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Abstract. Let (M, g) be a real analytic Kähler manifold. We say that a

smooth map Expp : W → M from a neighbourhood W of the origin of TpM
into M is a diastatic exponential at p if it satisfies(

d Expp

)
0

= idTpM ,

Dp
(
Expp (v)

)
= gp (v, v) , ∀v ∈W,

where Dp is Calabi’s diastasis function at p (the usual exponential expp ob-
viously satisfied these equations when Dp is replaced by the square of the

geodesics distance d2
p from p). In this paper we prove that for every point p of

an Hermitian symmetric space of noncompact type M there exists a globally

defined diastatic exponential centered in p which is a diffeomorphism and it

is uniquely determined by its restriction to polydisks. An analogous result
holds true in an open dense neighbourhood of every point of M∗, the compact

dual of M . We also provide a geometric interpretation of the symplectic du-

ality map (recently introduced in [5]) in terms of diastatic exponentials. As a
byproduct of our analysis we show that the symplectic duality map pulls back

the reproducing kernel of M∗ to the reproducing kernel of M .

Introduction and statements of the main results

Let M be a n-dimensional complex manifold endowed with a real analytic Kähler
metric g. For a fixed point p ∈M let Dp : U → R be the Calabi diastasis function,
defined in the following way. Recall that a Kähler potential is an analytic function
Φ defined in a neighborhood of a point p such that ω = i

2∂∂̄Φ, where ω is the
Kähler form associated to g. By duplicating the variables z and z̄ a potential Φ can
be complex analytically continued to a function Φ̃ defined in a neighborhood U of
the diagonal containing (p, p̄) ∈M × M̄ (here M̄ denotes the manifold conjugated
to M). The diastasis function is the Kähler potential Dp around p defined by

Dp (q) = Φ̃ (q, q̄) + Φ̃ (p, p̄)− Φ̃ (p, q̄)− Φ̃ (q, p̄) .

If dp : expp (V ) ⊂M → R denotes the geodesic distance from p then one has:

Dp (q) = dp (q)2 +O
(
dp (q)4

)
and Dp = d2

p if and only if g is the flat metric. We refer the reader to the seminal
paper of Calabi [3] for more details and further results on the diastasis function
(see also [8], [9] and [4]).
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In [9] it is proven that there exists an open neighbourhood S of the zero section
of the tangent bundle TM of M and a smooth embedding ν : S → TM such that
p ◦ ν = p, where p : TM → M is the natural projection, satisfying the following
conditions: if one writes

ν (p, v) = (p, νp (v)) , (p, v) ∈ S

then the diffeomorphism

νp : TpM ∩ S → TpM ∩ ν (S)

satisfies

(dνp)0 = idTpM

Dp

(
expp (νp (v))

)
= gp (v, v) , ∀v ∈ TpM ∩ S,

where expp : V ⊂ TpM → M denotes the exponential map at p (V is a suitable
neighbourhood of the origin of TpM where the restriction of expp is a diffeomor-
phism). Thus, the smooth map

Expp := expp ◦ νp : TpM ∩ S →M

satisfies(
dExpp

)
0

= idTpM (1)

Dp

(
Expp (v)

)
= gp (v, v) , ∀v ∈W. (2)

In analogy with the exponential at p (which satisfies dp
(
expp (v)

)
=
√
gp (v, v),

∀v ∈ V ) any smooth map Expp : W → M from a neighbourhood W of the origin
of TpM into M satisfying (1) and (2) will be called a diastatic exponential at p. It
is worth pointing out (see [2] for a proof) that expp is holomorphic if and only if
the metric g is flat and it is not hard to see that the same assertion holds true for
a diastatic exponential Expp.

In this paper we study the diastatic exponentials for the Hermitian symmetric
spaces of noncompact type (HSSNT) and their compact duals. The following ex-
amples deal with the rank one case and it will be our prototypes for the general
case.

Example 1. Let CHn = {z ∈ Cn | |z|2 = |z1|2 + · · ·+ |zn|2 < 1} be the complex hy-
perbolic space endowed with the hyperbolic metric, namely this metric ghyp whose
associated Kähler form is given by ωhyp = − i

2∂∂̄ log
(
1− |z|2

)
. Thus the diastasis

function Dhyp
0 : CHn → R and the exponential map exphyp

0 : T0CHn ∼= Cn → CHn

around the origin 0 ∈ Cn are given respectively by

Dhyp
0 (z) = − log

(
1− |z|2

)
and

exphyp
0 (v) = tanh (|v|) v

|v|
, exphyp

0 (0) = 0.

It is then immediate to verify that the map Exphyp
0 : T0CHn → CHn given by:

Exphyp
0 (v) =

√
1− e−|v|2 v

|v|
, Exphyp

0 (0) = 0, v = (v1, . . . vn)
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satisfies
(
dExphyp

0

)
0

= idT0CHn and

Dhyp
0

(
Exphyp

0 (v)
)

= ghyp
0 (v, v) = |v|2, ∀v ∈ T0CHn = Cn.

Hence Exphyp
0 is a diastatic exponential at 0. Notice that Exphyp

0 is characterized
by the fact that it is direction preserving. More precisely, if F : T0CHn → CHn

is a diastatic exponential satisfying F (v) = λ (v) v, for some smooth nonnegative
function λ : Cn → R, then F = Exphyp

0 .

Example 2. Let P =
(
CH1

)` be a polydisk. If zk, k = 1, . . . , `, denotes the
complex coordinate in each factor of P and v = (v1, . . . , v`) ∈ T0P ∼= C`. Then
the diastasis DP

0 : P → R, the exponential map expP0 : T0P → P and a diastatic
exponential ExpP0 : T0P → P at the origin are given respectively by:

DP
0 (z) = −

∑̀
k=1

log
(
1− |zk|2

)
,

expP0 (v) =
(

tanh (|v1|)
v1
|v1|

, . . . , tanh (|v`|)
v`
|v`|

)
, exphyp

0 (0) = 0,

ExpP0 (v) =
(√

1− e−|v1|2 v1
|v1|

, . . . ,
√

1− e−|v`|2
v`
|v`|

)
, ExpP0 (0) = 0.

(3)

Let now M be an HSSNT which we identify with a bounded symmetric domain
of Cn centered at the origin 0 ∈ Cn equipped with the hyperbolic metric ghyp,
namely the Kähler metric whose associated Kähler form (in the irreducible case) is
given by

ωhyp =
i

2g
∂∂̄ logKM .

Here KM (z, z̄) (holomorphic in the first variable and antiholomorphic in the second
one) denotes the reproducing kernel of M and g its genus. By using the rotational
symmetries of M one can show that the diastasis function at the origin Dhyp

0 : M →
R is globally defined and reads as

Dhyp
0 (z) =

1
g

logKM (z, z̄) ,

(see [8] for a proof and further results on Calabi’s function for HSSNT). Notice also
that, by Hadamard theorem, the exponential map exphyp

0 : T0M → M is a global
diffeomorphism.

The following theorem which is the first result of this paper, contains a descrip-
tion of the diastatic exponential for HSSNT.

Theorem 1. Let
(
M, ghyp

)
be an HSSNT. Then there exists a globally defined

diastatic exponential Exphyp
0 : T0M →M which is a diffeomorphism and is uniquely

determined by the fact that Exphyp
0 |T0P

= ExpP0 for every polydisk P ⊂ M , 0 ∈ P ,

where ExpP0 is given by (3). In particular Exphyp
0 |T0N

= ExpN0 for every complex
and totally geodesic submanifold N ⊂M through 0.
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Consider now the Hermitian symmetric spaces of compact type (HSSCT). Let
us consider first the compact duals of Examples 1 and 2.

Example 3. Let CPn be the complex projective space endowed with the Fubini–
Study metric gFS , namely the metric whose associated Kähler form is given by

ωFS =
i

2
∂∂̄ log

(
|Z0|2 + · · ·+ |Zn|2

)
for a choice of homogeneous coordinates Z0, . . . , Zn. Let p0 = [1, 0, . . . , 0] and
consider the affine chart U0 = {Z0 6= 0}. Thus we have the following inclusions

CHn ⊂ Cn ∼= U0 ⊂ CPn, (4)

where we are identifying U0 with Cn via the affine coordinates

U0 → Cn : [Z0, . . . , ZN ] 7→
(
z1 =

Z1

Z0
, . . . , zn =

Zn
Z0

)
.

Under this identification we make no distinction between the point p0 and the origin
0 ∈ Cn. Calabi’s diastasis function DFS

0 : U0 → R around p0 ≡ 0 is given by

DFS
0 (z) = log

(
1 + |z|2

)
.

Observe that DFS
0 blows up at the points belonging to CPn \ U0 which is the

cut locus of p0 with respect to the Fubini–Study metric. We denote this set by
Cut0 (CPn).

It is not hard to verify that the map

ExpFS0 : T0CPn → CPn \ Cut0 (CPn)

given by

ExpFS0 (v) =
√
e|v|2 − 1

v

|v|
, ExpFS0 (0) = 0,

is a diastatic exponential at 0, namely it satisfies
(
dExpFS0

)
0

= idT0CPn and

DFS
0

(
ExpFS0 (v)

)
= gFS0 (v, v) = |v|2, ∀v ∈ T0CPn.

Example 4. Let P ∗ =
(
CP 1

)` be a (dual) polydisk. If zk, for k = 1, . . . , `, denotes
the affine coordinate in each factor of P ∗ and v = (v1, . . . , v`) ∈ T0M

∗ ∼= C` then
it is immediate to see that the diastasis DP∗

0 : P ∗ → R, the exponential map
expP

∗

0 : T0P
∗ → P ∗ and a diastatic exponential ExpP

∗

0 : T0P
∗ → P ∗ at the origin

are given respectively by:

DP∗

0 (z) =
∑̀
k=1

log
(
1 + |zk|2

)
,

expP
∗

0 (v) =
(

tan (|v1|)
v1
|v1|

, . . . , tan (|v`|)
v`
|v`|

)
, exp0 (0) = 0,

ExpP
∗

0 (v) =
(√

e|v1|2 − 1
v1
|v1|

, . . . ,
√
e|v`|2 − 1

v`
|v`|

)
, ExpP

∗

0 (0) = 0. (5)
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Given an arbitrary HSSNT M of genus g let denote by M∗ its compact dual
equipped with the Fubini–Study metric gFS , namely the pull-back of the Fubini–
Study metric of CPN via the Borel–Weil embedding M∗ → CPN (see [5] for de-
tails). Let 0 ∈ M∗ be a fixed point and denote by Cut0 (M∗) the cut locus of 0
with respect to the Fubini–Study metric. In the irreducible case the Kähler form
ωFS associated to gFS is given (in the affine chart M∗ \ Cut0 (M∗)) by

ωFS =
i

2g
∂∂̄ logKM∗ ,

where

KM∗ (z, z̄) = 1/KM (z,−z̄) . (6)

We call KM∗ the reproducing kernel of M∗. Notice that KM∗ is the weighted
Bergman kernel for the (finite dimensional) complex Hilbert space consisting of
holomorphic functions f onM∗\Cut0 (M) ⊂M∗ such that

∫
M∗\Cut0(M)

|f |2
(
ωFS

)n
<

∞ (see [8] and also [7] for a nice characterization of symmetric spaces in terms of
KM∗). Notice that when M = CHn then g = n+ 1, KM (z, z̄) =

(
1− |z|2

)−(n+1),
KM∗ (z, z̄) =

(
1 + |z|2

)n+1 and the Borel–Weil embedding is the identity of CPn.

Observe that, as in the previous examples, DFS
0 is globally defined in M∗ \

Cut0 (M∗) (see [17] for a proof) and it blows up at the points in Cut0 (M∗). More-
over

DFS
0 (z) =

1
g

logKM∗ (z, z̄) , z ∈M∗ \ Cut0 (M∗) .

Furthermore (see e.g. [18]) M∗ \ Cut0 (M∗) is globally biholomorphic to T0M
and if 0 denote the origin of M one has the following inclusions (analogous of (4))

M ⊂ T0M = T0M
∗ ∼= M∗ \ Cut0 (M∗) ⊂M∗. (7)

We are now in the position to state our second result which is the dual counter-
part of Theorem 1.

Theorem 2. Let
(
M∗, gFS

)
be an HSSCT. Then there exists a globally defined

diastatic exponential ExpFS0 : T0M
∗ → M∗ \ Cut0 (M∗) which is uniquely deter-

mined by the fact that for every (dual) polydisk P ∗ =
(
CP 1

)s ⊂M∗ its restriction
to T0P

∗ equals the map ExpP
∗

0 given by (5). In particular ExpFS0 |T0N∗ = ExpN
∗

0

for every complex and totally geodesic submanifold N∗ ⊂M∗ through 0.

The key ingredient for the proof of Theorem 1 and Theorem 2 is the theory
of Hermitian positive Jordan triple systems (HPJTS). In [5] this theory has been
the main tool to study the link between the symplectic geometry of an Hermitian
symmetric space

(
M,ωhyp

)
and its dual

(
M∗, ωFS

)
where ωhyp (resp. ωFS) is the

Kähler form associated to ghyp (resp. gFS). The main result proved there, is the
following theorem.

Theorem 3. Let M be an HSSNT and B (z, w) its associated Bergman operator
(see next section). Then the map

ΨM : M →M∗ \ Cut0 (M∗) , z 7→ B (z, z)−
1
4 z (8)

is a global real analytic diffeomorphism such that

Ψ∗Mω0 = ωhyp
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Ψ∗Mω
FS = ω0,

where ω0 is the flat Kähler form on T0M . Moreover, for every complex and totally
geodesic submanifold N ⊂M one has ΨM |N = ΨN .

Here ω0 denotes the Kähler form on M obtained by the restriction of the flat
Kähler form on T0M = Cn. The map ΨM was christened in [5] as the symplectic
duality. The unicity of this map and an alternative proof of Theorem 3 can be
found in [6].

The following theorem which represents our third result provides a geometric
interpretation of the symplectic duality map in terms of diastatic exponentials.

Theorem 4. Let M be a HSSNT and M∗ be its compact dual. Then the symplectic
duality map can be written as

ΨM = ExpFS0 ◦
(

Exphyp
0

)−1

: M →M∗ \ Cut0 (M∗) ,

where Exphyp
0 : T0M →M and ExpFS0 : T0M

∗ →M∗ \Cut0 (M∗) are the diastatic
exponentials at 0 of M and M∗ respectively.

Our fourth result is the following theorem which shows that the “algebraic ma-
nipulation” (6) which allows us to pass from KM to KM∗ can be realized via the
symplectic duality map.

Theorem 5. Let KM be the reproducing kernel for an HSSNT and let K∗M be its
dual. Then

KM∗ ◦ΨM = KM ,

where ΨM : M →M∗ \ Cut0 (M∗) is the symplectic duality map.

The paper contains another section, where, after recalling some standard facts
about HSSNT and HPJTS, we prove Theorem 1, Theorem 2, Theorem 4 and The-
orem 5.

1. hpjts and the proofs of the main results

We refer the reader to [15] (see also [14]) for more details of the material on
Hermitian positive Jordan triple systems.

1.1. Definitions and notations. An Hermitian Jordan triple system is a pair
(M, {, , }), where M is a complex vector space and {, , } is a map

{, , } :M×M×M→M
(u, v, w) 7→ {u, v, w}

which is C-bilinear and symmetric in u and w, C-antilinear in v and such that the
following J ordan identity holds:

{x, y, {u, v, w}} − {u, v, {x, y, w}} = {{x, y, u}, v, w} − {u, {v, x, y}, w}.
For x, y, z ∈M considered the following operator

T (x, y) z = {x, y, z}
Q (x, z) y = {x, y, z}
Q (x, x) = 2Q (x)
B (x, y) = idM−T (x, y) +Q (x)Q (y) .
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The operators B (x, y) and T (x, y) are C-linear, the operator Q (x) is C-antilinear.
B (x, y) is called the Bergman operator. For z ∈ V , the odd powers z(2p+1) of z in
the Jordan triple system V are defined by

z(1) = z z(2p+1) = Q (z) z(2p−1).

An Hermitian Jordan triple system is called positive if the Hermitian form

(u | v) = trT (u, v)

is positive definite. An element c ∈ M is called tripotent if {c, c, c} = 2c. Two
tripotents c1 and c2 are called (strongly) orthogonal if T (c1, c2) = 0.

1.2. HSSNT associated to HPJTS. M. Koecher ([12], [13]) discovered that
to every HPJTS (M, {, , }) one can associate an Hermitian symmetric space of
noncompact type, i.e. a bounded symmetric domain M centered at the origin
0 ∈ M. The domain M is defined as the connected component containing the
origin of the set of all u ∈M such that B (u, u) is positive definite with respect to
the Hermitian form (u, v) 7→ trT (u, v). We will always consider such a domain in
its (unique up to linear isomorphism) circled realization. The reproducing kernel
KM of M is given by

KM (z, z̄) = detB (z, z) (9)

and so when M is irreducible

ωhyp = − i

2g
∂∂̄ log detB.

The HPJTS (M, {, , }) can be recovered by its associated HSSNT M by defining
M = T0M (the tangent space to the origin of M) and

{u, v, w} = −1
2

(R0 (u, v)w + J0R0 (u, J0v)w) , (10)

where R0 (resp. J0) is the curvature tensor of the Bergman metric (resp. the com-
plex structure) of M evaluated at the origin. The reader is referred to Proposition
III.2.7 in [1] for the proof of (10). For more informations on the correspondence
between HPJTS and HSSNT we refer also to p. 85 in Satake’s book [16].

1.3. Totally geodesic submanifolds of HSSNT. In the proof of our theorems
we need the following result.

Proposition 5. Let M be a HSSNT and let M be its associated HPJTS. Then
there exists a one to one correspondence between (complete) complex totally geodesic
submanifolds through the origin and sub-HPJTS ofM. This correspondence sends
T ⊂M to T ⊂M, where T denotes the HPJTS associated to T .

1.4. Spectral decomposition and Functional calculus. Let M be a HPJTS.
Each element z ∈M has a unique spectral decomposition

z = λ1c1 + · · ·+ λscs (0 < λ1 < · · · < λs) ,

where (c1, . . . , cs) is a sequence of pairwise orthogonal tripotents and the λj are
real number called eigenvalues of z. For every z ∈M let max{z} denote the largest
eigenvalue of z, then max{·} is a norm onM called the spectral norm. The HSSNT
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M associated toM is the open unit ball inM centered at the origin (with respect
the spectral norm M), i.e.,

M = {z =
s∑
j=1

λjcj | max{z} = max
j
{λj} < 1} (11)

Using the spectral decomposition, it is possible to associate to an odd function
f : R→ C a map F :M→M as follows. Let z ∈M and let

z = λ1c1 + · · ·+ λscs, 0 < λ1 < · · · < λs

be the spectral decomposition of z. Define the map F by

F (z) = f (λ1) c1 + · · ·+ f (λs) cs. (12)

If f is continuous, then F is continuous. If

f (t) =
N∑
k=0

akt
2k+1

is a polynomial, then F is the map defined by

F (z) =
N∑
k=0

akz
(2k+1) (z ∈M) .

If f is analytic, then F is real-analytic. If f is given near 0 by

f (t) =
∞∑
k=0

akt
2k+1,

then F has the Taylor expansion near 0 ∈ V :

F (z) =
∞∑
k=0

akz
(2k+1).

Example 6. Let P =
(
CH1

)` ⊂ (C`, {, , }) be the polydisk embedded in is its
associated HPJTS

(
C`, {, , }

)
. Define c̃j =

(
0, . . . , 0, eiθj , 0, . . . , 0

)
, 1 ≤ j ≤ `. The

c̃j are mutually strongly orthogonal tripotents. Given z =
(
ρ1e

iθ1 , . . . , ρ`e
iθ`
)
∈(

CH1
)`
, z 6= 0, then up to a permutation of the coordinates, we can assume

0 ≤ ρ1 ≤ ρ2 ≤ · · · ≤ ρ`. Let i1, 1 ≤ i1 ≤ `, the first index such that ρi1 6= 0 then
we can write

z = ρi1 (c̃i1 + · · ·+ c̃i2−1) + ρi2 (c̃i2 + · · ·+ c̃i3−1) + · · ·+ ρis
(
c̃is + · · ·+ c̃is+1−1

)
with 0 < ρi1 < ρi2 < · · · < ρis = ρ` and is+1 = ` + 1. The cj ’s, defined by
cj = c̃ij + · · · + c̃ij+1−1, are still mutually strongly orthogonal tripotents and z =
λ1c1 + · · ·+λscs with λj = ρij , is the spectral decomposition of z. So the diastatic
exponential given in (3) can be written as

ExpP0 (z) =
(√

1− e−|z1|2 z1
|z1|

, . . . ,
√

1− e−|z`|2
z`
|z`|

)
=

s∑
j=1

(
1− e−λ

2
j

) 1
2
cj

and ExpP0 (0) = 0.
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We are now in the position to prove our main results. In all the following proofs
we can assume, without loss of generality, that M is irreducible. Indeed, in the
reducible case the Bergman operator is the product of the Bergman operator of
each factor and therefore the same holds true for the diastatic exponential and for
the symplectic duality map.

1.5. Proof of Theorem 1. Consider the odd smooth function f : R→ R defined
by

f (t) =
(

1− e−t
2
) 1

2 t

|t|
, f (0) = 0

and the map F : T0M →M ⊂ T0M associated to f by (12), namely

F (z) =
s∑
j=1

(
1− e−λ

2
j

) 1
2
cj , (13)

where z = λ1c1 + · · · + λscs is the spectral decomposition of z ∈ M . Notice that
F (T0M) ⊂ M by (11). We will show that Exphyp

0 := F is indeed a diastatic
exponential at the origin for M satisfying the conditions of Theorem 1. It is easy
to see that Exphyp

0 is injective and
(
dExphyp

0

)
0

= idT0M . Thus, it remains to show

that Dhyp
0

(
Exphyp

0 (z)
)

= ghyp
0 (z, z). In order to prove this equality observe that

(see [15] for a proof)

B (z, z) cj =
(
1− λ2

j

)2
cj , j = 1, . . . , s, (14)

detB (z, z) =
s∏
j=1

(
1− λ2

j

)g
,

ghyp
0 (z, z) =

1
g

trT (z, z) =
s∑
j=1

λ2
j .

Thus (9) yields,

Dhyp
0 (z) = −1

g
log detB (z, z) = − log

s∏
j=1

(
1− λ2

j

)
(15)

and so

Dhyp
0

(
Exphyp

0 (z)
)

= − log
s∏
j=1

[
1−

(
1− e−λ

2
j

)]
=

s∑
j=1

λ2
j = ghyp

0 (z, z) ,

namely the desired equality. In order to prove the second part of the theorem let
P ⊂M be a polydisk through the origin. Thus equality Exphyp

0 |T0P
= ExpP0 follows

by Proposition 5, Example 6 and formula (13). Moreover Exphyp
0 is determined by

its restriction to polydisks since it is well-known that ∀z ∈ T0M there exists a
polydisk P ⊂M such that 0 ∈ P and z ∈ T0P (see, e.g. [11] and also [10]).
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1.6. Proof of Theorem 2. Let z = λ1c1 + · · ·+λscs be a spectral decomposition
of z ∈M∗ \ Cut0 (M∗) ∼= T0M . In analogy with the compact case one has

B (z,−z) cj =
(
1 + λ2

j

)2
cj

detB (z,−z) =
s∏
j=1

(
1 + λ2

j

)g
.

gFS0 (z, z) = λ2
j .

Thus, by (6), Calabi’s diastasis function at the origin for gFS is given by:

DFS
0 (z) = −1

g
logKM∗ (z, z̄) =

1
g

log[KM (z,−z̄)] =
1
g

log[detB (z,−z)]

=
1
g

log
s∏
j=1

(
1 + λ2

j

)
(16)

Define ExpFS0 : T0M
∗ ∼= T0M →M∗ \Cut0 (M∗) ∼= T0M as the map associated to

the real function f∗ (t) =
(
et

2 − 1
) 1

2 t
|t| by (12), namely

ExpFS0 (z) =
s∑
j=1

(
eλ

2
j − 1

) 1
2
cj . (17)

Thus, following the same line of the proof of Theorem 1, one can show that ExpFS0

is the diastatic exponential at 0 uniquely determined by its restriction to polydisks.

1.7. Proof of Theorem 4. By (8) and (14)

ΨM (z) = B (z, z̄)−
1
4 (z) =

λj(
1− λ2

j

) 1
2
cj (18)

By the very definition of the diastatic exponential Exphyp
0 for the hyperbolic metric

its inverse
(

Exphyp
0

)−1

: M → T0M read as:

(
Exphyp

0

)−1

(z) =
s∑
j=1

(
− log

(
1− λ2

j

)) 1
2 cj ,

Then, by (17) and (18),

ExpFS0 ◦
(

Exphyp
0

)−1

(z) = ΨM (z)

and this concludes the proof of Theorem 4.

1.8. Proof of Theorem 5. Since Dhyp
0 = 1

g logKM and DFS
0 = 1

g logKM∗ , equa-

tion KM∗ ◦ΨM = KM is equivalent to DFS
0 ◦ΨM = Dhyp

0 which is a straightforward
consequence of (15), (16) and (18).
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[16] I. Satake, Algebraic structures of symmetric domains, Publications of the Mathematical So-
ciety of Japan 14, Kano Memorial Lectures 4, Iwanami Shoten Pub. and Princeton University

Press (1980).

[17] H. Tasaki, The cut locus and the diastasis of a Hermitian symmetric space of compact type,
Osaka J. Math. 22 (1985), 863-870.

[18] J. A. Wolf, Fine structure of Hermitian symmetric spaces, Pure and App. Math. 8 (1972),

217-357.

Dipartimento di Matematica e Informatica, Università di Cagliari, Via Ospedale 72,
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