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Abstract

This paper presents an evolutionary algorithm for finding a basis of the nullspace
of a matrix over the rational numbers which is optimal in the sense that the basis vec-
tors have integral components with no common factors and the absolute values of the
components are as small as possible. The algorithm employs a novel variation operator
in which an existing basis is combined with one or more randomly generated bases and
then filtered by a greedy algorithm to produce a better candidate basis. The paper
studies the effectiveness of this algorithm on three examples: (1) a random matrix of
size 5× 10: for this matrix the algorithm is compared with an exhaustive search; (2) a
random matrix of size 10× 20: for this matrix the algorithm is tested with population
sizes from 1 to 10; (3) a matrix of size 120 × 90 arising from a computational study of
polynomial identities for nonassociative algebras. The better bases located with the al-
gorithm presented here permit the automatic discovery of new algebraic identities with
simple statements. This simplification is critical to permitting researchers in abstract
algebra to access the intuition embedded in automatically discovered identities.

1 Introduction

We shall thus see that a large amount of hereditary modification is at least possi-
ble; and, what is equally or more important, we shall see how great is the power
of man in accumulating by his selection successive slight variations. (Charles
Darwin [10])

The whole purpose of science is to find meaningful simplicity in the midst of
disorderly complexity. (Herbert Simon [20])
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1.1 General description

Any subspace of a finite dimensional vector space over a field can be realized as the nullspace
of a matrix. The row canonical form of the matrix uniquely determines a basis for the
nullspace, since an ordering is implicitly specified on the columns. Over the rational numbers
a basis is defined to be optimal if the components of each basis vector are relatively prime
integers and if for each basis vector both the nonzero components and the number of nonzero
components are as small as possible. This paper presents an evolutionary algorithm for
finding such a basis. This algorithm employs a novel variation operator in which an existing
basis (the old basis) is combined with one or more randomly generated bases (the new bases)
and then filtered by a greedy algorithm to select another basis which is closer to optimal. To
produce a new basis for the nullspace, the algorithm randomly permutes the columns of the
matrix, recomputes the row canonical form, and derives the corresponding canonical basis for
the nullspace. It then creates a list of vectors by merging the old basis with the new basis (or
bases), sorts the vectors according to the values of an objective function, and extracts a better
basis from the list. This algorithm is compared with exhaustive search (over all permutations
of the columns) on a small random matrix (5 × 10). The behavior of the algorithm for
population sizes from 1 to 10 is then analyzed on a larger random matrix (10×20) for which
an exhaustive search is not practical. The algorithm is then applied to simplify the known
computer generated polynomial identities satisfied by a trilinear nonassociative operation.

1.2 Precise formulation

Consider the following general problem in computational linear algebra:

Let V be an n-dimensional vector space over a field F. Let U be a nonzero
subspace of V . Assume that we have a precise definition of the statement X is
better than Y for vectors X, Y ∈ V , and a corresponding definition of B is better
than C for bases B, C of U . Find the best basis for U .

Any subspace U can be represented as the nullspace of a matrix with respect to some given
ordered basis of V . (Define a scalar product on V by declaring the given ordered basis to be
orthonormal, and then let A be any matrix whose row space is the orthogonal complement
of U .) So we can reformulate the problem as follows:

Let A be an m × n matrix over the field F. Let N(A) ⊆ Fn be the nullspace of
A and suppose that N(A) 6= {0}. Assume that we have a precise definition of
a partial order X ≤ Y for vectors X, Y ∈ Fn, and a corresponding partial order
B ≤ C on bases of N(A). Find the best basis for N(A).

This is a global optimization problem, and so we can use an evolutionary algorithm to search
for solutions.

1.3 Motivation

This problem arose in the computational study of polynomial identities for nonassociative
algebras. For surveys of nonassociative algebra, see Kuzmin and Shestakov [16] and Bremner,
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Murakami and Shestakov [7]; for more detailed expositions, see Schafer [19] and Zhevlakov,
Slinko, Shestakov and Shirshov [21].

The varieties of nonassociative algebras which have received the most attention are those
defined by the following identities:

commutativity: ab − ba = 0

anticommutativity: ab + ba = 0

associativity: (ab)c − a(bc) = 0

Jacobi identity: [[ab]c] + [[bc]a] + [[ca]b] = 0

right alternativity: (ab)c + (ac)b − a(bc) − a(cb) = 0

Jordan identity: ((a ◦ a) ◦ b) ◦ a − (a ◦ a) ◦ (b ◦ a) = 0

Malcev identity: [[[ab]c]d] + [[[bc]d]a] + [[[cd]a]b] + [[[da]b]c] − [[ac][bd]] = 0

These identities have low degree (≤ 4), very small coefficients (±1), and very few terms (≤ 5).
Computational searches for polynomial identities of degree ≥ 5 satisfied by nonassociative
systems often produce results with many large and apparently random coefficients: see
Bremner and Hentzel [3, 4, 5, 6], Bremner and Peresi [8, 9], and Tables 20 and 21 in the
present paper. In such cases we usually expect that there are simpler identities equivalent
to the known identities, but these good identities can be very difficult to find. The present
paper provides an effective algorithm for finding these good identities.

2 Preliminaries

Definition 1. Let Q be the field of rational numbers. We say that X = (x1, . . . , xn) ∈ Qn

is a good vector if its components are relatively prime integers:

xi ∈ Z (i = 1, . . . , n) and gcd(x1, . . . , xn) = 1.

Lemma 2. For any nonzero vector X ∈ Qn there is a unique positive rational number r for
which rX is a good vector.

Proof. Clear denominators and cancel common factors. (See Algorithm 10 below.)

Definition 3. If X, Y ∈ Qn are good vectors, then we say that X is better than Y and
write X ≤ Y if and only if

• either the max norm of X is smaller than the max norm of Y :

‖X‖∞ < ‖Y ‖∞ where ‖X‖∞ = max {|x1|, . . . , |xn|} ;

• or (if the max norms are equal) X has fewer nonzero components than Y :

n(X) < n(Y ) where n(X) = |{ i | xi 6= 0 }|.
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With this definition, any two vectors X, Y ∈ Qn are comparable (take their unique good
scalar multiples from Lemma 2 and compare them using Definition 3), but two distinct
vectors can be equally good.

We can give a precise definition for the objective function inducing this partial order on
vectors as follows.

Definition 4. Let N denote the set of nonnegative integers. We define an objective func-

tion v : Qn → N2 by
v(X) =

(

‖rX‖∞, n(rX)
)

,

where rX is the unique good scalar multiple of X from Lemma 2. We define a partial order

on N2 by

(a1, b1) ≤ (a2, b2) if and only if a1 ≤ a2, or a1 = a2 and b1 ≤ b2.

We can now restate the definition of one vector being better than another.

Lemma 5. The condition that X is better than Y for vectors X, Y ∈ Qn is equivalent to the
inequality v(X) ≤ v(Y ).

The partial order on vectors induces a partial order on bases as follows.

Definition 6. Let U ⊆ Qn be a subspace of dimension d ≥ 1, and let

B : X(1) ≤ · · · ≤ X(d) and C : Y (1) ≤ · · · ≤ Y (d),

be two ordered bases of U . We say that B is better than C, and write B ≤ C, if and only
if X(d) ≤ Y (d); that is, the worst vector in B is no worse than the worst vector in C. If we
define the max norm on a basis B in terms of the max norm on vectors by

‖B‖∞ = max{‖X(1)‖∞, . . . , ‖X(d)‖∞},

then B ≤ C if and only if ‖B‖∞ ≤ ‖C‖∞.

This gives a precise meaning to the concept of a better basis. We can now restate our
problem as follows: We want to find an ordered basis for N(A) which is optimal in the
sense that each vector in the basis is good, the vectors in the basis are sorted by decreasing
goodness, and the basis is as good as possible in the partial order on bases induced by the
order on vectors.

3 The evolutionary algorithm

The classic text on evolutionary algorithms is Goldberg [13]. A contemporary introduction to
evolutionary computation is Ashlock [1]. A collection of survey articles on related strategies
for optimization is Glover and Kochenberger [12].

Before discussing the evolutionary aspects of the algorithm, we review two algorithms
from linear algebra which produce a good basis of the nullspace N(A) of a matrix A.
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Algorithm 7. Nullspace basis. This algorithm produces the canonical basis for the
nullspace of a matrix.

Input: An m × n matrix A over the field F.

1. Compute the row canonical form rcf(A), also known as the reduced row-echelon form,
or the Gauss-Jordan form. See Press, Teukolsky, Vetterling and Flannery [17] (Chapter
2) for the standard algorithms, and von zur Gathen and Gerhard [11] (Chapter 12) for
more recent developments.

2. Let
F = {f1, . . . , fd} ⊆ {1, . . . , n},

be the indices of the columns which do not contain the leading 1 of any nonzero row
of rcf(A). These columns represent free variables in the solution of the homogeneous
system AX = O. Then d = |F | = dim N(A).

3. Obtain a basis for N(A) from rcf(A) as follows. For 1 ≤ k ≤ d define

Z(k) =
(

z
(k)
1 , . . . , z(k)

n

)

∈ Fn,

by the formulas:

z
(k)
j = 1 if j ∈ F and j = fk,

z
(k)
j = 0 if j ∈ F and j 6= fk,

z
(k)
j = 0 if j /∈ F and fk < j,

z
(k)
j = −rcf(A)i, fk

if j /∈ F and j < fk and row i has its leading 1 in column j.

That is, to find Z(k) we set the free variables equal to the components of the k-th
standard basis vector Ek in Fd (the vector Ek has 1 in position k and 0 in the other
positions) and then solve for the other variables using rcf(A) as the coefficient matrix.

Output: The vectors Z(1), . . ., Z(d).

Proposition 8. The vectors Z(1), . . ., Z(d) form a basis for N(A).

Proof. The algorithm constructs an isomorphism of vector spaces from Fd to N(A) for which
the image of the k-th standard basis vector Ek in Fd is the k-th basis vector Z(k) of N(A).

The following theorem implies that this basis is uniquely determined by the implicit order
on the columns of the matrix. Our evolutionary algorithm will exploit this fact by repeatedly
generating a random permutation of the columns of the matrix in order to produce a different
basis of the nullspace.

Theorem 9. Let m and n be positive integers and let F be a field. Suppose U is a subspace
of Fn with dim U ≤ m. Then there is a unique m × n matrix over F in row canonical form
which has U as its row space.
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Proof. Hoffman and Kunze [15] (Section 2.5, Theorem 11).

Algorithm 10. Good vector. This algorithm produces the unique nonzero good scalar
multiple rX (r > 0) of the input vector X over the field Q of rational numbers.

Input: A vector X = (x1, . . . , xn) ∈ Qn.

1. Write xi =
ai

bi

uniquely such that ai, bi ∈ Z, bi > 0 and gcd(ai, bi) = 1.

2. Compute ℓ = lcm(b1, . . . , bn): the least common multiple of the denominators of X.

3. Set X ′ = (ℓx1, . . . , ℓxn) ∈ Zn.

4. Compute g = gcd(ℓx1, . . . , ℓxn): the greatest common divisor of the components of X ′.

5. Set X ′′ =

(

ℓx1

g
, . . . ,

ℓxn

g

)

∈ Zn; then X ′′ = rX where r =
ℓ

g
> 0.

Output: The good vector rX ∈ Zn.

Proposition 11. For any nonzero vector X ∈ Qn the vector rX produced by Algorithm 10
is the unique nonzero good scalar multiple with r > 0.

Proof. Suppose that some other good vector Y 6= X ′′ is a scalar multiple of X. Then Y is a
scalar multiple of X ′′, so we can write Y = (a/b)X ′′ where a, b ∈ Z have gcd(a, b) = 1. Since
Y is an integral vector and the components of X ′′ are relatively prime integers, it follows
that b = 1. Then Y = aX ′′, and since the components of Y are relatively prime integers, it
follows that a = ±1. Hence Y = ±X ′′.

Algorithm 12. Random permutation. This algorithm uses a pseudorandom number
generator to produce a permutation π of the columns of the matrix. We assume that we
have a procedure random(n) which produces uniformly distributed pseudorandom integers
1 ≤ x ≤ n.

Input: A positive integer n.

1. Initialize the lists (ordered sets) X = [1, . . . , n] and π = [ ].

2. For i from 1 to n do:

• Set j = random(n − i + 1).

• Append X[j] (the j-th element of X) to π.

• Remove X[j] from X.

Output: The permutation π of 1, . . . , n.

Algorithm 13. Better vector. This algorithm (a Boolean function) determines whether
one vector is better than another.

Input: Two good vectors X, Y of length n.
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1. Compute Xmax = max {|x1|, . . . , |xn|} and Ymax = max {|y1|, . . . , |yn|}.

2. If Xmax < Ymax then set result := true.

3. If Xmax > Ymax then set result := false.

4. If Xmax = Ymax then compute Xnonzero = |{ i | xi 6= 0 }| and Ynonzero = |{ i | yi 6= 0 }|.

5. If Xnonzero ≤ Ynonzero then set result := true, otherwise set result := false.

6. Return result.

Output: True if X is better than (or at least not worse than) Y , and false otherwise.

Algorithm 14. Merge and sort. This algorithm merges the old basis and the p new bases
of the nullspace into one multiset of vectors which is then sorted according to the comparison
function of Algorithm 13. Here p is a positive integer which represents the population size
in the evolutionary algorithm.

Input: Ordered bases X(k,1), . . . , X(k,d) for 1 ≤ k ≤ p + 1 of the d-dimensional nullspace of
the m × n matrix A over the field Q.

1. Combine the p + 1 bases into an ordered list of (p + 1)d vectors

Y (1), . . . , Y ((p+1)d).

Here Y (ℓ) = X(k,i) where ℓ is given by the formula ℓ = (k − 1)d + (i − 1). In other
words, we divide ℓ by d to get the quotient k − 1 and the remainder i − 1.

2. Sort the ordered list Y (1), . . . , Y ((p+1)d) using any convenient sorting algorithm together
with the comparison function of Algorithm 13 to obtain a sorted list of vectors

Z(1), . . . , Z((p+1)d).

Output: An ordered list Z(1), . . . , Z((p+1)d) of good vectors in which Z(i) is better than (or
at least not worse than) Z(j) whenever 1 ≤ i < j ≤ (p + 1)d.

Algorithm 15. Better basis. This algorithm selects a better basis for the nullspace from
the p + 1 known bases. We are given an ordered set of vectors

X(1) ≤ X(2) ≤ · · · ≤ X((p+1)d),

which is obtained from one old basis and p new bases of the nullspace by Algorithm 14. We
then extract the best basis from this sorted list. This is the greedy algorithm which we use
to filter the old and new bases to produce a better basis. This algorithm uses a standard
result from linear algebra for finding a subset of a given set of vectors which forms a basis
for the subspace spanned by the vectors.

Input: An ordered list X(1), . . . , X((p+1)d) of good vectors in which 1 ≤ i < j ≤ (p + 1)d
implies that X(i) is better than (or at least not worse than) X(j). We regard X(j) as a column
vector of size n × 1.
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1. Construct the n× (p + 1)d matrix T which has X(j) as column j for 1 ≤ j ≤ (p + 1)d;

that is, Tij = X
(j)
i for 1 ≤ i ≤ n.

2. Compute the row canonical form rcf(T ). We know that the columns of T span a
subspace U of dimension d, so the rank of rcf(T ) is d; that is, rcf(T ) has d nonzero
rows.

3. Let j1, . . . , jd be the columns of rcf(T ) which contain the leading 1 of some nonzero
row.

Output: The d vectors X(j1), . . . , X(jd) which form a basis of U consisting of the best d
vectors (subject to the constraints of spanning and linear independence) extracted from the
original sorted list of (p + 1)d vectors from the p + 1 old and new bases.

The justification for this algorithm is the following result from linear algebra.

Theorem 16. Let X(j) for 1 ≤ j ≤ q be column vectors in Fn. Let T be the n × q matrix
with X(j) in column j; that is, Tij = X

(j)
i . Suppose that the rank of T is d, and let the leading

ones of the nonzero rows of rcf(T ) occur in columns j1, . . . , jd. Then the vectors X(j1), . . . ,
X(jd) form a basis of the column space of T .

Proof. This is a corollary of the fact that for any matrix the row rank equals the column
rank; see Hoffman and Kunze [15] (Section 3.7, Theorem 22). Let rk for 1 ≤ k ≤ q be the
rank of the n×k submatrix consisting of the first k columns of T . Then rk is the column rank
of the submatrix, and hence as k increases, rk will increase when the column rank increases.
Since rk is also the row rank, this will happen exactly when there is a new leading 1 in a row
of rcf(T ). Hence the positions of the leading ones in rcf(T ) give the columns which increase
the dimension of the column space as k goes from 1 to q.

It is important to note that, since the original list of vectors is ordered, this procedure
preserves the order on the vectors: that is, the basis chosen by this algorithm is the best
basis with respect to the partial order on the vectors. Furthermore, the basis we extract
from the p + 1 old and new bases is better (or at least no worse) than the input bases.

Theorem 17. Algorithm 15 never produces a basis that is worse than any of the input bases.

Proof. We have p + 1 bases for a d-dimensional subspace of an n-dimensional space. Alto-
gether this gives (p+1)d vectors (possibly with repetitions). We put the vectors (as columns)
into a matrix of size n × (p + 1)d. We sort the vectors according to the objective function,
with the best vectors to the left. We reduce the matrix to find a subset of the (sorted list
of) vectors which is a basis of the subspace. This gives us the “best” basis using vectors
from the original p + 1 bases. We have to prove that this “best” basis is better than (or
at least no worse than) any of the p + 1 original bases. Let X(1), X(2), . . . , X(p+1) be the
worst vectors in the original p + 1 bases. The order of the vectors within each basis is im-
portant, but the order of the p + 1 bases is irrelevant, so we may assume that the p + 1
bases have already been sorted using the max norm for bases (the norm of a basis is the
max norm of its worst vector). This means that we may assume without loss of generality
that X(1) ≤ X(2) ≤ · · · ≤ X(p+1) using our partial order on vectors. So the entire first basis
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occurs (at and) to the left of the position of X(1). This means that all the leading ones of the
reduced matrix occur (at or) to the left of the column which contains X(1). Therefore none
of the chosen vectors is any worse than X(1). Since X(1) is no worse than any of the other
worst vectors X(2), . . . , X(p+1), it follows that none of the chosen vectors is any worse than
any of the worst vectors in the original p + 1 bases. In particular, the max norm of the new
basis is less than or equal to the minimum of the max norms of the original p + 1 bases.

Algorithm 18. Main procedure: evolutionary algorithm. This procedure combines all
of the previous procedures and iterates them to find the best possible basis of the nullspace.

Input:

• An m × n matrix A with entries from Q. The nullspace of A has dimension d > 0.

• The population size p, a positive integer. This is the number of new bases that will be
generated during each iteration of the algorithm.

• The number of generations g, a positive integer. This is the number of iterations of
the algorithm that will be performed.

Procedure:

1. Use Algorithm 7 to compute a basis for the nullspace of A; then use Algorithm 10 to
replace each basis vector by its unique good positive scalar multiple; and finally sort
this basis according to Algorithm 13, giving the integral basis X(1), . . . , X(d).

2. Repeat g times:

(a) Call Algorithm 12 a total of p times to generate p random permutations π1, . . . , πp.

(b) Initialize p other m × n matrices B1, . . . , Bp as follows:

(Bk)i,j = Ai,πk(j) for 1 ≤ i ≤ m, 1 ≤ j ≤ n, 1 ≤ k ≤ p.

This is the first phase of our novel variation operator: a random permutation of
the columns of the original matrix A takes the place of the mutation operation in
a genetic algorithm.

(c) Call Algorithm 7 a total of p times to compute bases for the nullspaces of the
matrices B1, . . . , Bp; and then use Algorithm 10 to replace each basis vector by
its unique good positive scalar multiple. Denote the good basis vectors obtained
from Bk by

Y (k,1), . . . , Y (k,d) (1 ≤ k ≤ p).

(d) We need to unpermute the components of the vectors Y (k,ℓ), since the columns of
each matrix Bk are a permutation of the columns of the original matrix A. So for
1 ≤ k ≤ p we set

Z(k,πk(ℓ)) = Y (k,ℓ) (1 ≤ ℓ ≤ d).

9



(e) Use Algorithm 14 to merge and sort the old basis with the p new bases:

X(1), . . . , X(d) and Z(k,1), . . . , Z(k,d) (1 ≤ k ≤ p).

This is the second phase of our novel variation operator: merging and sorting the
p + 1 old and new bases takes the place of the crossover operation in a genetic
algorithm.

(f) Use Algorithm 15 to extract a better basis W (1), . . . , W (d) from the merged and
sorted list of vectors produced by the previous step. This extraction of a better
basis from the p + 1 old and new bases takes the place of the selection operation
in a genetic algorithm.

(g) Set X(i) equal to W (i) for i = 1, . . . , d.

Output:

• A basis X(1), . . . , X(d) for the nullspace of A which contains the best vectors from the
gp bases generated by the evolutionary algorithm.

4 Relation of this algorithm to the theory of evolution-

ary computation

In this section we relate the algorithm to the standard operations of evolutionary algorithms.
Let Πn denote the set of all permutations of {1, . . . , n}. Every permutation π ∈ Πn

permutes the columns of the original matrix A to determine a new matrix B = Aπ. The new
matrix B then uniquely determines a basis of good vectors for the nullspace N(A) according
to Algorithms 7 and 10. So we have the schematic diagram

π ∈ Πn −−−−−−−→ B = Aπ −−−−−−−→ Y (1), . . . , Y (d)

The first stage of our novel variation operator (corresponding roughly to the mutation step
of a genetic algorithm) takes place at the left end of the diagram when we generate a new
random permutation π ∈ Πn. The permutation π corresponds to the genotype in a genetic
algorithm. The permutation π then determines, by means of the matrix B = Aπ, a new
basis Y (1), . . . , Y (d) of N(A). This new basis corresponds to the phenotype in a genetic
algorithm. The second stage of our novel variation operator takes place at the right end of
the diagram when we merge and sort the old basis and the p new bases. This merging and
sorting corresponds to the crossover step of a genetic algorithm. (For a similar novel variation
operator which combines operations corresponding to mutation and crossover see the recent
work of Ashlock and Houghten [2].) The selection stage of our evolutionary algorithm takes
place at the right end of the diagram when we extract a better basis from the sorted list
containing the old basis and the p new bases.

In this algorithm, an individual is a particular basis for the nullspace N(A), and the
population is a collection of distinct bases (possibly with vectors in common). We start with
an population of size 1, and repeatedly produce a new population of size p, which we mate
with the old population to produce a better population of size 1. During the selection step
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we must be careful to preserve the property of linear independence for the basis of a vector
space. This is not a genetic algorithm, since we are not applying a mutation operator to the
genotypes, but rather generating new random genotypes, and then combining the phenotypes
corresponding to the old and new genotypes. It is important to note that the good basis
eventually produced by the algorithm will not in general be the phenotype corresponding
to one particular genotype, but will be a combination of phenotypes corresponding to many
different genotypes.

5 Open problems

5.1 Optimality of the output

An important open problem is to find sufficient conditions for the output of this algorithm
to be optimal. In other words, what is the probability that we have found the optimal basis
as a function of the number of generations? This will also depend on the size of the matrix,
the nature of the matrix entries, and the size of the population. We can give a precise
definition of the optimal basis as follows: Let A be an m × n matrix over Q. Consider the
set Πn of all n! permutations of the n columns of A, ordered in some convenient way (for
example, lexicographically). Each permutation π ∈ Πn produces a corresponding permuted
matrix Aπ, and each of these permuted matrices gives a corresponding canonical basis X(π,1),
. . . , X(π,d) of the nullspace of dimension d. Let T be the matrix of size n × n!d consisting
of n! blocks of size n × d arranged horizontally in which the d column vectors of the k-th
block are the nullspace basis vectors corresponding to the k-th permutation. Let sort(T )
be the matrix obtained from T by sorting the columns according to Algorithm 13. The
row canonical form of sort(T ) has rank d; the leading ones of its rows occur in columns
1 ≤ j1 < j2 < · · · < jd ≤ n!d. The nullspace basis vectors appearing in columns j1, . . . , jd

of T will be, by definition, the optimal basis for the nullspace.

5.2 Changing the partial order on vectors

There are many other objective functions that we could use to partially order the vectors.
The most important criterion is that the objective function should take into account both
the size of the components and the number of nonzero components. The partial order of
Definition 3 does this by first comparing the size of the components and then comparing
the number of nonzero components. If we use another norm on the vectors, we can combine
these two steps in one comparison. For example, we could use the sum of the absolute values
of the components, or the familiar Euclidean norm, or the general norm determined by a
positive real number α:

‖X‖1 =
n
∑

i=1

|xi|, ‖X‖2 =

√

√

√

√

n
∑

i=1

x2
i , ‖X‖α =

(

n
∑

i=1

|xi|α
)1/α

Any one of these norms would simultaneously select in favor of vectors with smaller compo-
nents and with fewer nonzero components. It is an interesting open problem to investigate
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how different vector norms would affect the performance of the algorithm. A closely related
problem is to study the computational complexity of the algorithm, and in particular to
determine how the optimal population size depends on the matrix.

5.3 Searching over all bases of the nullspace

It is possible that the best basis of the nullspace cannot be located by this algorithm. The
definition of optimality given in subsection 5.1 is restricted in the sense that it only considers
vectors that belong to the canonical basis for the nullspace corresponding to some permuta-
tion π of the columns of the original m × n matrix A. This is a finite set of vectors, and so
there are infinitely many vectors that cannot be obtained in this way. Suppose dim N(A) = d
and that we have a basis X(1), . . . , X(d) of N(A). Every other basis of N(A) consists of
the columns of a matrix of the form CX where C is an invertible d × d matrix and X is
the d × n matrix which has X(j) as row j for 1 ≤ j ≤ n. Finding the optimal basis in the
absolute sense would require searching over the infinite set of all matrices C. An attempt
to develop an algorithm based on this approach using random elementary matrices (which
generate all invertible matrices) produced an algorithm which was orders of magnitude less
efficient than the algorithm described in this paper. Designing an efficient algorithm using
elementary matrices to search over all possible bases of the nullspace is an important open
problem.

6 First example: a random matrix of size 5 × 10

The first example is a matrix small enough that we can do an exhaustive search over all
permutations of the columns.

We use a 5×10 matrix with signed single digits as its entries. As a source of pseudorandom
numbers we use the first 50 digits of the expansion of

√
2/2 in base 19: for digits 0 ≤ x ≤ 9

the matrix entry is x, and for digits 10 ≤ x ≤ 18 the matrix entry is x − 19; see Table 1.
For this example we take a population size of p = 1: the algorithm converges so quickly
that taking a larger population size is unnecessary. The row canonical form of the matrix
is displayed in Table 2. The basis for the nullspace of dimension d = 5 obtained from the
row canonical form by Algorithms 7 and 10 is given in Table 3. The largest component (in
absolute value) is 17423.

A random permutation generated using Algorithm 12 is [2, 10, 3, 9, 7, 6, 4, 8, 5, 1]. The
corresponding permuted matrix is given in Table 4. As before we compute the row canonical
form of this matrix, and then use Algorithms 7 and 10 to obtain a basis for the nullspace.
However, whenever we permute the columns of the original matrix, we must unpermute the
components of the resulting basis vectors. The basis we obtain after doing this is displayed
in Table 5.

We now merge and sort the bases from Tables 3 and 5, and put the resulting 2d = 10
vectors into the columns of a matrix; see Table 6. The row canonical form of this matrix has
5 nonzero rows: the leading ones of the nonzero rows occur in the first 5 columns. Therefore
the better basis selected by Algorithm 15 consists of the first 5 vectors in the merged and
sorted list; see Table 7. This better basis contains four vectors from the old basis of Table 3
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−6 8 5 0 −3 7 9 3 0 0
2 4 0 −2 −2 5 1 −5 −9 −3
3 1 0 9 6 −6 −3 5 −5 9
4 8 0 −2 0 5 −3 −3 7 0

−7 8 4 7 −3 5 1 3 −6 9













Table 1: Pseudorandom 5 × 10 matrix



































1 0 0 0 0
857

1520

3089

1520
−2141

1520
−12447

1520
−495

304

0 1 0 0 0
489

1520
−2127

1520

403

1520

6161

1520

297

304

0 0 1 0 0
67

80

459

80
−31

80
−917

80
−45

16

0 0 0 1 0 − 13

152
− 5

152
− 39

152
−557

152

99

152

0 0 0 0 1 −367

304
−375

304

571

304

2457

304

357

304



































Table 2: Row canonical form of 5 × 10 matrix













−857 −489 −1273 130 1835 1520 0 0 0 0
−3089 2127 −8721 50 1875 0 1520 0 0 0

2141 −403 589 390 −2855 0 0 1520 0 0
12447 −6161 17423 5570 −12285 0 0 0 1520 0

495 −297 855 −198 −357 0 0 0 0 304













Table 3: Old basis for nullspace of 5 × 10 matrix

and one vector from the new basis of Table 5. The largest component (in absolute value) is
now 8721.

We now repeat this process, running the evolutionary algorithm on the same 5 × 10
matrix for 100000 generations. The algorithm converged after only 20 generations. The
permutations which resulted in a better basis are displayed in Table 8; these permutations
were generated by Algorithm 12 using the rand() function from Maple. The final basis
appears in Table 9. The largest component (in absolute value) is 352.

To compare the results of the evolutionary algorithm with the optimal basis, we ran an
exhaustive search over all 10! = 3628800 permutations of the columns. The algorithm for this
exhaustive search is essentially the same as that described in Section 3, except that the loop
over g in the main procedure is replaced by a loop over all permutations, and we do not call
Algorithm 12. We initialize the permutation to the identity, and at the end of each iteration
we use the standard algorithm to compute the next permutation in lexicographical order; see
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8 0 5 0 9 7 0 3 −3 −6
4 −3 0 −9 1 5 −2 −5 −2 2
1 9 0 −5 −3 −6 9 5 6 3
8 0 0 7 −3 5 −2 −3 0 4
8 9 4 −6 1 5 7 3 −3 −7













Table 4: Permuted 5 × 10 matrix













0 −3333 −64386 0 0 16377 25995 0 3252 21760
0 −317 6971 5459 0 0 −3591 0 383 −6408
0 2082 24270 0 0 0 −20793 16377 −4272 −18634
0 −9504 86868 0 16377 0 −34353 0 −3861 −23458

5459 −5687 33101 0 0 0 −9695 0 −775 −4850













Table 5: New basis for nullspace of 5 × 10 matrix

































495 −857 2141 0 −3089 12447 0 5459 0 0
−297 −489 −403 −317 2127 −6161 2082 −5687 −3333 −9504

855 −1273 589 6971 −8721 17423 24270 33101 −64386 86868
−198 130 390 5459 50 5570 0 0 0 0
−357 1835 −2855 0 1875 −12285 0 0 0 16377

0 1520 0 0 0 0 0 0 16377 0
0 0 0 −3591 1520 0 −20793 −9695 25995 −34353
0 0 1520 0 0 0 16377 0 0 0
0 0 0 383 0 1520 −4272 −775 3252 −3861

304 0 0 −6408 0 0 −18634 −4850 21760 −23458

































Table 6: Merged and sorted bases (vectors are columns)













495 −297 855 −198 −357 0 0 0 0 304
−857 −489 −1273 130 1835 1520 0 0 0 0
2141 −403 589 390 −2855 0 0 1520 0 0

0 −317 6971 5459 0 0 −3591 0 383 −6408
−3089 2127 −8721 50 1875 0 1520 0 0 0













Table 7: Better basis for nullspace of 5 × 10 matrix
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generation maximum permutation
0 17423 −
1 8721 [2, 10, 3, 9, 7, 6, 4, 8, 5, 1]
2 1515 [6, 1, 3, 8, 5, 2, 4, 7, 10, 9]
8 855 [8, 10, 4, 1, 5, 2, 9, 6, 7, 3]

19 472 [7, 3, 6, 5, 2, 8, 9, 1, 4, 10]
20 352 [8, 3, 9, 6, 4, 1, 10, 5, 2, 7]

Table 8: Results of evolutionary algorithm for 5 × 10 matrix













31 7 29 0 −55 −30 0 10 0 0
−27 0 −63 0 39 27 9 0 0 4

0 2 175 13 0 −81 0 −108 13 0
28 0 0 190 −73 0 0 −17 31 −124

118 −99 352 0 −50 25 −65 0 0 0













Table 9: Final basis for nullspace of 5 × 10 matrix

Roberts and Tesman [18] (Section 2.16.1). This allows us to avoid using unnecessary time
and space generating all permutations at once. This exhaustive search produces the optimal
basis, which is the same as the basis for the nullspace displayed in Table 9 up to a change
of sign in the last two vectors.

In conclusion, the evolutionary algorithm with a population size of p = 1 achieved the
optimal basis after only 20 iterations; that is, after only 20/10! ≈ .00055 % of the number of
iterations needed to guarantee optimality.

7 Second example: a random matrix of size 10 × 20

The second example is a matrix large enough that we can do a meaningful comparison of
different population sizes.

We use a matrix of size 10× 20; since 20! ≈ 2.4329× 1018, in this case it is not practical
(without special hardware and software) to do an exhaustive search over all permutations of
the columns. The matrix entries are the signed single digits corresponding the first 200 digits
of the expansion of

√
2/2 in base 19; see Table 10. For the integral basis (not displayed) of

the nullspace obtained by Algorithms 7 and 10, the largest component (in absolute value) is
208455376722.

We first run the evolutionary algorithm on this matrix with population p = 1. The
results for 100000 generations are summarized in Table 11; no improvement was obtained
after generation 34241. The first column gives the generation, and the second column gives
the largest component (in absolute value) of the basis vectors. Only those generations are
listed which produced a new basis with a strictly smaller value of the largest component of
the worst vector. After 34241 generations, the largest component has decreased by a factor
of over 105 from the initial value: the new largest component is 2067577.
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−6 8 5 0 −3 7 9 3 0 0 2 4 0 −2 −2 5 1 −5 −9 −3
3 1 0 9 6 −6 −3 5 −5 9 4 8 0 −2 0 5 −3 −3 7 0

−7 8 4 7 −3 5 1 3 −6 9 −1 5 −2 −2 4 −2 0 8 −4 3
−7 8 −4 4 −8 −4 −2 −3 6 −3 0 8 −6 0 3 −5 6 −3 6 −2

9 8 −6 −6 3 −1 9 5 −5 8 −7 0 8 −8 3 7 −5 5 1 3
−8 −9 −1 8 5 −5 3 4 −8 5 8 −2 4 8 −5 −5 −6 −8 7 −6
−7 −6 −2 −8 −4 −9 −5 4 −7 7 −9 3 4 0 −5 −8 0 −7 7 6

2 −8 7 4 −6 0 6 9 9 −5 8 7 −4 −1 9 −7 3 −1 0 −7
6 −4 −4 3 8 −6 6 −4 −8 0 5 9 −2 4 8 2 7 −9 −4 −9

−2 5 −5 −5 −7 3 −7 8 4 6 −7 −3 7 7 −2 −7 9 7 5 5

































Table 10: Pseudorandom 10 × 20 matrix

generation maximum generation maximum generation maximum
0 208455376722 1 63578855455 2 22720150794
3 15708086137 4 9841681986 8 4444976578

14 3723159899 15 2384366358 20 2350233776
22 2130329722 29 1809304695 34 1789414998
37 1530548119 44 1445947143 47 1415727414
54 1321394459 56 707959226 60 549051774
63 481247058 71 450743010 85 434802080
90 434525061 95 363821570 111 296208307

114 272166271 131 258599554 165 253506510
181 253177933 184 249091091 220 230114216
282 203188985 291 174886436 314 144987051
324 138680570 346 136272332 396 126277794
408 115348318 563 101428305 569 82769771
582 72318520 592 53768235 628 46718334
776 41377688 789 28556541 793 27850890

1443 26728438 1474 22461063 1632 22232106
1638 21494504 1730 20034769 1852 11043245
2823 10759335 2842 10236123 3202 6987978
3277 6719919 3747 6106066 3961 5336212
6012 5088816 7880 3398467 8948 3067510

15403 3054616 17491 2960966 21540 2827883
22839 2782883 23596 2546833 25830 2248572
28295 2226994 31533 2210785 34241 2067577

Table 11: Results of evolutionary algorithm for 10 × 20 matrix

Using the logarithmic variables x = ln g and y = ln m where g is the generation and m
is the maximum absolute value of the components, we can do a least squares fit of a linear
function y = ax + b to the data points in Table 11. We obtain the graph in Figure 1 where
the constants in the linear equation are a ≈ −1.014312 and b ≈ 24.51393. This shows that
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Figure 1: Least squares fit for data from Table 11

the performance of the algorithm is described very accurately by the formula

m =
M

g
, where M = eb ≈ 44285845130.

Figure 1 has the interesting property that the data points produced by the algorithm oscillate
above and below the approximating line.

We also ran the evolutionary algorithm on this matrix with the population size p ranging
from 2 to 10. For each p, the algorithm was executed for ⌈100000/p⌉ generations, so that a
total of 100000 random permutations of the columns of the original matrix were used. Table
12 gives the values of the Maple kernel variables cputime, bytesalloc, bytesused at the
end of each computation. These computations were done using Maple 8.01 (version for IBM
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population cputime bytesalloc bytesused
1 13978.263 6093732 288378814360
2 13811.107 6093732 264609479520
3 13446.455 6093732 256152032796
4 13689.235 6224780 252958183472
5 14261.425 6290304 250580748720
6 14432.870 6355828 249179014896
7 14809.953 6421352 248135693388
8 15236.573 6617924 247880343164
9 15916.828 6814496 247384667764

10 16095.313 7011068 246946519608

Table 12: Time and space data for 10 × 20 matrix with 1 ≤ p ≤ 10

INTEL NT) on an IBM Thinkpad T43 with an Intel Pentium M 760 processor (2.0 GHz),
2 MB cache, and 1 GB RAM. The total CPU time decreases from p = 1 to p = 3 and then
starts to increase. The total bytes allocated increases over the entire range of population
sizes, and the total bytes used decreases. These data suggest that (at least for this matrix)
the optimal population size is p = 3 (and that p = 4 is better than p = 2).

8 Third example: the expansion matrix of size 120× 90

for a nonassociative operation

This section applies the evolutionary algorithm to simplify the computational results from a
research project on polynomial identities for nonassociative algebras. Other related examples
and applications can be found in Bremner and Peresi [8, 9]. Further information about the
mathematical motivation is given in the Appendix of the present paper.

This example uses a sparse structured matrix of size 120×90. To give a precise definition
of this matrix, we first consider the trilinear operation

[a, b, c] = 2abc + 2acb − bac − bca + 2cab + 2cba. (1)

This operation satisfies the symmetry condition

[a, b, c] = [c, b, a].

It is not difficult to check that this is the only polynomial identity of degree 3 satisfied by
operation (1).

To study polynomial identities in degree 5 (for a trilinear operation only odd degrees
occur), we first consider the 3 distinct association types:

[[−,−,−],−,−], [−, [−,−,−],−], [−,−, [−,−,−]].

Here only the arrangement of brackets is important, not the permutation of the letters, so we
indicate the arguments using a minus sign as a placeholder. In principle, there are 5! = 120
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monomials for each association type. However, the symmetry condition in degree 3 shows
that these 360 monomials can be reduced to only 90: since

[[a, b, c], d, e] = [[c, b, a], d, e],

there are only 5!/2 = 60 inequivalent monomials in the first type; since

[a, [b, c, d], e] = [a, [d, c, b], e] = [e, [b, c, d], a] = [e, [d, c, b], a],

there are only 5!/4 = 30 inequivalent monomials of the second type; and since

[[a, b, c], d, e] = [e, d, [a, b, c]],

every monomial of the third type is equivalent to a monomial of the first type. We order
these nonassociative monomials first by association type and then (within each association
type) by lexicographical order of the permutation of the arguments. The complete list of
90 ordered nonassociative monomials appears in Table 13. We order the 120 associative
monomials (the permutations of the 5 letters) lexicographically.

When each of the nonassociative monomials is expanded using formula (1), it produces
a sum of 36 terms with coefficients from the set {1,−2, 4}. The expansions of the first
nonassociative monomial in each association type are displayed in Table 14. Each of the
terms in these expansions is a scalar multiple of one of the associative monomials.

Definition 19. We define the expansion matrix E to be the 120 × 90 matrix in which
the rows are labeled by the associative monomials and the columns are labeled by the nonas-
sociative monomials, and in which the (i, j) entry is the coefficient of the i-th associative
monomial in the expansion of the j-th nonassociative monomial. That is, each column rep-
resents the expansion of the corresponding nonassociative monomial as a linear combination
of the associative monomials.

The expansion matrix is a sparse integer matrix: in each column only 36 of the 120 entries
are nonzero, giving a fill rate of 30%. The positions of the nonzero entries are displayed in
Figure 2 (plus signs represent nonzero entries, spaces represent zero entries). The coefficients
of the expansions in Table 14 are the nonzero entries in columns 1 and 61 of Figure 2.

The nonzero vectors in the nullspace of the expansion matrix represent linear combina-
tions of column labels (nonassociative monomials) which evaluate to zero when expanded
using formula (1); that is, these nullspace vectors represent the non-trivial polynomial iden-
tities in degree 5 satisfied by the nonassociative trilinear operation [a, b, c]. The maximum
components (in absolute value) and the number of nonzero components for the original 20
basis vectors computed by Algorithms 7 and 10 are displayed in columns 2 and 3 of Table
15: the smallest maximum component is 19 and the largest is 129; the smallest number of
nonzero components is 66 and the largest is 71. Column 4 of Table 15 gives the dimension
of the subspace of the nullspace generated by the identity: we apply all 5! permutations of
the 5 letters to the identity and obtain a total of 120 identities; we put these identities in
the rows of a matrix of size 120 × 90; we then compute the rank of this matrix, which is
the dimension of the subspace generated by the identity under the action of the symmetric
group S5. Every one of the original 20 identities generates the entire nullspace.
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[[abc]de], [[abc]ed], [[abd]ce], [[abd]ec], [[abe]cd], [[abe]dc],
[[acb]de], [[acb]ed], [[acd]be], [[acd]eb], [[ace]bd], [[ace]db],
[[adb]ce], [[adb]ec], [[adc]be], [[adc]eb], [[ade]bc], [[ade]cb],
[[aeb]cd], [[aeb]dc], [[aec]bd], [[aec]db], [[aed]bc], [[aed]cb],
[[bac]de], [[bac]ed], [[bad]ce], [[bad]ec], [[bae]cd], [[bae]dc],
[[bcd]ae], [[bcd]ea], [[bce]ad], [[bce]da], [[bdc]ae], [[bdc]ea],
[[bde]ac], [[bde]ca], [[bec]ad], [[bec]da], [[bed]ac], [[bed]ca],
[[cad]be], [[cad]eb], [[cae]bd], [[cae]db], [[cbd]ae], [[cbd]ea],
[[cbe]ad], [[cbe]da], [[cde]ab], [[cde]ba], [[ced]ab], [[ced]ba],
[[dae]bc], [[dae]cb], [[dbe]ac], [[dbe]ca], [[dce]ab], [[dce]ba],
[a[bcd]e], [a[bce]d], [a[bdc]e], [a[bde]c], [a[bec]d], [a[bed]c],
[a[cbd]e], [a[cbe]d], [a[cde]b], [a[ced]b], [a[dbe]c], [a[dce]b],
[b[acd]e], [b[ace]d], [b[adc]e], [b[ade]c], [b[aec]d], [b[aed]c],
[b[cad]e], [b[cae]d], [b[dae]c], [c[abd]e], [c[abe]d], [c[adb]e],
[c[aeb]d], [c[bad]e], [c[bae]d], [d[abc]e], [d[acb]e], [d[bac]e].

Table 13: The ordered list of 90 nonassociative monomials (column labels)

[[a, b, c], d, e] =

4abcde + 4abced − 2dabce − 2deabc + 4eabcd + 4edabc

+ 4acbde + 4acbed − 2dacbe − 2deacb + 4eacbd + 4edacb

− 2bacde − 2baced + dbace + debac − 2ebacd − 2edbac

− 2bcade − 2bcaed + dbcae + debca − 2ebcad − 2edbca

+ 4cabde + 4cabed − 2dcabe − 2decab + 4ecabd + 4edcab

+ 4cbade + 4cbaed − 2dcbae − 2decba + 4ecbad + 4edcba

[a, [b, c, d], e] =

4abcde + 4aebcd − 2bcdae − 2bcdea + 4eabcd + 4ebcda

+ 4abdce + 4aebdc − 2bdcae − 2bdcea + 4eabdc + 4ebdca

− 2acbde − 2aecbd + cbdae + cbdea − 2eacbd − 2ecbda

− 2acdbe − 2aecdb + cdbae + cdbea − 2eacdb − 2ecdba

+ 4adbce + 4aedbc − 2dbcae − 2dbcea + 4eadbc + 4edbca

+ 4adcbe + 4aedcb − 2dcbae − 2dcbea + 4eadcb + 4edcba

Table 14: Expansions of the first monomial in each association type
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Figure 2: Nonzero entries in the expansion matrix
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original nullspace basis final nullspace basis
maximum nonzero dimension maximum nonzero dimension

1 19 68 20 1 24 5
2 27 69 20 1 24 5
3 29 66 20 1 24 5
4 29 66 20 1 24 5
5 36 71 20 1 24 5
6 42 66 20 3 42 6
7 42 66 20 3 42 6
8 51 71 20 3 42 6
9 59 67 20 3 42 6

10 67 66 20 3 42 6
11 67 66 20 3 42 6
12 76 68 20 4 48 20
13 76 68 20 5 42 20
14 76 70 20 5 42 20
15 76 70 20 5 42 20
16 77 71 20 5 42 20
17 77 71 20 5 42 20
18 83 69 20 5 42 20
19 129 70 20 5 42 20
20 129 70 20 5 42 20

Table 15: Goodness data for original and final basis vectors

generation maximum generation maximum
0 129 84 83

98 77 104 76
271 67 466 59
526 42 883 36
892 30 1014 29

1920 27 1937 19
2709 15 2746 10
2921 6 64752 5

Table 16: Performance of the algorithm on the expansion matrix
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The original 20 basis vectors for the nullspace are displayed in Tables 20 and 21. These
results are quite bad; they represent polynomial identities that are so complicated as to
be useless for the development of a structure theory of algebras. The polynomial identity
corresponding to the best of these initial basis vectors is displayed in Table 17; here we have
omitted the superfluous commas between the arguments of the trilinear operation.

We now run the evolutionary algorithm on the expansion matrix for 100000 generations
with a population size of p = 1. A list of the generations and the maximum components
of the worst vectors appears in Table 16. This table only lists those generations at which a
decrease in the maximum component of the worst vector occurred. At the other generations,
an improvement in the nullspace basis was also possible: the algorithm may have found
better basis vectors, but the maximum component did not decrease. An interesting feature
of the data in Table 16 is the last row: maximum component 6 was obtained at generation
2921, and then no further improvement was observed until generation 64752 when maximum
component 5 was achieved. The final basis obtained is displayed in Tables 22 and 23. The
maximum components (in absolute value) and the number of nonzero components for these
final 20 basis vectors are displayed in columns 5 and 6 of Table 15: the smallest maximum
component is 1 and the largest is 5; the smallest number of nonzero components is 24 and
the largest is 48. There has been a dramatic increase in the goodness of the vectors between
the original basis and the final basis. However, from column 7 of Table 15 we see that only
the last 9 of the final basis vectors generate the entire nullspace.

We now study final vector number 12 in more detail; this is the second group of 6 rows in
Table 23. It has 48 nonzero components with a maximum absolute value of 4. Recalling the
correspondence between nonassociative monomials and columns of the expansion matrix, we
see that this vector represents the polynomial identity displayed in Table 18. This is the
first identity from the final basis which produces a dimension of 20: it is the best identity
that generates the entire nullspace. As can be seen from column 7 of Table 15, each of the
better identities generates a proper subspace of the nullspace. Identity number 12 has an
interesting combinatorial structure. Half the coefficients are positive and half are negative;
the coefficients occur with the following multiplicities in the two association types:

coefficient +2 −2 +3 −3 +4 −4
type 1 12 6 0 3 6 6
type 2 3 9 3 0 0 0

The identity is invariant under all 6 permutations of b, c, d. This means that we can set
b = c = d and obtain an identity which is not multilinear but which is equivalent to the
original identity over a field of characteristic 0 (see Chapter 1 of Zhevlakov, Slinko, Shestakov
and Shirshov [21] for a detailed discussion of linearization of nonassociative polynomials).
This delinearization process gives the equivalent but much more compact identity displayed
in Table 19.

Theorem 20. Every polynomial identity of degree 5 for the trilinear operation (1), over
a field of characteristic 0, follows from the identity [a, b, c] = [c, b, a] in degree 3 and the
10-term identity of Table 19 in degree 5.

Proof. In the 48-term identity of Table 18 we replace c and d by b (and then we replace e by
c for notational convenience). We then collect terms using the symmetry condition in degree
3 and cancel common factors in the coefficients.
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3[[abc]de] + 3[[abc]ed] + 11[[abd]ce] + 7[[abd]ec] + 11[[abe]cd]

+ 7[[abe]dc] + 15[[acb]de] + 15[[acb]ed] − 3[[acd]be] − 9[[acd]eb]

− 3[[ace]bd] − 9[[ace]db] + 17[[adb]ce] + 19[[adb]ec] + 3[[adc]be]

− 9[[adc]eb] + 3[[ade]bc] − 3[[ade]cb] + 17[[aeb]cd] + 19[[aeb]dc]

+ 3[[aec]bd] − 9[[aec]db] + 3[[aed]bc] − 3[[aed]cb] − 3[[bac]de]

− 3[[bac]ed] − 7[[bad]ce] − 11[[bad]ec] − 7[[bae]cd] − 11[[bae]dc]

+ 8[[bcd]ae] − 15[[bcd]ea] + 8[[bce]ad] − 15[[bce]da] + 8[[bdc]ae]

− 3[[bdc]ea] + 4[[bde]ac] − 13[[bde]ca] + 8[[bec]ad] − 3[[bec]da]

+ 4[[bed]ac] − 13[[bed]ca] − 3[[cad]be] − 3[[cad]eb] − 3[[cae]bd]

− 3[[cae]db] − 4[[cbd]ae] + 9[[cbd]ea] − 4[[cbe]ad] + 9[[cbe]da]

+ 9[[cde]ba] + 9[[ced]ba] − 15[[dae]bc] − 3[[dae]cb] − 8[[dbe]ac]

+ 5[[dbe]ca] − 9[[dce]ba] − 14[a[bcd]e] − 14[a[bce]d] − 8[a[bdc]e]

− 12[a[bde]c] − 8[a[bec]d] − 12[a[bed]c] + 10[a[cbd]e] + 10[a[cbe]d]

+ 6[b[acd]e] + 6[b[ace]d] + 6[d[abc]e]

Table 17: The best polynomial identity from the original nullspace basis

4[[abe]cd] + 4[[abe]dc] + 4[[ace]bd] + 4[[ace]db] + 4[[ade]bc]

+ 4[[ade]cb] + 2[[aeb]cd] + 2[[aeb]dc] + 2[[aec]bd] + 2[[aec]db]

+ 2[[aed]bc] + 2[[aed]cb] + 2[[bae]cd] − 2[[bae]dc] + 2[[bce]ad]

− 4[[bce]da] + 2[[bde]ac] − 4[[bde]ca] − 3[[bec]ad] − 3[[bed]ac]

− 2[[cae]bd] − 2[[cae]db] + 2[[cbe]ad] − 4[[cbe]da] + 2[[cde]ab]

− 4[[cde]ba] − 3[[ced]ab] − 2[[dae]bc] − 2[[dae]cb] + 2[[dbe]ac]

− 4[[dbe]ca] + 2[[dce]ab] − 4[[dce]ba] − 2[a[bce]d] − 2[a[bde]c]

+ 2[a[bec]d] + 2[a[bed]c] − 2[a[cbe]d] − 2[a[cde]b] + 2[a[ced]b]

− 2[a[dbe]c] − 2[a[dce]b] − 2[b[aec]d] − 2[b[aed]c] + 3[b[cae]d]

+ 3[b[dae]c] − 2[c[aeb]d] + 3[c[bae]d]

Table 18: The best polynomial identity from the final nullspace basis

8[[abc]bb] + 4[[acb]bb] − 4[[bac]bb] + 4[[bbc]ab] − 8[[bbc]ba]

− 3[[bcb]ab] − 4[a[bbc]b] + 2[a[bcb]b] − 2[b[acb]b] + 3[b[bac]b]

Table 19: The compact form of the polynomial identity from Table 18
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The evolutionary algorithm has proved to be very effective in this application to nonas-
sociative algebra: we have gone from the very complicated identities of Tables 20 and 21 to
the much simpler identity of Table 19, and the identity of Table 19 implies all the identities
of Tables 20 and 21.

9 Further remarks

This algorithm can be adapted to fields of positive characteristic. Let Fp denote the field
with p elements. Every nonzero congruence class modulo p has a unique best rational
approximation: for 1 ≤ r ≤ p − 1 we find the unique pair of integers a, b satisfying the
conditions:

r ≡ a

b
(mod p), b > 0, gcd(a, b) = 1, max(|a|, b) is minimal.

We then define a function v : Fp → Q by v(0) = 0 and v(r) = a/b for r 6= 0. Given a vector
X = (x1, . . . , xn) ∈ Fn

p , we define its max norm ‖X‖∞ as follows. We replace each component
xi ∈ Fp by v(xi) ∈ Q, obtaining a vector X ′ ∈ Qn. We apply Algorithm 10 to X ′ to get a good
vector X ′′ with integral components. We then define ‖X‖∞ = ‖X ′′‖∞ for the purposes of the
vector comparison in Algorithm 13. Our motivation for this method of comparing vectors
over a finite field is as follows. When we use rational arithmetic to compute the row canonical
form of a large sparse matrix with small integer entries, during the intermediate stages of
the computation the matrix entries can have extremely large numerators and denominators.
In order to control memory allocation, we do such computations over a finite field; the
congruence classes represent the rational numbers that would arise if we were doing the
same calculation in characteristic 0. To measure the absolute value of a congruence class,
we replace it by its best rational approximation.
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3 3 11 7 11 7 15 15 −3 −9 −3 −9 17 19 3

−9 3 −3 17 19 3 −9 3 −3 −3 −3 −7 −11 −7 −11

8 −15 8 −15 8 −3 4 −13 8 −3 4 −13 −3 −3 −3

−3 −4 9 −4 9 0 9 0 9 −15 −3 −8 5 0 −9

−14 −14 −8 −12 −8 −12 10 10 0 0 0 0 6 6 0

0 0 0 0 0 0 0 0 0 0 0 0 6 0 0

9 9 9 9 9 9 27 27 2 −11 2 −11 27 27 2

−11 2 −11 27 27 2 −11 2 −11 −9 −9 −9 −9 −9 −9

9 −17 9 −17 9 −17 9 −17 9 −17 9 −17 −10 1 −10

1 −9 13 −9 13 3 6 3 6 −10 1 −9 13 3 6

−16 −16 −16 −16 −16 −16 8 8 0 0 8 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

−16 −29 9 9 −29 −16 −16 −29 9 9 −29 −16 −9 −9 −9

−9 −9 −9 −29 −16 −29 −16 9 9 8 19 9 9 19 8

1 −7 −5 16 −17 23 −17 23 −5 16 1 −7 9 9 19

8 1 −7 −5 16 −17 23 1 −7 9 9 1 −7 1 −7

0 16 24 24 16 0 0 16 24 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

−29 −16 −29 −16 9 9 −29 −16 −29 −16 9 9 −29 −16 −29

−16 9 9 −9 −9 −9 −9 −9 −9 19 8 19 8 9 9

−5 16 1 −7 −5 16 1 −7 −17 23 −17 23 19 8 9

9 −5 16 1 −7 1 −7 −17 23 9 9 1 −7 1 −7

16 0 16 0 24 24 16 0 0 24 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

12 12 17 10 17 10 24 24 −1 −14 −1 −14 35 28 5

−8 3 −3 35 28 5 −8 3 −3 −6 −6 −13 −32 −13 −32

10 −36 10 −36 16 −6 −2 −25 16 −6 −2 −25 −7 4 −7

4 −2 24 −2 24 10 17 10 17 −33 −3 −20 5 4 −13

−16 −16 −16 −24 −16 −24 8 8 0 0 0 0 12 12 0

0 0 0 0 0 0 0 0 0 0 0 0 0 12 0

−3 −15 14 7 −42 −21 27 −9 25 11 −15 −9 2 −5 7

−7 −11 −34 −6 15 −9 −3 13 14 −15 −3 2 19 −6 15

−1 −1 −9 27 −19 −19 −5 2 −3 −15 19 2 −17 17 −9

−3 −7 −7 −15 −3 −7 7 17 −17 13 14 7 14 11 25

8 0 8 24 0 0 −16 0 0 0 0 0 0 −24 0

0 0 0 0 0 0 0 0 24 0 0 0 0 0 0

−15 −3 −42 −21 14 7 −9 27 −15 −9 25 11 −6 15 −9

−3 13 14 2 −5 7 −7 −11 −34 −3 −15 −6 15 2 19

−9 27 −1 −1 −3 −15 19 2 −19 −19 −5 2 −9 −3 −17

17 −15 −3 −7 −7 17 −17 −7 7 13 14 7 14 11 25

0 8 0 0 8 24 0 −16 0 0 0 0 −24 0 0

0 0 0 0 0 0 0 0 0 24 0 0 0 0 0

−21 −21 −42 −3 −42 −3 −39 −39 −19 25 −19 25 −30 −51 −1

−5 9 18 −30 −51 −1 −5 9 18 39 39 18 9 18 9

−25 21 −25 21 17 39 −21 30 17 39 −21 30 11 −17 11

−17 −7 −33 −7 −33 −23 −13 −23 −13 45 18 27 −30 7 −7

28 28 40 24 40 24 −8 −8 0 0 0 0 −12 −12 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 24

0 0 −29 2 −29 2 −18 −18 −6 30 −6 30 −17 −46 12

0 6 15 −17 −46 12 0 6 15 18 18 −11 20 −11 20

−25 28 −25 28 −7 −2 −13 13 −7 −2 −13 13 −18 −6 −18

−6 −7 −26 −7 −26 −15 −30 −15 −30 48 21 59 1 39 24

12 12 24 24 24 24 −24 −24 0 0 0 0 −12 −12 0

0 0 0 0 0 24 0 0 0 0 0 0 0 0 0

−47 29 −32 −25 56 −29 −17 −37 −17 −37 39 39 −32 −25 −47

29 −29 56 −40 −5 33 33 −5 −40 25 −43 64 47 −40 −5

67 67 −37 −17 −11 −11 −25 −32 −43 25 47 64 25 −43 33

33 −11 −11 29 −47 29 −47 −43 25 −5 −40 −25 −32 −37 −17

40 0 16 0 0 48 16 0 0 0 0 0 0 24 0

0 0 0 0 0 0 0 0 0 0 48 0 0 0 0

Table 20: Original nullspace basis vectors 1–10 for the expansion matrix
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29 −47 56 −29 −32 −25 −37 −17 39 39 −17 −37 −40 −5 33

33 −5 −40 −32 −25 −47 29 −29 56 −43 25 −40 −5 64 47

−37 −17 67 67 −43 25 47 64 −11 −11 −25 −32 33 33 25

−43 29 −47 −11 −11 −43 25 29 −47 −5 −40 −25 −32 −37 −17

0 40 0 48 16 0 0 16 0 0 0 0 24 0 0

0 0 0 0 0 0 0 0 0 0 0 48 0 0 0

9 0 −45 −36 −11 −25 −57 −42 −10 16 8 19 −51 −66 2

28 −16 25 −47 −61 14 49 −22 −5 21 −12 15 48 1 35

−24 76 −38 31 −12 −8 2 37 −32 13 −4 55 20 −2 −10

1 18 −26 4 −47 0 −54 −6 −12 50 −5 32 −5 −12 30

32 40 32 24 16 48 −16 −32 0 0 0 0 −24 0 24

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 9 −11 −25 −45 −36 −42 −57 8 19 −10 16 −47 −61 14

49 −22 −5 −51 −66 2 28 −16 25 −12 21 1 35 15 48

−38 31 −24 76 −32 13 −4 55 −12 −8 2 37 −10 1 20

−2 4 −47 18 −26 −6 −12 0 −54 50 −5 32 −5 −12 30

40 32 16 48 32 24 −32 −16 0 0 0 0 0 −24 0

0 24 0 0 0 0 0 0 0 0 0 0 0 0 0

−20 −34 −25 −32 −61 −38 −56 −70 21 24 −15 18 −67 −74 −9

18 −27 −9 −67 −68 −9 24 9 27 10 44 29 46 41 40

−28 50 −16 76 −34 44 −20 65 −10 34 −8 53 15 −6 27

−12 8 −58 20 −32 −24 −21 −12 −33 45 −9 22 −37 −18 9

56 48 32 48 48 48 −16 −24 0 0 0 0 0 −24 0

0 0 0 0 0 0 24 0 0 0 0 0 0 0 0

−34 −20 −61 −38 −25 −32 −70 −56 −15 18 21 24 −67 −68 −9

24 9 27 −67 −74 −9 18 −27 −9 44 10 41 40 29 46

−16 76 −28 50 −10 34 −8 53 −34 44 −20 65 27 −12 15

−6 20 −32 8 −58 −12 −33 −24 −21 45 −9 22 −37 −18 9

48 56 48 48 32 48 −24 −16 0 0 0 0 −24 0 0

0 0 0 0 0 0 0 24 0 0 0 0 0 0 0

10 17 37 35 55 62 46 53 −9 −21 9 6 43 65 −15

−27 21 3 55 62 −3 −30 15 −3 −14 −31 −11 −61 −41 −58

39 −53 25 −74 33 −11 5 −77 13 −14 −1 −35 3 −9 −27

−6 3 55 −11 34 9 9 3 51 −57 −3 −25 13 15 −33

−40 −56 −40 −48 −32 −48 32 16 0 0 0 0 24 24 0

24 0 0 0 0 0 0 0 0 0 0 0 0 0 0

17 10 55 62 37 35 53 46 9 6 −9 −21 55 62 −3

−30 15 −3 43 65 −15 −27 21 3 −31 −14 −41 −58 −11 −61

25 −74 39 −53 13 −14 −1 −35 33 −11 5 −77 −27 −6 3

−9 −11 34 3 55 3 51 9 9 −57 −3 −25 13 15 −33

−56 −40 −32 −48 −40 −48 16 32 0 0 0 0 24 24 0

0 0 24 0 0 0 0 0 0 0 0 0 0 0 0

−9 −9 −34 −47 −34 −47 −63 −63 −13 13 −13 13 −70 −83 5

31 −33 6 −70 −83 5 31 −33 6 27 27 26 37 26 37

−35 57 −35 57 −17 27 −23 50 −17 27 −23 50 29 7 29

7 19 −33 19 −33 −5 −19 −5 −19 39 6 13 −10 −23 11

56 56 32 48 32 48 −16 −16 0 0 0 24 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

75 15 102 33 46 53 81 117 41 −11 17 −71 78 129 35

−17 29 −74 118 125 −13 −5 5 22 −57 −69 −54 −99 −14 −31

15 −119 55 −83 9 −77 35 −86 25 −65 11 −86 −1 43 −73

−17 57 67 −47 55 −15 15 105 39 −103 −14 −61 34 −9 −27

−64 −56 −64 −48 −80 −96 32 16 0 0 0 0 24 0 0

0 0 0 48 0 0 0 0 0 0 0 0 0 0 0

15 75 46 53 102 33 117 81 17 −71 41 −11 118 125 −13

−5 5 22 78 129 35 −17 29 −74 −69 −57 −14 −31 −54 −99

55 −83 15 −119 25 −65 11 −86 9 −77 35 −86 −73 −17 −1

43 −47 55 57 67 105 39 −15 15 −103 −14 −61 34 −9 −27

−56 −64 −80 −96 −64 −48 16 32 0 0 0 0 0 24 0

0 0 0 0 48 0 0 0 0 0 0 0 0 0 0

Table 21: Original nullspace basis vectors 11–20 for the expansion matrix
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0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 1 1 1 1 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 1 1 1 0 0 0

0 0 0 0 0 0 0 1 1 0 0 0 0 0 0

0 −1 0 −1 0 0 0 −1 −1 0 −1 −1 0 −1 0

−1 0 0 0 −1 −1 0 −1 0 0 0 −1 0 0 0

1 1 1 1 1 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 1 1 1 0 0 0 0 0 0 1 1 0 0

−1 −1 −1 −1 −1 −1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 −1 −1 −1 −1 0 −1 −1

0 0 0 0 0 0 0 0 0 0 0 0 1 1 1

1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 1 1 1 0 0 0 0 0 0 0

0 0 0 0 0 1 1 0 0 0 0 0 0 0 0

−1 0 0 0 0 −1 −1 0 0 −1 −1 −1 −1 0 0

0 0 −1 −1 0 −1 −1 0 0 0 −1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 −1 −1 −1 −1 −1 −1

0 0 0 0 0 0 0 0 0 0 0 0 −1 −1 −1

−1 0 0 0 0 0 0 0 0 −1 −1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 1 1

1 1 1 0 0 0 1 1 1 1 0 0 1 1 0

0 0 0 0 0 0 1 1 1 1 1 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 1 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

0 0 −1 0 −1 0 −1 −1 −1 −1 0 0 0 0 −1

0 −1 0 −1 −1 0 0 0 0 0 0 0 −1 0 −1

0 0 −2 2 0 0 0 3 0 3 0 0 −2 2 0

0 0 0 −3 0 0 0 0 −3 0 −3 1 −1 3 0

−1 1 −3 0 2 −2 −2 2 3 0 1 −1 0 −3 0

0 2 −2 0 0 0 0 3 0 0 3 −2 2 −3 0

0 3 0 0 −3 0 0 0 0 −3 0 3 −3 0 0

0 0 3 3 0 −3 0 0 0 3 0 −3 0 −3 3

0 −3 0 −3 0 0 0 0 2 −2 0 0 0 0 2

−2 0 0 0 0 3 0 3 0 0 3 0 3 0 0

−2 2 0 0 −2 2 0 0 −3 0 −3 0 −1 1 −3

0 1 −1 3 0 2 −2 −1 1 −3 0 3 0 2 −2

0 0 0 0 3 3 0 −3 0 0 −3 0 0 0 0

0 −3 −3 0 3 3 3 0 0 0 −3 0 3 0 −3

0 0 0 0 2 −2 −3 0 0 0 0 −3 3 0 0

0 0 3 2 −2 0 0 0 0 3 0 −3 0 −1 1

3 0 1 −1 −3 0 −1 1 −2 2 2 −2 0 0 0

3 0 0 −2 2 −3 0 0 0 0 −3 2 −2 3 0

−3 0 3 0 0 0 0 0 3 0 0 −3 0 3 0

−3 0 0 0 −3 3 0 0 −3 0 3 0 0 3 −3

3 0 −3 0 −1 1 −3 0 3 0 1 −1 3 0 −3

0 −1 1 2 −2 −2 2 2 −2 0 0 0 0 2 −2

0 0 0 −3 0 0 0 3 0 0 0 0 0 0 −2

2 0 0 0 3 0 −3 0 0 2 −2 0 −3 0 3

0 3 0 −3 0 0 0 −3 3 0 3 −3 −3 0 3

0 0 0 0 0 0 3 0 −3 0 0 0 −3 3 0

0 0 3 0 3 0 0 0 −3 0 −3 0 0 0 0

0 −2 2 0 0 0 0 −2 2 0 0 −3 0 −3 0

3 0 3 0 0 0 2 −2 0 0 2 −2 3 0 3

0 −3 0 −3 0 −2 2 −2 2 1 −1 −1 1 1 −1

−3 −3 0 0 0 0 3 3 0 0 0 0 3 3 0

0 0 0 −3 −3 0 −3 −3 0 0 3 3 0 0 0

Table 22: Final nullspace basis vectors 1–10 for the expansion matrix
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2 −2 −2 2 2 −2 −1 1 0 3 0 −3 1 −1 0

−3 0 3 −1 1 0 3 0 −3 2 −2 −2 2 2 −2

0 3 0 −3 0 −3 0 3 0 3 0 −3 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

−3 3 3 −3 −3 3 0 0 0 0 0 0 −3 3 3

−3 −3 3 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 4 4 0 0 0 0 4 4 0 0 0

0 4 4 2 2 2 2 2 2 0 0 0 0 −2 −2

0 0 2 −4 0 0 2 −4 −3 0 −3 0 0 0 −2

−2 0 0 2 −4 2 −4 −3 0 −2 −2 2 −4 2 −4

0 −2 0 −2 2 2 0 −2 −2 2 −2 −2 0 0 0

0 −2 −2 0 3 3 0 0 0 −2 0 3 0 0 0

−4 2 0 0 0 0 −2 −5 −2 −5 0 0 0 0 −4

2 0 0 0 0 −2 −2 0 0 −4 2 0 0 0 0

−2 −5 0 0 −4 2 0 0 −2 −2 0 0 −4 2 4

4 −4 2 4 4 4 4 −2 −2 0 0 0 0 0 0

2 −2 0 0 5 0 0 2 2 5 0 −2 2 −2 0

0 5 0 0 2 0 0 0 0 0 0 0 0 2 0

−4 −4 0 0 0 0 0 0 0 0 0 0 0 0 −4

−4 0 0 0 0 −4 −4 0 0 2 2 0 0 0 0

5 2 5 2 −2 4 0 0 −2 4 0 0 2 2 2

2 −2 4 −2 4 −2 4 −2 4 0 0 0 0 5 2

−2 −2 0 0 0 0 0 0 0 0 0 −2 2 2 −2

0 −2 0 −5 −5 0 0 0 0 0 0 0 −2 2 −5

2 −4 4 4 −4 2 2 −4 4 4 −4 2 −2 −2 −2

−2 −2 −2 −4 2 −4 2 4 4 −5 −2 0 0 −2 −5

0 0 0 0 0 0 0 0 0 0 0 0 0 0 −2

−5 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 2 0 5

5 0 2 −2 2 −2 2 0 5 0 −2 2 0 0 2

2 −4 0 0 0 0 −5 −2 0 0 −2 −5 0 0 −2

−2 0 0 0 0 −4 2 0 0 2 −4 0 0 0 0

0 0 −2 −5 −2 −2 0 0 −4 2 0 0 4 4 −4

2 4 4 −4 2 −2 −2 4 4 0 0 0 0 0 0

−2 2 5 0 0 0 2 0 5 2 0 −2 −2 2 5

0 0 0 2 0 0 0 0 0 0 0 0 0 2 0

0 0 0 0 −4 2 0 0 0 0 −4 2 0 0 0

0 −2 −2 −2 −5 −2 −5 0 0 0 0 0 0 −4 2

0 0 −4 2 0 0 −2 −2 −2 −5 0 0 0 0 −4

2 0 0 −4 2 −2 −2 0 0 4 4 4 4 4 4

0 0 0 5 2 −2 0 0 5 −2 2 2 0 0 0

5 2 −2 0 0 2 0 0 0 2 0 0 0 0 0

4 4 2 −4 2 −4 −2 −2 −2 −2 −2 −2 2 −4 4

4 −4 2 2 −4 4 4 −4 2 0 0 −5 −2 −5 −2

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 −2 −5 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 5 5 2

0 2 0 −2 −2 2 0 0 0 0 2 2 2 5 −2

2 2 2 2 2 2 −4 −4 −2 4 −2 4 −4 −4 −2

4 −2 4 −4 −4 −2 4 −2 4 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 5 2 5

2 0 0 0 0 0 0 0 0 5 2 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 −2 −2 −2 −5 −5 −2 −2 2 2 −5 −2 2

0 0 −2 −2 0 0 0 0 2 −4 0 0 0 0 −5

−2 −5 −2 0 0 0 0 2 −4 0 0 4 4 0 0

4 4 0 0 0 0 0 0 0 0 4 4 2 −4 0

0 −2 −2 0 0 −2 −5 −4 2 2 −4 −2 −2 −4 2

2 0 −2 −2 0 2 5 0 2 0 5 0 0 0 2

2 0 0 0 0 0 5 0 −2 0 2 0 0 0 0

Table 23: Final nullspace basis vectors 11–20 for the expansion matrix
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Appendix: mathematical motivation

This Appendix summarizes the first few sections of Bremner and Peresi [8]; see that paper
for complete details and further references.

By a trilinear operation we mean any linear combination of permutations of the variables
a, b, c where the coefficients are rational numbers:

[a, b, c] = x1 abc + x2 acb + x3 bac + x4 bca + x5 cab + x6 cba (xi ∈ Q).

The terms on the right side of this definition represent products in some totally associative
ternary algebra; that is, a vector space V together with a trilinear map

V × V × V → V with (a, b, c) 7→ abc,

satisfying the total associativity conditions

(abc)de = a(bcd)e = ab(cde).

The homogeneous polynomial [a, b, c] is a new nonassociative trilinear operation defined on
the same underlying vector space. Such operations arise naturally in the study of nonasso-
ciative structures; the most important examples are the Lie and Jordan triple products:

[a, b, c]Lie = abc − bac − cab + cba, [a, b, c]Jordan = abc + cba.

The polynomial identities of degrees 3 and 5 satisfied by these operations in every totally
associative ternary algebra define the varieties of Lie and Jordan triple systems. For the Lie
triple product, the identities are:

[a, a, b] = 0, [a, b, c] + [b, c, a] + [c, a, b] = 0,

[a, b, [c, d, e]] = [[a, b, c], d, e] + [c, [a, b, d], e] + [c, d, [a, b, e]].

For the Jordan triple product, the identities are:

[a, b, c] = [c, b, a],

[a, b, [c, d, e]] = [[a, b, c], d, e] − [c, [b, a, d], e] + [c, d, [a, b, e]].

Using the representation theory of the symmetric group S3 (permuting a, b, c) it can be
shown that trilinear operations are in one-to-one correspondence with lists of three matrices
with sizes 1, 2, 1 and entries from the rational numbers:

[

x,

(

y11 y12

y21 y22

)

, z

]

For example, the matrix forms of the Lie and Jordan triple products are

[

0,

(

0 0
0 3

)

, 0

] [

2,

(

0 −1
0 2

)

, 0

]
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Every trilinear operation is equivalent to an operation in which the three matrices are in
row canonical form. In Bremner and Peresi [8] it is shown that there are infinitely many
inequivalent trilinear operations, all of which satisfy polynomial identities of degree 3; but
only eighteen of them satisfy new polynomial identities of degree 5 that are not consequences
of the identities of degree 3. For nine of these operations, identities of degree 5 with a small
number of terms and small integral coefficients can be obtained directly from a large matrix
(the expansion matrix) by computing its row canonical form and extracting a basis for its
nullspace. For the other nine operations, the same method gives identities with a large
number of terms and apparently random coefficients. The operation discussed in Example
3 of the present paper is the simplest of these nine difficult cases. That operation and its
matrix form are

2abc + 2acb − bac − bca + 2cab + 2cba

[

2,

(

−1 −1
2 2

)

, 0

]

The remaining eight difficult cases will be discussed in Bremner and Peresi [9].
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