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Abstract. In the algebraic study of deep matrices DMX(F) on a finite set of
indices over a field, Christopher Kennedy has recently shown that there is a unique
proper ideal Z whose quotient is a central simple algebra. He showed that this
ideal, which doesn’t appear for infinite index sets, is itself a central simple algebra.
In this paper we extend the result to deep matrices with a finite set of 2 or more
indices over an arbitrary coordinate algebra A, showing that when the coordinates
are simple there is again such a unique proper ideal, and in general that the lattice of
ideals of DMX(A)/Z and Z are isomorphic to the lattice of ideals of the coordinate
algebra A.

In [1, 1.13, p,179] J. Cuntz introduced C∗-algebras On of operators on a separable
Hilbert space generated by a finite family of n orthogonal isometries Si, S

∗
i , subject

to S∗i Sj = δij1 and the additional condition
∑n

i=1 SiS
∗
i = 1, and showed by analytic

methods that these algebras are simple. Recently, C. Kennedy [4] showed that the
condition

∑n
i xix

∗
i = 1 can be removed in the finite case: there is a unique proper

ideal Z in the deep matrix algebra DMX(F) over any field F, which is itself a simple
algebra of finite matrices, and that imposing the condition

∑n
i xix

∗
i = 1 is equivalent

to passing to the quotient DMX(F)/Z.

1. Deep Matrix Algebras

We recall the definition of the algebra of deep matrices [6] with coefficients in a
unital associative (but usually noncommutative) algebra A over some fixed ring of
scalars Φ. For any nonempty index set X the set of deep X-indices or heads
is the free monoid H(X) := Mon(X) based on X, consisting of all finite n-tuples
h = (x1, . . . , xn) of arbitrary depth |h| = n > 0 whose individual entries xi come from
X; the unit element of this monoid is the empty-tuple ∅ of depth 0. The heads carry
a partial order h ° k if h begins k, i.e., k = hk′ begins with h, in which case we
say k is deeper than h; h is a proper head of k, h ` k, if k′ 6= ∅. Two heads h, k are
related h ∼ k if one is deeper than the other, h ° k or k ° h, otherwise they are
unrelated h 6∼ k. If h ∼ k, the question of who is deeper is strictly a matter of depth
and, as a consequence, two heads of the same depth are related iff they are equal.

Depth: h ∼ k, |h| 6 |k| ⇐⇒ h ° k; h ∼ k, |h| = |k| ⇐⇒ h = k.
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The set of bodies B(X) :=
∏∞

1 X consists of all infinite sequences b = (y1, y2, . . .); if
|X| = 1 there is only one body (x, x, x, . . .), but if |X| > 2 there are uncountably many
bodies. We say the head h = (x1, . . . , xn) begins a body b, h ` b, if (x1, . . . , xn) =
(y1, . . . , yn), i.e., b = hb′ = (x1, . . . , xn, yn+1, yn+2, . . .). In this case we say that h is
the nth head hn(b) of b. If b1, . . . ,br are distinct bodies we have Head Separation
[6, Th.20.1(iii), p.265]: there is an N so that the heads hN(b1), . . . hN(br) are distinct
[if bi,bj differ in the Nij entry let N = maxi 6=j Nij].

The deep matrix algebra based on X over A is spanned by all deep matrix units
Eh,k where the row and column indices are heads in H(X). We will call the elements of
A scalars and for clarity denote them by lowercase Greek α, β, γ, whereas elements of
the matrix algebra (linear combinations of matrix units) will be denoted by lowercase
Latin u, v, w. The notation Eh,k [4] (Ek

h in [6]) is chosen to emphasize the analogy
with ordinary matrix units Ei,j.

Rather than this matrix notation, we will usually use the C∗-algebra notation de-
noting the basis elements by “back-and-forth shifts” hk∗ (segregated monoid products
with h ∈ H(X) at the beginning and k∗ ∈ H(X∗) at the end), which are elements of
the free monoid-with-involution H(X, ∗) := Mon(X t X∗) for set X and a disjoint
copy X∗. The map ∗ induces a reversal involution on this monoid via (x∗)∗ = x,
and the unit of the monoid (the empty product of x’s and also the empty product of
x∗’s) is denoted simply 1 instead of ∅. We refer to the elements of H(X) as “forward
shifts” and those of H(X∗) as “backward shifts” of “negative depth”, leading us to
define a general notion of depth for back-and-forth shifts in H(X, ∗) (distinguished
by ‖ in place of |):

‖u‖ = ‖hk∗‖ := |h| − |k|, ‖u∗‖ = −‖u‖, ‖k∗‖ := −|k|.

The forward and backward shifts h, k∗ for h, k ∈ H(X) are generated by primitive
shifts x, y∗ for x, y ∈ X: h = (x1 . . . xn) = x1 · · ·xn, k∗ = (y1 . . . ym)∗ = y∗m · · · y∗1.
The shift monoid ShM(X) on X is the ∗-monoid-with-zero Mon(X tX∗ t 0) on
X modulo the homogeneous relations

x∗x = 1, x∗y = 0, x0 = x∗0 = 0 = 0∗ = 0x∗ = 0x (y 6= x ∈ X).

Definition 1.1 (Deep Matrix Construction [6, Thm.2.1], [4]). The deep matrix
algebra DMX(A)(called E(X, A) in [6]) based on X over a unital associative coor-
dinate algebra A consists of the free left A-module with the basis of all deep matrix
units Eh,k for h, i, j, k ∈ H(X), determined by the Deep Multiplication Rules [1,
p.175] for the basic products (α, β ∈ A) :

(DMI) (αEh,i)(βEj,k) = (αEh,i)(βEij′,k) = αβEhj′,k if i ° j = ij′,

(DMII) (αEh,i)(βEj,k) = (αEh,ji′)(βEj,k) = αβEh,ki′ if j ° i = ji′,

(DMIII) (αEh,i)(βEj,k) = 0 if i 6∼ j are unrelated.

In C∗-notation DMX(A) is the free A-module with basis of all hk∗ with rules
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(DMI) (αhi∗)(βjk∗) = (αh i∗)(βij′k∗) = αβ(hj′)k∗ if i ° j = ij′,

(DMII) (αhi∗)(βjk∗) = (αh(ji′)∗)(βjk∗) = αβh(ki′)∗ if j ° i = ji′,

(DMIII) (αhi∗)(βjk∗) = 0 if i 6∼ j are unrelated.

The Deep Multiplication Rules follow from the Orthogonality Relations y∗x =
δy,x1 since these allow us to repeatedly remove any y∗ to the left of an x in any mixed
product of x’s and y∗’s until we reach a segregated shift:

Head Product Rules
The un-segregated product k∗h is always zero or a forward or backward shift:

k∗h = 1, ‖k∗h‖ = 0, if k = h;
k∗h = h′, ‖k∗h‖ = |h| − |k| > 0, if k ` h = kh′;
k∗h = k′∗, ‖k∗h‖ = |h| − |k| < 0, if h ` k = hk′;
k∗h = 0, if k, h are unrelated.

The deep matrices form a unital associative algebra with unit 1 (or 1deep = E∅,∅
in matrix notation): it is just the monoid algebra over A on the monoid-with-zero
ShM(X). In analogy with group algebras k[G] = kG, this suggests a notation
DMX(A) = AHH∗ for the deep matrix algebra. The subalgebras AH, AH∗ are
just the usual monoid algebras over A on the monoids H(X), H(X∗).

The deep matrix construction yields a bifunctor from sets and coordinate algebras
to unital associative algebras. The transpose map αEh,k −→ αEk,h is an isomorphism
of DMX(A) with DMX(Aop). Thus, despite the apparent asymmetry in the indices,
there is a duality: all general results for deep matrices over all A remain true if
the roles of h, k are interchanged. If the coordinate algebra A carries an involution
α → ᾱ (e.g. if A is commutative, ᾱ = α), then DMX(A) carries a natural conjugate
transpose involution uniquely determined by (αh k∗)∗ := ᾱk h∗, yielding a functor
from sets and coordinate ∗-algebras to unital ∗-algebras.

The associativity of deep matrix multiplication also follows from the faithful Ken-
nedy representation [4] of D := DMX(A) on the Kennedy module, the free
right A-module

V [H] = HA :=
⊕

j∈H(X)

jA, (αh i∗)(jβ) =

{
hj′αβ if i ° j = ij′,
0 if i 6° j.

This is not a left regular representation and HA ∼= AH is not a D-submodule of
D = AHH∗ since x∗(1) = 0 6= x∗.

Any deep matrix algebra DMX(A) has a Frankenstein representation [6, 20.5,
p.269] on the Frankenstein module, the free right A-module

V [B] = BA :=
⊕

b∈B(X)

bA
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(called V (X, A) in [6]) with basis of all bodies, given by

if |i| = n then (α hi∗)(b β) =

{
hb′αβ if i ° b = ib′, i.e., i = hn(b);

0 if i 6° b, i.e., i 6= hn(b).

The corresponding operators Fh,i of left multiplication by Eh,i = hi∗ chop the head
i off b and replace it with h (killing the patient b if it doesn’t begin with the head
i). Linear combinations of these operators form the Frankenstein algebra FX(A),
a left A-module (free if X is infinite) with a canonical Deep Matrix epimorphism

DMX(A)
F−→ FX(A) via Eh,k → Fh,k.

However, we will see that F is an isomorphism (the Frankenstein representation is
faithful) only when X is infinite.

The always-faithful Kennedy representation on V [H] is more satisfying than the
faithless Frankenstein representation on V [B] for finite X. But the Frankenstein
action actually becomes faithful if we move to a slightly larger set X ′ := X t {z}
(without going all the way to an infinite set): both the Frankenstein representation
on B(X ′) and the regular representation on DMX′(A) contain many copies of the
Kennedy representation V [H] (and hence are faithful).

Theorem 1.2 (Kennedy Imbedded). For arbitrary X, set X ′ := X t {z}, b′ ∈
B′ := B(X ′),D′ := DMX′(A),D := DMX(A). The Kennedy representation of D on
V [H] is isomorphic to a subrepresentation of the left regular representation of D′ on
W = AHz ⊆ D′, and to a subrepresentation of the Frankenstein representation of D′

on W = Hzb′A ⊆ V [B′] for each b′ ∈ B′.

Proof. We imbed V [H] ↪→ AHz ⊆ D′ via the map hα = (x1, x2, . . . , xn)α 7→ αhz
= α(x1, x2, . . . , xn, z) and V [H] ↪→ Hzb′ ⊆ V [B′] via the mapping hα 7→ hzb′α
= (x1, x2, . . . , xn, z, x′1, x

′
2, . . .)α. To see these W areD-invariant with Kennedy action,

note first that αhi∗ kills βjz and jzb′β if i 6° jz (i.e., i 6° j) [we never have jz ° i
as in (DMII) because of the factor z 6∈ X]. Next, if i ° j = ij′ then as in (DMI) we
have (αhi∗)(βjz) = (αhi∗)(βij′z) = αβhj′z and (αhi∗)(jzb′β) = (αhi∗)(ij′zb′β) =
hj′zb′αβ.

The standard argument [4, Th.2 p.527], [6, (3) p.271]1 that D acts faithfully on
V [B] when X is infinite merely requires a z distinct from the x’s, so it shows D acts
faithfully on AHz and Hzb′A. ¤

The deep matrix units commute with scalar multiplication (though A itself need
not be commutative)

α(hk∗) = (α1)hk∗ = hk∗(α1).

This shows that we can represent deep matrices over A as a “scalar extension” of the
deep matrices over the scalar ground ring Φ,

1If (
∑

αh,khk∗)Hz = 0 for distinct (h, k) and nonzero αh,k, choose |k0| minimal and then |h0|
maximal among all |h| among the (h, k0). Then the Head Product Rules yields the contradiction
0 = h∗0(

∑
αh,khk∗)k0z = αh0,k01 [never k ` k0, and never h0 ` h among the (h, k0) and x∗z = 0].
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DMX(A) ∼= A
⊗

Φ DMX(Φ).

For coordinate algebras A over a field Φ = F, this shows that several of our results
can be obtained directly from Kennedy’s results for A = F.

Proposition 1.3. The deep matrices D := DMX(A) have a Z-grading

D =
∞⊕

n=−∞
Dn, DnDm ⊆ Dn+m, for Dn :=

∑

‖hk∗‖=n

Ahk∗.

If Hn denotes the heads of depth n and for N = |Xn|,M = |Hm|, then in terms of the
subalgebra D0 we can write Dn := HnD0, D−n = D0H

∗
n if n > 0. The subalgebra

D0 is a module direct sum of level-n matrix subalgebras [1, 1.4 p.175],

D0 =
∞⊕

n=0

D(n)
0 , D(n)

0 :=
∑

|h|=|k|=n

AEh,k
∼= Matfin

N×N(A), D(n)
0 D(m)

0 ⊆ D(max{n,m})
0 .

If |X| > 1 the Frankenstein representation of the level-n matrix subalgebra D(n)
0 is the

direct sum of uncountably many copies of the standard representation of Matfin
N×N(A)

on
⊕N A :

V [B] = HnBA ∼= ⊕
b∈B(X) V [Hn]b, V [Hn]b := HnbA with Eh,i(jb) = δi,jhb,

while the Dn for n 6= 0 act as Matfin
M×N(A) from

⊕N A to
⊕M A :

if |h| = m, |k| = n, then Eh,k(V [Hn]b) ⊆ V [Hm]b with Eh,i(jb) = δi,jhb.

Proof. The grading decomposition comes directly from the direct decomposition into
matrix units Eh,k = hk∗, and DnDm ⊆ Dn+m follows since by the Head Product Rules
if jk∗ hi∗ = jui∗ is nonzero then

‖jui∗‖ = |j|+ |u| − |i| = |j|+ (|h| − |k|)− |i|
= (|j| − |k|) + (|h| − |i|) = ‖jk∗‖+ ‖hi∗‖.

For the description of Dn in terms of D0, note that

x1 · · · xi · y∗1 · · · y∗j =

{
x1 · · ·xn

(
xn+1 · · · xn+j · y∗1 · · · y∗j

)
if i = n + j > j(

x1 · · · xi · y∗1 · · · y∗i
)
y∗i+1 · · · y∗i+n if i 6 j = i + n.

That D(n)
0 is a matrix algebra follows from the Head Products since if |h| = |i| =

|j| = |k| = n we have Eh,iEj,k = δi,jEh,k, For the products, if |h| = |i| = n, |j| = |k| =
m a nonzero Eh,iEj,k has one of the forms

(hi∗)(jk∗) =

{
(hj′)k∗ = Ehj′,k ∈ D(m)

0 for |j′| = m− n if n 6 m

h(i′∗k∗) = Eh,ki′ ∈ D(n)
0 for |i′| = n−m if n > m

.

The action of the Eh,i on V [Hn]b follows directly from the action (αhi∗)(jbβ) =
δi,jhbαβ if |i| = |j| = n. ¤
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The term “deep matrices” comes from the fact that D contains matrix subalgebras

D(n)
0 isomorphic to |Xn| × |Xn| matrices with finitely many nonzero entries, and as

we descend we pick up larger and larger algebras of matrices at every depth.2

We mention several consequences of the Deep Multiplication Rules that will be use-
ful in what follows. The forward shifts are left-invertible, h∗h = 1, but not invertible:
the range projections eh := hh∗ form a nested family of idempotents where unrelated
members are orthogonal, but shallow members contain the deeper members:

(DH)

ehh = h, h∗eh = h∗,
h 6∼ k =⇒ eh(kj∗) = (jk∗)eh = 0, ehek = ekeh = 0,
h ° k = hk′ =⇒ eh(kg∗) = kg∗, (gk∗)eh = gk∗, ehek = ekeh = ek

k ° h = kh′ =⇒ eh(kg∗) = h(gh′)∗, (gk∗)eh = (gh′)h∗, ehek = ekeh = eh.

In particular the ex = xx∗ for x ∈ X form an orthogonal family of “maximal”
idempotents which pick out terms beginning with x or ending with x∗: ex[(yh′)k∗] =
δxy(yh′)k∗ and dually [k(yh′)∗]ex = δxyk(yh′)∗, so

(DX) exey = δxyex, ex(hk∗) = δxyhk∗, (kh∗)ex = δxykh∗ if h = yh′.

Head Separation leads [6, Th.20.9, p.272] to :

Body Separation: if b1, . . . ,br are distinct bodies there exists a projection
eh = hh∗ with eh(b1) = b1, eh(bi) = 0 for i > 1.

Remark 1.4. The principal left ideal generated by the deep matrix unit hk∗ is the
kth column ideal

Dek = Dk∗ = Dhk∗ =
∑
i,j

Ai(kj)∗ =: AHH∗k∗,

and the principal right ideal generated by h k∗ is the hth row ideal

ehD = hD = hk∗D =
∑
j,i

A(hj)i∗ =: AhHH∗.

Any h ∈ H determines a “downward” push monomorphism µh(u) = hu h∗ sending
1 to eh and hence D = 1D 1 to the Peirce subalgebra hDh∗ = ehDeh, with left inverse
the “upward” pull epimorphism µ∗h := µh∗.

Proof. Indeed, the Deep Multiplication Rules show every left or right multiple ij∗hk∗

or hk∗ij∗ has the above form, and conversely all such matrix units arise as multiples:
i(kj)∗ = i(hj)∗hk∗ and (hj)i∗ = hk∗(kj)i∗. For the push and pull, any h has h∗h =
1, hh∗ = eh so µ∗h ◦ µh = µh∗h = 1D, µh ◦ µ∗h = µhh∗ = µeh

. ¤

2When
∑

i xix
∗
i = 1 the D(n)

0 (denoted Fn in [2, Prop.2.4 p.253]) have D(n)
0 ⊆ D(n+1)

0 since
hk∗ = h1k∗ =

∑
i hxix

∗
i k
∗
i .
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2. The Obstacle

So far all our remarks apply to deep matrices over any set X. From now on we
examine the special properties of finite index sets. When |X| < ∞, a nonzero element
u need not have a nonzero “scalar multiple” vuw = α1, and it is not true that all ideals
come from coordinate ideals: there is a rogue ideal of obstinately finite character, and
until the deep matrix algebra is purged of this obstacle it cannot enjoy the desirable
properties of its infinite brethren.

In the ordinary matrix algebra Matfin
n (A) the unit is 1 =

∑
i Eii. In the finite

index case, by (DX)
e :=

∑
x∈X ex =

∑
x∈X Ex,x =

∑
x∈X xx∗

exists in DMX(A) as an idempotent, the finite idempotent, but it is NOT the unit
1; its evil twin f := 1− e is the infinite idempotent. Kennedy [4] pointed out that
e should be the “true” unit (the C∗-algebraists decree e = 1 as part of their axioms
for the algebra On), and the imposter f gives rise to all the difficulties in the finite
case.

Note that eh = h, h∗e = h∗ for all nonempty heads h since if h begins with
x 6= y then exh = h, eyh = 0 by (DX). Consequently the element f has the following
multiplication rules:

(F1) eh = h, h∗e = h∗, f(hk∗) = (kh∗)f = 0 if h 6= 1,

(F2) for all bodies b, eb = b, fb = 0,

(F3) f 1 f = f, f(h k∗)f = 0 if (h, k) 6= (1, 1).

The obstacle is the ideal ZX(A) := DfD generated by f . For finite X the reduced

deep matrix algebra DMX(A) is obtained by adding the axiom
∑

x ex = 1 (i.e.,
f = 0) to the Deep Multiplication Rules, equivalently, by forming the quotient

DMX(A) := DMX(A)/ZX(A) :
∑
x∈X

ex = 1̄.

A simple but useful property is the

Nonzero f-Scalar Rule α 6= 0 =⇒ αf 6= 0

since in fact αu = 0 forces u = 0 in any free A-module as soon as u is “monic” (has
one of its basic coefficients equal to 1).

We will see shortly that ZX(A) is precisely the annihilator of the Frankenstein
module V [B] when |X| > 1, but for now it is immediate that it is contained in the
annihilator: certainly the element f annihilates V [B] by (F2), and the annihilator is
always an ideal, so it contains DfD = ZX(A). This gives us an important rule:

Non-Z Scalar Rule α 6= 0 =⇒ α1 /∈ ZX(A) ⊆ Ann(V [B])

since α 6= 0 does not annihilate the free right module V [B] [note (α1)b = bα].

Theorem 2.1 (Obstacle [4]). For a finite set X the obstacle ZX(A) is a free A-module
spanned by all

F-Matrix Units Fh,k := hfk∗ = hk∗ −
∑
x∈X

hxx∗ k∗ (h, k ∈ H)
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satisfying [1, Prop. 3.1 p.183] the

F-Matrix Unit Rules Fh,iFj,k = δi,jFh,k (h, i, j, k ∈ H).

This algebra is isomorphic to Matfin
∞ (A), the countably-infinite square matrices with

only a finite number of nonzero entries from A, under an isomorphism sending f to
the matrix unit E00. The lattice of ideals of the obstacle is the lattice of ideals of A:
every ideal in ZX(A) is ZX(I) = IZX(A) for an ideal I C A. In particular, ZX(A)
is simple iff A is simple.

The centroid of the obstacle is the center of A: Γ(ZX(A)) = C(A)1Z (of course
ZX(A) has no center) .

Proof. For the F -matrix unit rules, if i 6= j then i∗j 6= 1 by the Head Product Rule,
so by (F3) f i∗j f = 0. If i = j we have hf i∗j fk∗ = hf 1 fk∗ = hfk∗. Thus in all
cases

Fh,iFj,k = (hfi∗)(jfk∗) = δi,jhfk∗ = δi,jFh,k.

This is the multiplication table for the free left A-module Matfin
∞ (A) with standard

matrix units Em,n for m,n ∈ N0 := N ∪ {0}, and if we label the countable number of
heads as hm, m ∈ N0 with h0 = 1, there is a natural A-linear epimorphism

Matfin
∞ (A)

π−→ ZX(A) via Em,n 7→ Fhm,hn ,

where E0,0 is sent to Fh0,h0 = F0,0 = f. This map is an isomorphism (equivalently,
ZX(A) is free with basis of Fh,k) since

∑
h,k αh,kFh,k = 0 with some αi,j 6= 0 implies

0 = F0,i

( ∑
h,k αh,kFh,k

)
Fj,0 = αi,jF0,0 = αi,jf , contrary to the Nonzero f -Scalar Rule.

From another viewpoint, the above argument shows that every ideal I of Matfin
∞ (A)

is Matfin
∞ (I) for I = {α ∈ A | αEm,n ∈ I for some (hence all) m,n}. The kernel of π

must therefore be Matfin
∞ (I) for some ideal I C A, in particular it contains IE0,0, so

the image If = π(IE0,0) must vanish. But by the Nonzero f -Scalar Rule this forces
I = 0, so π is an isomorphism.

It is well-known that the center is 0 (there is no unit element in Matfin
∞ (A) since

the identity matrix has an infinite number of nonzero entries), and that the centroid
is just multiplication by central elements of A. ¤

The Peirce decomposition of D and the obstacle Z = DfD relative to the idempo-
tent e is

D = D11 ⊕D10 ⊕D01 ⊕D00, ZX(A) = D10D01 ⊕D10 ⊕D01 ⊕D00.

Here the Peirce spaces D10D01, D01, D10, D00 have A-bases F11(H
′, H ′), F01(H

′),
F10(H

′), F00(1) where for h′, k′ ∈ H ′ := H \ 1 = {h ∈ H | |h| > 1}

F11(h
′, k′) := Fh′,k′ := (h′)f(k′)∗ = h′ k′∗ −∑

x xh′(xk′)∗,
F01(k

′) := F1,k′ := f(k′)∗ = k′∗ −∑
x x(x∗k′∗),

F10(h
′) := Fh′,1 := h′ f = h′ −∑

x (h′x)x∗,

F00(1) := F1,1 = 1−∑
x xx∗ = 1− e = f.
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3. The Scalar Multiple Theorem

The proper analogue of the Scalar Multiple Theorem [1, Thm.3.4 p.184], [6, Th.20.3
p.267] for the finite case is the following.

Theorem 3.1 (Scalar Multiple). If 2 6 |X| < ∞, then every element of the deep
matrix algebra DMX(A) which doesn’t lie in the obstacle ideal ZX(A) has a “scalar
multiple”: if u ∈ DMX(A) \ ZX(A) then there exist a nonzero coordinate 0 6= α ∈ A
and heads h, k ∈ H with

k∗uh = α1, k∗h = δ1 (δ = 1, 0).

Proof. 3 Let S denote the set D \Z of deep matrices outside the obstacle. For u ∈ S
we define the set [u] of proper multiples of u to be the set of all k∗uh ∈ S. Note
that v ∈ [u] =⇒ [v] ⊆ [u] since k∗2(k

∗
1uh1)h2 = (k1k2)

∗u(h1h2). Our goal is to show
that for a fixed element u ∈ S there exists a scalar in [u]. The natural choice is a
v =

∑r
i=0 αihiki

∗ (αi 6= 0) in [u] with the fewest number r+1 of terms (so all hik
∗
i are

distinct) and shallowest h0k0
∗ (minimal m0 := |k0| + |h0|). We can shift v forwards

or backwards by

(Shiftability) v ∈ [u] =⇒ ∃ x, y ∈ X such that vx, y∗v ∈ [u].

Indeed, working modulo the ideal Z = DfD we have 0 6≡ v = ve + vf ≡ ve =∑
x∈X(vx)x∗, so vx 6≡ 0 for at least one x. Analogously, 0 6≡ v = ev + fv ≡ ev =∑
y∈X y(y∗v), so y∗v 6≡ 0 for at least one y, and both multiples vx, y∗v remain in S.

Since v was already shortest possible in [u], vx and y∗v in S cannot have fewer terms.
Thus αihik

∗
i x, αiy

∗hik
∗
i 6= 0. Then by DX we know each ki 6= 1 must begin with x,

each hi 6= 1 must begin with y. Moreover, the shallowest term must have h0 = k0 = 1:
if k0 = xk′0 then h0k

∗
0x = h0k

′
0
∗ for m′

0 = |h0|+ |k′0| < |h0|+ |k0| = m0, contradicting
minimality, and analogously h0 = yh′0 would lead to a shallower y∗h0k

∗
0 = h′0k

∗
0. Thus

α01 is one of the r + 1 terms of v and all the other terms have
(∗) hik

∗
i ∈ yD +Dx∗ if i 6= 0

[hi = ki = 1 would contradict distinctness of the hik
∗
i ]. By Shiftability there is also

z ∈ X with z∗(vx) ∈ [u], so z∗(α01)x 6= 0 (by minimality) and therefore z = x. Hence
x∗(vx) = (x∗v)x /∈ Z ⇒ x∗v /∈ Z ⇒ x∗v ∈ [u]. Thus we can take y = x from the
start, so (∗) becomes

(∗∗) hik
∗
i ∈ xD +Dx∗ if i 6= 0.

By our assumption |X| > 2 we can find w 6= x in X, so w∗(xD +Dx∗)w = 0 implies
w∗vw = w∗(α01)w = α01 ∈ [u] (by the Non-Z Scalar Rule) as claimed. Thus the
minimal r + 1 is 1 and there never were any other terms αihik

∗
i to begin with.

3Compare the more elaborate proof in [1, 2, Lemma 1.8, p.176], shifting u until it becomes
k∗0uh0 = α1 +

∑
hi 6=1 αhihi ∈ [u] for α 6= 0 and then isolating the scalar by a pull µ∗pm

(as in
Remark 1.2) [m > |k0|, |h0|, |hi| for all i] killing all individual h and k∗ for nonempty heads h, k 6= 1
of length < m and send the empty head 1 to 1. Cuntz created pm using an infinite sequence
x1x2 . . . from X which was aperiodic; the simplest such sequence is x1

1x2x
2
1x2x

3
1x2 . . . xn

1x2 . . . , and
pm = xm

1 x2 for suitably large m has the desired properties µ∗pm
(hk∗) = 0 for all |h|, |k| 6 m except

µ∗pm
(xr

1 xr
1
∗) = µ∗pm

(1) = 1 for 0 6 r < m.
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Finally, if k∗h 6= 0, 1 then the Head Product Rules show that k∗h = h′ or k∗h = h′∗

with |h′| 6= 0. If h′ = xh′′ starts with x ∈ X choose y 6= x (using |X| > 2 again) and
replace h, k by the heads hy, ky. Then (ky)∗u(hy) = y∗(k∗uh)y = α0y

∗y = α01 again,
but now (ky)∗(hy) = y∗k∗hy becomes y∗xh′′y = 0 or y∗h′′∗x∗y = 0 as claimed. ¤

Another aspect of the obstacle (cf. also [4]) is that it is precisely the kernel of the
Frankenstein action of DMX(A) on the space V [B] of bodies. We have already noted
that the obstacle is contained in the annihilator of the module, and now the reverse
inclusion is an immediate consequence of the Scalar Multiple Theorem.

Theorem 3.2. When the index set X is finite, 2 6 |X| < ∞, the kernel of the
Frankenstein representation of DMX(A) on the space V [B] of bodies is precisely the

obstacle ZX(A), and the reduced algebra DMX(A) = DMX(A)/ZX(A) ∼= FX(A) is
isomorphic to the Frankenstein algebra via F(Eh,k) = Fh,k.

Proof. If u is not in ZX(A) we know by the Scalar Multiple Theorem that there
is a scalar 0 6= α1 = k∗uh, and since V [B] is a free A-module the nonzero scalar
does not act trivially on V [B], so u cannot either, and u is not in the kernel. Thus
the kernel cannot contain any more than ZX(A), and the Frankenstein Epimorphism

DMX(A)
F−→ FX(A) has kernel precisely ZX(A), so it induces an isomorphism F of

DMX(A)/ZX(A) with FX(A). ¤
A corresponding result about scalar multiples of f holds even when |X| = 1.

Theorem 3.3 (Scalar f -Multiple). Every nonzero element u of the deep matrix al-
gebra DMX(A) for 1 6 |X| < ∞ has a “scalar f -multiple”: there exist a nonzero
coordinate 0 6= α ∈ A and heads h, k ∈ H with fk∗uhf = αf .

Proof. The case |X| > 2 follows easily from the ordinary Scalar Multiple Theorem. If
u 6∈ Z then there is k∗uh = α1 6= 0 for heads h, k, hence fk∗uhf = f(α1)f = αf . So
suppose u =

∑
h,k αh,kFh,k ∈ Z ∼= Matfin

∞ (A). If αh0,k0 = α 6= 0, then by the F -Matrix

Unit Rules αf = αF∅,∅ = F∅,h0uFk0,∅ = (fh∗0)u(k0f).
We give a general proof for all |X| > 1 along the lines of [6, Thm. 20.3 p.267]:

some multiple v of u contains a nonzero term α 1, hence fvf = αf . Indeed, if
u =

∑
h,k αh,khk∗ 6= 0 for distinct hk∗, let αh0,k0 be a nonzero coefficient which is

minimal in the sense that αh,k = 0 when h ` h0 is a proper initial segment, and also
when h = h0 but k ` k0 is a proper initial segment. Then the product fh∗0 u k0f has a
unique term αh0,k0fh∗0(h0k

∗
0)k0f = αh0,k0f1f = αh0,k0f since any other nonzero term

αh,kfh∗0(hk∗) vanishes unless h0, h are related by the Head Product Rule; we can’t
have h ` h0 by minimality, so we must have h0 ° h = h0h

′, in which case the product
fh∗0(h0h

′)k∗ = f h′k∗ vanishes unless h′ = 1, h = h0 (since f kills h′k′∗ if |h′| > 1
by (F1)). But when h = h0 we have fh∗0(hk∗)k0f = fh∗0(h0k

∗)k0f = f k∗k0f = 0
unless k, k0 are related; we can’t have αh0,k 6= 0 if k ` k0 by minimality again, and
k 6= k0 by distinctness, so we must have k0 ` k = k0k

′ for k′ 6= 1, in which case
f k∗k0 f = f k′∗ f = 0 by (F3). ¤

Observe that when X is finite (so that e, f exist), on W we have ezb′ = 0, fzb′ =
zb′ because in D′ we have f = zz∗ + f ′ for f ′ the new infinite idempotent f ′.
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4. The ideal lattice

For any ideal I C A we have an ideal DMX(I) := I DMX(A) C DMX(A) with
quotient DMX(A)/DMX(I) ∼= DMX(A/I). For infinite X these are the only ideals
of DMX(A) [6, Thm 20.4 p.268] as with ordinary matrix algebras Matfin

n (A) and
Matfin

∞ (A), but for finite index sets X this is not quite the case, due to the obstacle.
Clearly an ideal in DMX(A) contains DMX(I) iff it contains I1, and contains ZX(I ′)
iff it contains I ′f .

Theorem 4.1 (Ideal Lattice). The ideals of DMX(A) are precisely all I = II,I′ :=
DMX(I)+ZX(I ′) for nested pairs I ⊆ I ′ of ideals in A. Here I uniquely determines
I, I ′: I1 = I ∩ A1, ZX(I ′) = I ∩ ZX(A) (equivalently, I ′f = I ∩ Af).

In particular, if A is simple the only ideals are DMX(A) = IA,A, ZX(A) = I0,A,
and 0 = I0,0, so DMX(A)/ZX(A) and ZX(A) are simple algebras.

Proof. Given I C D, I ∩ A1 C A1 must be I1 and by the Obstacle Theorem the
ideal I ∩ Z C Z must have the form ZX(I ′). Clearly I ⊆ I ′ are ideals of A, and
I ⊇ I1D + I ′fZ = DMX(I) + ZX(I ′) = II,I′ . Note that I ∩ Z = ZX(I ′) implies
I ∩Af = I ′f, so the two expressions for I ′ are equivalent. We claim we have equality
I = II,I′ . Passing to I C D = DMX(A)/DMX(I) ∼= DMX(A) for A := A/I, if
I 6⊆ Z then by the Scalar Multiple Theorem we have a nonzero ᾱ1 ∈ I; but then
α1 ∈ I + DMX(I) = I, forcing α ∈ I by the definition of I, hence ᾱ1 = 0̄, a
contradiction. Thus we must have I ⊆ Z and I ⊆ DMX(I) + ZX(A). By the
Dedekind Modular Law I = I ∩ (DMX(I) + ZX(A)

)
= DMX(I) + I ∩ ZX(A) =

DMX(I) + ZX(I ′) by definition of I ′, as claimed. ¤

The algebra Matfin
n (A) arises as the endomorphisms of a free right A-module VA

∼=
An. Similarly, the Frankenstein algebra F = FX(A) arises as endomorphisms of
the free right Frankenstein module V [B] = BA, which becomes an (F , A)-bimodule.
We also have a free left Frankenstein A-module VL[B] = AB :=

⊕
b∈B Ab and a

representation of DMX(A) as Φ-linear (but not A-linear unless A is commutative)
endomorphisms of AB via (αEh,k)(βb) = αβEh,k(b); again the annihilator of this
module is precisely Z in the finite case, and VL[B] provides a faithful representation for
F . Instead of working with the left Frankenstein module VL[B] as (F , Φ)-bimodule,
we will work with the ordinary Frankenstein module V [B] as (F , A)-bimodule.

The sub-bimodules of the Frankenstein (F , A)-bimodule V [B] are described in [6,
Th.20.10, p.272]. The argument given there works for arbitrary X and for (F , Φ)-
bimodules as well. Recall that the tail-class τ of a body b is the equivalence class
of b where b′ ∼ b if they have the same tail but different heads (b = kc, b′ = hc,
equivalently b′ = hk∗b). Thus the hk∗ act transitively on the members of a tail class,
and for a fixed tail-class τ the tail submodule Vτ = ⊕b∈τbA is a cyclic F -module
with any body b ∈ τ as generator. The Frankenstein module splits as a direct sum
V [B] =

⊕
τ Vτ of these F -invariant tail submodules. For any ideal I C A we obtain

invariant submodules Vτ (I) := I Vτ (B) = Vτ (B) I = ⊕b∈τbI.



12 JOHN FAULKNER AND KEVIN MCCRIMMON

Theorem 4.2 (Frankenstein Submodules). The FX(A)-invariant right A-submodules
(the (F , A)-bimodules) of V [B] are precisely all

W =
⊕

τ

Vτ (Iτ ) for ideals Iτ := {α ∈ A | Vτα ⊆ W}.

The irreducible sub-bimodules are the Vτ (I) for minimal ideals I C A. If A is simple,
V [B] is completely reducible with the irreducible invariant sub-bimodules precisely the
Vτ = Vτ (A).

The FX(A)-invariant right Φ-submodules (the (F , Φ)-bimodules) of V [B] are pre-
cisely all

W =
⊕

τ

Vτ (Lτ ) for left ideals Lτ := {α ∈ A | Vτα ⊆ W}.

The irreducible submodules are the Vτ (L) for minimal left ideals L C` A. If A is
completely reducible as a left A-module (a direct sum of simple left ideals) then V [B]
is completely reducible as a left F-module. In particular, if A = ∆ is a division
algebra, V [B] is completely reducible with the irreducible F-invariant Φ-submodules
precisely the Vτ = Vτ (∆).

Proof. First notice that

Iτ = {α ∈ A | bAα ⊆ W for all b ∈ τ} Lτ = {α ∈ A | bAα ⊆ W for all b ∈ τ}
= {α ∈ A | b′α ∈ W for some b′ ∈ τ} = {α ∈ A | b′α ∈ W for some b′ ∈ τ}
= {α ∈ A | bAαA ⊆ W for all b ∈ τ}

In both cases (bimodule or left module) the first equality is the definition, the second
holds since bAα = Ahk∗(b′α) [from b ∼ b′] and W is left-invariant under Ahk∗ ⊆ F ,
the third holds in the bimodule case since W is a right A-module. From the first
equation it is clear that Iτ is a left ideal with W ⊇ ∑

τ Vτ (Iτ ) =
∑

b∈τ bIτ =
∑

τ VτIτ ,
and from the third equation in the bimodule case it is clear that Iτ is an ideal, with∑

b∈τ bIτ =
∑

τ IτVτ =
∑

τ VτIτ .
Conversely, every w =

∑
i biαi ∈ W for distinct bodies has each bαi ∈ W : by Body

Separation there is an eh fixing bi and killing the other bj, hence biαi = eh(w) ∈ W .
Then by the second criterion αi ∈ Iτi

for τi the tail-class of bi, so biαi ∈ Vτi
(Iτi

) for
all i, and W ⊆ ∑

τ Vτ (Iτ ). ¤

Similarly, the characterization of F -endomorphisms of the Frankenstein module
[6, Th. 20.11, p.273] carries over verbatim.

Theorem 4.3 (Frankenstein Endomorphisms). The endomorphisms of V [B] as a
right A-module which commute with the Frankenstein action (the (FX(A), A)-bimodule
endomorphisms) reduce to central scalar multiplications on the tail submodules:

EndFX(A)(V [B]) =
⊕

τ Center(A)1Vτ ,

HomFX(A)(Vτ , Vτ ) = Center(A)1Vτ , HomFX(A)(Vτ , Vσ) = 0 (τ 6= σ).

Thus the Vτ are non-isomorphic (FX(A), A)-bimodules.
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Proof. First, each endomorphism ϕ acts diagonally: bA = ∩∞n=1ehn(b)V =⇒ ϕ(b) ∈
∩∞i=1ehn(b)ϕ(V ) ⊆ ∩∞n=1ehn(b)V = bA so that ϕ(b) = bαb for each body. Since bodies
with the same tail are conjugate under F , the scalars αb are constant on tail-classes:
if b′ ∼ b then b′ = hk∗b and b′αb′ = ϕ(b′) = ϕ(hk∗b) = hk∗ϕ(b) = hk∗bαb = b′αb

implies αb′ = αb. The diagonal scalars must lie in the center: ϕ(β1(b)) = ϕ(bβ) =
ϕ(b)β [by right A-linearity] = bαbβ must equal β1(ϕ(b)) = β1(bαb) = bβαb, so αb

must commute with all β ∈ A.
Since any bimodule-homomorphism in Hom(Vτ , Vσ) extends to an endomorphism

ϕ of V [B] by setting ϕ = 0 on all Vρ for ρ 6= τ ; the the above diagonal result says
ϕ = 0 if σ 6= τ, and when σ = τ it is α1Vτ for some central α. ¤

5. The Case |X| = 1

We are primarily concerned with the case |X| > 2, but we indicate here how
the “exceptional case” [5] X = {x} of cardinality 1 becomes more complicated: the
Frankenstein representation degenerates and the Kennedy representation becomes the
standard Kaplansky shift representation, but the Scalar Multiple Theorem 3.1 fails
and DMx(A) has a complicated ideal structure.

Theorem 5.1 (Cardinality 1). If X = {x} has cardinality 1, then there is only one
body b = (x, x, x, . . .), V [B] is 1-dimensional, FX(A) = A1V [B] is also 1-dimensional,
and the Frankenstein ideal lattice is that of A.

On the other hand, V [H] =
⊕

j>0 vjA is infinite-dimensional with Kennedy repre-

sentation the shift action, x(vj) = vj+1 the forward shift operator, x∗(vj) = vj−1 (j >
1), x∗(v0) = 0 the backward shift. Thus DMx(A) is faithfully imbedded in the row-
and-column-finite matrices as the standard Kaplansky shift algebra via x → ∑∞

j=0 Ej+1,j

with 1’s on the subdiagonal,and x∗ → ∑∞
j=0 Ej,j+1 with 1’s on the superdiagonal. If

A is simple this action is irreducible.
The reduced deep matrix algebra DMx(A) = DMx(A)/Zx(A) is isomorphic to the

algebra A[t, t−1] of Laurent polynomials over A, so the lattice of ideals of DMx(A)
is isomorphic to the lattice of t-cancelable ideals of the polynomial ring A[t] (those
I0 C A[t] such that p(t) ∈ A[t], tp(t) ∈ I0 =⇒ p(t) ∈ I0).

The Scalar Multiple Theorem fails in DMx(A): there are no heads h, k satisfying
k∗(x + x∗)h = α1 6= 0.

Proof. This situation is polycephalic, with one body but lots of heads: there is only a
single body b = (x, x, x, . . .) ∈ B(X), V [B] = bA is 1-dimensional, and the Franken-
stein action is

( ∑
αm,nx

mx∗n
)
(b) =

( ∑
m,n αm,n

)
b, so the kernel of the Frankenstein

Epimorphism is the set of deep matrices having coefficient sum zero, with quotient the
Frankenstein algebra DMx(A)/Ker(F) ∼= FX(A) = A1V [B]. Thus the Frankenstein
algebra ideals are precisely those of A.

There are many heads: H(X) = {xn | n > 0}, V [H] =
⊕

n>0 xnA =:
⊕

n>0 vnA is
an infinite-dimensional free A-module with basis of vn = xn, and under the Kennedy
representation DMx(A) is isomorphic to the familiar Kaplansky shift algebra [3,
Example 6(2) p.35] with x the forward shift x(vi) = vi+1 and x∗ the backward shift



14 JOHN FAULKNER AND KEVIN MCCRIMMON

x∗(vi) = vi−1, x∗(v0) = 0. This algebra is spanned over A by the kth subdiagonals
xk =

∑∞
i=0 Ei+k,i and superdiagonals x∗k =

∑∞
i=0 Ei,i+k (the 0th sub- and super-

diagonals being the identity matrix Id), plus Matfin
∞ (Φ) spanned by the Ei,j. Indeed,

computing the action on the vi’s shows shows

xnx∗n =
∑∞

i=n Ei,i, xn+kx∗n =
∑∞

i=n Ei+k,i, xmx∗m+k =
∑∞

i=m Ei,i+k,
f = 1− xx∗ = E0,0, x∗kE0,0 = E0,0x

k = 0 (k > 1), Ei,j = xiE0,0x
∗j.

These products show that Zx(A) = AHH∗fHH∗ = AHfH∗ =
∑

i,j>0 Axifx∗j =∑
i,j>0 AEi,j

∼= Matfin
∞ (A), so the reduced deep matrix algebra DMx(A)/Zx(A) =( ∑∞

n=1 Ax∗n + A +
∑∞

m=1 Axm
)

+ Zx(A) with x∗x = 1, xx∗ = 1 − f ∈ 1 + Zx(A)

is isomorphic to the algebra A[t, t−1] =
∑∞

k=−∞ Atk of Laurent polynomials over A
mapping the cosets of x, x∗ to t, t−1 with t−1t = tt−1 = 1. Since DMx(A)/Ker(F) ∼=
A, the Frankenstein kernel is much bigger than the obstacle Zx(A).

It is easily checked that the ideals I C A[t, t−1] are precisely all I =
∑∞

k=0 t−kI0 for
t-cancelable ideals I0 = I ∩ A[t] C A[t]. But it seems difficult to describe these for
arbitrary associative coordinate rings A.

For heads h = xn, k = xm, k∗(x + x∗)h = x∗mxn+1 + x∗m+1xn has a term α1 only
if m = n + 1 or m + 1 = n, yielding 1 + x∗2 or x2 + 1, so we cannot reduce to a single
term and we can never obtain k∗uh = α1 6= 0. The trouble with a single x is lack of
orthogonality: no product of x’s and x∗’s is ever zero. ¤
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