (X, 〈·, ·〉) is alternating over a field F. Following [11, p. 460], a linear

mapping a ∈ FX(X) is called an alternating mapping if 〈x, xa〉 = 0 for each x ∈ X. We

write Alt(X, 〈·, ·〉) to denote the set of all alternating mappings. As observed in [6], if

the characteristic of F is not 2, then Alt(X, 〈·, ·〉) = H(FX(X), ∗).

2.4. Homotopes, isotopes and local algebras. Definitions and notation of this

paragraph are taking from [6, 8].

For any element b in a Jordan algebra J we obtain a new Jordan algebra structure

J (b) in the Φ-submodule J called the b-homotope of J by taking the operations

U (b)
x = UxUb, x(2,b) = Uxb.

If J is unital and b is invertible, then J (b) is a unital Jordan algebra called the b-isotope

of J , with b−1 as its unit element.

Isotopes of nonunital Jordan algebras J are defined via a unital Jordan algebra K

containing J as a subalgebra and an invertible element b ∈ K satisfying

UbJ = J, UJb ⊂ J.

For instance, the above conditions are satisfied if J is an ideal of K; in particular, if K

is the unital hull of J .

Let b be an arbitrary element of J . Then the Φ-submodule KerJ(b) of J defined by

KerJ(b) = {z ∈ J : Ubz = UbUzb = 0}
is an ideal of the Jordan algebra J (b) and the quotient algebra J/KerJ(b) is called the

local algebra of J at b and denoted by Jb. If 1
2
∈ Φ, then condition UbUzb = 0 is

superfluous.

2.5. Inner ideals and socle. An inner ideal of a Jordan algebra J is a Φ-submodule

B of J such that UbJ ⊂ B for any b ∈ J . Any element x ∈ J yields the principal inner

ideal determined by x, UxJ , and the inner ideal generated by x, Φx + UxJ . These inner
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ideals coincide if and only if x is a von Neumann regular element of J . The socle Soc(J)

of a Jordan algebra J is defined as the sum of its minimal inner ideals.

A Jordan algebra J is nondegenerate if UxJ = 0 implies x = 0. Simple Jordan

algebras are nondegenerate (see [1]). If J is nondegenerate, then Soc(J) is a direct sum

of ideals each of which is a simple Jordan algebra coinciding with its socle (see [9] or

[15]) Moreover, an element x ∈ J lies in the socle if and only if Φx+UxJ has descending

chain condition on principal inner ideals [9, Theorem 1].

Simple Jordan algebras with minimal inner ideals were classified in [6] as a refinement

of the more general structure theorem of K. McCrimmon and E. Zelmanov for simple

Jordan algebras (see [12]).

Theorem 2.6. [6, Theorem 2] Every simple Jordan algebra containing minimal inner

ideals is up to isotopy one of the following:

(i) A Jordan algebra of Clifford or Albert type,

(ii) a Jordan algebra FY (X)(+), where (X, Y, 〈·, ·〉) is a pair of dual vector spaces

over a division Φ-algebra ∆,

(iii) an ample hermitian algebra H0(FX(X), ∗) relative to a nondegenerate hermitian

(and nonalternating) inner product space (X, 〈·, ·〉) over a division Φ-algebra ∆

with involution, and where ∗ is the adjoint involution, or

(iv) Alt(X, 〈·, ·〉) for a nondegenerate alternating inner product space (X, 〈·, ·〉) over

a field F which is a Φ-algebra.

3. finitary Jordan algebras

By analogy with the associative and Lie cases, we could define a finitary (quadratic)

Jordan F-algebra J as a subalgebra of the Jordan algebra F(X)(+) for some vector space

X over F. But such a definition would exclude the exceptional Jordan algebras.

Definition 3.1. A Jordan F-algebra J is finitary if the principal inner ideal UaJ is

finite dimensional for each element a ∈ J .

Lemma 3.2. If J ≤ F(X)(+) for some F-vector space X, then J is finitary.

Proof. The same proof of Lemma 1.5 works. For any a ∈ J , UaJ ⊂ UaF(X) = aF(X)a.

¤

Remarks 3.3. Notice that the converse of Lemma 3.2 does not hold. Consider a

27-dimensional Albert algebra. Notice also that, according to our definition, a unital
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Jordan algebra is finitary if and only if it is finite dimensional; in particular, a Clifford

algebra is finitary if and only if it is finite dimensional.

Our aim is to classify nondegenerate finitary (quadratic) Jordan algebras J over an

arbitrary field F. The theorem below reduces the study to the case that J is simple.

Theorem 3.4. Let J be a Jordan F-algebra. Then J is finitary and nondegenerate if

and only if it is a direct sum of simple finitary Jordan algebras.

Proof. Let J =
⊕

Ji be a direct sum of ideals each of which is a simple finitary Jordan

F-algebras. But simple Jordan algebras are nondegenerate [1] and it is easy to check

that direct sums preserve nondegeneracy, so J is nondegenerate. Now let a ∈ J . Then

a = ai1 + · · · air where each summand aik belongs to some Jik . Since the ideals Ji are

mutually orthogonal, we have that UaJ = U(ai1)Ji1⊕· · ·⊕U(air)Jir is finite dimensional,

which proves that J is finitary.

Suppose conversely that J is nondegenerate with UaJ being finite dimensional for any

element a ∈ J . It follows from Loos’ elemental characterization of the socle [9, Theorem

1] that J coincides with its socle and therefore, by [9, Theorem 2], J is a direct sum

of ideals each of which is a simple Jordan algebra, clearly finitary. This completes the

proof of the theorem. ¤

Theorem 3.5. Every simple finitary Jordan F-algebra is up to isotopy one of the fol-

lowing:

(i) a 27-dimensional Albert algebra over a finite field extension K of F,
(ii) a finite-dimensional Clifford Jordan algebra J , defined by a nondegenerate qua-

dratic form on a vector space over a finite field extension K of F, or an outer

ideal I of J containing 1.

(iii) an ample hermitian algebra H0(FX(X), ∗) relative to a nondegenerate hermit-

ian (and nonalternating) inner product space (X, 〈·, ·〉) over a finite-dimensional

division F-algebra ∆ with involution, and where ∗ is the adjoint involution, or

(iv) Alt(X, 〈·, ·〉) for a nondegenerate alternating inner product space (X, 〈·, ·〉) over

a finite field extension K of F.

Proof. Each of the Jordan algebras listed above is simple and finitary. Suppose then

that J is a simple finitary Jordan F-algebra. As proved in Theorem 3.4, J coincides

with its socle. Thus we only need to look and the list of simple Jordan algebras given

in Theorem 2.6 and identify the finitary ones. ¤
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Remark 3.6. Finitary Jordan algebras are closely related to Jordan algebras with PI-

elements, as defined and studied by F. Montaner in [13, 14]. In terms of local algebras

(see 2.4), our definition of a finitary Jordan algebra J can rephrased by saying that the

local algebra Ja is finite dimensional for any element a ∈ J , while, according to [13],

an element a ∈ J is PI if the local algebra Ja satisfies a polynomial identity. Notice

that by [13, Proposition 2.6], simple unital Jordan algebras with a nonzero PI-element

have finite capacity, and in the particular case of a Jordan algebra J = A(+), where A

is a central simple associative algebra, J is finitary if and only it contains a nonzero

PI-element.

Acknowledgement, I am indebted to my colleague Professor Esperanza Sánchez for the
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