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ABSTRACT.  In this paper we investigate the structure and representation of n-ary algebras arising 
from DNA recombination, where n is a number of DNA segments participating in recombination. 
Our methods involve a generalization of the Jordan formalization of observables in quantum 
mechanics in n-ary splicing algebras.  

We show that the splicing algebras are an n-ary envelope for algebras of DNA recombination. 
We have constructed the basis for free algebra of the variety of the n-ary splicing algebras and 
found the defining identities for n-ary splicing operations. Using the relationship between algebras 
and its enveloping algebras, we have constructed the basis of the free algebra of the variety of n-
ary algebras of DNA recombination.  It is proved that every polynomial identity satisfied by n-ary 
DNA recombination, with no restriction on the degree, is consequence of n-ary commutativity and 
the special n-ary identity of the degree 3n-2.  

We obtain a criterion, analogous to the Specht-Wever  Lie criterion, for determining whether 
an element of n-ary free splicing algebra is an element of the algebra of DNA recombination. 
Using this criterion, it is proved that all n-ary algebras of DNA recombination are special by 
module of n-ary splicing algebra (analog of the Poincare-Birkhoff-Witt theorem). 

The skew-symmetrization of n-ary splicing operation converts the splicing algebras into n-ary 
skew-symmetric algebras. In case n = 2, they are Lie algebras. It is proved that every polynomial 
identity of these algebras, with no restriction on the degree, is consequence of centrally metabelian 
identity. In case n >2, they are nilpotent of index 3. 

The non-homologous recombination is formalized by the algebras of simplified insertions. It 
is shown that all identities of the algebra of simplified insertion follow from the right-symmetric 
identity. We construct an infinite series of relations in the algebra of simplified insertion which 
hold for the words of length n and are not consequences of the right-symmetric identity 
 
 

1. INTRODUCTION 
 
The DNA recombination provides transfer of the genetic information and realization of the 

genetic program of development and functioning of all living organisms.  
The algebraic formalization of DNA recombination is represented in the form of linear 

space  ( )F R  over a field F  of characteristic0 , where R   is an infinite free semigroup generated 
by the set of DNA nucleotides{ , , , }A G C T . Homologous DNA recombination (exchange of DNA 
segments) defines the algebraic n -ary operation and transform ( )F R in an n –ary algebra nJ , 
where  n  is a number of DNA segments, participating in recombination. Algebra nJ is called 
Morgan n - algebra. The algebras from the variety ( )nVAR J , generated by nJ , are called n -
algebras of DNA recombination.   

Our purpose is to construct the algebraic theory for DNA recombination and to research 
structure and representations of the algebras of DNA recombination. 

In case 2n = , the binary algebras of DNA recombination are Jordan algebras and were 
introduced by Bremner [4]. They are called Jordan algebras of intermolecular recombination. 
The structural theory of these algebras was developed in author’s paper [5]. In Section 2 we will 
shortly review its main results. 

Section 4 provides a detailed exposition of the structure and representation of n-algebras of 
DNA recombination for 3n ≥ . We introduce the notion of n-ary splicing algebras and indicate 
how a generalization of the Jordan formalization of observables in quantum mechanics can be 
applied for n-ary splicing algebras and algebras of DNA recombination.  
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We show that the splicing algebras are an n-ary envelope for algebras of DNA 
recombination. We derive the interesting symmetric formulas in the free splicing algebras. Using 
these formulas, we construct the basis for free algebra of the variety of the n-ary splicing 
algebras and find the defining identities for n-ary splicing operations. Using the relationship 
between algebras and its enveloping algebras, we construct the basis of the free algebra of the 
variety of n-ary algebras of DNA recombination and its defining identities. 

We obtain a criterion, analogous to the Specht-Wever Lie criterion, for determining 
whether an element of n-ary free splicing algebra is an element of the algebra of DNA 
recombination. Using this criterion, it is proved that all n-ary algebras of DNA recombination are 
special by module of n-ary splicing algebra (analog of the Poincare-Birkhoff-Witt theorem). 

Finally, we solve the problem for identities of n-ary DNA recombination. It is proved that 
every polynomial identity satisfied by n-ary DNA recombination, with no restriction on the 
degree, is consequence of n-ary commutativity and the special n-ary identity of the degree 3n-2.  

Section 4 is devoted to the study of the skew-symmetrization of n-ary splicing operation. 
This transformation converts the splicing algebras into n-ary skew-symmetric algebras. In case n 
= 2, they are Lie algebras. It is proved that every polynomial identity of these algebras, with no 
restriction on the degree, is consequence of centrally metabelian identity. In case n >2, they are 
nilpotent of index 3. 

Section 5 deals with the case of non-homologous recombination. The non-homologous 
recombination is formalized by the algebras of simplified insertions. These algebras were 
investigated in author’s paper [5]. We review its main results. It is shown that all identities of the 
algebra of simplified insertion follow from the right-symmetric identity. It is constructed an 
infinite series of relations in the algebra of simplified insertion which hold for the words of 
length ,  nn ∈  and are not consequences of the right-symmetric identity. 

Let’s notice that research of identities of algebras of DNA recombination, construction of 
universal objects in variety of algebras of DNA recombination, are extremely important for 
theoretical genetics, mathematical biology and DNA computing. These identities and objects 
define universal laws of DNA recombination and give possibilities for construction of effective 
genetic algorithms. Applied value of these identities for gene engineering, is reduction of number 
of necessary experiments. 

The results of Sec.2 and 5 are published with detailed proofs in [5, 6], of Sec. 3 and 4 are 
announced in [24]. 

All algebras in this work are considered over a field F  of characteristic zero. We use 
standard definitions and notation from [17], and the theory of n-ary algebraic systems from 
Malcev’s classical work [3].  
 

2. THE JORDAN ALGEBRAS ARISING FROM DNA RECOMBINATION 
 

Possibility of research of DNA recombination in theoretical genetic by means of non 
associative algebras goes back to Thomas Hant Morgan's (1916) classical work, A Critique of 
the Theory of Evolution [1]. On page 132 of this work the scheme illustrating recombination of 
(crossing over) two chromosomes a b  and c d  has been presented: 

 
     + a b c d a d c b× → , 

 
Where , , ,a b c d  are segments of homologous chromosomes participating in recombination.  

What algebra defines Morgan’s binary recombination? Let ab denote the 
chromosome a b . Then Morgan’s recombination defines a commutative algebra 2J over 
F with basis a ,  ,i jb i j∈  and the multiplication table 

 



SERGEI R. SVERCHKOV 
 

 3

, , ,    a a a ai j i jk l l ki j k l b b b b∀ ∈ = +i . 
 

It has appeared that 2J  is Jordan algebra. That is, 2J is a commutative algebra, satisfying to 
the Jordan identity  

2 2(  y) (  y)x x x x=i i i i . 
 

Moreover, 2J is a special Jordan algebra. Let's remind definition of special Jordan algebra. 
Let A  be an associative algebra over F . We will define new operation of symmetrized 

multiplication on A  by 1 ( ),  ,
2

a b ab ba a b A= + ∈ . Well-known [17] that obtained algebra ( )A +   

is Jordan algebra.   
A Jordan algebra J  is called special if J  is isomorphic to a subalgebra of ( )A + , for some 

associative algebra A . In this case, the algebra A  is called an associative enveloping algebra 
for J . A class M of Jordan algebras is called special if it consists of special Jordan algebras. 

It is easy to check that F -algebra 2J
∼

with basis a ,  ,i jb i j∈ and the multiplication table  
1, , ,    a a (a a )
2i j i jk l l ki j k l b b b b∀ ∈ = +i ,                                     (1) 

is isomorphic to 2J . From now on 2J stands for 2J
∼

, i.e. it has multiplication table (1). 
Let A  be a F -module with basis  a ,  ,i jb i j∈ . Following Kari [9], we will define on F  -

module A  the splicing operation by rule 
  

, , ,    i j ik l li j k l N a b a b a b∀ ∈ = .                                           (2) 
 

We will denote by 2C  the obtained algebra. It is easy to check that the splicing operation is 
associative: 
 

(2) (2)
( ) ( )i j s t i t i j s tk l k la b a b a b a b a b a b a b= = . 

 
Therefore 2C  is an associative algebra. From genetic point of view, the splicing operation 

models only partial fragment of DNA recombination. But, as M. Bremner [4] has noticed, that 
 

(2) (1)

1 1a a (a a a a ) (a a ) a a
2 2i j i j i j i j i jk l k l k l l k k lb b b b b b b b b b= + = + = i . 

 
Hence the symmetrized multiplication  on the associative algebra 2C  transforms it into 

algebra 2J , that is ( )
2 2C J+ = . Hence 2J  is a special Jordan algebra and 2C  is an associative 

enveloping algebra for 2J .  
The structural theory of Jordan algebras of intermolecular recombination has been 

constructed in author’s paper [5]. We will shortly review its main results. 
We will denote by 2( )IR Var J= , 2( )S Var C=  the variety of Jordan algebras is generated 

by 2J  and the variety of associative algebras is generated by 2C . Algebras from 2( )IR Var J= are 
called Jordan algebras of intermolecular recombination, or IR -algebras for short. Algebras 
from 2( )S Var C= are called splicing algebras, or S -algebras for short.  
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Let [ ]S X , [ ]IR X  be free algebras in the varieties S and IR , with set of 
generators 1{ ,..., ,...}nX x x= , respectively. 
 
2.1. The basis and multiplication table of algebras [ ]S X and [ ]IR X . Let [ ]Ass x , J[X]S  be free 
associative, free special Jordan algebras (see [17]) with set of generators 1{ ,..., ,...}nX x x= . We  
will define an ordering operator  : [ ] J[X]Ass x S→  by a rule: If 

1
...

ms su x x=  is a monomial 
from [ ]Ass x  then  

1
J[X]...

ms s Su x x= ∈ , 
 

where 1 ... mi i≤ ≤ and the set 1{ ,..., }ms s and 1{ ,..., }mi i coincide with respect to repetitions of all the 
symbols. Then we will extend the ordering operator on the algebra [ ]Ass x by linearity: 
if i i

i
f uα=∑ , where i Fα ∈ , iu are monomials, then i i

i
f uα=∑ .  

By definition, the operation of multiplication of the elements of the algebra [ ]Ass x , and 
consequently J[X]S within the brackets  is associative-commutative. Therefore, for any 

1,..., [ ]nv v Ass x∈ and nSσ ∈ , we have 
 

1 1 (1) ( )... ... ...n n nv v v v v vσ σ= = , 
 

where nS is the symmetric group on{1,..., }n . 
Let { , 1 , }i i j i j i jB x x x x x x u x= = , where ix , i jx x , u  runs over all different ordered 

monomials of J[X]S , 1 is a formal unit. We will denote by  the multiplication in the 
algebra [ ]S X . 

 
Theorem 1. The algebra [ ]S X  has basis B and the multiplication table: , , ,i j k l∀ ∈  
 

1i j i jx x x x= ; 

i j k i j k i j kx x u x x u x x x ux x= = ; 

i j k l i j k lx u x x v x x uvx x x= . 
 
It is easy to check that [ ]IR X  is a special Jordan algebra with the associative enveloping 

algebra [ ]S X . Hence algebra [ ]IR X is isomorphic to the subalgebra of [ ]S X generated by the 
set X . Consequently we can replace the multiplication i  in [ ]IR X by the symmetrized product 

in [ ]S X .  
Let , ,{ ,  1 ,  }i i j i j i jx x x xB x x x U u U= =i , where ix , i jx xi , u  runs over all different 

ordered monomials of J[X]S , 1 is a formal unit, ,x yU  is the Jordan U –operator of elements x , y , 

i.e. , ( ) ( ) ( )x yzU z x y z y x z x y= + −i i i i i i . 
 
Theorem 2. The algebra [ ]IR X  has basis B and the multiplication table: , , ,i j k l∀ ∈  
 

,1i j i jx xx x U=i ; 
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, , ,2  k i ji j j ik kx x x x x xu U x ux U ux U= +i ; 

, , , , , ,4  
kj l j k i l i ki j i i j jk l k l lx x x x x x x x x x x xu U v U uvx x U uvx x U uvx x U uvx x U= + + +i . 

 
2.2. The basis of the identities of the algebras 2C and 2J . Using the computer algebra, M. 
Bremner [4] has found the identity (2)Br  of algebra 2J  of degree 4 and has proved that all 
identities 2J of degree ≤ 6 are consequences of Bremner identity (2)Br , where 

 
2 2 2(2) ( ) 2(( ) ) 2( ) ( ( )).Br x y z x z x y x z y x z y= ⋅ ⋅ + ⋅ ⋅ ⋅ − ⋅ ⋅ − ⋅ ⋅  

 
Actually, all identities of the algebra 2J are consequences of the identity (2)Br . 

 
Theorem 3. Basis of the identities of the algebra 2J consists of single identity (2)Br .    
 

The next theorem provides a characterization of the identities of the splicing algebra 2C . 
 
Theorem 4. All identities of the algebra 2C are consequences of the identity  

[ , ] 0x y z t = , 
where[ , ]x y xy yx= −  is commutator of x , y . 
 
2.3. Speciality of Jordan algebras of intermolecular recombination. Let M be some variety 
of Jordan algebras. Let a free algebra [ ]XM  in M  be a special Jordan algebra and [ ]A X  be 
some associative enveloping algebra for. 

Let’s remind that any antiisomorphism of [ ]A X  of degree 2 is called an involution. There 
exists a natural involution ∗  on [ ]A X which acts on the monomials by 1 1( ... ) ...n nx x x x∗ =  and 
linearly extends over the whole algebra [ ]A X . We call it the standard “reversal” involution. We 
will denote by [ ]HA X the Jordan algebra of symmetric elements of [ ]A X  in regard to∗ . It is 
obvious that [ ] [ ]X HA X⊆M . 
 
Definition. The varietyM  is called reflexive, if [ ] [ ]X HA X=M for some associative enveloping 
algebra [ ]A X of [ ]XM . 
 
Theorem 5. Any reflexive variety of Jordan algebras is special. 
  

A straightforward computation shows that 2( )IR Var J= is a reflective variety.  
 

Corollary. All Jordan algebras of intermolecular recombination are special. 
 
2.6. Minimal algebras in the varieties 2( )IR Var J= and 2( )S Var C= . Let M be a variety of 
algebras over F . 
 
Definition. The finite dimensional algebra A∈M  is called minimal inM , if ( )Var A=M  and 
the algebra A  has minimal dimension. The number dim ( )Fk A=  is called A -dimension of the 
variety M  and be denoted by dim ( )FA k=M . 
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Let us denote by 2 ( , )J n m the subalgebra of 2J generated by i ja b ,1 i n≤ ≤ ,1 j m≤ ≤ ; by 

2 ( )J n  the subalgebra of 2J generated by i ja b ,1 i n≤ ≤ , j∈ . The algebras  2 ( , )J n m , 2 ( )J n , 2J  
are called the standard algebras of intermolecular recombination. 
 

For example, algebra 2 (1, 2) J  has basis 1 1a a b=  , 1 2a a b=  and the multiplication table:  
2a a= , 2b b= , 1 ( )

2
a b a b= +i . 

Theorem 6. The algebra 2 (1, 2) J is minimal in 2( )IR Var J=  and dim ( ) 2FA IR = . 
 

We will denote by 2 ( , )C n m the subalgebra of 2C generated by i ja b ,1 i n≤ ≤ ,1 j m≤ ≤ ; by 

2 ( )C n  the subalgebra 2C of generated by i ja b ,1 i n≤ ≤ , j∈ . The algebras 2 ( , )C n m  , 

2 ( )C n , 2C  are called the standard splicing algebras. 
For example, algebra 2 (1,3) C  has basis 1 1 1e a b=  , 2 1 2e a b= , 3 1 3e a b=  and the 

multiplication table: i i ie e e= , 1 , 3i j≤ ≤ . 
 
Theorem 7. The algebra 2 (2, 2) C is minimal in 2( )S Var C=  and dim ( ) 4FA S = . 
 
2.5. Jordan Bernstein algebras and Jordan algebras of intermolecular recombination. The 
multiplication table (1) shows that the standard IR -algebras are algebras with genetic realization 
(see [17]). Among the algebras with genetic realization the class of Bernstein algebras holds an 
important position. 

Let’s remind that the Bernstein algebra over the field F is a commutative algebra J , with a 
non-zero algebra homomorphism :    J Fω → , satisfying the identity 

 
2 2 2 2· ( )x x x xω= . 

 
These algebras were introduced by P. Holgate [19], It is known [18] that the algebra J  can 

be represented as J Fe N= ⊕ , where   N Kerω= , e  is an idempotent and 2 2·   0n n =  for all 
n N∈ . 

If ( ) 2ch F ≠ , then    N U Z= ⊕ , where 1{    |   ·   }
2

U u N e u u= ∈ = , 

 {    |   ·   0}Z z N e z= ∈ = . On the algebra N  the following Bernstein graduation is defined: 
 

2U Z⊆ , 2U Z⊆ , U Z U⋅ ⊆ . 
 

A Bernstein algebra is called Jordan, if it also satisfies the Jordan identity. The Jordan 
Bernstein algebras were first introduced by P. Holgate [20], who proved that the genetic algebras 
for the simple Mendel inheritance are special Jordan algebras. Later this result was generalized 
by A. Wors-Busekros [21]. It was shown that finite-dimensional Bernstein algebras with zero 
multiplication in N are special Jordan algebras. Also in the paper [21] the necessary and 
sufficient conditions for a Bernstein algebra to be Jordan were obtained: 2 0Z =  and 

    N U Z= ⊕ is nil-index 3 algebra. Jordan Bernstein algebras play an important role in the 
theory of Bernstein algebras (see [18, 22, 23]). 
 
Definition. Bernstein algebra       B Fe U Z= ⊕ ⊕  is called annihilator algebra if Z  coincides 
with annihilator of the algebra  B , i.e. ( )  Z Ann B= . 
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The annihilator algebra       B Fe U Z= ⊕ ⊕ is called of the type ( , )V W , if  
 

U V W= ∪ , 1{ ,..., }nV v v= , 1{ ,..., }mW w w= , { ; , }i j i jZ v w v V w W= ∈ ∈ ,1 ,n m≤ ≤ ∞ , 
0i j i jv v w w⋅ = ⋅ = , vi j i jw v w⋅ =  for all ,i jv V w W∈ ∈ . 

 
It is evident that in the annihilator algebras 2 2   0Z N= = . That is why all annihilator 

algebras are Jordan Bernstein algebras.  
It easily seen that the annihilator algebra the type ( , )V W  has basis 

{ ,  ,  ,  ,  ,  }i j i j i je v w v w v V w W∈ ∈  and the multiplication table: 

2 1 1

2 2
, , , vj j j j i j i je e e v v e w w w v w= ⋅ = ⋅ = ⋅ = ,  

all other products of the basis elements are zero. 
 
Theorem 8. The class of standard IR-algebras coincides with the class of annihilator algebras of 
the type ( , )V W . An annihilator algebra of the type ( , )V W  is isomorphic to 2J , if V W= = ∞ , 

to 2 ( )J n , if V n= , W = ∞ , to 2 ( , )J n m  if V n= , W m= . 
 

3. THE  N  -ALGEBRAS OF DNA RECOMBINATION 
 

Let's consider now the case when n -segments of DNA participate in recombination, where 
3n ≥ . We will denote by 

1 21 2( , ,..., )
nni i ia a a the DNA 

1 21 2 ... ni ni ia a a , where 1 21 2
, ,..., nni i ia a a  

are segments of DNA participating in recombination.  
 
We are going to construct Morgan algebra nJ  for n -ary recombination. It is clear that to 

consider all possible permutations of DNA segments, we have to multiply simultaneously 
n elements of nJ . Consequently, the operation on nJ will be n -ary. Let 1 2{ , ,..., }nx x x denote this  
operation. 
 

By analogy to the algebra 2J  it is received that F -algebra nJ  has 
basis

1 21 2( , ,..., )
nni i ia a a , 1 2, ,..., ni i i ∈ and multiplication table 

 
1 (1)1 (2)2 ( ){ ,..., } ( , ,..., )

n
n n n

S
b b b b bσ σ σ

σ∈
= ∑ ,                                    (3)  

 
where

1 21 11 12 1 1 2( , ,..., ) ( , ,..., )
nn i i i nb b b b a a a== ,

1 22 21 22 2 1 2( , ,..., ) ( , ,..., )
nj j j nnb b b b a a a== ,…,

1 21 2 1 2( , ,..., ) ( , ,..., )
nkk kn nnnn nb b b b a a a== . 

 
Definition. The n -ary algebra nJ  is called Morgan n -algebra. We call operation 

1 2{ , ,..., }nx x x the operation of n -ary DNA recombination. Algebras from the 
variety ( )nDR VAR J= , generated by nJ , are called n -algebras of DNA recombination or DR -
algebras for short.  
 

We will denote by [ ]DR X the free algebra in the variety DR  and by 1 2{ , ,..., }nb b b the n -ary 
operation in [ ]DR X . 
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It follows easily that the operation of n -ary DNA recombination is commutative, e.g.  
 

1, ,...,n n nS Ja aσ∀ ∈ ∈     1 (1) ( )} }{ ,..., { ,...,n na a a aσ σ= . 

 
For multiplication in algebra nJ it is convenient to use the formula dets  of the symmetric 

determinant. Set 1 1 2 1 2( , ,..., ) ...i i in i i ina a a a a a a= ⊗ ⊗ ⊗= , 1,...,i n= .  
 
Then 

11 1

1

1
1

1 1} det det( ){ ,...,
n

n nn

n

i
n ii

a a
s a s M

a a
a a

=

⎛ ⎞
⎜ ⎟= = ⊗⎜ ⎟
⎜ ⎟
⎝ ⎠

∑
…

, 

 
 

where
11 1

1

1

1

...

...

...

n

i in

n nn

i

a a

M a a

a a

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎝ ⎠

, the notation ija  means that ija is absent. 

 
For example,  
 

2n = , , } det{ i j
i j k l i l k j

k l

b
b a b s b a b

a b
a

a a⎛ ⎞
= = +⎜ ⎟

⎝ ⎠
, 

 

3n = ,
11 12 13

1 2 3 21 22 23

31 32 33

{ , , }
a a a

a a a a a a
a a a

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

=  

 
22 23 11 12 12 13

11 21 31
32 33 32 33 22 23

det det det
a a a a a a

a s a s a s
a a a a a a
⎛ ⎞ ⎛ ⎞ ⎛ ⎞

⊗ + ⊗ + ⊗⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

. 

 
Let's notice that operation of intermolecular recombination was first introduced by Kari and 

Landweber [8] and actively used in DNA computing. Operation of n -ary DNA recombination 
was first entered by Bremner [7]. 
 
3.1. Jordan formalization of DNA recombination. For the algebraic formalization of DNA 
recombination we will use the basic idea of the formalization of an algebra of observables in 
quantum mechanics, which was first realized by Pascual Jordan (1933) in classical work [2]. 
 

Let M be a variety of the n -ary algebras over a field F  and an algebra B∈Mwith n -ary 
operation 1( ,..., )nf b b , where 1,..., nb b B∈ . We will define a new symmetrized n -ary operation 
on the F -module B by setting 
 

 
1 (1) (2) ( )( ,..., ) ( , ,..., )

n
n

S
nj b b f b b bσ σ

σ
σ

∈
= ∑ ,                                   (4) 

 



SERGEI R. SVERCHKOV 
 

 9

for all 1,..., nb b B∈ . The obtained algebra with the n -ary operation 1( ,..., )nj b b will be denoted 
by ( )B + . The transformation of the algebra B to ( )B + is called Jordan symmetrization, the 
transition from ( )B +  to B is called Jordan specialization. 
 
Definition. A n -ary algebra J  is called M -special if J is isomorphic to a subalgebra  of ( )B + for 
an algebra B∈M . The subalgebra of ( )B + is generated by image of J under this embedding is 
called an M -enveloping algebra for J . A n -ary algebra J  is called weak M -special if J is 
homomorphic image of a M -special algebra. A variety N said to be M -special (weak M -
special ) if it consists of M -special (weak M -special) algebras. 

We first construct the Jordan specialization for the n -ary algebra nJ . For this purpose, we 
consider the n -ary F -algebra nC  with the basis

1 21 2( , ,..., )
nni i ia a a , 1 2, ,..., ni i i ∈ and 

multiplication table 
 

1 21 11 22 1 2,..., ( , ,..., ) ( , ,..., )
nn kji nnnb b b b b a a a< >= = ,                                    (5)  

 
where

1 21 11 12 1 1 2( , ,..., ) ( , ,..., )
nn i i i nb b b b a a a== ,

1 22 21 22 2 1 2( , ,..., ) ( , ,..., )
nj j j nnb b b b a a a== ,…,

1 21 2 1 2( , ,..., ) ( , ,..., )
nkk kn nnnn nb b b b a a a== . 

 
Definition. The n -ary algebra nC  is called the standard splicing n -algebra. We call operation 

1 2, ,..., nx x x< >  the n -ary splicing operation. Algebras from variety ( ) ( )nS n VAR C= , generated 
by nC , are called the splicing n -algebras or ( )S n -algebras for short.  
 

The basis elements in the algebra nC are easy multiplied by using the main diagonal rule. 
Let 1 1 2( , ,..., )i i ina a a a= , 1,...,i n= . Then 

 
11 1

11 22

1

1 ( , ,..., ),...,
n

n nn

nnn

a a
a a a

a a
a a

⎛ ⎞
⎜ ⎟>=< >=⎜ ⎟
⎜ ⎟
⎝ ⎠

<
…

. 

 
Note, that the n -ary splicing operation is not associative for 3n ≥  and not commutative for 

2n ≥ .  
 

Indeed,  
 

2n = , 1 2 11 22 2 1 21 12, ( , ) , ( , )a a a a a a a a< >= ≠< >= ; 
 

3n = , 5 51 2 3 4 11 22 33 4 11 42 53(5)
, , , , ( , , ), , ( , , )a a a a a a a a a a a a a<< > > = < >=  

 
51 2 3 4 1 2 31 42 53 11 22 53(5)

, , , , , , ( , , ) ( , , )a a a a a a a a a a a a a≠< < >> = < >= . 

 
But, how it was noticed in Sec.2, the n -ary splicing operation is associative for 2n = . 
 

It is easy to check that algebra nJ is ( )S n -special. 
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We have  
 

1 1(1) (2) (1)1 (2)2(4) (5) (3)( ) ( )( ,..., ) , ,...,   ( , ,..., ) { ,..., }
n n

n n
S S

n n nj b b b b b b b b b bσ σ σ σ
σ σ

σ σ
∈ ∈

< > = < > = =∑ ∑ , 

 
for any 

1 21 11 12 1 1 2( , ,..., ) ( , ,..., )
nn i i i nb b b b a a a== ,

1 22 21 22 2 1 2( , ,..., ) ( , ,..., )
nj j j nnb b b b a a a== ,…, 

1 21 2 1 2( , ,..., ) ( , ,..., )
nkk kn nnnn nb b b b a a a== from nC . 

 
From this we conclude that the symmetrized product on nC coincides with the 

multiplication on nJ  and ( )
n nJ C + . 

 
We will denote by ( )[ ]S n X  the free algebra in the variety ( )S n and by 1 2, ,..., nb b b< >  the  

n -ary operation in ( )[ ]S n X . 
 
3.2. Basis of free algebra ( )[ ]S n X and defining identities of nC . 
 
Definition. The subalgebra of ( )( ) [ ]S n X+ generated by the set X is called the free ( )S n -special 
algebra and denoted by [ ]SDR X . The elements of [ ]SDR X are called J -polynomials. The 
criterion of definition, whether ( )[ ]a S n X∈  is J -polynomial, is called J - criterion. 
 
Theorem 1. The algebra [ ]DR X is ( )S n -special and it is isomorphic to [ ]SDR X . The variety 

( )nDR VAR J= is a weak ( )S n -special variety. 
 
From Theorem 1. it follows that in ( )[ ]S n X  
 

1 1(1) (2) (1)1 (2)2( ) ( )( ,..., ) , ,..., ( , ,..., ) { ,..., }
n n

n n
S S

n n nj b b b b b b b b b bσ σ σ σ
σ σ

σ σ
∈ ∈

< > = < > = =∑ ∑ , 

 
for all 1,..., ( )[ ]nb b S n X∈ . Hence, without loss of generality we can write [ ]DR X = [ ]SDR X . 
 

From now on, the notations 1 1{ ,..., }, ,...,m mu a a v a a= =< >  mean that  
( 1) 1, 1m k n k= − + ≥  and 1 1 2( 1) 1 ( 1) 1{ ,..., } {{{...{ ,..., },..., },..., }m n n k nu a a a a a a− + − += = , 

1 1 2( 1) 1 ( 1) 1,..., ... ,..., ,..., ,...,m n n k nv a a a a a a− + − +=< >=<<< < > > > . 
 

Let B denote the set  
 

 
{

1 1 21 1 2
,..., ,  ,{ ,..., }, ,..., , ,...,,  mn nm m nj j j ji i i i i ix x x x x xx x x x

+ + −
> < >< },  

 
where ( 1) 1,  0m l n l= − + ≥ , 1 2... m nj j + −≤ ≤ ;  1 1 2, ,..., , ,...,n m ni i j ji + − ∈ . 

 
Theorem 2.  The set B is a basis of the algebra ( )[ ]S n X . 
 
Let  
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1 1 1 1 1 1 1 2 1 1 2 11 1 1 1, , , ,, ,..., , ,..., , ,..., , ,...,,..., ,...,n n n nn nh x y y z z t x z y y y z z tt t− − − −− −=< > − < > , 

1 1 1 1 1 1 1 1 1 11 1, , ,..., ,...,, ,..., , ,..., , ,..., , ,..., ,n n n nk k k k k kg x y y z z x z z y y z y y z z− − − −− + >=<< > > − < < > , 

1 1 1 1 1 1 1 1 1 1,..., ,...,, ,..., , ,..., , ,..., , ,...,n n n nk k kf x y y y z z x y y y z z− − − −=< > − < > ,  
 
where 1,..., 1k n= − . 
 

Direct computations show that h  and ,   1,..., 1,k k k nfg = −  are identities in the algebra nC  
and more delicate that they are the defining identities of nC . 
 
Theorem 3.  All identities in the algebra nC  are consequences of h  and , ,  1,..., 1k kf k ng = − . 
 
3.3. The symmetric formulas in free algebra ( )[ ]S n X . In much the same way as in associative 
algebras, we can define the standard “reversal” involution of the algebra ( )[ ]S n X  by setting: 
 

*     i i iXx x x∈ =∀ , 

1 1 1,..., ( )[ ]   ,..., ,...,n n na a S n X a a a a∗ ∗ ∗∀ ∈ < > =< > .  
 

We check at once that the set ( )[ ] ( ( )[ ], ) { ( )[ ] | }H n X H S n X u S n X u u∗= ∗ = ∈ = of the 
symmetric elements in ( )[ ]S n X under ∗  is a subalgebra of ( )( ) [ ]S n X+ and [ ] [ ]DR X H X⊆ . The 
algebra ( )[ ]H n X is called DR -algebra of symmetric elements of ( )[ ]S n X . 

 
It Sec.2 it is shown that (2)[ ] [ ]H X DR X= , for 3n ≥  the situation is completely different, 

i.e. ( )[ ] [ ]H n X DR X≠ . 
 
Theorem 4.  For 3n ≥  1 1( )[ ,..., ] [ ,..., ]k kH n DRx x x x= if and only if 1k = . 

 
In particularly, the element 1 1 2 1 1

2

,..., , , ,...,
n n

u x x x x x
−

=<< > > is symmetric but is not J -

polynomial. 
 
Let us consider the symmetric element 

1 1

, ,..., ,..., ( )[ ]
n n

w y x x y y S n X
− −

=<< > >∈ . It appears 

that  w  is a J -polynomial. 
 
Set  

 
{ ,..., ,..., }k

k n k

F x x y y
−

= , 

1

A ( , ) { , ,..., ,..., }k k
n k k

x y F x x y y
− −

= , 

 
where for k=1,...,n . Note, that ,  A ( , ) [ , ]k kF x y DR x y∈ . 
 

We will denote by ( )d z
dt

the operator of differential substitution z t→ . 
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Theorem 5.  For 2n ≥ , 

2
( 1)

11 1

1, ,..., ,..., ( 1) A ( , )
( !)

n
k k

n n k
kn n

y x x y y C x y
n

+
−

=− −

<< > >= −∑  

 
is an identity in ( )[ ]S n X ;                                                                                                           (6) 

( 1)

11

( ) (( 1)!{{ ,..., }, ,..., } ( 1) A ( , ))
!

n
k k

n n k
kn n

d y
dx

nx x y y C x y
n

+
−

=−

−= −∑  

is an identity in any n -ary commutative algebra; 

where  !
!( )!

k
n

nC
k n k

=
−

, 0! 1= . 

 
We call (6) the symmetric formulas in free algebra ( )[ ]S n X . 

 
For example, for 3n =  

 
36 , , , , {{ , , }, , } 3({{ , , }, , } {{ , , }, , })y x x y y y y y x x y x x y y y y x y x<< > >= + − . 

 
The symmetric formulas give a main tool for constructing algebraic theory of DNA 

recombination. 
 
3.4. The basis of the free algebra [ ]DR X and the defining identities of nJ .  
 
Let 
 

1
( 1)

1 1 1
11 1 1

1 ) )( | ) ( 1) A ( , )
!( 1)! ... ...

( (,..., ,...,
n n n

k k
n nn n k

kn n

d y dS z C z y
n n d d dz dz

zy y z
y y

−
+

− −
=−

= −
− ∑ , 

 
1 1 }( ,..., ) { ,...,n nS y y y y= , for 1 11 , ,..., [ ],..., nn z z DR Xy y − ∈ . 

 
By (6), we can easily get identities in the algebra [ ]DR X : 
 

1
1

12 2

{{ ,..., }{ ,..., }, ,... } ( 1) { ( , ), , ,... }
n

k

kn n nn

k
n n kx x y y z z x y x z zC Ab +

=− −
−= − −∑ , 

1 11 1 2
2 { ( ,..., | ,..., }, ,... } ( , ,... |{ , ,..., }, ,..., )

n nn nn n

S y y x x z z S y z z y x x y yb
− −− − −

= − , 

1 1 2 1 2 1 2 23 ( ,... |{ ,..., }, ,..., ) ( ,... |{ , ,..., }, , ,..., )n nn n
n n

S y y x x z z S y y z x x x z zb − −= − , 

4 1 1
3

( ,... |{ ,..., },{ ,..., }, ,..., )n n
n n

b S y y x x z z t t
−

=  

1 2 1 2
3

( ,... |{ , ,..., },{ , ,..., }, ,..., )n n
n n

S y y z x x x z z t t
−

− . 

 
Combining the symmetric formulas and the identities 1 4b b− we can construct a basis 

of [ ]DR X . 
 

Let B denote the set  
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1 1 21 1 2
),   ( , ,..., |{ ,..., }, ,...,,   ,..., )(

m m m nj j j jn ni i ii i iS S x x xx x x x x x x
+ + −

, 

 
where ( 1) 1, 0m l n l= − + ≥ , 1 21 ,  ...... m nn j ji i + −≤ ≤≤ ≤ ; 1 1 2, ,..., , ,...,n m ni i j ji + − ∈ . 
 
 
Theorem 7.  The set B is a basis of the algebra [ ]DR X . 
 

The principal point of the proof of the Theorem 7 is in using only identities 1 4b b− for 
decomposition of any element of [ ]DR X  in linear combination of the basis ones. Therefore 

1 4b b− are the defining identities for nJ .  
 
Theorem 8.  All identities in the algebra nJ  are consequences of 1 4b b− . 
 
3.5. The basis of the identities of n -ary DNA recombination.  
 

Let A be an arbitrary n -ary algebra, 2n ≥ . 
 

Definition. An identity in n -ary algebra A  is called 1r -identity, if it has form 
 

1 1 2 2 1 (1) ( ){{ ,..., },{ ,..., }, ,..., } { ,..., }
m

n mn n n m
S

x x x x x x x xσ σ σ
σ

α+ +
∈

− ∑ , 

where Fσα ∈ .  
An polynomial a A∈  is called 1r - polynomial, if (1) ( ){ ,..., }

m

m
S

a x xσ σ σ
σ

α
∈

= ∑ , 

where 1,  ,..., mF x x Xσα ∈ ∈ .  
 

It is evident that if an arbitrary commutative n -ary algebra A satisfies some 1r -identity, 
then all elements of A  are 1r - polynomials. 

 
By using computer algebra, Bremner [7] has found 1r -identity for algebra 3J and proved 

that all identities of degree 9≤  in 3J follow from it. In view of results [4, 5, 7], Bremner 
conjectured that for 3n ≥ :  
 
(a).The algebra nJ satisfies some 1r -identity; 
 
(b). The basis of identities of nJ consists of only one identity. We will denote by ( )Br n this 
hypothetical Bremner identity. 
 

The identity 1b is 1r -identity in nJ and it gives the positive answer to conjecture (a).  
 
We will now design the identity ( )Br n  and give the positive answer to conjecture (b). 

 
Set 
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2
1 3 3 21 1

( ) ({ ( ,..., | ,..., }, , , ,..., } ( , , , ,..., |{ , ,..., }, ,..., ))
...

n

n n n n nn n

d ab S a a y y x x z z S a x x z z a y y a a
dx dx

− − −− −

= − , 

 

3 1 2 1 1 2 1
1 13 3

( ,..., , , |{ , ,... }, , ,..., ) ( ,..., , , |{ , ,... }, , ,..., )n nn n n n
n nn n

b S x x x x x y y x z z S x x x x x y y x z z− − − −
− −− −

= − . 

 
Let us consider the identity 

2 3( )Br n b b= + . 
 

It is clear that 2 2 3 3 2 3,  ,   , ( )b b b b b b Br n⇔ ⇔ ⇒ . The identity 2b is symmetric in 1nx − , nx , 

but the identity  3b  is skew-symmetric in 1nx − , nx . Therefore  
 

1 1 3( )( , ) ( )( , ) 2n n n nBr n x x Br n x x b− −− =  

and 3( )Br n b⇒ . Consequently, 2 3( ) ( )Br n b Br n b⇒ = −  and 2 3( ) ,Br n b b⇒ . 
 

More specific and delicate calculations show that 1 4( ) ,Br n b b⇒ . Therefore ( )Br n is the 
defining identity of nJ by Theorem 8.  
 
Theorem 9.  All identities in the algebra nJ  are consequences of ( )Br n . 
 
3.6. J - criterion and speciality of n -algebras of DNA recombination. 
 

There are two J - criterion well-known in theory of Lie algebras, that of Friedrichs and that 
of Specht and Weber [10].  

Problem of J - criterion in Jordan algebras is at present far from being solved. Classical 
Shirshov-Kohn [11, 17] theorem states that 1 2 3[ , , ]a Ass x x x∈ is J -polynomial if and only if a is 

symmetric element under ∗  - the standard “reversal” involution. But it is not J - criterion for 

1 2 3 4[ , , , ]Ass x x x x (see [17] for more details). Let’s note the elegant J - criterion for Jordan 1r - 
polynomial of Robins [12]. 

Now we are going to construct J - criterion for ( )[ ]S n X , which is an analog of the Specht-
Weber criterion for Lie algebras.  

For this purpose, we define the partial involutions : ( )[ ] ( )[ ]ij S n X S n Xϕ → , where 
1 ,i j n≤ ≤ , by the following rules: 
 

      ( ) ,ijx X x xϕ∀ ∈ =  

1 1 1,..., ,..., ) ,..., ( ) | ( ) |( )[ ]  (  ,...,,...,n ij n ij j ij i j niw w w w w w w wS n X ϕ ϕ ϕ∀ > = >∈ < < , 
 
the notation 1,..., | ,..., nia b a< >  means 1 1 1,..., , ,, ..., ni ia a b a a− +< > .  

It is easily seen that [ ] { ( )[ ] | ( ) ,   1 , } ijSH X u S n X u u i j nϕ= ∈ = ≤ ≤  is a subalgebra of 
( )( ) [ ]S n X+  and [ ] [ ]DR X SH X⊆ . 

 
Definition. The algebra [ ]SH X is called the algebra of supersymmetric elements of ( )[ ]S n X . 
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Theorem 10.  [ ] [ ]DR X SH X= . 
 

Let us consider an arbitrary permutation nSσ ∈ . Let 1 2 ... kσ τ τ τ= ⋅ ⋅ ⋅ , where 

1 2, ,..., kτ τ τ are transpositions, and 
1 2

...
kσ τ τ τϕ ϕ ϕ ϕ= . 

We will denote by  
 

( !) 1
nS

T nσ
σ

ϕ
∈

= − ⋅∑  

 
the linear operator : ( )[ ] ( )[ ]T S n X S n X→ , where 1 is the unitary mapping. 
 

The operator T  gives us the following J - criterion for ( )[ ]S n X .    
 
Theorem 11.  A polynomial ( )[ ]a S n X∈  is a J  - polynomial if and only if ( ) 0T a = . 
 

By J  - criterion, it is easy to get speciality of n -algebras of DNA recombination. 
 
Theorem 12. The variety ( )nDR VAR J= is ( )S n - special. 

 
4. LIE ALGEBRAS OF DNA RECOMBINATION. 

 
The algebras  ( )

2( , ) ( , )L n m C n m −= , ( )
2( ) ( )L k C k −= , ( )

2L C −= , , ,n m k∈  are called the 
standard Lie algebras of DNA recombination. 
 
Definition. Algebras from ( )LD Var L= are called Lie algebras of DNA recombination, or L -
algebras for short. 
 

We will denote by  ⋅  the multiplication in the L -algebras. In particularly,   
 
 

,   [ , ]a b L a b a b a b b a∀ ∈ ⋅ = = −  
 

By definition, the F -algebra L  is a Lie algebra with basis a ,  ,i jb i j∈ and the 
multiplication table  

, , ,    -i j i jk l l ki j k l a b a b a b a b∀ ∈ =i . 
 

We will denote byCM the varieties of centrally metabelian algebras, i.e. algebras satisfy 
the identity  

1 2 3 4 5(( ) ( )) 0x x x x x⋅ ⋅ ⋅ ⋅ = ,                                                      (7) 
 
and by M the variety of metabelian algebras, i.e. algebras satisfy the identity  

 
1 2 3 4( ) ( ) 0x x x x⋅ ⋅ ⋅ = .                                                           (8) 

 
It is easy to check that the algebra L satisfies (7).  Actually, all identities of the algebra L  

are consequences of the identity (7). 
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Theorem 1.  LD CM= . 
 

We can describe the subvarieties generated by the standard Lie algebras of DNA 
recombination 
 
Theorem 2.   
 

( (1,1))Var L is the variety of abelian Lie algebras;  
( (1)) ( (1, ))Var L Var L k M= = ; 
( ) ( ( )) ( ( , ))Var L Var L n Var L m k CM= = = , for , , 2k m n ≥ . 

 
Let us consider the Lie algebra (2,2)L . It has basis ,  1 4ie i≤ ≤  and the multiplication 

table: 
1 2 2 1 1 3 1 3 1 4 2 3,  ,  e e e e e e e e e e e e⋅ = − ⋅ = − ⋅ = − , 2 3 1 4 2 4 2 4 3 4 4 3,  ,  e e e e e e e e e e e e⋅ = − ⋅ = − ⋅ = − . 

 
Theorem 3. The algebra (2,2) L is minimal in ( )LD Var L=  and dim ( ) 4FA LD = . 
 

We can define a new skew-symmetric n -ary operation on nC  , 3n ≥ , by 
 

 
1 (1) (2) ( )[ ,..., ] ( 1) , ,...,

n
n

S
nb b b b bσ

σ σ
σ

σ
∈

= − < >∑ , 

 
for any 

1 21 11 12 1 1 2( , ,..., ) ( , ,..., )
nn i i i nb b b b a a a== ,

1 22 21 22 2 1 2( , ,..., ) ( , ,..., )
nj j j nnb b b b a a a== ,…, 

1 21 2 1 2( , ,..., ) ( , ,..., )
nkk kn nnnn nb b b b a a a== from nC .  

The algebra with this new operation will be denoted by ( )
nC −  . In case 3n ≥ , the algebra 

( )
nC −  is nilpotent of index 3. 

 
Theorem 4. , All identities of the algebra ( )

nC − ,  3n ≥ , are consequences of the identity 

1 2[[ ,..., ,..., ] 0],n nx x yy = . 
 

5. NON-HOMOLOGOUS RECOMBINATION AND THE ALGEBRA OF SIMPLIFIED INSERTIONS 
 

The schematic model of non-homologous DNA recombination can be represented in the 
form:  

 
    a b c a c d× → ,                                                    (9) 

 
where two chromosomes  a b  and c  are participating in non-homologous recombination.  
 

The algebraic formalization of the recombination (9), with respect of all possible insertions 
DNA c  in DNA  a b , defines the algebra of simplified insertions.  
 

Given the free associative algebra [ ]Ass X  with set of generators 1{ ,..., ,...}nX x x= , we 
define a new multiplication operation ∗  by the following rule: 
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01 1 1
( ... ... ...)

n

kn nkki i ii i ix x a x x ax x
= +

∗ =∑ , 

 
where a is an arbitrary element in [ ]Ass X ; and 

 
( )s sb a u aα∗ = ∗∑ , 

 
where ,  ss s Fb u αα ∈=∑ , and  su are monomials in [ ]Ass X . 
 

The new operation ∗  is called the operation of right simplified insertion. The operation of 
simplified insertion was firstly introduced by M. Bremner [13], and it is an algebraic 
formalization of the operation of normal insertion in the theory of  DNA computing (see [14, 
14]). 

The new algebra [ ], ,Ass X + ∗  is called the algebra of right simplified insertion on the 

generator set X, and it is denoted by [ ]Ass X∗ . It is known that [ ]Ass X∗  satisfies the right-
symmetric identity 

( , , ) ( , , )x y z x z y= ,                                                    (10) 
 

where ( , , ) ( ) ( )x y z x y z x y z= ∗ ∗ − ∗ ∗ is the associator of , , [ ]x y z Ass X∗∈ . This fact was first 
proved by M. Gerstenhaber in [16]. 

Analogously, we may define the operation of left simplified insertion 
 

0
1 1 1

( ... ) ... ...
n

k
n nkki i ii i ia x x x x ax x

=
+

∗ =∑ , 

 
 
and construct the algebra of left simplified insertion. This algebra satisfies the left-symmetric 
identity ( , , ) ( , , )x y z y x z= . It is easy to notice that the categories of the algebras of left and right 
insertion are equivalent; the same happens to the categories of the left-symmetric and right- 
symmetric algebras. Every algebra of this kind changes its left (right) symmetry to the opposite 
by the new multiplication ( , )x y y x= ∗ . This new operation “rewrites” every left (right) relation 
into its right (left) analog. 

From now on, the term algebra of simplified insertion stands for an algebra of right 
simplified insertion. We will shortly review main results on the algebra of simplified insertion 
from author’s paper [6]. 

 
5.1. The basis of identities of the algebra of simplified insertion.  
 
By using computer algebra, M. Bremner proved in [13] that all identities of degree 4 in 
[ ]Ass X∗  follow from (10). For the identities of degree 5 Bremner constructed a relation that is  

satisfied by words of length 2 of [ ]Ass X∗ .  Actually, all identities of the algebra [ ]Ass X∗   are 
consequences of the identity (10). 

 
Theorem 1. All identities of [ ]Ass X∗  follow from the right-symmetric identity. 
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By analogy with free special Jordan algebras J[X]S , the subalgebra in [ ]Ass X∗  generated 
by X  will be called the special algebra of simplified insertion on generators X  and denoted 
by [ ]SI X .  

 
Theorem 2. The linear spaces J[X]S  and [ ]SI X coincide. All identities of [ ]SI X  follow 

from the right-symmetric identity. 
 

5.2. The Dirichlet relations on [ ]Ass X∗ . 
 

Now, we construct an infinite series of relations that hold for all words in [ ]Ass X∗
 of 

length k , k∈ and are not consequences of the right-symmetric identity. 
 
The algorithm for construction of these relations is connected with the simple Dirichlet 

principle: it is impossible to place 1n +  rabbits in n cages so that every cage contains one rabbit. 
 
Formalize the Dirichlet allocation algorithm. Let 1... na x x=  be a monomial in [ ]Ass X , 

and let 1,..., kr r  and 1k n≤ + , be the variables to be allocated. We need to allocate 1,..., kr r  in 
1n +  cells 1 2 ... nx x x⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦  so that every cell ⎢ ⎥⎣ ⎦ contains no more than one variable. 

Define the allocation operator 1 1( ,  . . . ,  ) :  [ ]  [ { ,  . . . ,  }]k kT r r Ass X Ass X r r→ ∪ , where 
1k n≤ + , by the following rule: 

 

0
1 0 1(1) (2) 1 ( )

...0 1
deg 1  1,..., 1

,...,
( ,  . . . ,  ) ...

k
k k k k

k u u uk
u when i ki

u u
a

S
aT r r u r u r u r uσ σ σ

σ
−

≥ = −
=

∈
= ∑ ∑ . 

 
For example, 

1 1 1( )    x T a ax x a= + , 1 2 1 2 1 2 1 2( ,  )  2(     )x x T a a ax ax ax x a x ax a= + + , 
 

1 2 3 1 2 3( ,  ,  ,  )  4!x x x T a a a a ax ax ax a= . 
 
Denote by aR , [ ]Ass Xa ∗∈ , the right multiplication operator in [ ] Ass X∗ , i.e., 

 
[ ]   ab Ass X bR b a∗∀ ∈ = ∗ . 

Denote by ( [ ])R Ass X∗ the algebra of right multiplications [ ] Ass X∗ . 
 

By recursion on m , define 1( ,  . . . ,  ) ( [ ])mD x x R Ass X∗∈ : 
 

1 1( )   D x Rx= , 

1 1 1 1 1

1

1
( ,  . . . ,  )  ( ,  . . . ,  ) ( ,..., ,..., )m m mm

m

i m
i

xD x x D x x R D x x x x− −

−

=
= ∗−∑ . 

Direct calculations show that the relation  
 

1 1( ,  . . . ,  y ) ( ,  . . . ,  y )k kaD y aT y= , 



SERGEI R. SVERCHKOV 
 

 19

holds in  [ ] Ass X∗ , where 1 1k n≤ ≤ + ; 1, ,  . . . ,  [ ]ka y y Ass X∗∈  and deg( )a n= . The next 
theorem gives an infinite series of relations that hold for all words in [ ]Ass X∗  of length n , 
n∈ and are not consequences of the right-symmetric identity. 
 
 
Theorem 3. The following relations  
 

1 1

1

1 2 2 1
1

( ,  . . . ,  y ) ( ,..., ,..., )
n

n n n n
i

iaD y y aD y y y x
+

+ + + +
=

∗ = ∗∑ , 

 
holds in [ ] Ass X∗ for all 1 2, ,  . . . ,  [ ]na y y Ass X∗

+ ∈  and deg( )a n= . 
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