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Abstract

In this paper we introduce the notion of Jordan di-structures, which
are a generalization of the notion of Jordan algebra possessing two op-
erations. We show that every dialgebra is a Jordan di-structure and is
a noncommutative Jordan algebra. Also we make the comparison with
some well known structures.

1 Introduction
In algebra there are three strongly related classical algebras: associative, Jordan
and Lie algebras. It is known that any associative algebra A becomes a Jordan
algebra A+ under the product x · y := 1

2 (xy + yx) and becomes a Lie algebra
under the Lie bracket [x, y] := xy − yx.
On the other hand we know from the works of Kantor, Koecher and Tits that

the Jordan algebras are imbedded in the Lie algebras. In particular, Koecher
showed that for a Jordan algebra U there is a Lie algebra L (U) such that U is a
subspace of L (U) and the product of U can be expressed in terms of the bracket
in the Lie algebra L (U) (see[K2]).
It is known that the universal enveloping algebra of a Lie algebra has the

structure of an associative algebra.
More recently, J.L. Loday (see [L2]) introduced the notion of a Leibniz alge-

bra, which is a generalization of the Lie algebras, where the skew-symmetry of

1



the bracket is dropped. J.L. Loday also showed that the relationship between
Lie algebras and associative algebras translate into an analogous relationship
between Leibniz algebras and the so-called dialgebras (see [L1]), which are a
generalization of associative algebras possessing two operations. In particular,
Loday showed that any dialgebra D (`,a) becomes a Leibniz algebra DLeib un-
der the bracket [x, y] := x a y− y ` x and that the universal enveloping algebra
of a Leibniz algebra has the structure of a dialgebra (see [L-P]).
Our aim is to generalize the notion of Jordan algebras and to show that

the relationship between associative algebras and Jordan algebras translate into
analogous relationship between dialgebras and this new Jordan structure. Ad-
ditionally, we show that any dialgebra is a noncommutative Jordan algebra.
The essential idea in this generalization is to define algebraic structures of

Jordan type over a set with two operations, for which the commutative condition
is changed for a di-commutative condition or is dropped and the Jordan identity
is changed for a Jordan di-identity.
This new structure is called Jordan di-structure and we prove that any dial-

gebra is a Jordan di-structure. Finally, we show some comparisons with certain
structures.
This work is divided in two sections. In section 2 we introduce the notion

of Jordan di-structures, study the relationship with noncommutative Jordan
algebras and show some examples. In the last section we show the relation-
ship of Jordan di-structures and dialgebras. Additionally, we prove that every
dialgebra is a noncommutative Jordan algebra.
This work is the first part of the study about the relations between

Jordan di-structures and Leibniz algebras. These relations will be
presented in future publications.

2 Jordan type di-structures
In this section, we introduce the notions of Jordan di-structure and generalized
Jordan di-structure. We study the relation of Jordan di-structures and noncom-
mutative Jordan algebras, and show some examples of Jordan di-structures.

Definition 1 (Jordan di-structure) Let J be a vector space over a field K.
We say that J is a Jordan di-structure over K if over J are defined two
K-bilinear operations ◦,¤ : J × J → J satisfying the conditions:

x ◦ y = y¤x (DJ1)

¡
x2 ◦ y¢¤x = x2 ◦ (y¤x) , (DJ2)

where x2 = x ◦ x = x¤x, for all x, y ∈ J. The condition (DJ1) is called the
di-commutative property and the condition (DJ2) is called the Jordan di-
identity.
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The Jordan di-structures include the best-known algebras: associative alge-
bras (x◦y = xy and x¤y = yx), Jordan algebras (· = ◦ = ¤) and Lie algebras
(x ◦ y = [x, y] and x¤y = [y, x]).
Example 2 Let V be a n-dimensional vector space over a field K of character-
istic zero. We take over V a base {e1, e2, . . . , en} and for all x =

Pn
i=1 αiei and

y =
Pn
i=1 βiei in V we define

x ◦ y =
Ã

nX
i=1

αi

!
y

and

x¤y =
Ã

nX
i=1

βi

!
x.

If we put hx, yi :=Pn
i=1 αiβi and E :=

Pn
i=1 ei, we have that

Pn
i=1 αi = hE, xi,Pn

i=1 βi = hE, yi, hE, x+ yi = hE, xi + hE, yi and hE, γxi = γ hE,xi. Using
the previous equations, one proves that (V, ◦,¤) is a Jordan di-structure.
Remark 3 If in the previous example we make x · y = x ◦ y, then in (V, ·) the
product · satisfies the identity

x · ¡x2 · y¢ = x2 · (x · y) , x, y ∈ V
From remark 3, we have the following proposition:

Proposition 4 A Jordan di-structure is equivalent to having a vector space J
over the same field equipped with a bilinear product · : J × J → J that satisfies
the identity

x · ¡x2 · y¢ = x2 · (x · y) , x, y ∈ J, (∗)
where x2 = x · x.
Proof. Let (J, ◦,¤) be a Jordan di-structure and we define the product

· : J × J → J by x ◦ y = x · y. Then, x¤y = y ◦ x = y · x and
x · ¡x2 · y¢ = x ◦ ¡x2 ◦ y¢ = ¡x2 ◦ y¢¤x = x2 ◦ (y¤x) = x2 · (x · y) ,

for all x, y ∈ J , then (J, ·) satisfies the conditions of this proposition.
On the other hand, we suppose that (J, ·) satisfies the identity x · ¡x2 · y¢ =

x2 · (x · y). If we define ◦,¤ : J × J → J by x ◦ y := x · y and x¤y := y · x, for
all x, y ∈ J , then (T, ◦,¤) is a Jordan di-structure.
Remark 5 The previous proposition says that the Jordan structure is equiva-
lent to a structure that satisfies a Jordan type identity, but in general is not
commutative. The identity (∗) is a special form of the classical Jordan identity
and is equivalent to classical Jordan identity

¡
x2 · y¢ · x = x2 · (y · x) in Jor-

dan algebras and in noncommutative Jordan algebras (see definition 6), but the
commutative condition is not true.
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Let (J, ◦,¤) be a Jordan di-structure. We have seen that there are linear
transformations L (x) and R (x), which are linear in x, such that x ◦ y = L(x)y
and y¤x = R(x)y. The Jordan di-identity is equivalent to£

R(x), L
¡
x2
¢¤
= 0 (1)

where [R,L] = RL− LR is the classical commutator.
Linearization of (1), if the base field contains at least 3 elements, yields

[R(a), L(b ◦ c+ b¤c)] + [R (b) , L (a ◦ c+ a¤c)] + [R (c) , L (a ◦ b+ a¤b)] = 0
(2)

or, equivalently,

(a, d, b ◦ c+ b¤c) + (b, d, a ◦ c+ a¤c) + (c, d, a ◦ b+ a¤b) = 0, (3)

where (a, b, c) denotes the “di-associator” (a, b, c) = a ◦ (b¤c)− (a ◦ b)¤c.
Definition 6 (Noncommutative Jordan algebra) Let J be a vector space
over a field K of the characteristic different from two. We say that J is a
noncommutative Jordan algebra if over J is defined a K-bilinear operation
· : J × J → J satisfying the conditions

x · (y · x) = (x · y) · x (NJ1)¡
x2 · y¢ · x = x2 · (y · x) , (NJ2)

where x2 = x · x, for all x, y ∈ J. The condition (NJ1) is the so-called flexible
law and the condition (NJ2) is the classical Jordan identity.

The flexible law is a weaker condition than the commutative condition. The
commutative condition implies the flexible law, then any Jordan algebra is a
noncommutative Jordan algebra. Lie algebras and associative algebras are
examples of the noncommutative Jordan algebras (see [S]).

Remark 7 In the beginning, the flexible law is not possible to obtain from the
Jordan di-structure axioms. The definitions of a noncommutative Jordan alge-
bra and Jordan di-structure aren’t equivalent. But it follows from proposition 4
that any noncommutative Jordan algebra is a Jordan di-structure.

Of the previous affirmation we have that the central condition in di-structures
of the Jordan type is the Jordan di-identity, so we introduce a more general di-
structure of the Jordan type.

Definition 8 (Generalized Jordan di-structure) Let J be a vector space
over a field K the characteristic different from two. We say that J is a gen-
eralized Jordan di-structure over K if over J are defined two K-bilinear
operations ◦,¤ : J × J → J satisfying the identity³

x¤◦ ◦ y
´
¤x = x¤◦ ◦ (y¤x) ,

where x¤◦ =
1
2 (x ◦ x+ x¤x), for all x, y ∈ J.
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Remark 9 Associative, Jordan, Lie, noncommutative Jordan algebras and Jor-
dan di-structures are examples of generalized Jordan di-structures.

Let (J, ◦,¤) be a generalized Jordan di-structure. The Jordan di-identity is
equivalent to h

R(x), L
³
x¤◦
´i
= 0. (4)

Linearization of (4), if the base field contains at least 3 elements, yields

[R(a), L(b~ c)] + [R (b) , L (a~ c)] + [R (c) , L (a~ b)] = 0 (5)

or, equivalently,

(a, d, b~ c) + (b, d, a~ c) + (c, d, a~ b) = 0, (6)

where (a, b, c) is the di-associator (a, b, c) = a ◦ (b¤c) − (a ◦ b)¤c and a ~ b =
a ◦ b+ b ◦ a+ a¤b+ b¤a.

3 Jordan di-structures and dialgebras
J.L. Loday introduced the notion of dialgebra (see [L1]), which is a general-
ization of an associative algebra possessing two operations. In this section,
we prove that any dialgebra is a Jordan di-structure and is a noncommutative
Jordan algebra. We recall this notion:

Definition 10 (Dialgebra) A diassociative algebra or dialgebra, over a
field K is a K-vector space (D,`,a) equipped with two K-bilinear products
a,`: D ×D → D are associative and satisfy

x a (y a z) = x a (y ` z) (D1)

x ` (y a z) = (x ` y) a z (D2)

(x a y) ` z = (x ` y) ` z (D3)

The products a and ` are called respectively the left product and the right
product.

Example 11 (Associative algebras) If A is an associative algebra, then the
formulas x a y = xy = x ` y define a structure of dialgebra on A.
Example 12 Let E be a vector space and fix ϕ ∈ E0 (the algebraic dual), then
one can define a dialgebra structure on E by setting

x a y = ϕ (y)x and x ` y = ϕ (x) y.
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Example 13 (Differential associative algebra) Let (A, d) be a differential
associative algebra. So, by hypothesis, d(ab) = da b + a db (here we work in
the non-graded setting) and d2 = 0. Define left and right products on A by the
formulas

x a y := x dy and x ` y := dx y .
It is simple to check that A equipped with these two products is a dialgebra.

Proposition 14 Let (D,a,`) be a dialgebra over a field K. If over D we define
the applications ◦,¤ : D ×D→ D for

x ◦ y := x ` y + y a x and x¤y := x a y + y ` x,
for all x, y ∈ D. Then (D, ◦,¤) is a Jordan di-structure.
Proof. Bilinearity and di-commutativity are evident from the bilinearity of

the product ` and a and of the definition of ◦ and ¤.
The Jordan di-identity is proved using the equations x2 = x ` x+x a x and

the dialgebra axioms, of the following form

(x2 ◦ y)¤x = [(x ` x+ x a x) ` y + y a (x ` x+ x a x)]¤x
= [(x ` x) ` y + (x a x) ` y + y a (x ` x) + y a (x a x)]¤x
= 2 [(x ` x) ` y]¤x+ 2 [y a (x a x)]¤x
= 2 [(x ` x) ` (y a x) + (x ` x) ` (x ` y)]

+2 [(y a x) a (x a x) + (x ` y) a (x a x)]
and

x2 ◦ (y¤x) = x2 ◦ (y a x+ x ` y)
= [(x ` x) ` (y a x) + (x a x) ` (y a x)]

+ [(x ` x) ` (x ` y) + (x a x) ` (x ` y)]
+ [(y a x) a (x ` x) + (y a x) a (x a x)]
+ [(x ` y) a (x ` x) + (x ` y) a (x a x)]

= 2 [(x ` x) ` (y a x) + (x ` x) ` (x ` y)]
+2 [(y a x) a (x a x) + (x ` y) a (x a x)]

Then (x2 ◦ y)¤x = x2 ◦ (y¤x) and this implies that (D, ◦,¤) is a Jordan di-
structure.
The applications ◦ and ¤, in the previous proposition, satisfy the flexible

laws

x ◦ (y ◦ x) = (x ◦ y) ◦ x

x¤ (y¤x) = (x¤y)¤x
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Additionally, these applications satisfy the identities

x ◦ (x¤y) = x¤ (x ◦ y)
(y ◦ x)¤x = (y¤x) ◦ x
(x ◦ y) ◦ x = x¤ (y¤x)
(x¤y)¤x = x ◦ (y ◦ x)

but do not satisfy the identity

x ◦ (y¤x) = (x ◦ y)¤x.

The previous identity is a possible generalization of the flexible law with two
products.
On the other hand, the applications ◦ and ¤ satisfy the special Jordan

identity

x2 ◦ (x ◦ y) = x ◦ ¡x2 ◦ y¢
(y¤x)¤x2 =

¡
y¤x2

¢
¤x.

It is shown in [A] that flexibility implies that the classical Jordan identity
x2(xy) =

¡
x2y

¢
x is equivalent to any of the following special Jordan identities

x2 (xy) = x
¡
x2y

¢
(xy)x2 = x

¡
yx2

¢
(yx)x2 =

¡
yx2

¢
x.

According to the previous discussion, we have the following lemma:

Lemma 15 Let (D,`,a) be a dialgebra over a field K. If we define the appli-
cations ◦,¤ : D ×D→ D for

x ◦ y := x ` y + y a x and x¤y := x a y + y ` x,

for all x, y ∈ D, then (D, ◦) and (D,¤) are noncommutative Jordan algebras.

Proposition 14 and Lemma 15 say that any dialgebra is a Jordan di-structure
and is a noncommutative Jordan algebra. This implies that any dialgebra is
a generalized Jordan di-structure. But if we take x = a2, y = b and z = a
in the axiom (D2) of dialgebras, we have that (D,`,a) is a generalized Jordan
di-structure.

Finally, we are going to see a particular construction of dialgebras, noncom-
mutative Jordan algebras and Jordan di-structures, beginning with the same
vector space.
Let V be a vector space and let GL(V) be a general linear group of V i.e.

the group of all T ∈ Hom(V) such that T is invertible. We take T and S two
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applications from V in GL(V) such that T and S send x to Tx and Sx in GL (V),
respectively.
We define the products `, a: V×V→ V by

x ` y := Tx (y)

x a y := Sx (y) .

If we suppose that (V,`,a) is a dialgebra, we have from the associativity of
the products `,a that

TxTy = TTx(y)

SxSy = SSx(y).

The axiom (D1) the dialgebras, i.e.

x a (y ` z) = x a (y a z) ,
implies that T = S.
We obtain from the other two axioms of dialgebras that

T = S

and

STx(y) = TxSy.

The previous discussion implies that (V,`,a) is a dialgebra if T = S and
TTx(y) = TxTy, for all x, y ∈ V. But the products `, a are equal and this imply
that (V, ·), for · : V × V → V defined by x · y = Tx(y), is an algebra that is
associative and is not commutative.

Now, if we suppose that (V, ·) is a noncommutative Jordan algebra, under
the product · : V×V→ V defined by

x · y = Tx (y) ,
we obtain from the flexible law the identity

(TxTy) (x) = TTx(y) (x)

and from the Jordan identity the identity

(Tx2Ty) (x) = TTx2 (y) (x) ,

for all x, y ∈ V.

On the other hand, we define the products ◦,¤ : V×V→ V by

x ◦ y = Tx(y)

x¤y = Sx(y)
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and if we suppose that (V, ◦,¤) is a Jordan di-structure, we have of the di-
commutative axiom that

Tx(y) = Sy(x), for all x, y ∈ V.
In particular, if we put y = x then

Tx(x) = Sx(x), for all x ∈ V.
The Jordan di-identity implies that

STx2 (y) (x) = (Tx2Sy) (x) .

In summary, we have that (V, ◦,¤) is a Jordan di-structure if the applications
T and S satisfy the conditions:

Tx(y) = Sy(x)

STx2 (y)(x) = (Tx2 ◦ Sy) (x),
for all x, y ∈ V. In particular, the products ◦ and ¤ are not equals in general.
If the products ◦ and ¤ are equals, i.e. T = S, we have that (V, ◦) is a
noncommutative Jordan algebra.
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