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Abstract

We study a property weaker than the Dunford-Pettis property, introduced by W. Freedman,
in the case of a JB*-triple. It is shown that a JBW*-triple W has this property if, and only if,
either W is a Hilbert space (regarded as a type 1 or 4 Cartan factor) or W has the Dunford-Pettis
property. As a consequence, we get that the JBW∗-triples satisfying the Kadec-Klee property are
either finite-dimensional or Hilbert spaces (regarded as Cartan factor 1 or 4).

1. Introduction

N. Dunford and B. J. Pettis [10] proved that a weakly compact operator from
L1(µ) to another Banach space sends weakly Cauchy sequences into norm conver-
gent sequences. A. Grothendieck [13] showed that the same conclusion holds for
weakly compact operators on C(K), for any compact Hausdorff space K. A Banach
space X has the the Dunford-Pettis property (DPP for short) if any weakly compact
operator from X into some other Banach space is completely continuous.

For a long time, it was unknown if every non commutative C∗-algebras had the
DPP. In [4], C-H. Chu and B. Iochum get a characterization of the C*-algebras
having the Dunford-Pettis property. Indeed, a von Neumann algebra has the DPP
if, and only if, it is a finite direct sum of type In von Neumann algebras. The
von Neumann algebras whose predual has DPP are characterized by L. Bunce
[3]. For JB∗-triples, a class including C∗-algebras, C-H. Chu and P. Mellon have
characterized those spaces with the DPP [5].

The following characterization of the DPP was given by Grothendieck. A Ba-
nach space X has the Dunford-Pettis property if, and only if, for any weakly null
sequences {xn} in X and {fn} in X∗, it holds fn(xn) → 0. W. Freedman [11]
introduced a weaker version of the DPP as follows. A Banach space has the DP1
if, and only if, for any weakly convergent sequences xn → x in X , and fn → 0
in X∗, such that ‖xn‖ = ‖x‖ = 1, it holds fn(xn) → 0. Of course, the condition
‖xn‖ = ‖x‖ = 1 can be replaced by ‖xn‖ → ‖x‖. Freedman shows that the DP1
is equivalent to the DPP for von Neumann algebras, but is is strictly weaker than
the DPP for preduals of von Neumann algebras.

The DP1 property is weaker than a well-known isometric property, the Kadec-
Klee property (KKP in the following). Recall that a Banach space has the KKP
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if any sequence in the unit sphere whose weak limit is also in the unit sphere, is
indeed norm convergent.

In this paper, we characterize those JB∗-triples having the DP1 property. In
the case of JBW*-triples, we describe those spaces satisfying the DP1. As a conse-
quence, we prove that a JBW ∗-triple has the Kadec-Klee property if, and only if,
either it is finite-dimensional or a Hilbert space (two possible norms).

Next we recall some well known results about the DPP, the DP1, and the KKP.
We refer to [9] as a good survey on the DPP.

Remark 1.

1. A Banach space whose dual X∗ has DPP, has also the DPP. The same fact
does not hold for the DP1. Indeed, for any infinite-dimensional Hilbert space H,
the space of trace-class operators L1(H) = K(H)∗ has the DP1 property and K(H)
(the space of the compact operators on H) does not [11, Remarks 1.2].

2. The DPP and the DP1 properties are preserved by complemented subspaces
and the KKP is preserved by closed subspaces. The DPP is preserved by isomor-
phisms, while the DP1 property and the KKP are not [11, Example 1.6].

3. If H is an infinite-dimensional Hilbert space and Y 6= {0} is a Banach
space, then X := H ⊕∞ Y does not have the DP1 property. It is enough to fix an
element y in the unit sphere of Y and an orthonormal system {en} in H. Then, the
sequence {xn} = {(en, y)} in X clearly satisfies ‖xn‖ = 1 and {xn} w→ x = (0, y),
an element in the unit sphere of X. Since the sequence {fn} := {(en, 0)} w→ 0 in the
dual space of H⊕∞ Y and fn(xn) = 1, ∀n, then X does not have the DP1 property.

4. The DPP, the DP1 and the KKP do not depend on the scalar field considered
in the case that the space is complex.

2. Alternative Dunford-Pettis property for JB*-triples

The complex Banach spaces called JB*-triples play a very important role in the
study of bounded symmetric domains in several complex variables. Indeed, Kaup
[17] showed that every such domain is biholomorphic to the open unit ball of a
JB*-triple. We begin by recalling the definition of a JB*-triple and referring to
[22], [23] and [6] for recent surveys on the theory.

Definition 1. A JB*-triple is a complex Banach space E together with a triple
product {., ., .} : E ×E ×E → E, which is continuous, symmetric and linear in the
outer variables and conjugate linear in the middle one, satisfying

a) Jordan Identity: for all a, b, x, y, z ∈ E
L(a, b) {x, y, z} = {L(a, b)x, y, z} − {x, L(b, a)y, z}+ {x, y, L(a, b)z} ,

where L(a, b)x := {a, b, x};
b) For each a ∈ E the operator L(a, a) is hermitian with nonnegative spectrum,

and ‖L(a, a)‖ = ‖a‖2.

Every C*-algebra is a JB*-triple in the triple product {a, b, c} = 1
2 (ab∗c+ cb∗a).

Also B(H,K), the space of all bounded and linear operators between two complex
Hilbert spaces H and K, is a JB∗-triple with the triple product defined by

{x, y, z} =
1
2

(xy∗z + zy∗x).
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Every JB*-algebra is a JB*-triple in the triple product {a, b, c} = (a ◦ b∗) ◦ c+ (c ◦
b∗) ◦ a− (a ◦ c) ◦ b∗. The bidual of a JB∗-triple E is also a JB∗-triple that contains
E as a subtriple.

For any JB*-triple E and a tripotent e ∈ E ({e, e, e} = e), there exists a
decomposition of E in terms of the eigenspaces of L(e, e), i.e.

E = E0(e)⊕ E1(e)⊕ E2(e),

where Ek(e) := {x ∈ E : L(e, e)x = k
2x}. The natural projection of E onto Ek(e)

will be denoted by Pk(e). This decomposition is called Peirce decomposition and the
natural projections are called Peirce projections. It is well known that the Peirce
projections associated to each tripotent e are contractive. For every tripotent e ∈ E
the equality

‖P2(e)(x) + P0(e)(x)‖ = max{‖P2(e)(x)‖, ‖P0(e)(x)‖}

holds for all x ∈ E (see for instance [12, Corollary 1.2. and Lemma 1.3]).
A tripotent e is called minimal if E2(e) = Ce. Let e, f be tripotents of E, then

we say that e and f are orthogonal, denoted by e ⊥ f , if L(e, f) = 0 (⇔ L(f, e) =
0 ⇔ f ∈ E0(e)). We say that e and f are colinear, denoted by e>f , if e ∈ E1(f)
and f ∈ E1(e). Finally we say that e governs f (e ` f), if e ∈ E1(f) and f ∈ E2(e).

A JBW*-triple is a JB*-triple which is a dual Banach space. Every JBW*-triple
has a unique predual and its triple product is separately weak*-continuous [2].
By the Krein-Milman theorem and [18, Proposition 3.5], to each non zero weak*-
continuous functional φ on a JBW*-triple W , there is a tripotent u ∈ W such that
φ = φP2(u) and ‖φ‖ = φ(u). If W is a JBW*-triple and f is a norm one element
in W∗, we can define a seminorm ‖.‖f on W , given by

‖w‖2f := f {w,w, e} ,

where e ∈ W is a tripotent with f(e) = ‖f‖ = 1. It is worth mentioning that
‖.‖f does not depend on the support e of f (see [1] for more details). The strong*
topology of W , noted by S(W,W∗), is defined as the topology on W generated by
all the seminorms ‖.‖f , where f is a norm one functional in W∗. If E is a JB*-triple
we denote by S(E,E∗), the restriction to E of the strong∗ topology of E∗∗.

First we show that the DP1 in JB∗-triples can be characterized in terms of
the triple product. In order to do this, we will use the following result, due to C-
H. Chu and P. Mellon, which is stated in [5, Lemma 4]. The proof given by Chu
and Mellon uses as a key tool a result due to Barton and Friedman called a “Little
Grothendieck’s Theorem” [1, Theorem 1], which has a gap in the proof (see [20] and
[21]). However, the Chu-Mellon statement can be proved by using their arguments
and a correct “Little Grothendieck’s Theorem”. We include here the result with a
corrected proof.

Lemma 1. Let W be a JBW*-triple without summands L∞(Ω, µ, C5) and
L∞(Ω, µ, C6), where C5 and C6 are the type 5 and type 6 Cartan factors respec-
tively. Let {fn} be a σ(W∗,W )-null sequence in W∗ and let {wn} be an S(W,W∗)-
null sequence in W . Then we have

lim
n

sup
k∈N
{|fk(wn)|} = 0.



4 m.d. acosta and a.m. peralta

Proof. W can be embedded as a subtriple in a von Neumann algebra M such
that W∗ is complemented in M∗. For any f ∈M∗ , let us define

N = {w ∈W : f(w∗w + ww∗) = 0},
which is a w∗-closed subspace of W . The quotient W/N can be equipped with the
inner product given by

(w +N, z +N) := f(z∗w + wz∗).

The natural quotient map Q from W to the completion of W/N is w∗-continuous
since f ∈ M∗. By [21, Corollary 2.2 ] there are norm one functionals φ1, φ2 ∈ W∗
and a constant K such that

(f(w∗w + ww∗))
1
2 = ‖Q(w)‖ ≤ K‖Q‖‖w‖φ1,φ2 , ∀w ∈W,

where ‖w‖2φ1,φ2
:= φ1 {w,w, e1} + φ2 {w,w, e2} and e1, e2 ∈ W are tripotents

with φi(ei) = 1. By the assumption of the lemma, {wn} converges to zero in the
S(W,W∗)-topology, so the above inequality implies that f(w∗nwn+wnw

∗
n)→ 0 and

this holds for any f ∈ M∗. That is, {w∗nwn + wnw
∗
n} is w∗-null and by using [24,

Lemma III.5.5] we conclude that

lim
n

sup
k
{|fk(wn)|} = 0.

2

Theorem 5 in [5] gives a criteria for DPP in JB∗-triples. Indeed, a JB*-triple E
has the DPP if, and only if, whenever {xn} → 0 weakly in E, we have {xn, xn, y}
tends to zero weakly for every y ∈ E. On the other hand, a C*-algebra A has the
DP1 property if and only if whenever an → a weakly in A with ‖an‖ = ‖a‖ = 1,
we have a∗nan → a∗a weakly (see [11, Theorem 3.1.]). These results inspired the
following criteria for the DP1 property in JB*-triples.

Theorem 1. Let E be a JB*-triple. The following assertions are equivalent:
(i) E has the DP1 property.
(ii) For any weakly convergent sequence xn → x with ‖xn‖ = ‖x‖ = 1, then
{xn, xn, y} converges to {x, x, y} weakly for all y ∈ E.

(iii) Whenever xn → x weakly with ‖xn‖ = ‖x‖ = 1, we have xn → x in
S(E,E∗)-topology.

Proof. (i)⇒ (ii) Let {xn} be a sequence weakly convergent in E to an element
x ∈ E such that ‖xn‖ = ‖x‖ = 1, let y ∈ E and f ∈ E∗. Let Ec be the JB∗-triple
obtained from E by changing the scalar multiplication to (λ, e) → λe. Define the
operator T : Ec −→ E∗ given by

T (w)(x) := f {x,w, y} .
Then T : Ec −→ E∗ is linear and by using [4, Lemma 5], T is weakly compact.
Since E has the DP1 and {xn} w→ x in the unit sphere, by [11, Theorem 1.4], then
{Txn} → Tx in the norm topology, and this implies that

{f({xn, xn, y})} → f({x, x, y}), ∀y ∈ E.
The rest of the proof can be made following the argument used in [5, Theorem

5], where Lemma 1 is used. 2
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By using condition ii) in Theorem 1 we get:

Corollary 1. Let E be a JB*-triple with the DP1 property and let F be a
subtriple of E, then F has the DP1 property.

For the predual of a JBW*-triple W , Chu and Mellon [6, Lemma 15] gave a
characterization of the DPP. Indeed, the predual of W has the DPP if, and only
if, for every weak null sequence wn in W , the sequence {wn, wn, w} is weakly null
for all w ∈W . Freedman [11, Proposition 2.6] found a necessary condition to have
the DP1 property for the predual of a von Neumann algebra. In the case of a
JBW*-triple we get the following result.

Proposition 1. Let W be a JBW*-triple with predual W∗ and suppose that
W∗ has the DP1 property. Let wn → w weakly in W with ‖wn‖, ‖w‖ ≤ 1, let f ∈W∗
and y ∈ W with ‖y‖ ≤ 1 such that ‖f‖ = ‖f {., w, y} ‖, then

f {wn, wn, y} → f {w,w, y} .

Proof. For each n ∈ N and y ∈W , let us define the functional given by

fn(x) := f {x,wn, y} (x ∈ W ).

Since the triple product is separately weak∗ continuous [1, Theorem 2.1], then
fn ∈ W∗. We are assuming that wn → w in the weak∗ topology and the triple
product is separate weak∗ continuous, then fn(x) = f {x,wn, y} → f {x,w, y},
thus fn → f {., w, y} weakly in W∗. Moreover,

‖fn‖ ≤ ‖f‖ ‖wn‖ ‖y‖ ≤ ‖f‖ = ‖f {., w, y} ‖,

so ‖fn‖ → ‖f {., w, y} ‖. Since W∗ has the DP1 property, fn(wn) → f {w,w, y}, i.
e., f {wn, wn, y} → f {w,w, y} . 2

3. JBW*-triples with the alternative Dunford-Pettis property

The aim of this section is to describe those JBW*-triples having the DP1 prop-
erty. Our first goal is the study of the DP1 property in the particular case of a
Cartan factor. In a finite dimensional space, the DP1 property is trivially satisfied.
For this reason we focus our attention in the infinite-dimensional case.

Proposition 2. If C1 is an infinite dimensional type 1 Cartan factor having
the DP1 property, then C1 is an infinite dimensional Hilbert space.

Proof. Let C1 be an infinite dimensional type I Cartan factor having the DP1
property. Then C1 is of the form B(H,K), where H and K are Hilbert spaces with
at least one of them infinite dimensional, and the triple product is given by

{x, y, z} :=
1
2

(xy∗z + zy∗x).

Let h in H and k in K we denote by k ⊗ h the element in B(H,K) given by
k⊗h(x) := (x|h)k (x ∈ H). Since B(H,K) can be identified as a triple to B(K,H),
then we can assume that dimK ≤ dimH = ∞. If dimK ≥ 2, then, let k1, k2 be
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two orthonormal elements in K and {hn} be an orthonormal system in H . Let us
consider the operators given by

xn = k1 ⊗ hn + k2 ⊗ h1, x = k2 ⊗ h1.

It is immediate to check that ‖xn‖ = ‖x‖ = 1 in B(H,K). Since {hn} converges to 0
weakly, then {xn} is w-convergent to x. Now take y = k1⊗h1, an easy computation
shows that

{x, x, y} =
1
2
y, {xn, xn, y} = y (n ≥ 2).

By applying Theorem 1, then B(H,K) does not have the DP1. Therefore, dimK =
1 and B(H,K) = H . 2

Now we proceed with the study of the rest of the Cartan factors. For this, we
will use the following definition, which has been taken from [7], [19].

Definition 2. A family of minimal tripotents F = {uij : i, j ∈ I} in a JB*-
triple is called an hermitian grid if:

(i) For every i, j, k, l in I, we have uij = uji;

uij ⊥ ukl if {i, j} ∩ {k, l} = ∅;

uii a uij>ujk if i, j, k are different.

(ii) Every non trivial triple product involving just elements of F belongs to the
set

{{uij, ukj , ukl} : i, j, k, l ∈ I}.

(iii) For arbitrary i, j, k, l triple products involving at least two different elements
satisfy

{uij , ukj , ukl} =
1
2
uil for i 6= l, {uij , ukj , uki} = uii.

We give a brief description of the Cartan factors of type 2 and 3. Let H be
a complex Hilbert space equipped with a conjugation (conjugate-linear isometry
of period 2) j : H → H , then for any z ∈ B(H) we can define its transpose as
zt := j z∗ j. The type 2 Cartan factor coincides with the Banach space of all t-
symmetric elements in B(H) (zt = z), and the type 3 Cartan factor is defined as
the Banach space of all t-anti-symmetric elements of B(H) (zt = −z). The triple
product of these Cartan factors is the restriction of the triple product in B(H).

Each type 2 Cartan factor admits a hermitian grid whose span is weak* dense.
Notice that if {ei}i∈I is an orthonormal basis of H we can take uik := j(ei)⊗ ek +
j(ek)⊗ ei ∈ {z ∈ B(H) : zt = z} for all i, k ∈ I.

Proposition 3. Let C2 be a type 2 Cartan factor having the DP1 property,
then C2 is finite dimensional.

Proof. Let C2 be an infinite dimensional type 2 Cartan factor. Let F = {uij :
i, j ∈ N} be a countable hermitian grid in C2. The set G := {u2,n : n ≥ 3} is a
family of mutually colinear minimal tripotents in C2, so by [7, Lemma p. 306] the
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subspace H := Span
‖.‖

(G) is isometric to a Hilbert space and {u2,n : n ≥ 3} is an
orthonormal basis. Moreover, there exists a contractive projection P from C2 to H .

Now since u12 and u2n (n ≥ 3) are orthogonal, we have
u2n ∈ (C2)0(u12), and by the continuity of the triple product H ⊆ (C2)0(u1,2).
In particular by [12, Lemma 1.3]

‖x+ y‖ = max{‖x‖, ‖y‖}

for every x ∈ (C2)2(u1,2) and y ∈ H . Since u1,2 is minimal ( (C2)2(u1,2) = Cu1,2), it
follows that C2 contains as a complemented subspace an isometric copy of C⊕∞H .
Since H is infinite-dimensional, then C ⊕∞ H does not have the DP1 property in
view of Remark 1, which is impossible. 2

Definition 3. ([7, p. 317])
A family F = {uij : i, j ∈ I} in a JB*-triple is called a symplectic grid if uii = 0,

uij are minimal tripotents with uij = −uji for all i 6= j, and
(i) uij and ukl are colinear if they share an index and are orthogonal otherwise.
(ii) Every triple product among elements of F which can not be brought to the

form {uij , ukj , ukl} vanishes.
(iii) For arbitrary i, j, k, l triple products involving at least two different elements

satisfy

{uij , ukj , ukl} =
1
2
uil for i 6= l, {uij , ujk, uki} = 0.

Each Cartan factor of type 3 is the weak* closed span of a symplectic grid (just
consider ui,k := j(ei)⊗ek−j(ek)⊗ei, where {ei} is an orthonormal basis of H). By
using the same argument of the proof of Proposition 3 and replacing the hermitian
grid by a symplectic grid, we get:

Proposition 4. Every type 3 Cartan factor having the DP1 property is finite
dimensional.

Finally we proceed with the study of the DP1 property in a type 4 Cartan
factor. A type 4 Cartan factor is a JB*-triple which can be equipped with an inner
product (.|.) and a conjugation * such that the triple product satisfies

{x, y, z} = (x|y)z + (z|y)x− (x|z∗)y∗,

and the norm is given by

‖x‖2 := (x|x) + ((x|x)2 − |(x|x∗)|2)
1
2 .

Proposition 5. Every type 4 Cartan factor has the Kadec Klee property and
so, it satisfies the DP1 property.

Proof. Let C4 be a type 4 Cartan factor, with inner product (.|.) and conju-
gation ∗. Let {eλ}λ∈Λ be a (.|.)-orthonormal basis of C4 satisfying e∗λ = eλ for all
λ ∈ Λ. If for each x ∈ C4 we put x(λ) := (x|eλ), then the norm is given by

‖x‖2 = ‖x‖22 + q(x) :=
∑
λ∈Λ

|x(λ)|2 + q(x) (x ∈ C4),



8 m.d. acosta and a.m. peralta

where

q(x) :=

((∑
λ∈Λ

|x(λ)|2
)2

−
∣∣∣∣∑
λ∈Λ

x(λ)2

∣∣∣∣2
) 1

2

.

First we will check that for any set F ⊂ Λ and x ∈ C4, the inequality

q(x) ≥ q
(∑
λ∈F

x(λ) eλ

)
. (1)

holds. For x ∈ C4 and F ⊆ Λ it is satisfied(∑
λ∈F
|x(λ)|2

)2

+
∣∣∣∣∑
λ∈F

x(λ)2 +
∑

λ∈Λ\F
x(λ)2

∣∣∣∣2

≤
(∑
λ∈F
|x(λ)|2 +

∑
λ∈Λ\F

|x(λ)|2
)2

+
∣∣∣∣∑
λ∈F

x(λ)2

∣∣∣∣2,
which is equivalent to

q(x) ≥ q
(∑
λ∈F

x(λ) eλ

)
.

For any subset F ⊂ Λ, let us denote by PF the projection on C4 given by
PF (x) :=

∑
λ∈F x(λ) eλ. By (1) it follows that ‖Pf‖ ≤ 1. We are going to prove

that for any ε > 0 it is satisfied

F ⊆ Λ, x ∈ C4, ‖x‖ = 1, ‖PF (x)‖2 > 1− ε⇒ ‖x− PF (x)‖2 < ε. (2)

To this end, let us fix x ∈ C4 with ‖x‖ = 1 and a subset F ⊂ Λ satisfying
‖PF (x)‖2 > 1− ε. Since

1 = ‖x‖2 =
∑
λ∈Λ

|x(λ)|2 + q(x),

then
ε > 1− ‖PF (x)‖2 = ‖x‖2 − ‖PF (x)‖2 =

=
∑

λ∈Λ\F
|x(λ)|2 + q(x) − q

(∑
λ∈F

x(λ)eλ

)
≥ by using (1)

≥
∑

λ∈Λ\F
|x(λ)|2 = ‖x− PF (x)‖22.

Now we show that C4 has the KKP. Therefore, assume that {xn} → x0 weakly
and ‖xn‖ = ‖x0‖ = 1. For any ε > 0, let us choose a finite subset G ⊂ Λ satisfying

‖x0 − PG(x0)‖ ≤ ε and

1− ε < ‖PG(x0)‖2.

Since PG has finite rank and PG(xn) w→ PG(x0), it follows that PG(xn) converges
to PG(x0) in norm. Then, we can choose m ∈ N such that for all n ≥ m

‖PG(xn)− PG(x0)‖ ≤ ε
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and

1− ε < ‖PG(xn)‖2.

By using (2) we deduce that

‖xn − PG(xn)‖2 ≤ ε .

Therefore for n ≥ m we have

‖xn − x0‖2 ≤ ‖xn − PG(xn)‖2 + ‖PG(xn)− PG(x0)‖2 + ‖PG(x0)− x0‖2 ≤

≤ 2ε+ ‖PG(xn)− PG(x0)‖ ≤ 3ε,

that is, {xn} converges to x in the norm topology. 2

Remark 2. Let C1 = B(H,K) a type 1 Cartan factor, where H and K are
complex Hilbert spaces with dimension n and m, respectively, then `n2 and `m2 embed
isometrically as 1-complemented subspaces of C1.

If C2 := {x ∈ B(H) : xt = jx∗j = x} (where j is a suitable conjugation on H)
is a type 2 Cartan factor, then the proof of Proposition 3 shows that C2 admits as a
complemented subspace an isometric copy of `n−2

2 . It is worth mentioning that the
natural projection from C2 onto `n−2

2 has norm at most 2. The same conclusion
holds for type 3 Cartan factors by using Proposition 4 instead of Proposition 3.

Finally, if C4 is a type 4 Cartan factor with inner product and conjugation de-
noted by (.|.) and ∗, respectively, then U := {x ∈ C4 : x∗ = x} is a 1-complemented
real subspace of C4, which is also isometric to `dimC

4

2 .

Once we have determined all Cartan factors having the DP1 property, we can
now deal with the same problem in any JBW*-triple. By the structure theory (see
[14],[15],[16]), every JBW*-triple W has a decomposition into the `∞-sum

W = ⊕`∞α L∞(Ωα, µα, Cα)⊕`∞ R⊕`∞ H(M,β),

where Cα is a Cartan factor, R is a weak* closed right ideal of a continuous von
Neumann algebra N , and β : M →M is a linear period 2 *-antiautomorphism of a
continuous von Neumann algebra M with H(M,β) = {a ∈ M : β(a) = a} and the
self-adjoint part A = H(M,β)sa := {a ∈ H(M,β) : a∗ = a} is a continuous (real)
JW-algebra under the product a ◦ b = 1

2 (ab + ba).
For a continuous JW-algebra A, Chu and Mellon [5, Corollary 13] proved that

A does not have DPP. We are going to see that similar arguments show that a
continuous JW-algebra does not have the DP1 property.

Lemma 2. Let A be a continuous JW-algebra, then A does not have the DP1
property.

Proof. Let A be a continuous JW-algebra, by [5, Proposition 12], the `∞-sum⊕`∞
n≥2 H2n(R) embeds (isometrically) as a Jordan subalgebra of A, where H2n(R)

is the algebra of hermitian 2n × 2n matrices. If A has the DP1 property then the
`∞-sum

⊕`∞
n≥2H2n(R) has the DP 1 property by Corollary 1, which is impossible
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since
⊕`∞

n≥2H2n(R) is isometrically isomorphic to( `∞⊕
n≥2

H22n−1(R)
) ∞⊕( `∞⊕

n≥1

H22n(R)
)
,

which contains as a complemented subspace an isometric copy of

R
∞⊕( `∞⊕

n≥1

`2
2n−2

2

)
,

(see Remark 2), but by [26, p. 81] and Remark 1, the later space fails to have the
DP1 property because it contains as a complemented subspace an isometric copy
of R⊕∞ `2. Therefore A does not have the DP1 property.

2

We can now characterize those JBW*-triples having the DP1 property. If a
JBW*-triple W has DPP, then W has the DP1 property. We recall that, in the
particular case of a von Neumann algebra, the DPP and the DP1 properties are
equivalent [11, Theorem 3.5]. For a JBW*-triple we will not have this equivalence
in general. Indeed, every infinite dimensional Hilbert space H , regarded as a type
1 or type 4 Cartan factor has the DP1 (see Propositions 2 and 5), however, H does
not have the DPP. The next result shows that this is the only possible exception.

Theorem 2. Let W be a JBW*-triple having the DP1 property, then either
W has DPP or W is a Hilbert space or W is a type 4 Cartan factor.

Proof. We know that W is of the form

W =
`∞⊕
α

L∞(Ωα, µα, Cα)⊕∞ R⊕∞ H(M,β).

By Corollary 1 and Lemma 2, we know thatH(M,β) = 0. IfR 6= 0, thenR = pN
for some continuous von Neumann algebra N and some non-zero projection p ∈ N .
By Corollary 1, the von Neumann algebra pNp has the DP1 property since R = pN
has the DP1 property. For a von Neumann algebra the DP1 property and the DPP
are equivalent [11, Theorem 3.5], so pNp has the DPP. Therefore by [4, Theorem
3] pNp is a finite type I von Neumann algebra, however pNp is a continuous von
Neumann algebra since N is continuous (see [25, Corollary 11]), then R = 0.

Every Cα is a subtriple of W , so by Corollary 1 and Propositions 2, 3, 4 and 5,
either Cα is an infinite dimensional Hilbert space or dim Cα <∞.

Suppose first that one of the factors, namely Cα, is an infinite dimensional
Hilbert space (regarded as a type 1 or as a type 4 Cartan factor). If any of the
other Cartan factors, for example Cγ , is not zero. Then Cα

⊕`∞ Cγ is a subtriple
of W and does not have the DP1 property (see Remark 1), which is impossible
by Corollary 1. Therefore W = L∞(Ω, µ,H), where H is an infinite dimensional
Hilbert space regarded as a type 1 or as type 4 Cartan factor. If there exists a
µ-measurable set S such that µ(S), µ(Ω\S) > 0, W is isometrically isomorphic to

L∞(S, µ|S , H)
∞⊕

L∞(Ω\S, µ|Ω\S , H).
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Therefore, H
⊕`∞ H is a subtriple of W without the DP1 property. Hence, W is a

Hilbert space regarded as a type 1 or as a type 4 Cartan factor.
Finally, we suppose that dim Cα <∞ for every α. By Remark 2, each type 1, 2

, 3 or 4 Cartan factor Cα, contains a complemented (real) subspace isometric to `nα2

and {nα} is increasing with respect to dim Cα. Moreover, the natural projection
from Cα onto `nα2 has norm less than 2. Suppose that supα dim Cα = ∞, then⊕`∞ Cα is a subtriple of W , thus has the DP1 property. However,

⊕`∞ Cα contains
as a complemented subspace an isometric copy of

Cα0

∞⊕( `∞⊕
α6=α0

`nα2

)
which contains as a complemented subspace an isometric copy of Cα0

⊕∞
`2 [26,

p. 81]. But the latter space fails to have the DP1 property (see Remark 1).
2

Since every type 4 Cartan factor satisfies the KKP, then,

Corollary 2. A JBW*-triple W has the DP1 property if, and only if, W has
the DPP or the KKP.

Corollary 3. A JBW ∗-triple has the Kadec-Klee property if, and only if,
either it is finite-dimensional or a Hilbert space (as a Cartan factor of type 1 or 4).

Proof. We know that Kadec-Klee property implies the DP1- property in gen-
eral, and so, in view of Theorem 2, either the JBW ∗-triple has the DPP or it is a
Hilbert space. By using the description due to Chu and Mellon [5], if the space has
the DPP, the triple W can be decomposed as

W = ⊕`∞α L∞(Ωα, µα, Cα),

where Cα is a Cartan factor and supα dimCα < +∞.
If for some α, the space L∞(µα) is infinite-dimensional, then

L∞(Ωα, µα, Cα) contains an isometric copy of `∞. Since the Kadec-Klee property is
preserved by passing to subspaces, then `∞ would have the KKP, which is far from
being true (see [8, Theorem II.7.10]). By the same argument the set of indexes is
finite and so W is finite-dimensional.

On the other hand, Hilbert spaces have the KKP. Also we proved that a type 4
Cartan factor has the KKP (see Proposition 5). 2
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