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Abstract. Extending two classical embedding theorems of Albert-Jacobson and Ja-

cobson for Albert (= exceptional simple Jordan) algebras over fields of characteristic
not two to base fields of arbitrary characteristic, we show that any element of a re-

duced Albert algebra can be embedded into a reduced absolutely simple subalgebra

of degree 3 and dimension 9 which may be chosen to be split if the Albert algebra
was split to begin with.

Introduction

It is sometimes useful to embed certain elements of a given algebraic structure into
a substructure with particularly nice properties. For example, any semi-simple element
of a connected linear algebraic group can be embedded into a maximal torus (Borel
[4, Thm. 11.10]). Or, along different lines, any element of an octonion algebra can be
embedded into a quaternion subalgebra (Springer-Veldkamp [26, Prop. 1.6.4]), which
may be chosen to be split if the octonion algebra was split to begin with (Jacobson [9,
Lemma IX.6.2], Garibaldi-Petersson [8, Prop. 5.5]). Similar embedding theorems, due to
Albert-Jacobson [2, Thm. 1] and Jacobson [9, Thm. IX.11], respectively, exist for reduced
Albert algebras but are confined to base fields of characteristic not 2. It is the purpose
of the present paper to remove this restriction by establishing the following result.

Embedding Theorem. Let J be a reduced Albert algebra over an arbitrary field. Then
any element of J can be embedded into a reduced absolutely simple subalgebra of degree
3 and dimension 9. Moreover, if J is split, this subalgebra may be chosen to be split as
well.

Carrying out the proof of this theorem in full generality turns out to be surprisingly
delicate. In the reduced non-split case, a straightforward application of the Jacobson co-
ordinatization theorem (Jacobson [10, 5.4.2] and [9, p. 137]) combined with the unique-
ness of the coefficient algebra (Albert-Jacobson [2, Thm. 3] and Faulkner [7, Thm. 1.8])
immediately yields the embeddibility of an arbitrary element into a reduced simple sub-
algebra of degree 3 and dimension 9; but to show that this subalgebra may, in fact, be
chosen to be absolutely simple (which is automatic in characteristic not 2) requires a
considerable amount of effort. In the split case, on the other hand, while we will adhere
rather closely to the overall strategy [9, Lemmata IX.6.1−3] employed by Jacobson in
his proof of the embedding theorem, quite a few cumbersome detours have to be taken
in order to include base fields of characteristic 2, and more specifically, the field with two
elements.

The final statement of the embedding theorem has recently been applied by Anquela-
Cortés-Petersson [3] in their study of commuting U -operators in Jordan algebras.

1. Notational conventions.

Many of our subsequent considerations, when phrased with appropriate care, are valid
over arbitrary commutative rings; we refer to [20] for details. But since our principal
objective will be the proof of the embedding theorem, we always confine ourselves to
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base fields rather than rings, so throughout this paper, we let F be a field of arbitrary
characteristic. The bilinearization (or polar form) of a quadratic map Q : V → W
between vector spaces V,W over F will always be indicated by Q(x, y) = Q(x + y) −
Q(x) − Q(y). A quadratic form over F , i.e., a quadratic map q : V → F with V finite-
dimensional, is said to be non-singular if its induced symmetric bilinear form q(x, y) is
non-degenerate in the usual sense of linear algebra. For standard facts about (unital
quadratic) Jordan algebras, the reader is referred to Jacobson [10]. When it comes to
labeling Peirce spaces relative to individual idempotents, however, we follow Loos [14,
§ 5]. Free use will be made of the differential calculus for polynomial maps as explained
in Jacobson [9, Chap. VI] which, with appropriate care, works over arbitrary fields, not
just infinite ones; see Roby [24] or Loos [14, § 18] for generalization. Deviating from the
notation used in [9], we write (DP )(x, y) for the directional derivative of a polynomial
map P at x in the direction y.

2. Conic algebras

Conic algebras are the same as algebras of degree 2 in the sense of McCrimmon [19].
Over arbitrary commutative rings, they have been thoroughly investigated by Loos [15].
Their main properties over fields have been summarized, with appropriate references,
by Garibaldi-Petersson [8]. In what follows, we confine ourselves to what is absolutely
indispensable for the subsequent development.

2.1. The concept of a conic algebra. A (non-associative) F -algebra C is said to be
conic if it has an identity element 1C 6= 0 and there exists a quadratic form nC : C → F ,
necessarily unique and called the norm of C, such that x2 − nC(1C , x)x+ nC(x)1C = 0
for all x ∈ C. The linear map tC : C → F defined by tC(x) := nC(1C , x) is then called
the trace of C, while we refer to ιC : C → C given by x 7→ x̄ := tC(x)1C − x as the
conjugation of C; it is a linear map of period 2. The unital subalgebra of C generated
by an element v ∈ C will be denoted by F [v]; it is spanned by 1C , v as a vector space
over F and, in particular, has dimension at most 2. Homomorphisms of conic algebras
are defined as algebra homomorphisms preserving norms and units, hence traces and
conjugations as well.

2.2. Identities in conic algebras. Let C be a conic algebra over F , with norm nC ,
trace tC and conjugation ιC . Then the following identities hold.

nC(1C) = 1,(1)

tC(1C) = 2,(2)

tC(x) = nC(1C , x)(3)

x2 = tC(x)x− nC(x)1C ,(4)

x̄ = tC(x)1C − x,(5)

Conic algebras are clearly stable under base field extensions.

2.3. Conic alternative algebras. Let C be a conic algebra over F which is also alter-
native, so beside the alternative laws and flexibility,

x(xy) = x2y, (yx)x = yx2, (xy)x = x(yx) =: xyx,(1)

C satisfies the Moufang identities

x
(
y(xz)

)
= (xyx)z,

(
(zx)y

)
x = z(xyx), (xy)(zx) = x(yz)x.(2)

Combining (1) with (2.2.4) and (2.2.5), we deduce Kirmse’s identities

x(x̄y) = nC(x)y = (yx̄)x.(3)

Moreover, the conjugation of C is an algebra involution, we have the relations

nC(x, y) = tC(xȳ) = tC(x)tC(y)− tC(xy),(4)
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and the trace is a commutative associative linear form:

tC(xy) = tC(yx), tC
(
(xy)z

)
= tC

(
x(yz)

)
=: tC(xyz).(5)

Also, the norm permits composition in the sense that it satisfies the relation

nC(xy) = nC(x)nC(y).(6)

2.4. Inverses. Let C be a conic alternative F -algebra. An element x ∈ C is invertible
in the sense that some x−1 ∈ C (necessarily unique and called the inverse of x in C) has
xx−1 = 1C = x−1x if and only if nC(x) ∈ F is invertible, in which case we have

x−1 = nC(x)−1x̄, (x−1)−1 = x, x(x−1y) = y = (yx−1)x(1)

for all y ∈ C.

2.5. Composition algebras. We use the term composition algebra in order to designate
Hurwitz algebras in the sense of Knus-Merkurjev-Rost-Tignol [13, § 33]. Hence composi-
tion algebras over F are the same as finite-dimensional conic alternative F -algebras such
that either their norm is a non-singular quadratic form, or their dimension is 1 and F
has characteristic 2; in the former case, we speak of non-singular composition algebras.
Of particular importance in this paper are quaternion algebras (composition algebras of
dimension 4, which are associative but not commutative) and octonion (= Cayley) al-
gebras (composition algebras of dimension 8, which are alternative but not associative).
For further properties of these, see also Springer-Veldkamp [26].

2.6. Idempotents. Let C be a composition algebra over F . An element c ∈ C is a
non-trivial idempotent (i.e., c2 = c 6= 0, 1C) if and only if nC(c) = 0, tC(c) = 1. In this
case, c′ := 1C − c is a non-trivial idempotent as well, and the Peirce decomposition of C
relative to the complete orthogonal system (c, c′) (Schafer [25, Prop. 3.4]) takes on the
form C = Fc+C12 +C21 +Fc′ as a direct sum of subspaces. It is then easy to check that
the off-diagonal Peirce components C12, C21 are dual to each other under the bilinearized
norm (or trace).

3. Cubic Jordan algebras.

In this section, we recall some basic facts about cubic Jordan algebras that will be
needed frequently later on. Our main reference is McCrimmon [16].

3.1. Cubic norm structures. By a cubic norm structure over F (originally called a
cubic form with adjoint and base point) we mean a quadruple X = (X,N, ], 1) consisting
of a finite-dimensional vector space X over F , a cubic form N : X → F (the norm), a
quadratic map X → X, x 7→ x], (the adjoint) and a distinguished element 1 ∈ X (the
base point) such that the following conditions are fulfilled. Writing x×y = (x+y)]−x]−y]
for the bilinearization of the adjoint,

T := −(D2 logN)(1) : X ×X −→ F

for the bilinear trace of X, which is a symmetric bilinear form and induces the linear
trace

T : X −→ F, x 7−→ T (x) := T (x, 1),

the relations

N(1) = 1, 1] = 1 (base point identities),(1)

x]] = N(x)x (adjoint identity),(2)

(DN)(x, y) = T (x], y) (gradient identity),

1× x = T (x)1− x (unit identity)(3)

hold under all base field extensions. The quadratic form

S : X −→ F, x 7−→ S(x) := T (x]),(4)
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is then called the quadratic trace of X. As a companion to the base point identities (1),
we have

T (1) = 3,(5)

while the quadratic trace bilinearizes to

S(x, y) = T (x× y) = T (x)T (y)− T (x, y).(6)

Homomorphisms of cubic norm structures are defined as linear maps preserving norms,
adjoints and base points in the obvious sense.

3.2. The concept of a cubic Jordan algebra. Let X = (X,N, ], 1) be a cubic norm
structure over F with (bi-)linear trace T and quadratic trace S. Then the vector space
X together with the unit element 1 ∈ X and the U -operator

Uxy := T (x, y)x− x] × y (x, y ∈ X)(1)

converts X into a Jordan algebra over F which we write as J = J(X). The Jordan triple
product of J is given by

{xyz} = T (x, y)z + T (y, z)x− (z × x)× y (x, y, z ∈ X).(2)

Jordan algebras of the form J = J(X) are said to be cubic because the formula x3 −
T (x)x2 + S(x)x − N(x)1 = 0 holds in every base field extension; moreover, the adjoint
relates to the algebra structure of J by

x] = x2 − T (x)x+ S(x)1,(3)

which linearizes to

x× y = x ◦ y − T (x)y − T (y)x+ S(x, y)1.(4)

If f : X → X ′ is a homomorphism of cubic norm structures, then J(f) := f : J(X) →
J(X ′) is a homomorphism of Jordan algebras. Hence our construction yields a faithful
functor from the category of cubic norm structures over F to the category of Jordan
algebras over F which, however, is not full (Petersson-Racine [21, Remark to Prop. 2.6]).
This difficulty disappears when dealing with isomorphisms of

3.3. Generically algebraic Jordan algebras of degree 3. Let J be a Jordan algebra
over F that is generically algebraic of degree 3 in the sense of Jacobson-Katz [11]. Then
there is a unique cubic norm structure X over F satisfying J = J(X), namely the
one whose norm, adjoint and base point are respectively given by the generic norm
[11, Theorem 2], the adjoint [11, p. 221] and the unit element of J in its capacity as a
generically algebraic Jordan algebra. It follows that any isomorphism between generically
algebraic Jordan algebras of degree 3 is also one of the underlying cubic norm structures,
hence preserves norms, adjoints and base points.

3.4. Cubic Jordan matrix algebras. Let C be a conic alternative F -algebra and
Γ = diag(γ1, γ2, γ3) ∈ GL3(F ) an invertible 3× 3 diagonal matrix with entries in F . We
write Her3(C,Γ) for the totality of 3 × 3-matrices over C which are Γ-hermitian in the
sense that x = Γ−1x̄tΓ and have scalars down the diagonal, the latter condition being
automatic unless the characteristic is 2. We abbreviate Her3(C) := Her3(C,13), where
13 stands for the 3 × 3 unit matrix. Writing eij for the ordinary matrix units, there
is a natural set of generators for Her3(C,Γ) as a vector space over F furnished by the
hermitian matrix units

v[jl] := γlvejl + γj v̄elj

for v ∈ C and j, l = 1, 2, 3 distinct. More precisely, an element x ∈ Mat3(C) belongs to
Her3(C,Γ) if and only if it can be written in the form, necessarily unique,

x =
∑(

αieii + vi[jl]
)

(αi ∈ F, vi ∈ C, i = 1, 2, 3),(1)

where we systematically adhere to the convention that summations like the one on the
right of (1) always extend over the cyclic permutations (ijl) of (123). Similarly, for
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i = 1, 2, 3 (resp. p = 1, 2, 3), indices j, l = 1, 2, 3 (resp. q, r = 1, 2, 3) will always be so
chosen as to form the unique cyclic permutation (ijl) (resp. (pqr)) of (123) starting with
i (resp. p).

We now put X := Her3(C,Γ) as a vector space over F and define a cubic form
N : X → F , a quadratic map ] : X → X and a base point 1 ∈ X by observing (2.3.5)
and imposing the condition that, for x as in (1), the relations

N(x) = α1α2α3 −
∑

γjγlαinC(vi) + γ1γ2γ3tC(v1v2v3),(2)

x] =
∑((

αjαl − γjγlnC(vi)
)
eii +

(
− αivi + γivjvl

)
[jl]
)
,(3)

1 =
∑

eii

hold in all base field extensions. Then (X,N, ], 1) is a cubic norm structure over F , again
denoted by Her3(C,Γ), giving rise to a cubic Jordan algebra over F as in 3.2, which we
designate by Her3(C,Γ) as well, and which is, in fact, generically algebraic of degree 3.
With

y =
∑(

βieii + wi[jl]
)

(βi ∈ F, wi ∈ C, i = 1, 2, 3),

the (bi-)linear and quadratic trace of Her3(C,Γ) are respectively given by

T (x, y) =
∑(

αiβi + γjγlnC(vi, wi)
)
,(4)

T (x) =
∑

αi,(5)

S(x) =
∑(

αjαl − γjγlnC(vi)
)
,(6)

while the adjoint bilinearizes to

x× y =
∑(

αjβl + βjαl − γjγlnC(vi, wi)
)
eii(7)

+
∑(

− αiwi − βivi + γivjwl + wjvl
)
[jl].

As special cases of (3), (7), we record

u[jl]] = −γjγlnC(u)eii, u[jl]× v[jl] = −γjγlnC(u, v)eii, v[jl]× w[li] = γlvw[ij].(8)

3.5. Lemma. With the notation and assumptions of 3.4, let (pqr) be a cyclic permuta-
tion of (123) and suppose the element u ∈ C has norm 1. Then the map

ϕ := ϕp,u : Her3(C,Γ)
∼−→ Her3(C,Γ)

defined by

ϕ
(∑

(βieii + wi[jl])
)

:=
∑

βieii + (uwp)[qr] + (wqu)[rp] + (u−1wru
−1)[pq](1)

for βi ∈ F , wi ∈ C, i = 1, 2, 3, is an automorphism of Her3(C,Γ).

Proof. Since ϕ is bijective, it remains to show that it preserves norms, adjoints and base
points. While the last assertion is obvious, the first two follow from (3.4.2), (3.4.3) by
a straightforward computation, involving (2.3.5), (2.3.6), the Moufang identities (2.3.2),
and (2.4.1). �

The proof of the following observation is even more elementary and will be totally omit-
ted.

3.6. Lemma. With the notation and assumptions of 3.4, put Γ′ := diag(γ3, γ1, γ2).
Then the assignment∑

(αieii + vi[jl]) 7−→
∑

(αleii + vl[jl]) (αi ∈ F, vi ∈ C, i = 1, 2, 3)

defines an isomorphism Her3(C,Γ)
∼→ Her3(C,Γ′) sending eii to ejj for i = 1, 2, 3. �
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4. Elementary idempotents and co-ordinatization.

Before we will be able to tackle the embedding theorem, it will be necessary to give a
brief survey, mostly without proofs, of the Jacobson co-ordinatization theorem for cubic
Jordan algebras. Rather than specializing the theorem in its most general form (see [10,
5.4.2], [9, p. 137], but also McCrimmon [18, p. 260]) to the peculiar case at hand, we
find it more useful adapting Racine’s ad-hoc approach [23] to the somewhat more general
set-up required in the present investigation. We do so by fixing a cubic norm structure
X = (X,N, ], 1) with trace T and quadratic trace S over F and writing J = J(X) for
the corresponding cubic Jordan algebra.

4.1. The concept of an elementary idempotent. By an elementary idempotent of
J we mean an element e ∈ X satisfying T (e) = 1 and e] = 0. In this case, (3.2.3) and
(3.1.4) show e2 = e, so e ∈ J is indeed an idempotent. Combining (3.2.1) with [10,
(5.1.6)] and the proofs of [23, (28)] and Petersson-Racine [22, Lemma 5.3 (d)], it follows
that the corresponding Peirce components have the form

J2(e) = Fe,(1)

J1(e) = {x ∈ J | T (x) = 0, e× x = 0},(2)

J0(e) = {x ∈ J | e× x = T (x)(1− e)− x}.(3)

In particular, elementary idempotents are always absolutely primitive in the sense that,
even after an arbitrary base field extension, they cannot be written as an orthogonal
sum of two non-zero idempotents, but the converse does not hold [21, Prop. 2.6, (2)].
An elementary frame of J is defined as a complete orthogonal system (e1, . . . , er) of
elementary idempotents. The integer r ≥ 1 is then called the length of the elementary
frame.

4.2. Lemma. The elementary frames of J are precisely of the form (e1, e2, e3), where
e1, e2 ∈ J are orthogonal elementary idempotents and e3 = e1 × e2 = 1− e1 − e2. Given
such an elementary frame, J is generically algebraic of degree 3, the corresponding Peirce
components can be written as

Jii = Fei, Jjl = {x ∈ J | T (x) = 0, ej × x = el × x = 0} (i = 1, 2, 3),(1)

and we have

xjl × xli = xjl ◦ xli (xjl ∈ Jjl, xli ∈ Jli, i = 1, 2, 3).(2)

Proof. An elementary frame of length 1 in J would consist of the unit element alone. But
the base point identities (3.1.1) show 1] = 1 6= 0, so 1 ∈ J can never be an elementary
idempotent. Hence the length of an elementary frame in J is at least 2, and given
orthogonal elementary idempotents e1, e2 ∈ J , the first assertion will follow once we have
shown that e1 × e2 = 1− e1 − e2 is an elementary idempotent as well. Since e2 ∈ J0(e1)
by orthogonality, (4.1.3) implies e1 × e2 = T (e2)(1 − e1) − e2 = 1 − e1 − e2, and from
(3.1.5) we deduce T (e1×e2) = 1. Moreover, expanding (1−e1−e2)] yields (e1×e2)] = 0.
Thus e1× e2 is an elementary idempotent, and J contains an elementary frame of length
3, forcing it to be generically algebraic of degree 3. Now (1) follows immediately from
(4.1.1), (4.1.2) and the standard Peirce relations Jii = J2(ei), Jjl = J1(ej) ∩ J1(el) [14,
(5.14.2), (5.14.3)]. In order to establish (2), we first combine [10, Prop. 5.1.4, (5.1.6)]
with (3.2.1) and obtain 0 = UejUej ,elxjl = Uejxjl = T (ej , xjl)ej , hence T (ej , xjl) = 0.
Now (1) and (3.1.6) yield 0 = T (ej × xjl) = T (ej)T (xjl) − T (ej , xjl) = T (xjl) and,
similarly, T (xli) = 0. On the other hand, the proof of [23, (33)] gives T (xjl, xli) = 0,
which combines with (3.1.6) to imply S(xjl, xli) = 0. Now (2) may be read off from
(3.2.4). �
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4.3. Co-ordinate systems. Let (e1, e2, e3) be an elementary frame in J with Peirce
components as in (4.2.1) and fix an index i ∈ {1, 2, 3}. Recall from [10, 5.3.1] that
ej , el are said to be connected by ujl ∈ Jjl if ujl is invertible in J2(ej + el) = J0(ei).
If also el, ei are connected by uli ∈ Jli, then so are ei, ej by uij := ujl ◦ uli ∈ Jij [10,
5.3.3]. The entire elementary frame is said to be connected if elements ujl, uli with the
aforementioned properties exist. This holds true automatically in case the Jordan algebra
is simple ([10, Thm. 6.3.1] and [23, p. 98]). By a co-ordinate system of J we mean a
quintuple

S = (e1, e2, e3, u23, u31) ∈ J5(1)

such that (e1, e2, e3) is an elementary frame of J with the corresponding Peirce decom-
position

J =
∑

(Fei + Jjl)(2)

and ej , el for i = 1, 2 are connected by ujl ∈ Jjl. Note that in this case J is generically
algebraic of degree 3 (Lemma 4.2).

For example, let J = Her3(C,Γ) be a cubic Jordan matrix algebra as in 3.4.
Then (3.4.3), (3.4.5) show that the diagonal idempotents form an elementary frame
(e11, e22, e33) with Peirce components

Jii = Feii, Jjl = C[jl] (i = 1, 2, 3).(3)

In particular, ejj , ell are connected by ujl := 1C [jl] since (2.2.1), (3.2.3), (3.4.5), (3.4.8)

imply u2
jl = u]jl − S(ujl)1 = −γjγleii + γjγl1 = γjγl(ejj + ell). Summing up,

D := (e11, e22, e33, 1C [23], 1C [31]) ∈ J5

is a co-ordinate system of Her3(C,Γ), called its diagonal co-ordinate system.

We now derive a useful criterion for connectedness of orthogonal elementary idempotents.

4.4. Lemma. Let (e1, e2, e3) be an elementary frame of J with the Peirce decomposition
J =

∑
(Fei + Jjl). Fixing an index i = 1, 2, 3 and ujl ∈ Jjl, the following conditions are

equivalent.

(i) ej , el are connected by ujl.
(ii) S(ujl) ∈ F×.

Moreover, if we are given a conic alternative F -algebra C, an invertible diagonal matrix
Γ = diag(γ1, γ2, γ3) ∈ GL3(F ) and a homomorphism ϕ : X → Her3(C,Γ) of cubic norm
structures sending ep to the diagonal idempotent epp for p = 1, 2, 3, then there is a unique
element u ∈ C satisfying ϕ(ujl) = u[jl], and the preceding conditions are also equivalent
to

(iii) nC(u) ∈ F×.

Proof. By [10, 5.3.1], (i) holds if and only if ujl is invertible in J2(ej + el) = J0(ei). Here
Faulkner’s Lemma [7, Lemma 1.5], which was phrased originally in a more restrictive
context but is easily seen to hold under the present conditions as well, implies that J0(ei)
agrees with the Jordan algebra of the pointed quadratic form (V, Si, ej + el), where V
stands for J0(ei) as a vector space over F and Si for the restriction of the quadratic form
S to J0(ei). But since an element v of the Jordan algebra of a pointed quadratic form
(V, q, e) over F is invertible if and only if q(v) is so in F (Jacobson-McCrimmon [12,
p. 14]), conditions (i), (ii) are equivalent. In the remainder of the proof, existence and
uniqueness of u follow from (4.3.3) and, writing S′ for the quadratic trace of Her3(C,Γ),
we apply (3.4.6) to obtain −γjγlnC(u) = S′(u[jl]) = S′(ϕ(ujl)) = S(ujl). Hence (ii) and
(iii) are equivalent as well. �
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4.5. Explicit co-ordinates. Let J be a cubic Jordan algebra over F and S a co-
ordinate system of J as in 4.3, particularly (4.3.1), (4.3.2). From Lemma 4.4 we deduce
S(u23), S(u31) ∈ F× and put

ω := ω(J,S) := S(u23)−1S(u31)−1 ∈ F×.(1)

Then the F -vector space J12 becomes an F -algebra under the multiplication

vw := ω(v × u23)× (u31 × w) (v, w ∈ J12),(2)

which we denote by C := C(J,S). We also put

Γ := Γ(J,S) := diag(γ1, γ2, γ3), γ1 := −S(u31), γ2 := −S(u23), γ3 := 1.(3)

One can now check that the arguments developed by Racine [23, pp. 98-100] carry over
mutatis mutandis to our more general setting and yield

4.6. Theorem. (The Jacobson co-ordinatization theorem) With the assumptions and
notation of 4.5, the following statements hold.

(a) C = C(J,S) is a conic alternative F -algebra with unit element, norm, trace given by

1C = u23 × u31, nC(v) = −ωS(v), tC(v) = ωT (1C , v) (v ∈ C).

(b) Writing v 7→ v̄ = ωT (1C , v)1C − v for the conjugation of C, the map

Φ = ΦJ,S : Her3(C,Γ)
∼−→ J

defined by

Φ
(∑

(αieii + vi[jl])
)

:=
∑

(αiei + vjl)

for αi ∈ F , vi ∈ C, i = 1, 2, 3, where

v23 := −S(u31)−1u31 × v̄1, v31 := −S(u23)−1u23 × v̄2, v12 := v3,

is an isomorphism of Jordan algebras satisfying Φ(eii) = ei for i = 1, 2, 3 and Φ(1C [jl]) =
ujl for i = 1, 2. �

4.7. Absolute simplicity versus simplicity. A Jordan algebra over F is said to be
absolutely simple if it remains simple under all base field extensions. Absolute simplicity
always implies central simplicity but the following proposition (which, though probably
known to experts, seems to lack a convenient reference) shows that the converse fails in
characteristic 2.

4.8. Proposition. Let Γ ∈ GL3(F ) be a diagonal matrix.

(a) If C is a composition algebra over F , then Her3(C,Γ) is absolutely simple.

(b) If F has characteristic 2 and K 6= F is a purely inseparable extension field of F
having exponent 1, then Her3(K,Γ) is simple but not absolutely simple.

Proof. For any conic algebra B over F , the cubic Jordan matrix algebra Her3(B,Γ)
is isomorphic to an isotope of Her3(B) [20, 6.6 (c)]; moreover, it is easily verified that
isotopes of an arbitrary Jordan algebra have exactly the same ideals as the original algebra
itself. Hence we may assume Γ = 13. Since composition algebras are stable under base
field extensions, (a) follows from [10, Thm. 5.2.7]. Turning to (b), K is a conic F -algebra
with trivial conjugation and Her3(K) is central simple by ([10, Thm. 5.2.7], McCrimmon
[17, Prop. 6]) but not absolutely simple by [17, p. 302, Example]. �
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4.9. Reduced Albert algebras. By a reduced Albert algebra over F we mean a Jordan
algebra J that is isomorphic to a cubic Jordan matrix algebra Her3(C,Γ) as in 3.4,
where C is an octonion algebra over F and Γ ∈ GL3(F ) is a diagonal matrix. By
the Albert-Jacobson-Faulkner theorem [7, Thm. 1.8], C is uniquely determined by J
up to isomorphism, allowing us to call it the coefficient (or co-ordinate) algebra of J .
Combining this with Theorem 4.6, we conclude that, given a co-ordinate system of J
as in 4.3, particularly (4.3.1), (4.3.2), there exists a diagonal matrix Γ′ ∈ GL3(F ) and

an isomorphism Φ: J
∼→ Her3(C,Γ′) satisfying Φ(ei) = eii (resp. Φ(ujl) = 1C [jl]) for

i = 1, 2, 3 (resp. i = 1, 2). Following Prop. 4.8 (a), reduced Albert algebras are absolutely
simple.

4.10. Split Albert algebras. An Albert algebra over F is said to be split if it is reduced
and its coefficient algebra is split in the sense that it has zero divisors, equivalently, that it
is isomorphic to Zor(F ), the algebra of Zorn vector matrices over F [26, pp. 19-20]. Up to
isomorphism, there is a unique split Albert algebra over F , namely, J := Her3(Zor(F )); in
fact, for any diagonal matrix Γ ∈ GL3(F ), we have an isomorphism J ∼= Her3(Zor(F ),Γ)
matching the diagonal idempotents of both algebras in their natural order. It follows
from this and 4.9 that every elementary frame (e1, e2, e3) of J = Her3(Zor(F )), being
extendible to a co-ordinate system by simplicity (cf. 4.3), is conjugate to the diagonal
elementary frame under an automorphism of J . We will refer to the choice of such an
automorphism as a re-co-ordinatization of J by means of e1, e2, e3.

The preceding considerations hold equally well when the split octonions are replaced
everywhere by Mat2(F ), the split quaternion algebra of 2× 2-matrices over F .

5. The reduced non-split case.

In this section, we will finally be able to prove the embedding theorem for reduced
Albert algebras that are not split. Before phrasing a more detailed version of the theorem
in the special set-up at hand, we derive three auxiliary results the first one of which turns
out to be useful in the split case as well.

5.1. Lemma. Let C be a conic alternative F -algebra and Γ = diag(γ1, γ2, γ3) ∈ GL3(F ).
Given u ∈ C making γ2γ3nC(u) + 1 ∈ F invertible and setting

ν := γ2γ3nC(u), µ := (ν + 1)−1,(1)

the quantities

e1 := e11, e2 := µ(e22 + νe33 + u[23]), e3 := µ(νe22 + e33 − u[23])(2)

form an elementary frame of J , and if x =
∑

(βiei + xjl) is the corresponding Peirce
decomposition of an arbitrary element

x =
∑(

αieii + vi[jl]
)
∈ J := Her3(C,Γ) (αi ∈ F, vi ∈ C, i = 1, 2, 3),(3)

then

β1 = α1,(4)

β2 = µ
(
α2 + να3 + γ2γ3nC(u, v1)

)
,(5)

β3 = µ
(
να2 + α3 − γ2γ3nC(u, v1)

)
,(6)

x23 = µ2
{(

2ν(α2 − α3) + (ν − 1)γ2γ3nC(u, v1)
)
(e22 − e33)(7)

+
((

(ν − 1)(α2 − α3)− 2γ2γ3nC(u, v1)
)
u+ v1

)
[23]
}
,

x31 = µ
(
(v2 − γ2v3u)[31] + (νv3 − γ3uv2)[12]

)
,(8)

x12 = µ
(
(νv2 + γ2v3u)[31] + (v3 + γ3uv2)[12]

)
.(9)

Proof. Since
∑
ei =

∑
eii = 1 and (4.3.3) combined with [14, (5.14.2)] yields e2, e3 ∈

J0(e1), e2 +e3 = 1J0(e1), the quantities in (2) will form an elementary frame of J once we



10 HOLGER P. PETERSSON

have shown that ej is an elementary idempotent, equivalently, that e]j = 0 and T (ej) = 1,

for j = 2, 3. Here the first (resp. second) relation follows from (2) combined with (3.4.3)
(resp. (3.4.5)). Turning to the remaining assertion of the lemma, we first note that the
Peirce spaces of any elementary frame in J are mutually orthogonal relative to the bilinear
trace. Hence βi = T (ei, x) for i = 1, 2, 3, and combining (2) with (3.4.4) we obtain (4)-
−(6). Computing the off-diagonal Peirce components of x is more complicated. First of
all, combining (3.2.2) with [10, Prop. 5.1.4, (5.1.6)], 4.1 and Lemma 4.2, we conclude

xjl = Uej ,elx = {ejxel} = βjel + βlej − ei × x.(10)

In order to complete the proof, it will therefore be necessary to determine the quantities
ei×x, which will be accomplished by a routine computation involving (2), (3) and (3.4.7).
We obtain

e1 × x = α3e22 + α2e33 − v1[23],(11)

e2 × x = µ
((
να2 + α3 − γ2γ3nC(u, v1)

)
e11 + να1e22 + α1e33(12)

− α1u[23] + (−v2 + γ2v3u)[31] + (−νv3 + γ3uv2)[12]
)
,

e3 × x = µ
((
α2 + να3 + γ2γ3nC(u, v1)

)
e11 + α1e22 + να1e33(13)

+ α1u[23]− (νv2 + γ2v3u)[31]− (v3 + γ3uv2)[12]
)
.

With the aid of (2), (4)−(6), (10) and (11)−(13) we can now compute

x23 = β2e3 + β3e2 − e1 × x

= µ2
((
α2 + να3 + γ2γ3nC(u, v1)

)(
νe22 + e33 − u[23]

)
+
(
να2 + α3 − γ2γ3nC(u, v1)

)(
e22 + νe33 + u[23]

))
− α3e22 − α2e33 + v1[23]

=
(
(µ2ν + µ2ν)α2 + (µ2ν2 + µ2 − 1)α3 + (µ2ν − µ2)γ2γ3nC(u, v1)

)
e22

+
(
(µ2 + µ2ν2 − 1)α2 + (µ2ν + µ2ν)α3 + (µ2 − µ2ν)γ2γ3nC(u, v1)

)
e33

+
((

(−µ2 + µ2ν)α2 + (−µ2ν + µ2)α3 + (−µ2 − µ2)γ2γ3nC(u, v1)
)
u+ v1

)
[23].

Here we make use of (1) to deduce µ2ν2 +µ2−1 = µ2(ν2 +1− (1+ν)2) = −2µ2ν. Hence
we have (7). Similarly,

x31 = β3e1 + β1e3 − e2 × x

= µ
{(
να2 + α3 − γ2γ3nC(u, v1)

)
e11 + α1

(
νe22 + e33 − u[23]

)
−
((
να2 + α3 − γ2γ3nC(u, v1)

)
e11 + να1e22 + α1e33

− α1u[23] + (−v2 + γ2v3u)[31] + (−νv3 + γ3uv2)[12]
)}

= µ
(
(v2 − γ2v3u)[31] + (νv3 − γ3uv2)[12]

)
,

and we have (8), while a completely analogous computation yields (9). �

5.2. Remark. O. Loos has asked whether, in the presence of suitable regularity condi-
tions, the elementary frame of Lemma 5.1 is conjugate to the diagonal frame under the
automorphism group of J . Using Racine’s extension [23, Cor. of Lemma 3] of the Albert-
Jacobson criterion [2, Thm. 9], it can be shown that, for C an octonion algebra over F ,
the desired conjugacy holds if and only if ν + 1 ∈ nC(C×), hence fails for appropriate
choices of Γ and u if the norm of C is not universal.
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5.3. Lemma. Let C be a non-singular composition division algebra over F and 0 6= v ∈
C. Then there exists an element u ∈ C such that nC(u) = 1 and tC(uv) 6= 0.

Proof. If tC(v) 6= 0, then u := 1C satisfies the requirements of the lemma. Thus we may
assume tC(v) = 0. Since the linear forms tC and x 7→ tC(xv) are both non-zero, the
union of their kernels cannot be all of C. Hence we find an element w ∈ C such that
tC(w) 6= 0 6= tC(wv). Then u := nC(w)−1w2 ∈ C has norm 1 and by (2.2.4) satisfies
tC(uv) = nC(w)−1tC(w2v) = nC(w)−1tC(w)tC(wv) − tC(v) = nC(w)−1tC(w)tC(wv) 6=
0, as desired. �

5.4. Lemma. Let C be a split octonion algebra over F and suppose v ∈ C \ F1C has
trace zero. Then there exists a non-trivial idempotent c ∈ C such that nC(c, v) = 0.

Proof. V := F1C + Fv ⊆ C is a two-dimensional subspace with basis 1C , v, and since
nC(1C) = 1, nC(1C , v) = tC(v) = 0, the matrix of nC |V relative to the basis 1C , v of V
is given by (

1 0
0 α

)
, α := nC(v).(1)

Now let d be a non-trivial idempotent of C. Since the Peirce components C12, C21 of
C with respect to (d, 1C − d) by 2.6 are dual to each other relative to the bilinearized
norm, there are elements w12 ∈ C12, w21 ∈ C21 satisfying nC(w12, w21) = 1. Setting w :=
w12 +αw21 ∈ C, we therefore have nC(1C , w) = 0, nC(w) = nC(w12) +αnC(w12, w21) +
α2nC(w21) = α, so (1) gives also the matrix of nC |W , W := F1C + Fw, relative to its
basis 1C , w. Now the Witt extension theorem [6, Thm. 8.3] yields an isometry ϕ from
the quadratic space (C, nC) to itself fixing 1C and sending w to v; in particular, ϕ is an
automorphism of the Jordan algebra C+, forcing c := ϕ(d) to be a non-trivial idempotent
of C+, hence of C, with nC(c, v) = nC(ϕ(d), ϕ(w)) = nC(d,w) = 0. �

5.5. Theorem. (cf. Albert-Jacobson [2, Thm. 1]) Let C be an octonion division algebra
over F , Γ ∈ GL3(F ) a diagonal matrix and J := Her3(C,Γ) the corresponding reduced
non-split Albert algebra over F . Given any element x ∈ J , there exist a unital subalgebra
J ′ ⊆ J , a separable quadratic subfield K ⊆ C and a diagonal matrix Γ′ ∈ GL3(F ) such
that

x ∈ J ′ ∼= Her3(K,Γ′).

Proof. Writing

Γ = diag(γ1, γ2, γ3), x =
∑

(αieii + vi[jl]) (γi ∈ F×, αi ∈ F, vi ∈ C, i = 1, 2, 3),

and defining a diagonal isomorphism as an isomorphism J
∼→ Her3(C,Γ1) (for some

diagonal matrix Γ1 ∈ GL3(F )) that matches the respective diagonal idempotents in
their natural order, we perform the following steps.

10. If φ : J
∼→ J1 := Her3(C,Γ1), for some diagonal matrix Γ1 ∈ GL3(F ), is any

isomorphism such that the theorem holds for J1 and x1 := φ(x) ∈ J1, then it also holds
for J and x. Indeed, there exist a unital subalgebra J ′1 ⊆ J1, a separable quadratic
subfield K1 ⊆ C and a diagonal matrix Γ′1 ∈ GL3(F ) satisfying x1 ∈ J ′1 ∼= Her3(K1,Γ

′
1).

Then J ′ := φ−1(J ′1) is a unital subalgebra of J such that x ∈ J ′ ∼= Her3(K1,Γ
′
1).

20. The theorem holds if vi ∈ F1C for i = 1, 2, 3 since, in this case, we have x ∈ J ′ :=
Her3(K,Γ) ⊆ J for any separable quadratic subfield K ⊆ C, e.g., for K = F [v], where
v ∈ C \ F1C satisfies tC(v) 6= 0.

30. The theorem holds if vq = vr = 0 for some cyclic permutation (pqr) of (123). Indeed,
if vq = vr = 0, then 20 allows us to assume vp /∈ F1C , in particular vp 6= 0. Applying
Lemma 5.3, we find an element u ∈ C of norm 1 satisfying tC(uvp) 6= 0. Now consider
the trialitarian automorphism ϕ := ϕp,u of Lemma 3.5. From (3.5.1) we conclude ϕ(x) =∑
αieii+(uvp)[qr], and by 10, 20 we are reduced to the case tC(vp) 6= 0. Hence vp belongs

to the separable quadratic subfield K := F [vp] ⊆ C satisfying x ∈ J ′ := Her3(K,Γ) ⊆ J ,
and we are done.
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40. For any cyclic permutation (pqr) of (123) satisfying vq 6= 0 6= vr, we may assume
vq = vr = 1C up to a diagonal isomorphism. If this is so, the theorem holds provided one
of the following conditions is fulfilled.

(i) vp ∈ F1C .
(ii) vp /∈ F1C and F1C + Fvp * Ker(tC).

Indeed, since C is a division algebra, we may combine Lemma 4.4 with 4.9 to find a
diagonal isomorphism φ : J

∼→ Her3(C,Γ1) (for some diagonal matrix Γ1 ∈ GL3(F ))
such that x1 := φ(x) =

∑
(αieii + v′i[jl]), where v′p ∈ C and v′q = v′r = 1C . This proves

the first assertion. By 10, 20, the second one is clear if (i) holds, so we may assume (ii).
But then vp generates a separable quadratic subfield K ⊆ C such that x ∈ Her3(C,Γ),
which completes the proof. The preceding argument, essentially due to Albert-Jacobson
[2, pp. 404-5], is basically all that’s needed in order to establish the theorem over fields
of characteristic not 2.

50. Writing C̄ (resp. J̄) for the scalar extension of C (resp. J) from F to F̄ , the algebraic
closure of F , we have J̄ ∼= Her3(C̄,Γ) ∼= Her3(C̄) under diagonal isomorphisms and claim
that it suffices to exhibit an elementary frame (e1, e2, e3) of J̄ such that

T (x23, x31 × x12) 6= 0,(1)

where T is the trace of J and the xjl are the off-diagonal Peirce components of x. To
see this, suppose some elementary frame of J̄ satisfies (1). Then we put G := Aut(J),
the automorphism group of J viewed as a group scheme, which may also be regarded
as a simple algebraic group of type F4 defined over F , and let X be the F -scheme of
elementary frames in J , so X(R) is the totality of elementary frames in JR, for all unital
commutative associative F -algebras R. We know from Alberca-Loos-Martin [1, 4.5,
Prop. 4.6] that X is an integral smooth affine scheme of dimension 24 over F on which
G acts in a natural way. Moreover, G(F̄ ) acts transitively on X(F̄ ) (loc. cit.), and since
J is reduced, we have X(F ) 6= ∅. Moreover, F is infinite (C being an octonion division
algebra over F ), forcing G(F ) to be Zariski dense in G(F̄ ) [4, 18.3]. On the other hand,
fixing E ∈ X(F ), the assignment g 7→ g · E gives a surjection ϕ : G(F̄ ) → X(F̄ ) which
is continuous in the Zariski topology. Hence X(F ) ⊇ ϕ(G(F )) is Zariski dense in X(F̄ ),
and since the left-hand side of (1) depends continuously on the elementary frame chosen,
our claim yields an elementary frame (e1, e2, e3) belonging not only to J̄ but, in fact, to
J such that (1) holds. Extending (e1, e2, e3) to a co-ordinate system of J by simplicity
(cf. 4.3) and applying 4.9, we find a diagonal matrix ∆ = diag(δ1, δ2, δ3) ∈ GL3(F ) and

an isomorphism φ : J
∼→ J̃ := Her3(C,∆) matching ei ∈ J with the diagonal idempotent

eii ∈ J̃ for i = 1, 2, 3 and x with x̃ := φ(x) =
∑

(βieii + wi[jl]) ∈ J̃ for some βi ∈ F ,
wi ∈ C. From (4.3.3) we deduce φ(xjl) = wi[jl] for i = 1, 2, 3 and by 10, 30, 40 we may

assume wq = wr = 1C , wp /∈ F1C , for some cyclic permutation (pqr) of (123). Writing T̃

for the trace of J̃ and combining (1) with (2.3.4), (2.3.5), (3.4.4), (3.4.8), we now obtain

δ1δ2δ3tC(wp) = δ1δ2δ3tC(wpwqwr) = δ1δ2δ3tC(w1w2w3) = δ2δ3nC(w1, δ1w2w3)

= T̃ (w1[23], w2[31]× w3[12]) = T (x23, x31 × x12) 6= 0.

Thus tC(wp) 6= 0, and the theorem follows from 40.

60. Given any cyclic permutation (pqr) of (123), we may assume up to a diagonal
isomorphism that

vq = vr = 1C , vp /∈ F1C , tC(vp) = 0.(2)

Indeed, by 30 we may assume vq 6= 0 6= vr for some cyclic permutation (pqr) of (123),
which by 40 may then be assumed to satisfy (2) up to a diagonal isomorphism. This
implies vi 6= 0 for all i = 1, 2, 3, so by 40 again we may assume for all cyclic permutations
(pqr) of (123) that (2) holds up to a diagonal isomorphism.

70. We may assume α2 6= α3. Otherwise, by 10 combined with a two-fold application
of Lemma 3.6, we may in fact assume that α1 = α2 = α3 =: α. Since the elements x
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and x − α1 belong to the same unital subalgebras of J , we are actually reduced to the
case α = 0. By 60, we may assume (2) for p = 1, which, in particular, implies v1 6= 0.
Let u ∈ C satisfy nC(u, v1) 6= 0. Replacing u by an appropriate non-zero scalar multiple
if necessary (note that, C being an octonion division algebra, the base field is infinite),
we can ensure in addition that γ2γ3nC(u) + 1 6= 0. Thus we are in the situation of
Lemma 5.1. In particular, by (5.1.4), (5.1.5), we have β1 = 0 6= µγ2γ3nC(u, v1) = β2.

Following 4.3, 4.9 and Lemma 3.6, we find an isomorphism ψ : J
∼→ Her3(C,Γ′) for some

diagonal matrix Γ′ ∈ GL3(F ) sending ei to ejj (i = 1, 2, 3). Then

ψ(x) =
∑

(β′ieii + v′i[jl]) (β′i ∈ F, v′i ∈ C, i = 1, 2, 3),

where β′2 = β1 6= β2 = β′3, which shows that we are indeed allowed to assume α2 6= α3.

80. The preceding reductions 10 − 40, 60, 70 allow us to assume for the rest of the proof
that

α2 6= α3, v2 = v3 = 1C , v1 /∈ F1C , tC(v1) = 0.(3)

By 50, the proof of the theorem will be complete once we have exhibited an elementary
frame (e1, e2, e3) of J̄ such that (1) holds. Applying Lemma 5.4, we find a non-trivial
idempotent u ∈ C̄ such that nC(u, v1) = 0. This implies nC(u) = 0, tC(u) = 1 by 2.4, so
we may apply Lemma 5.1 with ν = 0 and µ = 1. In particular, the off-diagonal Peirce
components of x relative to the elementary frame of (5.1.2) by (5.1.7)−(5.1.9) have the
form

x23 =
(
− (α2 − α3)u+ v1

)
[23],

x31 = (1C − γ2ū)[31]− (γ3ū)[12],

x12 = (γ2ū)[31] + (1C + γ3ū)[12].

Now (3.4.8) yields

x31 × x12 =
(
(1C − γ2ū)[31]− (γ3ū)[12]

)
×
(
(γ2ū)[31] + (1C + γ3ū)[12]

)
= − γ3γ1nC(1C − γ2ū, γ2ū)e22 − γ1γ2nC(−γ3ū, 1C + γ3ū)e33

+ γ1

(
(1C − γ2ū)(1C + γ3ū)− (γ2ū)(γ3ū)

)
[23]

= − γ1γ2γ3(e22 − e33) + γ1

(
1C − (γ2 − γ3 + 2γ2γ3)u

)
[23],

and from (3.4.4), (3) we deduce

T (x23, x31 × x12) = γ1γ2γ3nC
(
− (α2 − α3)u+ v1, 1C − (γ2 − γ3 + 2γ2γ3)u

)
= − γ1γ2γ3(α2 − α3) 6= 0.

Thus (1) holds and the theorem is proved. �

6. The split case.

Finally, we turn to the proof of the embedding theorem for split Albert algebras over
F . While adhering rather closely to the overall strategy employed by Jacobson in [9,
Chap. IX, Sec. 6], we will have to make a substantial number of non-trivial technical
adjustments in order to include base fields of characteristic 2.

6.1. Algebras with involution. Let (A, τ) be a unital non-associative F -algebra with
involution. Harmonizing the terminology of [13, § 2] with the one of present paper, we
define

Her(A, τ) := {x+ τ(x) | x ∈ A} ⊆ Sym(A, τ) := {x ∈ A | τ(x) = x}(1)

as F -subspaces of A. In (1) we have equality for char(F ) 6= 2 but not in general, see
[13, Lemma 2.3] for a more precise statement if A is finite-dimensional central simple
associative. We also note xHer(A, τ)τ(x) ⊆ Her(A, τ) for all x ∈ A if A is an associative
algebra.
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6.2. Examples. (a) Let C be a conic alternative F -algebra and Γ ∈ GL3(F ) a diagonal
matrix. Then

τΓ : Mat3(C) −→ Mat3(C), x 7−→ Γ−1x̄tΓ

is an involution, and one checks easily that

Her
(

Mat3(C), τΓ
)

= Her3(C,Γ)

in the sense of 3.4 provided the trace of C is not zero.

(b) If σ : V ×V → F is a non-degenerate alternating bilinear form on a finite-dimensional
vector space V over F and

τ : EndF (V ) −→ EndF (V )

is the adjoint involution relative to σ, then, again, one checks easily that

Her
(

EndF (V ), τ
)

=
{
f ∈ EndF (V ) | ∀x ∈ V : σ

(
f(x), x

)
= 0
}
.

6.3. Theorem. (cf. [9, Thm. IX.11]) Let J be a split Albert algebra over F and x ∈ J .
Then there exists a unital subalgebra J ′ ⊆ J satisfying x ∈ J ′ ∼= Mat3(F )+.

Proof. By definition (see 4.10), there is an identification J = Her3(C), where C stands
for a split octonion algebra over F . Slightly modifying Jacobson’s approach [9, Lem-
mata IX.6.1−3] to his proof of Thm. 6.3 in characteristic not 2, we claim that it suffices
to establish the following two technical results.

6.4. Lemma. (cf. [9, Lemma IX.6.3]) Let V be a vector space over F of even dimen-
sion 2m, σ : V × V → F a non-degenerate alternating bilinear form on V and τ the
adjoint involution of EndF (V ) relative to σ. Then any element of the Jordan algebra
Her(EndF (V ), τ) is contained in a unital subalgebra isomorphic to Matm(F )+.

6.5. Lemma. There exists a unital subalgebra J̃ ⊆ J that contains x and is isomorphic
to Her3(B), where B ⊆ C is a split quaternion subalgebra.

Suppose these results have been proved. Choosing J̃ , B as in Lemma 6.5 and identifying
B = Mat2(F ), the conjugation of B is given by x 7→ s−1xts, s =

(
0 1
−1 0

)
, and the natural

matching Mat3(B) = Mat3(Mat2(F )) = Mat6(F ) extends to an identification(
Mat3(B), τ13

)
=
(

EndF (V ), τ
)

(1)

of algebras with involution, where τ13 is the conjugate transpose involution on Mat3(B)
while the right-hand side of (1) is defined as follows: V = F 6, σ : V × V → F is
the non-degenerate alternating bilinear form given by σ(x, y) = xtSy; x, y ∈ F 6, S =
diag(s, s, s) ∈ Mat6(F ) and τ : EndF (V ) → EndF (V ) is the adjoint involution relative
to σ. Thus, by 6.2 (a),

Her3(B) = Her
(

Mat3(B), τ13

)
= Her

(
EndF (V ), τ

)
,

allowing us to apply Lemma 6.4, and the proof of Theorem 6.3 is complete.
It therefore remains to prove Lemmata 6.4, 6.5. First of all, the proof of [9,

Lemma IX.6.3] can be easily converted into one of Lemma 6.4 once the obvious modifica-
tions along the lines of 6.1, 6.2 are taken into account. We omit the details and are thus
left with the proof of Lemma 6.5, which will be accomplished by using the proof of [9,
Lemma IX.6.1, pp. 389-391], due to McCrimmon, as a guide so as to allow base fields of
arbitrary characteristic. The difficulties that have to be overcome along the way are not
so much related to characteristic 2 but, more specifically, to the field with two elements.
As a matter of fact, while we will not quite be able to establish the characteristic-free ver-
sion of [9, Lemma IX.6.1] in full generality (see Claim (∗) and Case 2.2.2 in 6.11 below),
our modifications of McCrimmon’s original arguments will at least be strong enough to
yield a proof of Lemma 6.5.
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In order to succeed, we will need a few additional preparations the first one of which is due
to Brühne [5, Prop. 3.2.2]. Its proof given below simplifies Brühne’s original argument
and will be included here for completeness.

6.6. Proposition. Let X = (X, 1, N, ]) be a cubic norm structure over F and J = J(X)
the corresponding cubic Jordan algebra. Then the unital subalgebra of J generated by
elements x, y ∈ J is spanned as a vector space over F by

1, x, y, x], y], x× y, x× y], x] × y, x] × y].(1)

Proof. We will need not only the identities of 3.1, but also a number of consequences
most of which may be found in [16]:

u] × (u× v) = N(u)v + T (u], v)u,(2)

u] × v] + (u× v)] = T (u], v)v + T (u, v])u,(3)

u] × u =
(
T (u)S(u)−N(u)

)
1− S(u)u− T (u)u],(4)

u× (u] × v) = N(u)v + T (u, v)u].(5)

Moreover, from [23, (21)] we recall

u× (u× v) =
(
T (u)S(u, v) + S(u)T (v)− T (u], v)

)
1(6)

− S(u, v)u− S(u)v − T (u)u× v − T (v)u] − u] × v,

which linearizes to

u× (v × w)+ v × (w × u) + w × (u× v) =(7) (
T (u)S(v, w) + T (v)S(w, u) + T (w)S(u, v)− T (u× v, w)

)
1

−
(
S(u, v)w + S(v, w)u+ S(w, u)v

)
−
(
T (u)v × w + T (v)w × u+ T (w)u× v

)
.

We must show that the subspace M ⊆ J spanned by the elements assembled in (1)
is stable under the adjoint map. First of all, we have 1] = 1 ∈ M by the base point
identities (3.1.1) and 1×M ⊆ M by the unit identity (3.1.3). Moreover, M is spanned
by the elements 1, s, t, s × t, s ∈ {x, x]}, t ∈ {y, y]}. Hence it will be enough to show
that, for all s, s′ ∈ {x, x]}, t, t′ ∈ {y, y]},

s], t], (s× t)] ∈ M,(8)

s× s′, s× (s′ × t) ∈ M,(9)

t× t′, t× (s× t′) ∈ M,(10)

(s× t)× (s′ × t′) ∈ M.(11)

The adjoint identity (3.1.2) implies s] ∈ {N(x)x, x]}, t] ∈ {N(y)y, y]}, hence not only
the first two inclusions of (8) but also s] × t] ∈M , while the third one now follows from
(3). In the first inclusion of (9) we may assume s = x, s′ = x], whence the assertion
follows from (4). The second relation of (9) follows from (6), (8) for s = s′ and from (5),
(2) for s 6= s′. Next, (10) is (9) with x and y interchanged, so we are left with (11). We
first note that 1×M ⊆M and (9), (10) imply

s×M + t×M ⊆M.(12)

Then we combine (7) with (8)−(10) to conclude

(s× t)× (s′ × t′) ≡ −s′ ×
(
t′ × (s× t)

)
− t′ ×

(
(s× t)× s′

)
mod M,

and (12) implies (11). �

Remark. The preceding result, including its proof, carries over verbatim to arbitrary
commutative base rings in place of F , see also [5, Prop. 3.2.2].
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6.7. Corollary. Let X = (X, 1, N, ]) be a cubic norm structure over F and J = J(X)
the corresponding cubic Jordan algebra. Suppose E ⊆ J is a three-dimensional étale
subalgebra and x ∈ J is an arbitrary element. Then the subalgebra J0 ⊆ J generated by
E and x has dimension at most 9.

Proof. J0 is a cubic Jordan algebra on two generators, so Prop. 6.6 applies, unless
F = F2 is the field with two elements. In the latter case, we change scalars to the
separable quadratic field extension F ′/F , F ′ = F4, by considering the cubic Jordan
algebra J ′ = J ⊗F F

′ over F ′ which contains E′ = E ⊗F F
′ as a three-dimensional étale

subalgebra. Canonically identifying J ⊆ J ′ as an F -subalgebra and writing σ for the
non-trivial Galois automorphism of F ′/F (which acts on J ′ through the second factor),
the F ′-subalgebra, J ′0, of J ′ generated by E′ and x has dimension at most 9 and is stable
under σ since E′ and x are. Hence σ acts on J ′0 as a σ-linear automorphism σ′ of order
two. Moreover, the fixed algebra of σ′ not only contains J0 but also has F -dimension
at most 9 because it becomes isomorphic to J ′0 when changing scalars from F to F ′.
Therefore dimF (J0) ≤ 9. �

6.8. Proposition. Let r be a positive integer, q : V → F a possibly singular quadratic
form of dimension r and Q : W → F a hyperbolic quadratic form of dimension 2r over
F . Then there exists an (injective) isometry from (V, q) to (W,Q).

Proof. We argue by induction on r. For r = 1, the assertion follows from the fact that Q,
being hyperbolic, is universal. For r > 1, we pick a hyperplane V ′ ⊆ V and put q′ := q|V ′ .
We also let Q′ : W ′ → F be a hyperbolic quadratic subform of Q having dimension
2(r − 1). Then the induction hypothesis yields an isometry ϕ′ : (V ′, q′) → (W ′, Q′).
Choosing any v ∈ V \V ′, we have V = V ′⊕Fv, and since ϕ′ is injective, non-singularity
of Q′ leads to an element w′ ∈ W ′ such that Q′(ϕ′(v′), w′) = q(v′, v) for all v′ ∈ V ′. On
the other hand, there is a hyperbolic plane Q0 : W0 → F satisfying Q = Q′ ⊥ Q0, and
since Q0 is universal, we find a non-zero element w0 ∈W0 with Q0(w0) = q(v)−Q′(w′).
Now extend ϕ′ : V ′ →W ′ ↪→W to a linear map ϕ : V →W by setting ϕ(v) := w′+w0.
Then a straightforward verification shows that ϕ is an isometry from (V, q) to (W,Q), as
desired. �

6.9. Corollary. Let r be a positive integer and suppose the non-singular quadratic form
q : V → F over F has Witt index > r. Suppose further we are given linearly independent
vectors v1, . . . , vr ∈ V and arbitrary scalars α1, . . . , αr, β ∈ F . Then there exists a non-
zero element u ∈ V such that

q(u, vi) = αi, q(u) = β (1 ≤ i ≤ r).

Proof. By hypothesis, q contains a hyperbolic quadratic subform Q : W → F , W ⊆ V
an appropriate subspace of dimension 2r, and q is isotropic, hence universal, on W⊥.
Combining Prop. 6.8, applied to V ′ :=

∑
Fvi, q

′ := q|V ′ , with Witt’s theorem [6,
Thm. 8.3], we may assume v1, . . . , vr ∈ W . Since Q is non-singular, some w ∈ W has
q(w, vi) = αi, 1 ≤ i ≤ r. Now pick a non-zero element y ∈W⊥ satisfying q(y) = β−q(w)
and put u := w + y. The assertion follows. �

6.10. Specialization. Write x as in Thm. 6.3 in the form

x =
∑

(αieii + vi[jl]) (αi ∈ F, vi ∈ C, i = 1, 2, 3)(1)

and suppose we are given an element u ∈ C that is not invertible. Then we can apply
Lemma 5.1 with ν = 0, µ = 1, so the quantities

e1 := e11, e2 := e22 + u[23], e3 := e33 − u[23](2)
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form an elementary frame in J and, writing x =
∑

(βiei + xjl) for the corresponding
Peirce decomposition of x, the following relations hold.

β1 = α1,(3)

β2 = α2 + nC(u, v1),(4)

β3 = α3 − nC(u, v1),(5)

x23 = − nC(u, v1)(e22 − e33)(6)

+
(
v1 − [α2 − α3 + 2nC(u, v1)]u

)
[23],

x31 = (v2 − v3u)[31]− uv2[12],(7)

x12 = v3u[31] + (v3 + uv2)[12].(8)

Moreover, setting

g := t2 + (α2 − α3)t− nC(v1) ∈ F [t],(9)

we claim

S(x23) = g
(
nC(u, v1)

)
,(10)

−S(x31) = nC(v2)− tC(uv2v3),(11)

−S(x12) = nC(v3) + tC(uv2v3).(12)

Indeed, combining (6)−(8) with (3.4.6), we conclude

S(x23) = − nC(u, v1)2 − nC(v1) +
(
α2 − α3 + 2nC(u, v1)

)
nC(u, v1)

−
(
α2 − α3 + 2nC(u, v1)

)2
nC(u)

= − nC(u, v1)2 − nC(v1) + (α2 − α3)nC(u, v1) + 2nC(u, v1)2

= g
(
nC(u, v1)

)
,

since nC(u) = 0. Thus (10) holds; moreover, (2.3.4), (2.3.5) yield −S(x31) = nC(v2 −
v3u) + nC(uv2) = nC(v2)− nC(v2, v3u) + nC(v3)nC(u) + nC(u)nC(v2) giving (11), while
(12) is derived analogously.

We remark in closing that, by 4.10, the preceding formalism is invariant under arbi-
trary permutations of the indices (123).

6.11. Proof of Lemma 6.5. Returning to the proof of Thm. 6.3 at its very beginning,
we write x ∈ J = Her3(C) as in (6.10.1) and perform the following steps.

10. The lemma will follow as soon as we have been able to deduce the following

Claim (∗). There exists a unital subalgebra Ĵ ⊆ J that contains x and is

isomorphic to Her3(Ĉ,Γ), where Ĉ ⊆ C is a unital subalgebra of dimension at
most 2 and Γ ∈ GL3(F ) is a diagonal matrix.

Suppose this claim has been established. Choosing Ĵ , Ĉ,Γ accordingly, any isomorphism
ϕ : Her3(Ĉ,Γ)

∼→ Ĵ maps the diagonal co-ordinate system of Her3(Ĉ,Γ) onto a co-

ordinate system of Ĵ (cf. 4.3), which we denote by S and which is a co-ordinate system

of J as well. We therefore conclude from (4.5.1)−(4.5.3) that D̂ := C(Ĵ ,S) is a unital

subalgebra of D := C(J,S); moreover, ∆ := Γ(Ĵ ,S) = Γ(J,S). Now Theorem 4.6
produces isomorphisms

Φ̂ : Her3(D̂,∆)
∼−→ Ĵ , Φ: Her3(D,∆)

∼−→ J
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making a commutative square on the very right of the diagram

Her3(D̂,∆)
∼=

Φ̂

//
� _

��

jJ

wwppppppppppp
Ĵ � _

��

Her3(B)
∼= // Her3(B,∆)� t

''OOOOOOOOOOO

Her3(D,∆)
∼=
Φ

// J.

By 4.9, D is a split octonion algebra over F , and the subalgebra D̂ ⊆ D along with Ĉ ⊆ C
has dimension at most 2. From [8, Prop. 5.5] we therefore obtain a split quaternion

subalgebra B ⊆ D containing D̂, which allows us to complete the above diagram as
indicated. It yields an embedding of Her3(B) as a unital subalgebra of J containing x,
and Lemma 6.5 is proved

Claim (∗) agrees with [9, Lemma IX.6.1], hence holds if F has characteristic not two.
However, among the various special cases to be discussed in the subsequent portions of
the proof below, there is one instance where we have not been able to establish its validity
(forcing us to reach the conclusion of Lemma 6.5 by different means). In particular, it is
not clear whether Claim (∗) always holds in characteristic two.

20. The lemma will follow if there are at least two indices i = 1, 2, 3 having vi ∈ C
invertible. To see this, we may assume by symmetry that v1, v2 ∈ C are both invertible.
Let Ĵ be the subalgebra of J generated by x and e11, e22, e33. Then all vi[jl], i = 1, 2, 3,

being Peirce components of x relative to the diagonal frame of J , belong to Ĵ . Hence
our hypothesis combined with Lemma 4.4 ensures that (e11, e22, e33, v1[23], v2[31]) forms

a co-ordinate system of both Ĵ and J (4.3). From 4.5, Thm. 4.6 and 4.9 we therefore

obtain a unital subalgebra Ĉ ⊆ C, a diagonal matrix Γ ∈ GL3(F ) and an isomorphism

J
∼→ Her3(C,Γ) matching Ĵ with Her3(Ĉ,Γ). By Cor. 6.7, Ĵ has dimension at most 9,

forcing Ĉ to have dimension at most 2. We have therefore established Claim (∗) of 10,
and we are through.

30. We may always assume that the subspace of C spanned by 1C and v1, v2, v3 has
dimension at least 3 since, otherwise, it is a subalgebra Ĉ ⊆ C of dimension at most 2
such that x ∈ Her3(Ĉ), which again implies Claim (∗) of 10.

40. We may always assume that at least one index i = 1, 2, 3 has vi ∈ C invertible. This
is more delicate. By symmetry and 30, we may assume v2 6= 0. Then Cor. 6.9 yields
an element u ∈ C satisfying nC(u) = 0, nC(u, v2) = α2 − α3, and we deduce from 6.10
that the quantities e2 := e22, e3 := e33 + u[31], e1 := e11 − u[31] make up an elementary
frame of J with β2 = α2, β3 = α3 + nC(u, v2) = α2, β1 = α1 − nC(u, v2) by (3)−(5).
Re-co-ordinatizing J by means of e1, e2, e3 (cf. 4.10), we are therefore allowed to assume
α2 = α3. Though the condition v2 6= 0 may have got lost in the process, step 30 above
still allows us to maintain it since the situation we have arrived at is symmetric in the
indices 2, 3. We now distinguish the following cases.

Case 1. v1 6= 0. Since α2 = α3, the polynomial g of (6.10.9) has the form g = t2−nC(v1),
so g(α) 6= 0 for some α ∈ F (even if F = F2 is the field with two elements). By Cor. 6.9,
we find a non-zero element u ∈ C with nC(u) = 0, nC(u, v1) = α. Hence S(x23) ∈ F× by
(6.10.10), so re-co-ordinatizing J by means of the elementary frame (6.10.2) and invoking
Lemma 4.4, we may assume v1 ∈ C×.

Case 2. v1 = 0. Then v2, v3 are linearly independent by 30. We will be through with 40

if v2 or v3 is invertible in C, so let us assume nC(v2) = nC(v3) = 0.

Case 2.1. v2v3 6= 0. By Cor. 6.9, some u ∈ C has nC(u) = 0, tC(uv2v3) = nC(u, v2v3) =
1, and (6.10.11), (6.10.12) show S(x31) 6= 0 6= S(x12), so re-co-ordinatizing J by means of
elementary frame (6.10.2) , we are allowed to assume that v2 and v3 are both invertible.
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Case 2.2. v2v3 = 0. Again Cor. 6.9 yields an element u ∈ C with nC(u) = nC(u, v̄2) =
nC(u, v̄3) = 1. Setting c := uv2, d := v3u, we apply (2.3.6), (2.3.4) and obtain nC(c) =
nC(d) = 0, tC(c) = tC(d) = 1, so c, d ∈ C are non-trivial idempotents by 2.6 satisfying
cd = u(v2v3)u = 0 by one of the Moufang identities (2.3.2). Moreover, Lemma 3.5
produces a “trialitarian” automorphism, ϕ := ϕ2,u, of J by the assignment∑

(βieii + wi[jl]) 7−→
∑

βieii + (u−1w1u
−1)[23] + (uw2)[31] + (w3u)[12].(1)

In particular, ϕ sends x to x′ := ϕ(x) =
∑
αieii + c[31] + d[12]. Hence we may assume

that v2 = c, v3 = d are non-trivial idempotents in C satisfying cd = 0.

Case 2.2.1. dc = 0. Then (c, d) is a complete orthogonal system of non-trivial idempo-

tents in C (2.4) such that x ∈ Her3(Ĉ), where Ĉ = Fc⊕Fd ∼= F⊕F is a two-dimensional
unital subalgebra of C. Claim (∗) of 10 follows.

Case 2.2.2. w := dc 6= 0. This is the only instance where we do not rely on Claim (∗) of
10 but attack Lemma 6.5 directly. Since cw = cdc = 0 and wc = dc2 = w, we conclude
w ∈ C21, where Cij , i, j = 1, 2, stand for the Peirce components of C relative to (c, c′),
c′ := 1C−c. Since C12 and C21 are dual to each other under the bilinearized trace by 2.6,
one finds an element v ∈ C12 such that tC(vw) = 1. This and the Peirce multiplication
rules [25, Prop. 3.4] imply vw = c, wv = c′, and it is readily checked that the map

Mat2(B) −→ C,

(
α β
γ δ

)
7−→ αc+ βv + γw + δc′

is a monomorphism of composition algebras. We conclude thatB := Fc+Fv+Fw+Fc′ ⊆
C is a split quaternion subalgebra that contains c. On the other hand, cd = 0 implies
d = v21 + δc′ for some v21 ∈ C21, δ ∈ F , hence dc = v21, and taking traces yields δ = 1.
Thus d = w + c′ ∈ B, forcing x ∈ Her3(B) ⊆ J , so Lemma 6.5 holds.

50. We may always assume that at least one index i = 1, 2, 3 has vi = 0. By symmetry
and 10−40, we may assume v2 ∈ C×, v3 6= 0, nC(v1) = nC(v3) = 0. Then u := −v̄3v

−1
2 ∈

C satisfies nC(u) = 0, v3 = −uv2, and (2.3.3) yields v3u = −(v̄2ū)u = −nC(u)v̄2 = 0,
hence tC(uv2v3) = tC(v2v3u) = 0. Now (6.10.8), (6.10.11) show x12 = 0, S(x31) =
−nC(v2) 6= 0. Re-co-ordinatizing J by means of the elementary frame (6.10.2) gives
what we want.

60. By symmetry and 10 − 50, we are reduced to the case v2 ∈ C×, v3 = 0 6= v1,
nC(v1) = 0. Note that the polynomial g of (6.10.9) has degree 2. Hence one of the
following holds. (i) Some α ∈ F has g(α) 6= 0 (e.g., if F 6= F2). (ii) nC(v2) = 1 (e.g.,
if F = F2). In case (i), we choose u ∈ C with nC(u) = 0, nC(u, v1) = α, forcing
S(x23) = g(α) 6= 0, S(x31) = −nC(v2) 6= 0 by (6.10.10), (6.10.11), so re-co-ordinatizing
J by means of the elementary frame (6.10.2) brings us back to 20. On the other hand,
in case (ii), we put u := v−1

2 and consider the automorphism ϕ of J defined by (1),
which sends x to ϕ(x) =

∑
αieii + (u−1v1u

−1)[23] + 1C [31]. Replacing x by ϕ(x), we

may therefore assume v2 = 1C , which implies x ∈ Her3(Ĉ), Ĉ = k[v1], brings us back to
Claim (∗) of 10 and completes the proof of Lemma 6.5. �
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