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Abstract

We establish a natural correspondence between (the equivalence classes of) cubic solutions of∑k
i,j=1 Q

ij ∂u
∂xi

∂u
∂xj

= 9(
∑k

i,j=1 Qijxixj)
2 and (the isomorphy classes of) cubic Jordan algebras.

1 Introduction

The Jordan-Von Neumann-Wigner classification [9] implies that the only possible formally real rank 3
Jordan algebras J are:

a Jordan algebra, J the generic norm of a trace free element,
√

2N(x)

(i) Herm3(Fd), d = 1, 2, 4, 8 ud(x)

(ii) R ⊕ Spin(Rn+1) 4x3n − 3xn|x|2

(iii) F3
1 = R ⊕ R ⊕ R x32 − 3x2x

2
1

where J is equipped with the standard inner product 〈x, y〉 = 1
3 Tr(x • y) and

ud(x) = x33d+2 +
3

2
x3d+2(|z1|2 + |z2|2 − 2|z3|2 − 2x23d+1)

+
3
√

3

2
x3d+1(|z2|2 − |z1|2) + 3

√
3 Re(z1z2z3),

is a Cartan isoparametric cubic. Here zk = (xkd−d+1, . . . , xkd) ∈ Rd = Fd and Fd stands for a real
division algebra of dimension d, i.e. F1 = R (the reals), F2 = C (the complexes), F4 = H (the
quaternions) and F8 = O (the octonions). According to a recent result of the author [16], the cubic
forms displayed in the last column are exactly the only possible cubic solutions of

|∇u(x)|2 = 9|x|4, x ∈ Rn. (1.1)

This yields a natural question: Does there exist any explicit correspondence between cubic solutions of
(1.1) and formally real cubic Jordan algebras?

The concept of Jordan algebra, and formally real Jordan algebra especially, was introduced originally
in the 1930s in [8], [9] in attempt to find an adequate algebraic formalism for quantum mechanics.
Nowadays, besides the numerous pure algebraic applications (in particular, the connection between
Jordan and Lie theory via the Tits-Kantor-Koecher construction of Lie algebras), Jordan algebras
appeared to be very useful in harmonic analysis on self-dual homogeneous cones (Vinberg-Koecher
theory), operator theory (JB-algebras), differential geometry (symmetric spaces, projective geometry,
isoparametric hypersurfaces), integrable hierarchies (Svinopulov’s characterization of generalized KdV
equation), statistics (Wishart distributions on Hermitian matrices and on Euclidean Jordan algebras).
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In the most interesting for us case of cubic Jordan algebras, the multiplication structure can be
recovered directly from the generic norm by the so-called Springer construction. The cubic case is
also very distinguished because its very remarkable appearance in different areas such as Scorza and
secant varieties, Cremona transformations, non-classical solutions to fully nonlinear PDEs, extremal
black holes and supergravity [2], [3], [1], [4], [10], [12], [13], [14].

In this paper we obtain an equivalent description of cubic Jordan algebras in terms of cubic solutions
of the following eiconal type equation:

k∑
i,j=1

Qij
∂u

∂xi

∂u

∂xj
= 9(

k∑
i,j=1

Qijxixj)
2, x ∈ Rk, (1.2)

where Qij is an invertible matrix with Qij being its inverse. It is more natural, however, to work with
an invariant version of (1.2) which we now define. Let (W,Q) be a nondegenerate quadratic space, i.e.
W be a vector space over a field F (F is always assumed to be R or C) with a quadratic form Q : W → F
such that the associated symmetric bilinear form

Q(x; y) =
1

2
(Q(x+ y)−Q(x)−Q(y)), x, y ∈W

has the kernel {0}. The bilinear form Q(x; y) induces a natural inner product on W . Let ∇u(x) denote
the covariant derivative of a smooth function u : W → F, i.e. the unique vector field satisfying the dual
realtion

Q(∇u(x); y) = ∂yu|x, ∀y ∈W. (1.3)

Definition 1.1. A triple (W,Q, u) with a cubic form u : W → F on a nondegenerate quadratic space
(W,Q) satisfying

Q(∇u(x)) = 9Q(x)2, x ∈W (1.4)

is called a eiconal triple.

Remark 1.1. It is easy to check that in the local coordinates xi = Q(x, ei) associated with a basis
{ei}1≤i≤n of W , the eiconal equation (1.4) takes the form (1.2), where Qij = Q(ei; ej). In particular,
(1.4) is obtained for the particular choice W = Rn and Q(x) = |x|2 ≡

∑n
i=1 x

2
i .

Recall that a map O : (W,Q) → (W̃ , Q̃) between the quadratic spaces (W,Q) and (W̃ , Q̃) is called
an isometry if O is invertible and Q̃(Ox) = Q(x) for all x ∈ W . It is straightforward to verify that if
(W,Q, u) is an eiconal triple and O : (W,Q)→ (W̃ , Q̃) is an isometry then (W̃ , Q̃, ũ) with ũ(Ox) = u(x)
is an eiconal triple too. We call such eiconal triples equivalent.

Theorem 1. There exists a correspondence J α−→ E β−→ J , αβ = idE , βα = idJ , between the equivalence
classes of eiconal triples (E) and the isomorphic classes of cubic Jordan algebras (J ) and defined as
follows.

(α) Any cubic Jordan algebra J = J(V,N, e) with the generic norm N gives rise to an eiconal triple
(e⊥, τ, u) with the underlying vector space e⊥ := {x : Trx = 0}, the quadratic form τ(x) =
1
3 Tr(x2)|e⊥ , and u(x) =

√
2N(x). Two isomorphic algebras give rise to equivalent eiconals.

(β) In the converse direction, any eiconal triple (W,Q, u) produces a cubic Jordan algebra J =
J(V,N, e) with the underlying vector space V = F×W , the generic norm N(x) = x30− 3

2x0Q(x)+
u(x)√

2
, and the unit e = (1, 0), where x = (x0, x) ∈ V . Two equivalent eiconals produces isomorphic

algebras.

We give the basic information on Jordan algebras in section 2 and then prove Theorem 1 in sections 3
and 4.

2



2 Basic facts on Jordan algebras

Here we review some definitions in Jordan algebra theory following the classical books [7], [11] and [5].
A vector space1 V over a field F with a commutative F-bilinear map • : V × V → V is called a Jordan
algebra if it satisfies

x2 • (x • y) = x • (x2 • y), (2.1)

where x2 := x • x. Any Jordan algebra is power associative, i.e. the subalgebra V (x) generated by
a single element x is associative for any x ∈ V . The rank of V is r := max{dimV (x) : x ∈ V }. An
element x is said to be regular if dimV (x) = r. For a regular x ∈ V , the elements e, x, . . . , xr−1 are
linearly independent, so that

xr = σ1(x)xr−1 − σ2(x)xr−2 + . . .+ (−1)r−1σr(x)e,

where σi(x) ∈ F are uniquely defined by x. The polynomial

mx(λ) = λr − σ1(x)λr−1 + . . .+ (−1)rσr(x) ∈ F[λ]

is called the minimum polynomial of the regular element x ∈ V [6]. The coefficients σi(x) are polynomial
functions of x homogeneous of degree i in the following sense. If {ei}1≤i≤n is an arbitrary basis of V
and

xξ :=

n∑
i=1

ξiei, ξ ∈ Fn,

is a generic element of the algebra V then

xrξ − σ1(ξ)xr−1ξ + . . .+ (−1)rσr(ξ)e = 0,

where σ(ξ) is a polynomial function of x homogeneous of degree i.

Definition. The coefficient σ1(x) = Trx is called the generic trace of x, and σn(x) = N(x) is called the
generic norm of x.

Example 2.1. A standard example of a Jordan algebra is the vector space Mn(Fd) of matrices of size
n× n with entries in F1 = R or F2 = C, and the bullet product

x • y :=
1

2
(xy + yx). (2.2)

In this case, Trx = trx, N(x) = detx are the usual trace and determinant of x. In fact, it is readily
verified that the real vector space Herm3(Fd) of self-adjoint matrices over the real division algebra Fd
with d = 1, 2, 4 and arbitrary n ≥ 1, and with d = 8 and n ≤ 3 is also a Jordan algebra with respect to
the multiplication (2.2).

Example 2.2. The following well-known construction associates a Jordan algebra structure to an ar-
bitrary quadratic space (V,Q) over F with a basepoint e, i.e. Q(e) = 1, by virtue of the following
multiplication

x • y = Q(x; e)y +Q(y; e)x−Q(x; y)e. (2.3)

It is readily that (2.3) satisfies the Jordan identity (2.1) with the unit element e. Thus obtained Jordan
algebra Spin(V,Q, e) is called a spin factor (or a quadratic factor). It follows from (2.3) that any
element x ∈ V satisfies the quadratic identity

x2 − 2Q(x, e)x+Q(x)e = 0

which, in particular, shows that Tr(x) = 2Q(x, e) and N(x) = Q(x). Conversely, any rank 2 Jordan
algebra is obtained by virtue of the above construction from an appropriate quadratic space. In any
case, the multiplicative structure on a quadratic Jordan algebra is completely determined by its generic
norm.

1We always assume that V is finite dimensional.
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In the case of Jordan algebra of rank 3 one still has a possibility to restore the multiplicative structure
from the generic norm, but in contrast to the quadratic case only very special cubic forms can be used
to construct cubic Jordan algebras. The corresponding procedure is called the Springer construction
[15] and we recall below following [11, II.4.2]. Let V be a vector space over a field F with a cubic form
u : V → V . Notice that the set u−1(1) = {x ∈ V : u(e) = 1} is nonempty because u is an odd function.
A vector e ∈ u−1(1) is called a basepoint. Consider the decomposition

u(x+ ty) = u(x) + tu(x; y) + t2u(y;x) + t3u(y), x, y ∈ V, t ∈ F, (2.4)

where u(x; y) = ∂yu|x is the directional derivative of u in the direction y evaluated at x. Since u(x; y)
is a quadratic form with respect to the first variable, one can polarize it to obtain the full linearization
of the cubic form u:

u(x; y; z) = u(x+ y; z)− u(x; z)− u(y; z) = ∂x∂y∂zu|e. (2.5)

Then Euler’s homogeneity function theorem implies

u(x) =
1

3
u(x;x) =

1

6
u(x;x;x). (2.6)

Now we fix some cubic form N(x) 6≡ 0 on V and its basepoint e ∈ N−1(1). Linearizing N as above,
one defines the linear trace form and and the quadratic spur form to be

Tr(x) = N(e;x) = N(e; e;x) (2.7)

and
S(x) = N(x; e) = N(x;x; e), (2.8)

respectively. Then
Tr(e) = S(e) = 3N(e) = 3. (2.9)

Polarizing the quadratic spur form,

S(x; y) = N(x; y; e) ≡ S(x+ y)− S(x)− S(y)

we define the bilinear trace form by

T (x; y) = Tr(x) Tr(y)− S(x; y) ≡ −∂x∂y logNce (2.10)

Definition 2.1. Let V be a finite-dimensional vector space over F and let N : V → R be a cubic form
with basepoint e. N is said to be a Jordan cubic form, if the following is satisfied:

(i) the trace bilinear form T (x; y) is a nondegenerate bilinear form;

(ii) the quadratic sharp map # : V → V , defined (uniquely) by

T (x#; y) = N(x; y), (2.11)

satisfies the adjoint identity
(x#)# = N(x)x. (2.12)

Example 2.3. We demonstrate the above definitions by the Jordan algebra of symmetric 3× 3 matrices
V = Herm3(R) with the unit matrix being a basepoint: e = 1 and a cubic form N(x) = detx. Then

Trx = ∂xN |e = (det(1 + tx))′t=0 = trx,

and, by virtue of the Newton identities,

S(x) = ∂eN |x = (det(x+ t1))′t=0 =
1

2
((trx)2 − trx2).
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Polarizing the latter identity yields S(x; y) = trx tr y − trx • y. Thus,

T (x; y) = trx • y ≡ trxy.

Now observe that T (x; y) = trxy obviously is a nondegenerate bilinear form, hence we get (i) in
Definition 2.1. On the other hand, if x is an invertible matrix then

3N(x; y) = ∂Ny|x = (det(x+ ty))′t=0 = (detx det(1 + tyx−1))′t=0 = detx tr(yx−1),

which yields by (2.11) the adjoint map x# = x−1 detx is the adjoint matrix in the usual sense of linear
algebra, thus x## = xdetx and the adjoint identity (2.12) follows.

Proposition 2.1 (The Springer construction, [11], p. 77). To any Jordan cubic form N : V → F with
basepoint e ∈ V one can associate a unital Jordan algebra J (V,N, e) of rank 3 with the unit e and the
Jordan multiplication determined by the formula

x • y =
1

2
(x#y + Tr(x)y + Tr(y)x− S(x; y)e), (2.13)

where x#y = (x+ y)# − x# − y#. All elements of J (V,N, e) satisfy the cubic identity

x3 − Tr(x)x2 + S(x)x−N(x)e = 0, (2.14)

and the sharp identity
x# = x2 − Tr(x)x+ S(x)e. (2.15)

We mention some useful consequences of the above construction. By (2.11) T (x#; e) = N(x; e) =
S(x). Polarizing this identity one obtains T (x#y; e) = S(x; y). On the other hand, (2.10) and (2.9)
yield

T (x; e) = Tr(x)− S(x; e) = Tr(x)−N(x; e; e) = Tr(x),

hence
Tr(x#y) = T (x#y; e) = S(x; y). (2.16)

Applying the trace to (2.15) and using the last identity one readily finds that

S(x; y) = Tr(x) Tr(y)− Tr(x • y), (2.17)

which in its turn yields
Tr(x • y) = T (x; y). (2.18)

Setting x = y in (2.16) yields
Tr(x#) = S(x). (2.19)

3 An auxiliary lemma

Here we establish some auxiliary formulas for the generic norm which also have an independent interest.
Let N : V → F be a Jordan cubic form with basepoint e and let J = J(V,N, e) be the associated cubic
Jordan algebra. Notice that the bilinear trace form T (x; y), and thus the inner product

τ(x; y) :=
1

3
T (x; y) (3.1)

and the associated quadratic norm τ(x) = τ(x, x) are all nondegenerate on V . The normalized factor
is chosen to ensure that the basepoint e becomes a unit vector in the induced inner structure. Let us
denote by D the covariant derivative on (V, T ). Then ∂yN |x = τ(DN(x); y) for any y ∈ V , hence the
sharp map definition (2.11) yields

τ(x#; y) =
1

3
N(x; y) =

1

3
∂yN |x =

1

3
τ(DN(x); y),
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therefore by the nondegenerateity of T
DN(x) = 3x#. (3.2)

Let us also denote

t := τ(x; e) =
1

3
Tr(x). (3.3)

It is natural to think of t as a ‘time’ coordinate function on V . Then the orthogonal complement to the
time-line Fe coincides with the subspace of trace free elements of J ,

e⊥ := {x ∈ J : τ(x; e) = 0} = {x ∈ J : Tr(x) = 0},

which can also be thought as the spatial subspace. This yields the orthogonal decomposition V =
Fe⊕ e⊥ and the corresponding decomposition of the covariant derivative into the time- and the spatial
components,

D = ∂t ⊕∇, (3.4)

where ∇ denotes the covariant derivative induced by D on e⊥.

Lemma 3.1. In the made notation,

∂tN(x) = S(x), (3.5)

τ(DN(x)) = 3(∂tN(x))2 − 18tN(x), (3.6)

τ(DN(x); Dτ(DN(x)) = 108 τ(x)N(x). (3.7)

Proof. The first relation follows from the definition of t and (2.19):

∂tN(x) ≡ τ(DN(x); e) = Tr(x#) = S(x). (3.8)

Next, applying (2.10), (2.19) and (2.12), we find

τ(DN(x)) ≡ 3T (x#, x#)

= 3 Tr(x#)2 − 3S(x#;x#)

= 3 Tr(x#)2 − 6S(x#)

= 3S(x)2 − 6 Tr(x##)

= 3S(x)2 − 18N(x)t,

(3.9)

hence (3.5) yields
τ(DN(x)) = 3(∂tN(x))2 − 18N(x)t, (3.10)

thus (3.6) follows.
Finally, in order to show (3.7), we rewrite (3.10) by virtue (3.5) and (3.3) as

τ(DN(x)) = 3S(x)2 − 6N(x) Tr(x),

which yields by virtue of (2.19)

1

3
τ(DN(x); Dτ(∇N(x)) ≡ ∂x#τ(∇N(x))

= 6S(x;x#)S(x)− 6N(x) Tr(x#)− 6N(x;x#) Tr(x)

= 6(S(x;x#)−N(x)) Trx# − 6T (x#;x#) Tr(x)

(3.11)

By (2.15), x • x# = N(x)e, hence using (2.17), we find

S(x;x#) = Tr(x) Tr(x#)− Tr(x • x#) = Tr(x) Tr(x#)− 3N(x).
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On the other hand, by (3.9)

T (x#;x#) = S(x)2 − 2N(x) Tr(x) = (Tr(x#))2 − 2N(x) Tr(x),

and substituting the found identities into (3.11) and using (2.10) yields the required relation:

1

3
τ(DN(x); Dτ(∇N(x)) = 12 (Tr(x)2 − 2 Tr(x#))N(x)

= 12 (Tr(x)2 − S(x, x))N(x)

= 12T (x, x)N(x) ≡ 36 τ(x)N(x).

(3.12)

Remark 3.1. We demonstrate the above equations for a formally real Jordan algebra J . Observe that
in this case J is Euclidean, i.e. the bilinear form τ is positive definite, see for instance [5, p. 46,
p. 154], hence one can choose local coordinates in V such that τ(x) = |x|2 and t = xn. Since 2S(x) =
(Trx)2 − Trx2 = 9x2n − 3|x|2, the equation (3.5) and (3.6) yield respectively

∂xnN(x) =
3

2
(3x2n − |x|2),

|DN(x)|2 = 3(∂xn
N(x))2 − 18xnN(x),

while (3.7) shows that N(x) satisfies an eigenfunction type equation

∆∞N(x) = 108|x|2N(x)

for the ∞-Laplace operator ∆∞u = 1
2∇u · ∇|∇u|

2.

4 The proof of Theorem 1

The proof of the theorem follows from Propositions 4.1, Proposition 4.2 and Proposition 4.3 below.

Proposition 4.1. Let J = J(V,N, e) be a cubic Jordan algebra, e⊥ = {x ∈ V : Trx = 0}, u(x) =√
2N(x)|e⊥ and the inner product τ is defined by (3.1). Then (e⊥, τ, u) is an eiconal triple. Moreover,

isomorphic Jordan algebras give rise to equivalent eiconal triples.

Proof. Notice that by (3.4), τ(DN(x)) = τ(∇N(x)) + (∂tN(x))2, hence (3.6) yields

τ(∇N(x)) = 2(∂tN(x))2|t=0, x ∈ e⊥. (4.1)

On the other hand, by (2.10), S(x) = − 1
2T (x, x) = − 3

2τ(x) for any x ∈ e⊥, thus ∂tN(x)|t=0 = − 3
2τ(x)

by (3.5) and setting the found relation into (4.1) yields

τ(∇N(x)) =
9

2
τ(x)2 (4.2)

which implies that (e⊥, τ,
√

2N |e⊥) is an eiconal triple, as required.
Now we suppose that J1 and J2 are isomorphic Jordan algebras and denote by φ : J1 → J2 the

corresponding isomorphism. Observe that any element ξ ∈ J2 satisfies the characteristic relation

ξ3 − Tr2(ξ)ξ2 + S2(ξ)ξ −N2(ξ)e2 = 0,

where Trk, Sk, Nk and ek denote the generic trace, the generic spur, the generic norm and the unit
element in the algebra Jk, k = 1, 2. Applying φ−1 to the latter relation we find by isomorphy of φ that

(φ−1(ξ))3 − Tr2(ξ)(φ−1(ξ))2 + S2(ξ)φ−1(ξ)−N2(ξ)e1 = 0.
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Setting x = φ−1(ξ) in the latter relation, we find that any element x ∈ J1 satisfies the cubic relation

x3 − Tr2(φ(x))x2 + S2(φ(x))x−N2(φ(x))e1 = 0.

Since the minimum polynomial is unique, see, for instance [6], the latter relation implies Tr1(x) =
Tr2(φ(x)), S1(x) = S2(φ(x)) and

N1(x) = N2(φ(x)) (4.3)

for any x ∈ J1. Using (2.10) one finds T1(x; y) = T1(φ(x);φ(y)), which yields τ1(x; y) = τ1(φ(x);φ(y)).
Since φ(e1) = e2 and φ is an isomorphism on the level of vector space, one has φ(e⊥1 ) = e⊥2 , hence
φ : e⊥1 → e⊥2 is an isometry of the quadratic vector spaces (e⊥1 , τ1) and (e⊥2 , τ2), and, moreover, (4.3)
implies

N1|e⊥1 (x) = N2|e⊥2 (φ(x)),

thus (e⊥1 , τ1, N1|e⊥1 ) and (e⊥2 , τ2, N2|e⊥2 ) are equivalent, which finishes the proof.

Proposition 4.2. Let (W,Q, u) be an eiconal triple. Then the cubic form

N(x) ≡ Nu(x) := x30 −
3x0Q(x)

2
+
u(x)√

2
, x = (x0, x) ∈ V, (4.4)

on the vector space V = F ×W is Jordan with respect to the basepoint e = (1, 0). In particular, the
associated trace bilinear form is

T (x;y) = 3x0y0 + 3Q(x; y) (4.5)

and the Jordan multiplication structure on J(V,N, c) is determined explicitly by

x2 = (x20 +Q(x), 2x0x+
1

3
√

2
∇u(x)), x = (x0, x). (4.6)

Two equivalent eiconal triples produce isomorphic Jordan algebras.

Proof. Our first step is to establish an auxiliary relation (4.16) below. To this end, we recall that

Q(∇u(x); y) = ∂yu|x ≡ u(x; y) ∀y ∈W, (4.7)

and notice that the covariant gradient of u is a quadratic endomorphism of W and its normalized
polarization

h(x; y) =
1

2
(∇u(x+ y)−∇u(x)−∇u(y)) (4.8)

is obviously a symmetric F-bilinear map. It follows from (4.8) and the homogeneity of ∇u(x) that

h(x) := h(x;x) = ∇u(x). (4.9)

Combining (4.8) and (4.7) with (2.5) we find

2Q(h(x; y); z) = Q(∇u(x+ y)−∇u(x)−∇u(y); z) = u(x+ y; z)− u(x; z)− u(y; z) = u(x; y; z)

for all x, y, z ∈ V which implies
Q(x; h(y; z)) = Q(h(x; y) z). (4.10)

Now rewrite (1.4) by virtue of (4.9) as

Q(h(x)) = 9Q2(x), (4.11)

hence applying the directional derivative in the direction y to the latter equation yields

Q(h(x); h(x; y)) = 9Q(x)Q(y;x) ≡ 9Q(y; Q(x)x), (4.12)
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whereQ(x, y) is defined by (1). Using (4.10) we find for the left hand side of (4.12) thatQ(h(x); h(x; y))) =
Q(y; h(x;h(x))), therefore by the non-degeneracy of Q,

h(x;h(x)) = 9Q(x)x. (4.13)

Polarizing the latter identity, we obtain

h(y;h(x)) + 2h(x;h(x; y)) = 18Q(x; y)x+ 9Q(x)y,

thus, setting y = h(x) in the obtained identity yields

h(h(x)) + 2h(x;h(x;h(x))) = 18Q(x;h(x))x+ 9Q(x)h(x), (4.14)

where we have used h(h(x);h(x)) = h(h(x)). Moreover, by (4.13)

h(x;h(x;h(x))) = 9Q(x)h(x;x) = 9Q(x)h(x),

and by (4.9) and the homogeneity of u

Q(x; h(x)) = Q(x;∇u(x)) = ∂xu|x = 3u(x), (4.15)

therefore (4.14) becomes

h(h(x)) = 18Q(x;h(x))x− 9Q(x)h(x) = 54u(x)x− 9Q(x)h(x). (4.16)

Now we are ready to verify that (4.4) is Jordan. Notice that N(e) = 1, hence e is a basepoint of N .
Let x = (x0, x) and y = (y0, y) are chosen arbitrarily in V = F×W . Since by (4.10)

Q(x;h(x; y)) = Q(y;h(x;x)) = Q(y;h(x)),

we find

N(x;y) ≡ ∂yN |x = 3

(
x20 −

Q(x)

2

)
y0 − 3x0Q(x; y) +

Q(y;h(x))√
2

. (4.17)

Setting x = e in (4.17) we find by (2.7) that Tr(y) = ∂yN |e = 3y0, and setting y = e in (4.17), we find

by (2.8) that S(x) = ∂eN |x = 3(x20 −
Q(x)
2 ), hence

S(x;y) = S(x + y)− S(x)− S(y) = 6x0y0 − 3Q(x; y),

and therefore (2.10) yields

T (x;y) = Tr(x) Tr(y)− S(x;y) = 3x0y0 + 3Q(x; y), (4.18)

thus proving (4.5). In order to establish the adjoint identity (2.12) note that Q is nondegenerate by
the assumption, hence T is nondegenerate too, which implies that x# is well-defined. To determine the
adjoint element explicitly we note that N(x;y) = T (x#;y), hence comparing (4.17) and (4.18) readily
yields

x# ≡ (x#0 , x
#) =

(
x20 −

Q(x)

2
,
h(x)

3
√

2
− x0x

)
(4.19)

Let us denote x## ≡ (x##
0 , x##). Then by (4.19)

x##
0 = (x#0 )2 − Q(x#)

2
=

(
x20 −

Q(x)

2

)2

− Q(x#)

2
(4.20)

where by virtue (4.15) and (4.11),

Q(x#) = Q
(h(x)

3
√

2
− x0x

)
= x20Q(x)−

√
2

3
x0Q(x;h(x)) +

Q(h(x))

18

= x20Q(x)−
√

2x0u(x) +
Q(x)2

2
,
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and substituting this into (4.20) yields

x##
0 = N(x)x0. (4.21)

Arguing as above one obtains

x## = −x#0 x# +
1

3
√

2
h(x#)

= (x20 −
Q(x)

2
)
(
x0x−

h(x)

3
√

2

)
+

1

3
√

2
h

(
h(x)

3
√

2
− x0x

)
,

(4.22)

where using (4.13), (4.16) one has

h

(
h(x)

3
√

2
− x0x

)
=
h(h(x))

18
−
√

2x0
3

h(x;h(x)) + x20h(x)

=
6u(x)x−Q(x)h(x)

2
− 3
√

2x0Q(x)x+ x20h(x)

= 3(u(x)−
√

2x0Q(x))x+ (x20 −
Q(x)

2
)h(x)

thus (4.22) implies x## = N(x)x. Combining this with (4.21) yields the required adjoint identity
x## = N(x)x and proves that N(x) is Jordan.

Next, (4.6) follows immediately from the sharp identity (2.15)

x2 = x# + Tr(x)x− S(x)e

and Tr(x) = 3x0, S(x) = 3x20 − 3
2Q(x).

Finally, in order to finish the proof, we suppose that two eiconal triples (W,Q, u) and (W̃ , Q̃, ũ) are
equivalent, i.e. there exists a linear map O : (W,Q)→ (W̃ , Q̃) such that O is invertible, Q̃(Ox) = Q(x)
for all x ∈ W , and u(x) = ũ(Ox). The map ψ : J(u) → J(ũ) by ψ(x0, x) = (x0, Ox̃) is obviously a
isomorphism of W = F× V and W̃ = F× Ṽ on the level of vector spaces. Furthermore, applying (4.6)
we obtain

ψ(x)2 = (x20 + Q̃(Ox), 2x0Ox+
1

3
√

2
∇ũ(Ox)). (4.23)

On the other hand,

∂yu|x ≡ lim
t→0

u(x+ ty)− u(x)

t
= lim
t→0

ũ(Ox+ tOy)− ũ(Ox)

t
≡ ∂Oyũ|Ox

which yields by the definition of the covariant gradient

Q(∇u(x); y) = ∂yu|x = ∂Oyũ|Ox = Q̃(∇ũ(Ox);Oy) = Q(O−1∇ũ(Ox); y),

hence by nondegeneracy of Q, ∇u(x) = O−1∇ũ(Ox). Hence (4.23) yields

ψ(x)2 =
(
x0 +Q(x), O(2x0x+

1

3
√

2
∇u(x))

)
= ψ(x2).

The polarization of the obtained identity implies that ψ(x•y) = ψ(x)•ψ(y), hence ψ is an isomorphism
of the Jordan algebras, as required.

Remark 4.1. It also is convenient to exhibit the Jordan multiplicative structure on J(V,N, e) explicitly
by polarizing the quadratic identity (4.6), namely

x • y = (x0y0 +Q(x, y), x0y + y0x+
1

3
√

2
h(x; y)), (4.24)

where h is defined by (4.8).

10



To finish the proof of Theorem 1 it suffices to verify the following

Proposition 4.3. Let α : J → E and β : E → J are the correspondences defined in Proposition 4.1
and Proposition 4.2, respectively. Then αβ = idE and βα = idJ .

Proof. (i) We prove first that βα = idJ . Let J = J(V,N, e) and let α(J) = (e⊥, τ, u) be the cubic
eiconal associated to J by virtue of Proposition 4.1, where u =

√
2N |e⊥ . By Proposition 4.2

β(α(J)) = J(V̂ , N̂ , e), V̂ = F× e⊥,

where N̂ is found by (4.4) as

N̂(x) = x30 −
3

2
x0τ(x) +

1√
2
u(x)

= x30 −
3

2
x0τ(x) +N(x), x = (x0, x) ∈ V̂ .

We claim that φ(x) = x0e+x : β(α(J))→ J is an isomorphism of the Jordan algebras. Notice that φ is
an F-linear map and kerφ = {0}. Thus, it suffices to verify that φ is compatible with the multiplicative
structure which is equivalent to showing that φ(x2) = φ(x)2. To this end we notice that by (4.6) and
the definition of u, x2 = (x20 +Q(x), 2x0x+ 1

3∇N(x)). On the other hand, by the definition of φ,

φ(x)2 = x20e+ 2x0x+ x2,

which readily yields

φ(x2)− φ(x)2 =
1

3
∇N(x)− x2 + T (x)e, (4.25)

where the gradient is found by (3.2) as follows: ∇N(x) = (DN(x))e
⊥

= 3(x#)e
⊥

. Furthermore, using
Tr(x) = 0 and (2.15), we obtain

(x#)e
⊥

= (x2 − Tr(x)x+ S(x)e)e
⊥
≡ (x2)e

⊥

= x2 − T (x2; e)e = x2 − T (x;x)e

= x2 − T (x)e.

Thus (4.25) yields φ(x2)− φ(x)2 = 0, which implies the desired isomorphy of φ.
(ii) In the converse direction, let us consider an eiconal triple ε = (W,Q, u) and associate to it the

Jordan algebra β(ε) = J(V,N, e), where V = F ×W , N is defined by (4.4), and e = (1, 0). By (4.5),

e⊥ = 0 ×W , and also by (4.4) and (4.5), N(x) = u(x)√
2

and τ(x) = Q(x) for x = (0, x) ∈ e⊥. Then

Proposition 4.1 yields:
αβ(ε) = (0×W,Q, u)

which is trivially equivalent to ε. The proposition is proved.
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[12] N. Nadirashvili, V.G. Tkachev, and S. Vlăduţ. A non-classical solution to a Hessian equation from
Cartan isoparametric cubic. Adv. Math., 231(3-4):1589–1597, 2012.

[13] L. Pirio and F. Russo. Extremal varieties 3-rationally connected by cubics, quadro-quadric cremona
transformations and rank 3 jordan algebras. arXiv:1109.3573, 2011.

[14] L. Pirio and F. Russo. Quadro-quadric cremona transformations in low dimensionsv via the jc-
correspondence. arXiv:1204.0428, 2012.

[15] T. A. Springer. On a class of Jordan algebras. Nederl. Akad. Wetensch. Proc. Ser. A 62 = Indag.
Math., 21:254–264, 1959.

[16] V. G. Tkachev. A generalization of Cartan’s theorem on isoparametric cubics. Proc. Amer. Math.
Soc., 138(8):2889–2895, 2010.

12


