The inner ideals of the classical Lie algebras, related gradings and Jordan pairs

C. Draper ${ }^{*}$, A. Fernández López ${ }^{\dagger}$, E. García ${ }^{\ddagger}$, M. Gómez Lozano ${ }^{\dagger}$

Abstract

The inner ideals of the simple finite dimensional Lie algebras over an algebraically closed field of characteristic 0 are classified up to conjugation by automorphisms of the Lie algebra, and up to Jordan isomorphisms of their corresponding subquotients (any proper inner ideal of a classical Lie algebra is abelian and therefore it has a subquotient which is a simple Jordan pair). While the description of the inner ideals of the Lie algebras of types A_{l}, B_{l}, C_{l} and D_{l} can be obtained from the Lie inner ideal structure of the simple Artinian rings and simple Artinian rings with involution, the description of the inner ideals of the exceptional Lie algebras (types $G_{2}, F_{4}, E_{6}, E_{7}$ and E_{8}) remained open. The method we use here to classify inner ideals is based on the relationship between abelian inner ideals and \mathbb{Z}-gradings, obtained in a recent paper of the last three named authors with E. Neher. This reduces the question to deal with root systems.

Key words: Lie algebra, Jordan pairs, inner ideal, subquotient, grading.
AMS-Classification: 17B30

Introduction

Let L be a Lie algebra over a ring of scalars Φ. A Φ-submodule B of L is an inner ideal if $[B,[B, L]] \subset B$, and B is abelian if $[B, B]=0$. The initial motivation to study inner ideals in Lie algebras was due to the fact that inner ideals are closely related to ad-nilpotent elements, and certain restrictions of these elements yield an elementary criterion for distinguishing the nonclassical from classical (finite dimensional) simple Lie algebras over an algebraically closed field of characteristic greater than 5 [2].

Abelian inner ideals and their associated notions of kernel and subquotient became a key notion to develop a socle theory for nondegenerate Lie algebras [5], and were used in [7] to construct gradings of Lie algebras: it requires the existence of abelian inner ideals whose subquotient is a Jordan pair covered by a finite grid, and this produces a grading of the Lie algebra by the weight lattice of the root system associated to the covering grid.

In [1], G. Benkart examined the Lie inner ideal structure of semiprime associative rings, and of the skew elements of prime rings with involution. An extension of these results was carried out by the authors in [6], where the inner ideals of infinite dimensional finitary simple Lie algebras were described. However,

[^0]in both of these works, a type of inner ideals, the so-called point spaces, was omitted. This description has been recently completed by G. Benkart and A. Fernández López in [3].

In this paper we adopt a different approach to determine the inner ideals of the classical Lie algebras (simple finite-dimensional Lie algebras over an algebraically closed field F of characteristic 0) based on the connection between abelian inner ideals and \mathbb{Z}-gradings commented above. Any proper inner ideal B of a classical Lie algebra L is "extreme" of a \mathbb{Z}-grading of L. As the \mathbb{Z}-gradings are always compatible with a root decomposition, B can be expressed as sum of root spaces. More precisely, any \mathbb{Z}-grading is the diagonalization relative to ad_{h}, for a semisimple element h in a Cartan subalgebra such that the coordinates relative to a basis of the root system $\alpha_{i}(h)$ are integers, and in such case the extreme is determined by the indices i such that $\alpha_{i}(h) \neq 0$. This provides us an easy procedure to determine the inner ideals, which produces a classification (called the Lie classification) of the inner ideals of L up to conjugation by automorphisms of L. On the other hand, the subquotient of any proper (equivalently, abelian) inner ideal of L is a classical Jordan pair [7]. This yields another classification (the Jordan classification) of the proper inner ideals of L up to Jordan pair isomorphisms of their subquotients. It must be noted that while two abelian inner ideals which are conjugate by an automorphism of L have necessarily isomorphic subquotients, the converse is not true, so the Lie classification is finer than the Jordan one.

Finally, by using only elementary methods of classical theory of Lie algebras, we give in the Appendix an alternative proof to the fact that every abelian inner ideal coincides with the extreme of a finite \mathbb{Z}-grading.

1. Lie algebras and Jordan pairs

1.1. Throughout this paper we will deal with finite dimensional Lie algebras L with $[x, y]$ denoting the Lie bracket and ad_{x} the adjoint map determined by x, and finite dimensional Jordan pairs $V=\left(V^{+}, V^{-}\right)$with Jordan products $Q_{x} y$ and linearizations $\{x, y, z\}:=Q_{x, z} y$, for $x, z \in V^{\sigma}, y \in V^{-\sigma}, \sigma= \pm$ (see [10] and [11]) over an algebraically closed field F of characteristic zero.
1.2. An inner ideal of a Jordan pair V is an F-subspace B of V^{σ} such that $\left\{B, V^{-\sigma}, B\right\} \subset B$. We say that two inner ideals B and B^{\prime} of V are conjugate if there exists an automorphism of V sending B to B^{\prime}. An F-subspace B of a Lie algebra L is an inner ideal if $[B,[B, L]] \subset B$, and B is abelian if $[B, B]=0$. Two inner ideals B and B^{\prime} of a Lie algebra L are conjugate if there exists an automorphism φ of L such that $\varphi(B)=B^{\prime}$.
1.3. Let $B \subset V^{+}$be an inner ideal of V. The kernel of B is the set $\operatorname{Ker}_{V} B=\left\{x \in V^{-} \mid Q_{B} x=0\right\}$. Then $\left(0, \operatorname{Ker}_{V} B\right)$ is an ideal of the Jordan pair $\left(B, V^{-}\right)$and the quotient $\operatorname{Sub}_{V} B=\left(B, V^{-}\right) /\left(0, \operatorname{Ker}_{V} B\right)=\left(B, V^{-} / \operatorname{Ker}_{V} B\right)$ is called the subquotient of B [12]. The kernel and the corresponding subquotient of an inner ideal $B \subset V^{-}$are defined similarly.

Let V and V^{\prime} be two Jordan pairs over F, and let B and B^{\prime} be inner ideals of V and V^{\prime} respectively. We say that B is isomorphic to B^{\prime} if $\operatorname{Sub}_{V} B \cong$ Sub $_{V^{\prime}} B^{\prime}$.

The analogous versions of all these results hold for abelian inner ideals of a Lie algebra, if we replace the Jordan triple product $\{x, y, z\}$ by the left double commutator $[[x, y], z]$: Any abelian inner ideal B of a Lie algebra L gives rise to a Jordan pair, which is called the subquotient of B in $L[7]$; the kernel of B is the set $\operatorname{Ker}_{L} B=\{x \in L \mid[B,[B, x]]=0\}$, and the pair of F-modules $\operatorname{Sub}_{L} B=\left(B, L / \operatorname{Ker}_{L} B\right)$ with the triple products given by

$$
\begin{aligned}
& \left\{b, \bar{x}, b^{\prime}\right\}:=\left[[b, x], b^{\prime}\right] \quad \text { for every } b, b^{\prime} \in B \text { and } x \in L, \\
& \{\bar{x}, b, \bar{y}\}:=\overline{[[x, b], y]} \quad \text { for every } b \in B \text { and } x, y \in L,
\end{aligned}
$$

where \bar{a} denotes the coset of a relative to the subspace $\operatorname{Ker}_{L} B$, is a Jordan pair called the subquotient of B. Due to this notion, we can define a new relation between inner ideals of Lie algebras: if B and B^{\prime} are abelian inner ideals of Lie algebras L and L^{\prime} respectively, then B and B^{\prime} are said to be isomorphic if $\operatorname{Sub}_{L} B \cong \operatorname{Sub}_{L^{\prime}} B^{\prime}$ as Jordan pairs. In the particular case of a simple finite dimensional Lie algebra, every proper inner ideal is abelian [2, 1.13], so it makes sense to associate a Jordan pair $\operatorname{Sub}_{L} B$ to any proper inner ideal B of L. Notice that in this case such subquotient $\operatorname{Sub}_{L} B$ is always a simple Jordan pair, according to $[7,3.5(\mathrm{vi})]$.

It turns out that an F-subspace C of B is an inner ideal of L if and only if it is an inner ideal of $\operatorname{Sub}_{L} B[7,3.5(\mathrm{i})]$.
1.4. An important class of inner ideals of Jordan pairs and Lie algebras are the so called point spaces. For a Jordan pair $V=\left(V^{+}, V^{-}\right)$, a subspace P of $V^{\sigma}, \sigma= \pm$, is called a point space if $Q_{x} V^{-\sigma}=F x$ for any nonzero $x \in P$. A subspace P of a Lie algebra L is called a point space if $[P, P]=0$ and every nonzero element $x \in P$ is extremal, i.e., $\operatorname{ad}_{x}^{2} L=F x$. If P is a point space of L, then P is an abelian inner ideal, P is a point space of the Jordan pair $\operatorname{Sub}_{L} P$, and any subspace Q of P is also a point space. All point spaces of the same dimension are isomorphic [3, 4.6].
1.5. As a general rule, we will use the same symbol to denote inner ideals of Jordan pairs and abelian inner ideals of Lie algebras which belong to the same class of isomorphy. Thus, P_{r} will denote a point space (both of a Jordan pair or a Lie algebra) of dimension r over F. When required, we will use accents to distinguish between inner ideals which are isomorphic but not conjugate.

2. The inner ideal structure of the classical Jordan pairs revisited

By a classical Jordan pair we mean a finite-dimensional simple Jordan pair over an algebraically closed field of characteristic 0 . In this section we review the classification of the inner ideals of the classical Jordan pairs over F. By [11, 17.4], any classical Jordan pair is isomorphic to one of the following:
(I) The Jordan pair $\mathcal{M}_{p \times q}:=\left(M_{p \times q}(F), M_{q \times p}(F)\right), Q_{x} y=x y x$, of $p \times q$ and $q \times p$ matrices with entries in F, and where $p \leq q$. The nonzero inner ideals of $\mathcal{M}_{p \times q}$ contained in $M_{p \times q}(F)$ are, up to conjugation, of the form

$$
M_{r \times s}:=\sum_{1 \leq i \leq r}^{1 \leq j \leq s} F[i j], \text { with } r \leq p, s \leq q, \text { and } r \leq s
$$

where $[i j]$ denotes the (i, j)-unit matrix. Moreover, the subquotient of $M_{r \times s}$ is isomorphic to $\mathcal{M}_{r \times s}$. This can be obtained from the classification of inner ideals in Jordan pairs covered by grids $[14,3.2]$, or from the geometric description of the inner ideals of Jordan pairs of finite rank continuous operators [8, Prop. 2.4]. Note that for each positive integer $r, M_{1 \times r}$ is a point space of dimension r, so, according to our notation criterion above, Sub $P_{r} \cong \mathcal{M}_{1 \times r}$.
(II) The Jordan pair $\mathcal{K}_{n}:=\left(K_{n}(F), K_{n}(F)\right), Q_{x} y=-x y x$, of skew-symmetric $n \times n$ matrices with entries in $F(n \geq 4)$. It follows from [14, 3.2(e)] that \mathcal{K}_{n} contains two types of nonzero inner ideals up to conjugation:
(i) $K_{s}:=e_{s} K_{n}(F) e_{s}$, for $2 \leq s \leq n$, where $e_{s}=[11]+\cdots+[s s]$, with subquotient \mathcal{K}_{s} and
(ii) the point spaces $P_{r}=\sum_{j=2}^{r+1} F([1 j]-[j 1])$ for $1 \leq r \leq n-1$.

Note that K_{s} is a point space if and only if $s \leq 3\left(K_{2}=P_{1}\right)$.
(III) The Jordan pair $\mathcal{S}_{n}:=\left(S_{n}(F), S_{n}(F)\right), Q_{x} y=x y x$, of symmetric $n \times n$ matrices with entries in $F(n \geq 2)$. By [14, 3.2(c)] or [13, Theorem 3], every nonzero inner ideal of \mathcal{S}_{n} is (up to conjugation) of the form $S_{r}:=e_{r} S_{n}(F) e_{r}$, for $1 \leq r \leq n$, where $e_{r}=[11]+\cdots+[r r]$, with subquotient \mathcal{S}_{r}.
(IV) The Clifford Jordan pair $\mathcal{Q}_{n}:=(X, X), Q_{x} y=q(x, y) x-q(x) y$, defined by a nondegenerate quadratic form q on an n-dimensional vector space X over F. By [13, Theorem 6], the inner ideals of \mathcal{Q}_{n} are $Q_{n}:=X$ (with subquotient \mathcal{Q}_{n}) and the totally isotropic subspaces of X. Hence, if $n=2 m$ or $n=2 m+1, \mathcal{Q}_{n}$ contains a maximal point space of dimension m. Moreover, by Witt's Theorem, two inner ideals of \mathcal{Q}_{n} are conjugate if and only if they have the same dimension.
(V) The Albert pair $\mathcal{A}:=\left(H_{3}(\mathcal{C}), H_{3}(\mathcal{C})\right)$, defined by the exceptional Jordan algebra $H_{3}(\mathcal{C})$ over F. By [13, Main Theorem], \mathcal{A} contains two maximal (proper) inner ideals up to conjugation: the 6 -dimensional point space $P_{6}=F[11]+\epsilon \mathcal{C}[12]+$ $F \epsilon[13]$, where ϵ is a primitive idempotent of the Cayley algebra \mathcal{C} (see also [13, p. 457]), and the Peirce-2-space determined by the Jordan algebra idempotent $e:=[11]+[22]$, i.e, $Q_{e} H_{3}(\mathcal{C})$. Since $Q_{e} H_{3}(\mathcal{C})$ is a 10 -dimensional simple Jordan algebra of capacity 2 over F, it is the Jordan algebra defined by a nondegenerate quadratic form on a 10 -dimensional vector space over F, so $\operatorname{Sub}_{\mathcal{A}} Q_{e} H_{3}(\mathcal{C}) \cong \mathcal{Q}_{10}$, and so we can put $Q_{10}=Q_{e} H_{3}(\mathcal{C})$ according to our notation criterion (1.5). Moreover, \mathcal{A} contains two 5 -dimensional point spaces which are not conjugate: $P_{5}=F[11]+\epsilon \mathcal{C}[12] \subset P_{6} \cap Q_{10}$ and $P_{5}^{\prime}=F[11]+\mathcal{C}[12] \epsilon \subset Q_{10}$, which is also a maximal point space.
(VI) The Bi-Cayley pair $\mathcal{B}:=\left(M_{1 \times 2}(\mathcal{C}), M_{2 \times 1}(\mathcal{C})\right), Q_{a} b=(a b) a$, where \mathcal{C} is the Cayley algebra over F. The inner ideals of \mathcal{B} are, up to conjugation, $M_{1 \times 2}(\mathcal{C})$, $\mathcal{C}[11]$, and the linear spans of the + -parts of the families of collinear idempotents,
following [14, 3.2] and the notations therein. In fact, the subquotient of $\mathcal{C}[11]$ is isomorphic to \mathcal{Q}_{8} and the inner ideals determined by the families of collinear idempotents are the point spaces of $\mathcal{B}[14,3.3(1)]$. By [11, 12.10], \mathcal{B} is isomorphic to the Peirce-1-space of the Albert pair \mathcal{A} with respect to the idempotent $e_{1}=[11]$, hence the families of collinear idempotents of \mathcal{B} are those of \mathcal{A} contained in the Peirce-1-space with respect to e_{1}, so we can apply the results obtained for the Albert pair to get the point spaces of the Bi-Cayley pair. Thus \mathcal{B} contains a maximal point space of dimension 5 (the one obtained by eliminating the [11]part of the inner ideal P_{6} of the Albert pair), and two point spaces of dimension 4 which are not conjugate (those obtained by eliminating the [11]-part of the inner ideals P_{5} and P_{5}^{\prime} of the Albert pair.)

3. The inner ideal structure of the classical Lie algebras.

By a classical Lie algebra we mean a finite-dimensional simple Lie algebra over an algebraically closed field F of characteristic 0 . In this section we determine the inner ideal structure of the classical Lie algebras, both from the Lie and Jordan point of view.

3.1. \mathbb{Z}-gradings.

A \mathbb{Z}-grading of a Lie algebra L is a decomposition in vector subspaces

$$
L=\bigoplus_{i=-n}^{n} L_{i}, \quad L_{-n}+L_{n} \neq 0
$$

such that $\left[L_{i}, L_{j}\right] \subset L_{i+j}$ for all i, j, with the understanding that $L_{i+j}=0$ if $|i+j|>n$. This is called a $(2 n+1)$-grading, and it is said that L is $(2 n+1)$ graded.

A standard example of a Lie algebra with a 3 -grading is that given by the TKK-algebra of a Jordan pair: For any Jordan pair V, there exists a Lie algebra with a 3-grading $\operatorname{TKK}(V)=L_{-1} \oplus L_{0} \oplus L_{1}$, the Tits-Kantor-Koecher algebra of V, uniquely determined by the following conditions (cf. [15, 1.5(6)]):
(TKK1) The associated Jordan pair $\left(L_{1}, L_{-1}\right)$ is isomorphic to V.
(TKK2) $\left[L_{1}, L_{-1}\right]=L_{0}$.
(TKK3) $\left[x_{0}, L_{1} \oplus L_{-1}\right]=0$ implies $x_{0}=0$, for any $x_{0} \in L_{0}$.
In general, by a TKK-algebra we mean a Lie algebra of the form $\operatorname{TKK}(V)$ for some Jordan pair V.

Recall some basic facts about gradings. If we have a \mathbb{Z}-grading $L=$ $L_{-k} \oplus \cdots \oplus L_{k}$, the map $D: L \rightarrow L$ such that $D(x)=n x$ for any $x \in L_{n}$, $n=-k, \ldots, k$, is a derivation of L. As any derivation is inner, $D=\operatorname{ad}_{h}$ for some semisimple h which belongs to a Cartan subalgebra H of L. Let $L=H \oplus\left(\bigoplus_{\alpha \in \Phi} L_{\alpha}\right)$ be the root decomposition of L relative to H. Note that $\alpha(h) \in \mathbb{Z}$ for any root α. Take a basis $\Delta=\left\{\alpha_{1}, \ldots, \alpha_{l}\right\}$ of the associated root system, and for each $i=1, \ldots, l$, define $h_{i} \in H$ by $\alpha_{j}\left(h_{i}\right)=\delta_{i j}$. As $\left\{h_{1}, \ldots, h_{l}\right\}$ is a basis of H and $h=\sum \alpha_{i}(h) h_{i}$, there exist nonnegative integers $\left(p_{1}, \ldots, p_{l}\right)$ such that $h=\sum p_{i} h_{i}$. The root space L_{α}, for $\alpha=\sum m_{i} \alpha_{i}$, is contained in the homogeneous component $L_{\sum m_{i} p_{i}}$ of the \mathbb{Z}-grading of L, and the Cartan subalgebra H is contained in L_{0}. In particular, the \mathbb{Z}-gradings of L are in
correspondence with the labels $\left(p_{1}, \ldots, p_{l}\right)$ of nonnegative integers. Moreover, two \mathbb{Z}-gradings can be taken into one another by an outer automorphism if and only if the corresponding sets of labels can be taken into one another by an automorphism of the Dynkin diagram, [16, 3.5].

3.2. Inner ideals and \mathbb{Z}-gradings.

The \mathbb{Z}-gradings are closely related to abelian inner ideals: For any \mathbb{Z}-grading $L=\oplus_{i=-n}^{n} L_{i}, L_{n}$ and L_{-n} (also called the extremes of the grading) are abelian inner ideals of L. Conversely, every abelian inner ideal whose subquotient is covered by a finite grid produces a grading of the Lie algebra by the weight lattice of the root system associated to the covering grid $[7,6.1]$. As L is a finite dimensional simple Lie algebra, every proper inner ideal B of L is abelian and its associated subquotient is covered by a finite grid, so it gives rise to a grading $L=L_{-n} \oplus \cdots \oplus L_{0} \oplus \cdots \oplus L_{n}$ for which $B=L_{n}$. In the Appendix, we prove that every abelian inner ideal is the extreme of a \mathbb{Z}-grading by using elemental Lie techniques, that is, a proof independent of that of $[7,6.1]$.

Suppose we have a \mathbb{Z}-grading of L,

$$
L_{-n} \oplus \cdots \oplus L_{0} \oplus \cdots \oplus L_{n}
$$

determined by $\left(p_{1}, \ldots, p_{l}\right) \in \mathbb{N}^{l}$, as above. The extremes of this grading are easy to determine: If we denote by $\tilde{\alpha}=\sum_{i=1}^{l} n_{i} \alpha_{i}$ the maximal root relative to Δ, the root space associated to the maximal root $L_{\tilde{\alpha}}$ is contained in the extreme L_{n}, and $n=\sum n_{i} p_{i}$. Now note that for any root $\alpha=\sum m_{i} \alpha_{i} \in \Phi$, the root space L_{α} is contained in L_{n} if and only if $\sum m_{i} p_{i}=\sum n_{i} p_{i}$; that is, if and only if $m_{j}=n_{j}$ for all j such that $p_{j} \neq 0$. Therefore, denoting by $I=\left\{j \in\{1, \ldots, l\} \mid p_{j} \neq 0\right\}$, we have that $L_{n}=B_{I}$ for

$$
B_{I}:=\bigoplus_{\alpha \in \Phi}\left\{L_{\alpha} \mid \alpha=\sum_{1 \leq i \leq l} m_{i} \alpha_{i} \text { with } m_{j}=n_{j} \text { for all } j \in I\right\} .
$$

To summarize, for H and Δ as above,
Theorem 3.1. Let B be a nonzero abelian inner ideal of a classical Lie algebra L. Then there is a subset $I \subset\{1, \ldots, l\}$ and an inner automorphism φ such that $\varphi(B)=B_{I}$.

A straightforward observation is that, for $I \subset J$, the abelian inner ideal $B_{J} \subset B_{I}$. In particular, the maximal abelian inner ideals are conjugated to $B_{\{i\}}$ for some $i \in\{1, \ldots, l\}$, although not conversely. Another interesting fact is that every chain of abelian inner ideals of L has length not greater than l. Moreover there is always a chain of abelian inner ideals of L with length just l. This is clear by recalling that for each $\alpha \in \Phi^{+} \backslash \Delta$ there is $i \in\{1, \ldots, l\}$ such that $\alpha-\alpha_{i} \in \Phi$.
3.3. For each classical simple Lie algebra L, we will compute its diagrams of abelian inner ideals and subquotients, and will organize this information in what we call the Lie classification of L and the Jordan classification of L :

- The Lie classification. We will apply the method described in 3.2 to find the abelian inner ideals of L. After choosing a Cartan subalgebra and a
basis of the related root system, each inner ideal will be conjugated to B_{I} for some nonempty subset $I \subset\{1,2, \cdots, l\}$. Further conjugations will be obtained by means of diagram automorphisms and some special cases will be dealt separately using techniques related to eigenvalues and traces of adsemisimple elements.
- The Jordan classification. In order to identify the subquotient of each abelian inner ideal B of a classical Lie algebra L we will first observe the diagram of the inner ideals of L contained in B, then compute their dimensions, and finally compare this information with the inner ideal structure of the classical Jordan pairs obtained in the previous section, since the inner ideals C contained in B are precisely the inner ideals of $\operatorname{Sub}_{L} B([7,3.5])$, and C and C^{\prime} are isomorphic as abelian inner ideals of L if and only if they are isomorphic as abelian inner ideals of $\operatorname{Sub}_{L}(B)([3,1.8])$.
3.4. The inner ideal structure of $A_{n}, n \geq 1$.

The Lie classification of the inner ideals of A_{n}. Choose the set of positive roots of A_{n} described in [4, Planche I (II)], that is, $\Phi^{+}=\left\{\alpha_{r}+\alpha_{r+1}+\cdots+\alpha_{s} \mid 1 \leq r \leq\right.$ $s \leq n\}$, whose maximal root is $\tilde{\alpha}=\alpha_{1}+\cdots+\alpha_{n}$. Following the process described in (3.2), take the nonzero abelian inner ideals B_{I} for $I \subset\{1, \ldots, n\}$. Note that for $k=\min I$ and $j=(\max I)-k, B_{I}=B_{\{k, \ldots, k+j\}}$, which coincides with the sum of the root spaces for the following roots $\left\{\alpha_{r}+\alpha_{r+1}+\cdots+\alpha_{k}+\cdots+\alpha_{k+j}+\cdots+\alpha_{s} \mid\right.$ $1 \leq r \leq k \leq k+j \leq s \leq n\}$, which is a set of cardinal $k(n+1-k-j)$.

Recall also that $B_{\{k, \ldots, k+j\}}$ is conjugated to $B_{\{n+1-k-j, \ldots, n+1-k\}}$, because there is a diagram automorphism interchanging the nodes s and $n+1-s$ in the Dynkin diagram of A_{n}. Hence any abelian inner ideal of A_{n} is conjugated to one of the B_{I} 's in the following diagram:

The Jordan classification of the inner ideals of A_{n}. As above, every nonzero abelian inner ideal of A_{n} has the form $B_{\{k, \ldots, k+j\}}$ for $1 \leq k \leq[(n+1) / 2]$ and $j \leq n-2 k+1$, whose dimension is $k(n+1-k-j)$. The subquotient associated to each abelian inner ideal $B_{\{k, \ldots, k+j\}}$ of A_{n} is a classical Jordan pair, hence, by comparing the dimensions of these abelian inner ideals with the dimensions of the inner ideals of the classical simple Jordan pairs, we conclude that the subquotient of $B_{\{k, \ldots, k+j\}}$ is a Jordan pair of type $\mathcal{M}_{k \times(n+1-k-j)}$. In particular, the inner ideals in the set $\left\{B_{\{k, \ldots, k+j\}} \mid 1 \leq k \leq[(n+1) / 2], j \leq n-2 k+1\right\}$ are not isomorphic and therefore not conjugate, so we can assure the previous diagram covers the abelian inner ideals of A_{n} up to conjugation. We get the following diagram of subquotients of A_{n} :

This information about inner ideals and subquotients, together with their corresponding TKK-algebras, is collected in the next table, $1 \leq k \leq[(n+1) / 2]$:

Abelian inner ideals	dimension	subquotients	TKK algebras
$B_{\{k\}}$	$k(n-k+1)$	$\mathcal{M}_{k \times(n-k+1)}$	A_{n}
$B_{\{k, k+1\}}$	$k(n-k)$	$\mathcal{M}_{k \times(n-k)}$	A_{n-1}
\vdots	\vdots	\vdots	\vdots
$B_{\{k, \ldots, k+j\}}$	$k(n+1-k-j)$	$\mathcal{M}_{k \times(n+1-k-j)}$	A_{n-j}
\vdots	\vdots	\vdots	\vdots
$B_{\{k, \ldots, n-k+1\}}$	k^{2}	$\mathcal{M}_{k \times k}$	$A_{2 k-1}$

3.5. The inner ideal structure of $B_{n}, n \geq 2$.

The Lie classification of the inner ideals of B_{n}. Consider the set of positive roots of B_{n} given in [4, Planche II (II)], that is, $\Phi^{+}=\left\{\alpha_{r}+\alpha_{r+1}+\cdots+\alpha_{s} \mid 1 \leq r \leq\right.$ $s \leq n\} \cup\left\{\alpha_{r}+\alpha_{r+1}+\cdots+\alpha_{t-1}+2 \alpha_{t}+\cdots+2 \alpha_{n} \mid 1 \leq r<t \leq n\right\}$, whose maximal root is $\tilde{\alpha}=\alpha_{1}+2 \alpha_{2} \cdots+2 \alpha_{n}$. Following the process described in (3.2), take the nonzero abelian inner ideals B_{I} for $I \subset\{1, \ldots, n\}$.

- If $I=\{1\}$, the roots related to B_{I} are those $\alpha=\sum m_{i} \alpha_{i}$ with $m_{1}=1$, that is $B_{\{1\}} \cong\left\{\alpha_{1}+\cdots+\alpha_{s} \mid 1 \leq s \leq n\right\} \cup\left\{\alpha_{1}+\cdots+\alpha_{t-1}+2 \alpha_{t}+\cdots+2 \alpha_{n} \mid\right.$ $1<t \leq n\}$ (identifying B_{I} with the related roots), of dimension $2 n-1$.
- If $I \supsetneq\{1\}$, take $s=\min (I \backslash\{1\})$, and then $B_{I}=B_{\{1, s, \ldots, n\}} \cong\left\{\alpha_{1}+\cdots+\right.$ $\left.\alpha_{t-1}+2 \alpha_{t}+\cdots+2 \alpha_{n} \mid 1<t \leq s \leq n\right\}$, that is, the roots verifying $m_{1}=1$ and $m_{s}=2$. It has dimension $s-1$.
- If $1 \notin I$, take $r=\min I$. Then $B_{I}=B_{\{r, \ldots, n\}} \cong\left\{\alpha_{k}+\cdots+\alpha_{t-1}+2 \alpha_{t}+\cdots+\right.$ $\left.2 \alpha_{n} \mid 1 \leq k<t \leq r\right\}$, that is, the roots verifying $m_{r}=2$. It has dimension $\binom{r}{2}$. Note that $B_{\{2, \ldots, n\}}=B_{\{1, \ldots, n\}}$, so we can consider $r \geq 3$.

It is also worth noting that for $n \geq 4$ the inner ideals $B_{\{3, \ldots, n\}}$ and $B_{\{1,4, \ldots, n\}}$ are 3-dimensional point spaces, which are not conjugate under any automorphism of B_{n}. In fact, for $n>4, B_{\{3, \ldots, n\}}$ is a maximal point space, while $B_{\{1,4, \ldots, n\}}$ is contained in the 4 -dimensional point space $B_{\{1,5, \ldots, n\}}$ [3, Corollary 5.15].

However, for $n=4$, both $B_{\{3,4\}}$ and $B_{\{1,4\}}$ are maximal point spaces, although yet they are not conjugate. In fact, while $B_{\{1,4\}}$ is the extreme of a 7grading of $L=B_{4}$ (the one given by the label $(1,0,0,1)$), $B_{\{3,4\}}$ cannot be extreme of any 7 -grading of L. Suppose on the contrary that $B_{\{3,4\}}=L_{3}$ for a 7 -grading of L, and let $s \in L$ be an ad-semisimple element such that $L_{n}=\{x \in L:[s, x]=n x\}$ for $n= \pm 3, \pm 2, \pm 1,0$. If $L=H \oplus\left(\bigoplus_{\alpha \in \Phi} L_{\alpha}\right)$ is the root decomposition of L relative to H (our fixed Cartan subalgebra), of course $s \notin H$, since the grading
would correspond to a label $\left(0,0, p_{3}, p_{4}\right)$ but $2\left(p_{3}+p_{4}\right) \neq 3$. To eliminate the possibility $s=h+\sum_{\alpha \in \Phi} w_{\alpha}, h \in H$ and $w_{\alpha} \in L_{\alpha}$ not all of them zero, consider U the sum of the root spaces related to the roots $\alpha_{1}+2 \alpha_{2}+2 \alpha_{3}+2 \alpha_{4}$, $\alpha_{1}+\alpha_{2}+2 \alpha_{3}+2 \alpha_{4}, \alpha_{2}+2 \alpha_{3}+2 \alpha_{4}, \alpha_{1}+\alpha_{2}+\alpha_{3}+2 \alpha_{4}, \alpha_{1}+\alpha_{2}+\alpha_{3}+\alpha_{4}$ and $\alpha_{1}+\alpha_{2}+\alpha_{3}$. By using that w_{α} vanishes if $\alpha+\gamma \in \Phi$ for some $\gamma \in B_{\{3,4\}}$, and that $2\left(\alpha_{3}+\alpha_{4}\right)(h)=3$, it is routine to show that U is invariant under ad_{s}, and that the trace of the restriction of ad_{s} to U is non-integer, which is a contradiction. Therefore, any abelian inner ideal of B_{n} is conjugate to one (and only one) of the B_{I} 's in the following diagram:

The Jordan classification of the inner ideals of B_{n}. The inner ideal structure of the classical Jordan pairs given in Section 2, together with the dimensions of the inner ideals of the Lie classification above, allow us to determine the subquotients of the abelian inner ideals of B_{n}. We get

- The subquotient of the abelian inner ideal $B_{\{1\}}$ is isomorphic to $\mathcal{Q}_{2 n-1}$.
- The subquotient of an abelian inner ideal of the form $B_{\{r, \ldots, n\}}$ is isomorphic to \mathcal{K}_{r}.
- The subquotient of an abelian inner ideal of the form $B_{\{1, s, \ldots, n\}}$ is isomorphic to $\mathcal{M}_{1 \times(s-1)}$.
- Both the inner ideals $B_{\{1,4, \ldots, n\}}$ and $B_{\{3, \ldots, n\}}$ are 3 -dimensional point spaces, and therefore give rise to the same subquotient.

Therefore, the diagram of subquotients of B_{n} is:

This information about inner ideals and subquotients, together with their corresponding TKK-algebras, is collected in the next table, for $3 \leq r \leq n, 2 \leq s \leq n$:

Abelian inner ideals	dimension	subquotients	TKK algebras
$B_{\{1\}}$	$2 n-1$	$\mathcal{Q}_{2 n-1}$	B_{n}
$B_{\{r, \ldots, n\}}$	$\binom{r}{2}$	\mathcal{K}_{r}	D_{r}
$B_{\{1, s, \ldots, \ldots\}}$	$s-1$	$\mathcal{M}_{1 \times s-1}$	A_{s-1}

3.6. The inner ideal structure of $C_{n}, n \geq 3$.

The Lie classification of the inner ideals of C_{n}. Consider the set of positive roots for C_{n} of [4, Planche III (II)] given by $\Phi^{+}=\left\{\alpha_{j}+\cdots+\alpha_{i-1}+2 \alpha_{i}+\cdots+2 \alpha_{n-1}+\alpha_{n} \mid\right.$ $1 \leq j \leq i \leq n\} \cup\left\{\alpha_{j}+\cdots+\alpha_{i} \mid 1 \leq j \leq i \leq n-1\right\}$, whose maximal root is $\tilde{\alpha}=2 \alpha_{1}+\cdots+2 \alpha_{n-1}+\alpha_{n}$. For $I \subset\{1, \ldots, n\}$, take $r=\min I$ and observe that $B_{I}=B_{\{r, \ldots, n\}}=\left\{\alpha_{j}+\cdots+\alpha_{i-1}+2 \alpha_{i}+\cdots+2 \alpha_{n-1}+\alpha_{n} \mid 1 \leq j \leq i \leq r\right\}$, with dimension $\binom{r+1}{2}$. Therefore any nonzero abelian inner ideal of C_{n} is conjugated to one of the B_{I} 's in the following diagram:

Moreover, this is the diagram up to conjugation, since all the dimensions are different.
The Jordan classification of the inner ideals of C_{n}. Since the subquotient of each $B_{\{r, \ldots, n\}}$ is a classical Jordan pair V whose inner ideals coincide with the abelian inner ideals of C_{n} contained in $B_{\{r, \ldots, n\}}, V$ is isomorphic to a Jordan pair \mathcal{S}_{r} of symmetric $r \times r$ matrices over F. Thus the subquotients of C_{n} are:

This information about inner ideals and subquotients, together with their corresponding TKK-algebras, is collected in the next table, for $1 \leq r \leq n$,

Abelian inner ideals	dimension	subquotients	TKK algebras
$B_{\{r, \ldots, n\}}$	$\binom{r+1}{2}$	\mathcal{S}_{r}	C_{r}

3.7. \quad The inner ideal structure of $D_{n}, n \geq 4$.

The Lie classification of the inner ideals of D_{n}. Consider the set of $n^{2}-n$ positive roots of D_{n} given in [4, VI.§4.8, Planche IV (II)], that is, $\Phi^{+}=\left\{\alpha_{i}+\cdots+\alpha_{j-1}+\right.$ $\left.2 \alpha_{j}+\cdots+2 \alpha_{n-2}+\alpha_{n-1}+\alpha_{n} \mid i<j<n-1\right\} \cup\left\{\alpha_{i}+\cdots+\alpha_{j} \mid i \leq j \leq\right.$ $n-1\} \cup\left\{\alpha_{i}+\cdots+\alpha_{n} \mid i \leq n-2\right\} \cup\left\{\alpha_{n}\right\} \cup\left\{\alpha_{i}+\cdots+\alpha_{n-2}+\alpha_{n} \mid i \leq n-2\right\}$, whose maximal root is $\tilde{\alpha}=\alpha_{1}+2 \alpha_{2} \cdots+2 \alpha_{n-2}+\alpha_{n-1}+\alpha_{n}$. Following the process described in (3.2), take the nonzero abelian inner ideals B_{I} for $I \subset\{1, \ldots, n\}$:

- If $I=\{1\}$, the related roots are $B_{\{1\}} \cong\left\{\alpha_{1}+\cdots+2 \alpha_{j}+\cdots+2 \alpha_{n-2}+\alpha_{n-1}+\right.$ $\left.\alpha_{n} \mid 1<j<n-1\right\} \cup\left\{\alpha_{1}+\cdots+\alpha_{j} \mid 1 \leq j \leq n\right\} \cup\left\{\alpha_{1}+\cdots+\alpha_{n-2}+\alpha_{n}\right\}$, of dimension $2 n-2$.
- If $I \supsetneq\{1\}$, take $s=\min (I \backslash\{1\})$. If $s<n-1$, then $B_{I}=B_{\{1, s, \ldots, n\}}$ and $B_{\{1, s, \ldots, n\}} \cong\left\{\alpha_{1}+\cdots+2 \alpha_{j}+\cdots+2 \alpha_{n-2}+\alpha_{n-1}+\alpha_{n} \mid 1<j \leq s\right\}$, which has dimension $s-1$. Moreover, $B_{\{1, n-1\}} \cong\left\{\alpha_{1}+\cdots+2 \alpha_{j}+\cdots+2 \alpha_{n-2}+\alpha_{n-1}+\alpha_{n} \mid\right.$ $1<j<n-1\} \cup\left\{\alpha_{1}+\cdots+\alpha_{n-1}, \alpha_{1}+\cdots+\alpha_{n-1}+\alpha_{n}\right\}$, with dimension $n-1 ; B_{\{1, n\}} \cong\left\{\alpha_{1}+\cdots+2 \alpha_{j}+\cdots+2 \alpha_{n-2}+\alpha_{n-1}+\alpha_{n} \mid 1<j<\right.$ $n-1\} \cup\left\{\alpha_{1}+\cdots+\alpha_{n-2}+\alpha_{n}, \alpha_{1}+\cdots+\alpha_{n-1}+\alpha_{n}\right\}$, with dimension $n-1$; and $B_{\{1, n-1, n\}} \cong\left\{\alpha_{1}+\cdots+2 \alpha_{j}+\cdots+2 \alpha_{n-2}+\alpha_{n-1}+\alpha_{n} \mid 1<j<\right.$ $n-1\} \cup\left\{\alpha_{1}+\cdots+\alpha_{n-1}+\alpha_{n}\right\}$, with dimension $n-2$.
- If $1 \notin I$, take $r=\min I$. If $r<n-1$, then $B_{I}=B_{\{r, \ldots, n\}}$, and $B_{\{r, \ldots, n\}} \cong\left\{\alpha_{i}+\cdots+2 \alpha_{j}+\cdots+2 \alpha_{n-2}+\alpha_{n-1}+\alpha_{n} \mid i<j \leq r\right\}$, which has dimension $\binom{r}{2}$. Moreover, $B_{\{n-1\}}=\left\{\alpha_{i}+\cdots+2 \alpha_{j}+\cdots+2 \alpha_{n-2}+\alpha_{n-1}+\right.$ $\left.\alpha_{n}, \alpha_{r}+\cdots+\alpha_{n-1}, \alpha_{s}+\cdots+\alpha_{n-1}+\alpha_{n} \mid i<j<n-1, r \leq n-1, s \leq n-2\right\}$ has dimension $\binom{n}{2} ; B_{\{n\}}=\left\{\alpha_{i}+\cdots+2 \alpha_{j}+\cdots+2 \alpha_{n-2}+\alpha_{n-1}+\alpha_{n}, \alpha_{r}+\right.$ $\left.\cdots+\alpha_{n}, \alpha_{s}+\cdots+\alpha_{n-2}+\alpha_{n}, \alpha_{n} \mid i<j<n-1, r, s \leq n-2\right\}$ has dimension $\binom{n}{2}$; and $B_{\{n-1, n\}}=\left\{\alpha_{i}+\cdots+2 \alpha_{j}+\cdots+2 \alpha_{n-2}+\alpha_{n-1}+\alpha_{n}, \alpha_{r}+\cdots+\alpha_{n} \mid\right.$ $i<j<n-1, r \leq n-2\}$ has dimension $\binom{n-1}{2}$.

Hence any abelian inner ideal of D_{n} is conjugated to one of the B_{I} 's in the following list: $\left\{B_{\{1\}}, B_{\{n-1\}}, B_{\{n\}}, B_{\{1, n\}}, B_{\{1, n-1\}}, B_{\{1, n-1, n\}}, B_{\{n-1, n\}}, \quad B_{\{1, s, \ldots, n\}}, B_{\{r, \ldots, n\}} \mid\right.$ $2 \leq r, s \leq n-2\}$. We can consider $r \geq 3$ because $B_{\{2, \ldots, n\}}=B_{\{1, \ldots, n\}}=\{\tilde{\alpha}\}$. Furthermore, note that we can fold the diagram by means of the order two outer automorphism which interchanges the nodes $n-1$ and n, so any abelian inner ideal is conjugated to one of the next diagram:

Besides, in the case $n=4$ there is an order three automorphism mapping $L_{\alpha_{1}}$ to $L_{\alpha_{3}}$, and $L_{\alpha_{3}}$ to $L_{\alpha_{4}}$, so in this case not only $B_{\{3\}}$ and $B_{\{4\}}$ are conjugate, but also $B_{\{1\}}$, and the diagram becomes

$$
\begin{aligned}
& \cdot \boldsymbol{B}_{\{(1\}} \\
& \cdot \boldsymbol{B}_{\{1,4\}} \\
& \cdot \mathrm{B}_{(\{1,4\}} \\
& \cdot \mathrm{B}_{\{1,2,3,4\}}
\end{aligned}
$$

The Jordan classification of the inner ideals of D_{n}. Again we can use the information on the inner ideal structure of the classical Jordan pairs provided in Section 2 to compute the subquotients of the abelian inner ideals of D_{n}. We obtain:

- The subquotient of the abelian inner ideal $B_{\{1\}}$ is isomorphic to $\mathcal{Q}_{2 n-2}$.
- The subquotient of an abelian inner ideal of the form $B_{\{r, \ldots, n\}}$ is isomorphic to \mathcal{K}_{r}.
- The subquotient of an abelian inner ideal of the form $B_{\{1, s, \ldots, n\}}$ is isomorphic to $\mathcal{M}_{1 \times(s-1)}$.

Hence, for $n>4$, the inner ideals of the diagram above are not isomorphic, up to $B_{\{1,4, \ldots, n\}}$ and $B_{\{3, \ldots, n\}}$ which are isomorphic (both are point spaces of the same dimension), but not conjugate: $B_{\{3, \ldots, n\}}$ is a maximal point space, but $B_{\{1,4, \ldots, n\}}$ is contained in the 4-dimensional point space $B_{\{1,5, \ldots, n\}}$, $[3$, Corollary 5.15]. Therefore, the diagram of subquotients of D_{n} is

(For $n=4$, the inner ideals $B_{\{1\}}$ and $B_{\{4\}}$ are conjugate in D_{4}, so they yield isomorphic subquotients. This fact also follows from the Jordan theory: the Jordan pairs \mathcal{Q}_{6} and \mathcal{K}_{4} are isomorphic $[11,17.11(\mathrm{~V})]$.)

All this information is collected in the next table, for $3 \leq r \leq n, 2 \leq s \leq n$,

Abelian inner ideals	dimension	subquotients	TKK algebras
$B_{\{1\}}$	$2 n-2$	$Q_{2 n-2}$	D_{n}
$B_{\{r, \ldots, n\}}$	$\binom{r}{2}$	\mathcal{K}_{r}	D_{r}
$B_{\{1, s, \ldots, n\}}$	$s-1$	$\mathcal{M}_{1 \times(s-1)}$	A_{s-1}

3.8. The inner ideal structure of E_{6}.

We choose the system of positive roots for E_{6} given in [4, Planche V (II)], with maximal root $\alpha_{1}+2 \alpha_{2}+2 \alpha_{3}+3 \alpha_{4}+2 \alpha_{5}+2 \alpha_{6}$. Following the process described in (3.2), every nonzero abelian inner ideal of E_{6} is conjugated to one in the next diagram:

By folding the Dynkin diagram we get that $B_{\{6\}}$ is conjugated to $B_{\{1\}}$, as well as $B_{\{5,6\}}$ to $B_{\{1,3\}}$, and $B_{\{1,5,6\}}$ to $B_{\{1,3,6\}}$. The remaining cases correspond to
not conjugate inner ideals because the dimensions are different. Therefore we conclude that the nonzero abelian inner ideals of E_{6} up to conjugation and their corresponding subquotients are:

The Lie classification

The Jordan classification

It is worth noting that the order two outer automorphism of E_{6} connecting the inner ideals $B_{\{1\}}$ and $B_{\{6\}}$ yields two conjugate copies of the inner ideal structure of the Bi-Cayley pair \mathcal{B} within E_{6}. This explains the apparently contradictory fact that while in \mathcal{B} there are two 4 -dimensional point spaces which are not conjugate, in E_{6} there is a unique 4-dimensional inner ideal up to conjugation.

The information about the inner ideals of E_{6} and of their subquotients, together with their corresponding TKK-algebras, is collected in the next table:

Abelian inner ideals	dimension	subquotients	TKK algebras
$B_{\{1\}}$	16	\mathcal{B}	E_{6}
$B_{\{1,6\}}$	8	\mathcal{Q}_{8}	D_{5}
$B_{\{1,3\}}$	5	$\mathcal{M}_{1 \times 5}$	A_{5}
$B_{\{1,3,6\}}$	4	$\mathcal{M}_{1 \times 4}$	A_{4}
$B_{\{1,3,5,6\}}$	3	$\mathcal{M}_{1 \times 3}$	A_{3}
$B_{\{1,3,4,5,6\}}$	2	$\mathcal{M}_{1 \times 2}$	A_{2}
$B_{\{1,2,3,4,5,6\}}$	1	$\mathcal{M}_{1 \times 1}$	A_{1}

3.9. The inner ideal structure of E_{7}.

We choose the system of positive roots for E_{7} given in [4, Planche VI (II)]. Following the process described in (3.2) and (3.3), the nonzero abelian inner ideals of E_{7} (up to conjugation), and their associated subquotients are:

The Lie classification

The Jordan classification

Notice that the 5 -dimensional inner ideals $B_{\{2,6,7\}}$ and $B_{\{5,6,7\}}$ are not conjugate since $B_{\{5,6,7\}}$ is the extreme of a 7 -grading of L, while $B_{\{2,6,7\}}$ cannot be expressed as L_{3} for a 7 -grading $L_{-3} \oplus \cdots \oplus L_{0} \oplus \cdots \oplus L_{3}$. If fact, if this was the case, this grading would be induced by an ad-semisimple element $s=$ $h+\sum w_{\alpha}, h \in H$ and $w_{\alpha} \in L_{\alpha}$ for all $\alpha \in \Phi$ such that $\left(\alpha+B_{\{2,6,7\}}\right) \cap \Phi=\varnothing$, relative to the root space decomposition $L=H \oplus\left(\bigoplus_{\alpha \in \Phi} L_{\alpha}\right)$. Then the 5dimensional invariant subspace of L generated by the root space corresponding to $\alpha_{1}+\alpha_{2}+2 \alpha_{3}+3 \alpha_{4}+3 \alpha_{5}+2 \alpha_{6}+\alpha_{7}$ would have an eigenvalue of the form $3-\alpha_{2}(h)$, for $\alpha_{2}(h) \in\{1, \ldots, 6\}$, while the 7 -dimensional invariant subspace of L generated by the root $\alpha_{1}+2 \alpha_{2}+2 \alpha_{3}+3 \alpha_{4}+2 \alpha_{5}+\alpha_{6}$ would have two eigenvalues with value at most 2 whose sum would be $3+2 \alpha_{2}(h)$, a contradiction. Nevertheless, both $B_{\{2,6,7\}}$ and $B_{\{5,6,7\}}$ yield the same subquotient, $\mathcal{M}_{1 \times 5}$, as point spaces of the same dimension (1.4).

This information about the inner ideals of E_{7} and of their subquotients, together with their corresponding TKK-algebras, is collected in the next table:

Abelian inner ideals	dimension	subquotients	TKK algebras
$B_{\{7\}}$	27	\mathcal{A}	E_{7}
$B_{\{2\}}$	7	$\mathcal{M}_{1 \times 7}$	A_{7}
$B_{\{6,7\}}$	10	\mathcal{Q}_{10}	D_{6}
$B_{\{2,7\}}$	6	$\mathcal{M}_{1 \times 6}$	A_{6}
$B_{\{2,6,7\}}$	5	$\mathcal{M}_{1 \times 5}$	A_{5}
$B_{\{5,6,7\}}$			
$B_{\{2,5,6,7\}}$	4	$\mathcal{M}_{1 \times 4}$	A_{4}
$B_{\{2,4,5,6,7\}}$	3	$\mathcal{M}_{1 \times 3}$	A_{3}
$B_{\{2,3,4,5,6,7\}}$	2	$\mathcal{M}_{1 \times 2}$	A_{2}
$B_{\{1,2,3,4,5,6,7\}}$	1	$\mathcal{M}_{1 \times 1}$	A_{1}

3.10. The inner ideal structure of E_{8}.

We choose the system of positive roots for E_{8} given in [4, Planche VII (II)]. Following the process described in (3.2) and (3.3), the nonzero abelian inner ideals of E_{8} (up to conjugation), together with their associated subquotients are:

The Lie classification

The Jordan classification

The inner ideals $B_{\{1,2\}}$ and $B_{\{1,3\}}$ are not conjugate. In fact, $B_{\{1,2\}}$ can be expressed as the extreme of a 11-grading, but if this were the case for $B_{\{1,3\}}$,
this last grading would be induced by an ad-semisimple element $s=h+\sum w_{\alpha}$, $h \in H$ and $w_{\alpha} \in L_{\alpha}$ for all $\alpha \in \Phi$, relative to the root space decomposition $L=H \oplus\left(\bigoplus_{\alpha_{\epsilon} \Phi} L_{\alpha}\right)$. Consider the invariant 8-dimensional subspace U of L generated by the root space related to $2 \alpha_{1}+3 \alpha_{2}+3 \alpha_{3}+5 \alpha_{4}+4 \alpha_{5}+3 \alpha_{6}+2 \alpha_{7}+\alpha_{8}$. The trace of ad s restricted to U would be $30+15 / 2$ and this is not possible since ad s is semisimple with eigenvalues $0, \pm 1, \pm 2, \pm 3, \pm 4, \pm 5$. However, both $B_{\{1,2\}}$ and $B_{\{1,3\}}$ yield the same subquotient, $\mathcal{M}_{1 \times 7}$.

This information about inner ideals and subquotients, together with their corresponding TKK-algebras, is collected in the next table:

Abelian inner ideals	dimension	subquotients	TKK algebras
$B_{\{1\}}$	14	\mathcal{Q}_{14}	D_{8}
$B_{\{2\}}$	8	$\mathcal{M}_{1 \times 8}$	A_{8}
$B_{\{1,2\}}$	7	$\mathcal{M}_{1 \times 7}$	A_{7}
$B_{\{1,3\}}$			
$B_{\{1,2,3\}}$	6	$\mathcal{M}_{1 \times 6}$	A_{6}
$B_{\{1,2,3,4\}}$	5	$\mathcal{M}_{1 \times 5}$	A_{5}
$B_{\{1,2,3,4,5\}}$	4	$\mathcal{M}_{1 \times 4}$	A_{4}
$B_{\{1,2,3,4,5,6\}}$	3	$\mathcal{M}_{1 \times 3}$	A_{3}
$B_{\{1,2,3,4,5,6,7\}}$	2	$\mathcal{M}_{1 \times 2}$	A_{2}
$B_{\{1,2,3,4,5,6,7,8\}}$	1	$\mathcal{M}_{1 \times 1}$	A_{1}

3.11. The inner ideal structure of F_{4}.

We choose the system of positive roots for F_{4} described in [4, Planche VIII (II)]. Following the process described in (3.2), the nonzero abelian inner ideals of F_{4}, up to conjugation, jointly with their associated subquotients are:

The Lie classification

The Jordan classification

This information about inner ideals and subquotients, together with their corresponding TKK-algebras, is collected in the next table:

Abelian inner ideals	dimension	subquotients	TKK algebras
$B_{\{4\}}$	7	\mathcal{Q}_{7}	B_{4}
$B_{\{3,4\}}$	3	$\mathcal{M}_{1 \times 3}$	A_{3}
$B_{\{2,3,4\}}$	2	$\mathcal{M}_{1 \times 2}$	A_{2}
$B_{\{1,2,3,4\}}$	1	$\mathcal{M}_{1 \times 2}$	A_{1}

3.12. The inner ideal structure of G_{2}.

We choose the system of positive roots for G_{2} described in [4, Planche IX (II)]. Following the process described in (3.2) and (3.3), the nonzero abelian inner ideals of G_{2} (up to conjugation), together with their associated subquotients are:

The Lie classification

The Jordan classification

This information about inner ideals and subquotients, together with their corresponding TKK-algebras, is collected in the next table:

Abelian inner ideals	dimension	subquotients	TKK algebras
$B_{\{1\}}$	2	$\mathcal{M}_{1 \times 2}(F)$	A_{2}
$B_{\{1,2\}}$	1	$\mathcal{M}_{1 \times 1}(F)$	A_{1}

4. Appendix: Structure of the inner ideals

In this section we prove that every abelian inner ideal can be obtained by the process described in (3.2). Our proof only uses elementary notions of classical theory of Lie algebras, which can be found for instance in $[9, \S 9$ and $\S 10]$. It provides an alternative proof to the fact that every abelian inner ideal B of a finite dimensional Lie algebra L coincides with L_{n}, for some \mathbb{Z}-grading $L=$ $L_{-n} \oplus \cdots \oplus L_{0} \oplus \cdots \oplus L_{n}$, c.f. [7].
4.1. Let L be a finite dimensional simple Lie algebra over an algebraically closed field F of characteristic zero. Let H be a Cartan subalgebra of L and let $L=H \oplus\left(\bigoplus_{\alpha \in \Phi} L_{\alpha}\right)$ be the root decomposition of L relative to H. Take a basis $\Delta=\left\{\alpha_{1}, \ldots, \alpha_{l}\right\}$ of the root system Φ, and let $\tilde{\alpha}=\sum_{i=1}^{l} n_{i} \alpha_{i}$ be the maximal root relative to Δ. For each nonempty set $I \subset\{1, \ldots, l\}$, denote

$$
\begin{aligned}
& P_{H, \Delta, I}=P_{I}=\left\{\alpha=\sum_{i=1}^{l} k_{i} \alpha_{i} \in \Phi \mid k_{i}=n_{i} \forall i \in I\right\} \subset \Phi, \\
& B_{H, \Delta, I}=B_{I}=\bigoplus_{\alpha \in P_{I}} L_{\alpha} \leq L .
\end{aligned}
$$

To show that B_{I} is an abelian inner ideal of L is an easy exercise left to the reader. Our goal is to prove that for any abelian inner ideal $0 \neq B$ there exist a Cartan subalgebra H, a basis Δ of the associated root system, and a set I in the above conditions such that B is equal to $B_{H, \Delta, I}$. We begin by finding the Cartan subalgebra.

Lemma 4.1. If B is a nonzero abelian inner ideal, there exists a Cartan subalgebra H of L such that $B=\bigoplus_{\alpha \in \Phi} L_{\alpha} \cap B$, where $L=H \oplus\left(\bigoplus_{\alpha \in \Phi} L_{\alpha}\right)$ is the decomposition in root spaces relative to H.

Proof. Take $0 \neq e_{1} \in B$. Since e_{1} is ad-nilpotent of index 3, there exists a standard triple $\left\{e_{1}, h_{1}, f_{1}\right\}$ of $L\left(\left[h_{1}, e_{1}\right]=2 e_{1},\left[h_{1}, f_{1}\right]=-2 f_{1}\right.$ and $\left.\left[e_{1}, f_{1}\right]=h_{1}\right)$ such that h_{1} diagonalizes L as

$$
L=L_{-2} \oplus L_{-1} \oplus L_{0} \oplus L_{1} \oplus L_{2}
$$

with $L_{2}=F e_{1}$ and $\left[h_{1}, x_{i}\right]=i x_{i}$ for any $x_{i} \in L_{i}, i=0, \pm 1, \pm 2$. Moreover $B=$ $\bigoplus_{i}\left(B \cap L_{i}\right)$ since $\left[h_{1}, B\right]=\left[\left[e_{1}, f_{1}\right], B\right] \subset[[B, L], B] \subset B$. Now, let us assume we have found standard triples $\left\{e_{i}, h_{i}, f_{i}\right\}_{i=1}^{k}$ with ad-semisimple elements h_{i} verifying
$F e_{i}=\left\{x \in L \mid\left[h_{i}, x\right]=2 x\right\} \subset B$ and $\left[h_{i}, h_{j}\right]=0$ for all $i, j=1, \ldots, k$. Note that B is homogeneous for the simultaneous diagonalization of L relative to $\sum_{i=1}^{k} F h_{i}$. If B is not spanned by $\left\{e_{i}\right\}_{i=1}^{k}$, by the graded version of the Jacobson-Morosov theorem [7, Prop. 5.2], we can find a standard triple $\left\{e_{k+1}, h_{k+1}, f_{k+1}\right\}$ of L, with homogeneous elements $e_{k+1} \in B \backslash \sum_{i=1}^{k} F e_{i}$ and f_{k+1} and ad-semisimple h_{k+1}. That implies that $\left[h_{k+1}, h_{j}\right]=0$ for all j and then the process can follow.

When B is spanned by a set $\left\{e_{i}\right\}_{i=1}^{n}$ in the above conditions, take any Cartan subalgebra H containing $H^{\prime}=\sum_{i=1}^{n} F h_{i}$. Observe that $F e_{i}$ is a onedimensional homogeneous component of the simultaneous diagonalization of L relative to H^{\prime}, so that it must remain invariant by H, and thus B is H-invariant. Besides $B \cap H=0$, since $e_{i} \notin H$.
4.2. For H and B as in the above lemma, we denote by $P:=\{\alpha \in \Phi \mid$ $\left.L_{\alpha} \subset B\right\}$ the set of roots related to B. That B is an abelian inner ideal of L is equivalent to the following conditions for P :
(i) $(P+P) \cap(\Phi \cup\{0\})=\varnothing$
(ii) $(P+((P+\Phi) \cap \Phi)) \cap \Phi \subset P$

The length of the longest chain of nonempty subsets of Φ contained in P verifying the conditions (i) and (ii) will be called the rank of P, and denoted by rank P. The following theorems will show that the rank of P coincides with the length of the longest chain of nonzero abelian inner ideals contained in B and that the length of the longest chain of nonzero abelian inner ideals contained in L is l, the rank of L as a Lie algebra.

If $B \neq 0$ (equivalently, $P \neq \varnothing$), P always contains long roots according to the following lemma:

Lemma 4.2. If $\beta \in P$ is a short root, then P contains any long root $\alpha \in \Phi$ such that $(\alpha, \beta)>0$. Moreover, $\|\alpha\|^{2} /\|\beta\|^{2}=2$ for any long root $\alpha \in \Phi$.

Proof. If α is a long root with $(\alpha, \beta)>0$, then $\langle\alpha, \beta\rangle=2,3$ by [9, §9] and $\{\alpha, \alpha-\beta, \alpha-2 \beta\} \subset \Phi$, so $\alpha=\beta+(\beta+(\alpha-2 \beta)) \in P$, by (4.2)(ii). If $\|\alpha\|^{2} /\|\beta\|^{2}=3$, then $\alpha-3 \beta \in \Phi$, so $\alpha-\beta=\beta+(\beta+(\alpha-3 \beta)) \in P$ by (4.2)(ii) and hence $\alpha=\beta+(\alpha-\beta) \in(P+P) \cap \Phi=\emptyset$ by (4.2)(i), which is not possible.

Proposition 4.3. Suppose that there exist a basis $\Delta=\left\{\alpha_{1}, \ldots, \alpha_{l}\right\}$ of the root system Φ relative to H and a permutation $\left\{i_{1}, \ldots, i_{l}\right\}$ of $\{1, \ldots, l\}$ such that

$$
B_{\left\{i_{1}, \ldots, i_{l}\right\}} \nsubseteq B_{\left\{i_{1}, \ldots, i_{l-1}\right\}} \nsubseteq \cdots \nsubseteq B_{\left\{i_{1}, \ldots, i_{k}\right\}} \nsubseteq B \subset B_{\left\{i_{1}, \ldots, i_{k-1}\right\}} .
$$

Then

1. $L_{ \pm \alpha_{i_{k}}} \oplus \cdots \oplus L_{ \pm \alpha_{i_{l}}} \subset[B, L]$,
2. $B=B_{\left\{i_{1}, \ldots, i_{k-1}\right\}}$.

Proof. Denote by $\tilde{\alpha}=\sum_{i=1}^{l} n_{i} \alpha_{i}$ the maximal root relative to Δ. We proceed by induction on $n=l+1-k$. The case $n=1$, i.e., $l=k$, is left to the reader. For the general case, applying the induction hypothesis to

$$
B_{\left\{i_{1}, \ldots, i_{l}\right\}} \nsubseteq B_{\left\{i_{1}, \ldots, i_{l-1}\right\}} \nsubseteq \cdots \nsubseteq B_{\left\{i_{1}, \ldots, i_{k+1}\right\}} \nsubseteq B_{\left\{i_{1}, \ldots, i_{k}\right\}},
$$

we get that $L_{ \pm \alpha_{i_{k+1}}} \oplus \cdots \oplus L_{ \pm \alpha_{i_{l}}} \subset\left[B_{\left\{i_{1}, \ldots, i_{k}\right\}}, L\right] \subset[B, L]$.
Firstly, let us see that also $L_{-\alpha_{i_{k}}} \subset[B, L]$, that is, that $-\alpha_{i_{k}} \in P+\Phi$: Take a maximal element β in $P \backslash P_{\left\{i_{1}, \ldots, i_{k}\right\}}$. Then $\beta=\sum k_{i} \alpha_{i}$ with $k_{i_{j}}=n_{i_{j}}$ if $j \leq k-1, k_{i_{k}} \neq n_{i_{k}}\left(k_{i} \in\left[-n_{i}, n_{i}\right]\right.$ for all $\left.i\right)$. Since $\beta \neq \tilde{\alpha}$, we can take s such that $\beta+\alpha_{s} \in \Phi$ (necessarily $s \notin\left\{i_{1}, \ldots, i_{k-1}\right\}$). But if $s \in\left\{i_{k+1}, \ldots, i_{l}\right\}$ we would have $\alpha_{s} \in P+\Phi, \beta \in P$ and $\beta+\alpha_{s} \in \Phi$, consequently (by (4.2)(ii)) $\beta+\alpha_{s} \in P$ and $\beta+\alpha_{s} \in P \backslash P_{\left\{i_{1}, \ldots, i_{k}\right\}}$ is $\succ \beta$, a contradiction with the choice of β. Therefore $\alpha_{s}=\alpha_{i_{k}}$ and we have proved $\beta+\alpha_{i_{k}} \in \Phi$. Then $-\alpha_{i_{k}}=\beta+\left(-\beta-\alpha_{i_{k}}\right) \in P+\Phi$.

Secondly, let us show that $B_{\left\{i_{1}, \ldots, i_{k-1}\right\}} \subset B$, or equivalently, that every $\gamma \in P_{\left\{i_{1}, \ldots, i_{k-1}\right\}}$ satisfies $\gamma \in P$: For such $\gamma \in P_{\left\{i_{1}, \ldots, i_{k-1}\right\}}$ we can choose indices $j_{1}, \ldots, j_{s} \in\{1, \ldots, l\}$ such that $\gamma+\alpha_{j_{1}}+\cdots+\alpha_{j_{s}}=\tilde{\alpha}$ and $\gamma+\alpha_{j_{1}}+\cdots+\alpha_{j_{r}} \in \Phi$ for all $r=1, \ldots, s$. As the coordinates of γ corresponding to the indices i_{1}, \ldots, i_{k-1} are maximum, we have that $\left\{j_{1}, \ldots, j_{s}\right\} \subset\left\{i_{k}, \ldots, i_{l}\right\}$, and according to the previous paragraph, $-\alpha_{j_{1}}, \ldots,-\alpha_{j_{s}} \in P+\Phi$. But $\tilde{\alpha} \in P$, so $\tilde{\alpha}-\alpha_{j_{s}} \in P$ (taking into account that $\tilde{\alpha}-\alpha_{j_{s}} \in \Phi,-\alpha_{j_{s}} \in P+\Phi$ and (4.2)(ii)), and with the same argument $\tilde{\alpha}-\alpha_{j_{s}}-\alpha_{j_{s-1}} \in P$ and $\gamma=\tilde{\alpha}-\alpha_{j_{s}}-\cdots-\alpha_{j_{1}} \in P$.

Finally, let us prove that $\alpha_{i_{k}}$ also belongs to $P+\Phi$: Take $\gamma \in P \backslash P_{\left\{i_{1}, \ldots, i_{k}\right\}}$, and as before choose $\left\{j_{1}, \ldots, j_{s}\right\} \subset\left\{i_{k}, \ldots, i_{l}\right\} \subset\{1, \ldots l\}$ such that $\{\gamma, \gamma+$ $\left.\alpha_{j_{1}}, \ldots, \gamma+\alpha_{j_{1}}+\cdots+\alpha_{j_{s}}=\tilde{\alpha}\right\} \subset P$. Since the i_{k} 'th coordinate of γ is not n_{i}, $i_{k} \in\left\{j_{1}, \ldots, j_{s}\right\}$, and we have found $\gamma^{\prime} \in P$ such that $\gamma^{\prime}+\alpha_{i_{k}} \in P$. In particular $\alpha_{i_{k}}=\left(\gamma^{\prime}+\alpha_{i_{k}}\right)+\left(-\gamma^{\prime}\right) \in P+\Phi$, and this finishes our proof.

Theorem 4.4. Let B be a nonzero abelian inner ideal of a finite dimensional simple Lie algebra L over an algebraically closed field of characteristic zero. Then there exist a Cartan subalgebra H, a basis Δ of the root system Φ relative to H, and a nonempty subset $I \subset\{1, \ldots, l\}$ such that $B=B_{H, \Delta, I}$.

Proof. According to Lemma 4.1, we can take a Cartan subalgebra H of L such that $B=\bigoplus_{\alpha \in \Phi} L_{\alpha} \cap B$, where Φ denotes the root system relative to H. As before let $P=\left\{\alpha \in \Phi \mid L_{\alpha} \subset B\right\}$. Take an arbitrary basis $\Delta=\left\{\alpha_{1}, \ldots, \alpha_{l}\right\}$ of Φ and let $\tilde{\alpha}=\sum n_{i} \alpha_{i}$ be the maximal root relative to Δ. We are going to prove by induction on $n=\operatorname{rank} P$ that there exist $\left\{i_{1}, \ldots, i_{n-1}\right\} \subset\{1, \ldots, l\}$ and an element σ in the Weyl group \mathcal{W} of L such that

$$
\emptyset \nsubseteq P_{\{1, \ldots, l\}} \nsubseteq P_{\{1, \ldots, l\} \backslash\left\{i_{1}\right\}} \nsubseteq \cdots \nsubseteq P_{\{1, \ldots, l\} \backslash\left\{i_{1}, i_{2}, \ldots, i_{n-1}\right\}}=\sigma(P) .
$$

In such case, for any automorphism $\hat{\sigma} \in$ aut L satisfying $\hat{\sigma}(H)=H$ and $\hat{\sigma}\left(L_{\alpha}\right)=$ $L_{\sigma(\alpha)}$ as in [9, §14], we get $\hat{\sigma}(B)=B_{H, \Delta, I}$ for $I=\{1, \ldots, l\} \backslash\left\{i_{1}, i_{2}, \ldots, i_{n-1}\right\}$ and hence $B=B_{H, \sigma^{-1}(\Delta), I}$.

We begin with the case $n=1$. By Lemma 4.2 the set P contains some long root. Since all the long roots are conjugate, there exists $\sigma \in \mathcal{W}$ such that $\tilde{\alpha} \in \sigma(P)$, and so $\sigma(P)=P_{\{1, \ldots, l\}}$.

Suppose now that P has rank $n>1$ and that $n \leq l$. Take $P^{\prime} \subset P$ of rank $n-1$ satisfying (4.2)(i)-(ii). By the induction hypothesis there exist $\sigma \in \mathcal{W}$ and $\left\{i_{1}, \ldots, i_{n-2}\right\}$ such that $\emptyset \varsubsetneqq P_{\{1, \ldots, l\}} \nsubseteq P_{\{1, \ldots, l\} \backslash\left\{i_{1}\right\}} \nsubseteq \cdots \nsubseteq P_{\{1, \ldots, l\} \backslash\left\{i_{1}, \ldots, i_{n-2}\right\}}=$ $\sigma\left(P^{\prime}\right)$. Let us denote $J=\{1, \ldots, l\} \backslash\left\{i_{1}, \ldots, i_{n-2}\right\}$. Consider the sets

$$
\begin{aligned}
& K:=\left\{i \in\{1, \ldots, l\} \mid \exists \gamma \in P_{J} \text { such that } \gamma-\alpha_{i} \in \Phi\right\}, \\
& \mathcal{G}:=\operatorname{gr}\left\langle\left\{\sigma_{\alpha_{i}} \mid i \notin K \cap J\right\}\right\rangle \leq \mathcal{W}
\end{aligned}
$$

where if $\alpha \in \Phi, \sigma_{\alpha}$ is the reflection given by $\sigma_{\alpha}(\gamma):=\gamma-\langle\gamma, \alpha\rangle \alpha$ for every $\gamma \in \Phi$. Note that $\mu\left(P_{J}\right) \subset P_{J}$ for all $\mu \in \mathcal{G}$: if $\gamma \in P_{J}$ and $i \notin J$, then $\sigma_{\alpha_{i}}(\gamma)=\gamma-\left\langle\gamma, \alpha_{i}\right\rangle \alpha_{i} \in P_{J}$ because $\sigma_{\alpha_{i}}$ does not move the coordinates of J; and if $i \in J \backslash K, \gamma-\alpha_{i} \notin \Phi$ by definition of K, and $\gamma+\alpha_{i} \notin \Phi$ by definition of J, hence $\left\langle\gamma, \alpha_{i}\right\rangle=0$ and $\sigma_{\alpha_{i}}(\gamma)=\gamma \in P_{J}$.

We will find $\mu \in \mathcal{G}$ and $i \in K \cap J$ such that $P_{\{1, \ldots, l\} \backslash\left\{i_{1}, \ldots, i_{n-2}\right\}} \nsubseteq$ $P_{\{1, \ldots, l\} \backslash\left\{i_{1}, \ldots, i_{n-2}, i\right\}}=\mu \sigma(P)$: If $\sigma(P) \backslash P_{J}$ contains some long root, take $\beta \in$ $\sigma(P) \backslash P_{J}$ a long root, otherwise take $\beta \in \sigma(P) \backslash P_{J}$ arbitrarily. Take a maximal element $\tilde{\beta}$ in $\{\mu(\beta) \mid \mu \in \mathcal{G}\}$. Let $\mu \in \mathcal{G}$ be such that $\mu(\beta)=\tilde{\beta}$. Notice that $P_{J} \cup\{\tilde{\beta}\} \subset \mu \sigma(P)$. We claim that there exists $i \in K \cap J$ such that $\tilde{\beta}+\alpha_{i} \in \Phi$. Otherwise, $\tilde{\beta}+\alpha_{i} \notin \Phi$ for all $i \in K \cap J$, hence $\left(\tilde{\beta}, \alpha_{i}\right) \geq 0$ for all $i \in K \cap J$. Besides $\sigma_{\alpha_{i}}(\tilde{\beta}) \nsucc \tilde{\beta}$ if $i \notin K \cap J$ (by the maximality of $\tilde{\beta}$), so we also get $\left(\tilde{\beta}, \alpha_{i}\right) \geq 0$ when $i \notin K \cap J$. This means that $\tilde{\beta} \in\left\{\delta \in \sum \mathbb{R} \alpha_{i} \mid\left(\delta, \alpha_{i}\right) \geq 0 \forall i=1, \ldots, l\right\}=: \overline{\mathcal{C}(\Delta)}$, the closure of the fundamental Weyl chamber relative to Δ. Hence $\eta(\tilde{\beta}) \prec \tilde{\beta}$ for all $\eta \in \mathcal{W}$ and $\tilde{\beta}$ is either the maximal (long) root $\tilde{\alpha}$ of Δ (which is not possible since $\tilde{\alpha} \in P_{J}$ but $\tilde{\beta} \notin P_{J}$) or the maximal short root of Δ (in particular, β is a short root). According to our choice of β (long if possible), $\mu \sigma(P) \backslash P_{J}$ does not contain long roots. Applying now Lemma 4.2 to $\mu \sigma(P),\langle\tilde{\alpha}, \tilde{\beta}\rangle=2$ so that $2 \tilde{\beta}-\tilde{\alpha}$ is a long root belonging to $\mu \sigma(P) \backslash P_{J}$, which is a contradiction. Therefore, there exists $i \in K \cap J$ such that $\tilde{\beta}+\alpha_{i} \in \Phi$. Since $i \in K$, there is $\gamma \in P_{J}$ such that $\gamma-\alpha_{i} \in \Phi$. Note that $\gamma-\alpha_{i}=\gamma+\tilde{\beta}+\left(-\tilde{\beta}-\alpha_{i}\right) \in(\mu \sigma(P)+((\mu \sigma(P)+\Phi) \cap \Phi)) \cap \Phi \subset \mu \sigma(P)$ by (4.2)(ii). But $\gamma-\alpha_{i} \in P_{J \backslash\{i\}} \backslash P_{J}$, since $i \in J$. Consequently $\gamma-\alpha_{i} \in\left(\mu \sigma(P) \cap P_{J \backslash\{i\}}\right) \backslash P_{J}$ and $P_{J} \nsubseteq \mu \sigma(P) \cap P_{J \backslash\{i\}} \subset P_{J \backslash\{i\}}$. By Proposition 4.3, $\mu \sigma(P) \cap P_{J \backslash\{i\}}=P_{J \backslash\{i\}}$, so that $P_{J \backslash\{i\}} \subset \mu \sigma(P)$. Moreover, $P_{J} \nsubseteq P_{J \backslash\{i\}} \subset \mu \sigma(P)$, and again by Proposition 4.3, $\mu \sigma(P)=P_{J \backslash\{i\}}=P_{\{1, \ldots, l\} \backslash\left\{i_{1}, \ldots, i_{n-2}, i\right\}}$, as searched.

Finally let us see that it is not possible that rank $P>l$. Otherwise take $P^{\prime} \nsubseteq P$ verifying (4.2)(i)-(ii) with $\operatorname{rank} P^{\prime}=l$. We have already proved that there is $\sigma \in \mathcal{W}$ and a permutation $\left\{i_{1}, \ldots, i_{l}\right\}$ such that

$$
\{\tilde{\alpha}\}=P_{\{1, \ldots, l\}}=P_{\left\{i_{1}, \ldots, i_{l}\right\}} \nsubseteq P_{\left\{i_{1}, \ldots, i_{l-1}\right\}} \nsubseteq \cdots \nsubseteq P_{\left\{i_{1}\right\}}=\sigma\left(P^{\prime}\right) \nsubseteq \sigma(P) .
$$

According to Proposition 4.3, $\pm \alpha_{j} \in \sigma\left(P^{\prime}\right)+\Phi \subset \sigma(P)+\Phi$ if $j \neq i_{1}$. By taking a maximal element β in $\sigma(P) \backslash P_{\left\{i_{1}\right\}}$ and $s \in\{1, \ldots, l\}$ such that $\beta+\alpha_{s} \in \Phi$, it is not difficult to check that $s=i_{1}$, so in particular $-\alpha_{i_{1}} \in \sigma(P)+\Phi$. Take $\left\{j_{1}, \ldots, j_{s}\right\}$ such that $\left\{\beta, \beta+\alpha_{j_{1}}=\beta+\alpha_{i_{1}}, \ldots, \beta+\alpha_{j_{1}}+\cdots+\alpha_{j_{s}}=\tilde{\alpha}\right\} \subset \Phi$. Since $\tilde{\alpha} \in \sigma(P)$ and $-\alpha_{j} \in \sigma(P)+\Phi$ for any $j \in\{1, \ldots, l\}$, the above set of roots is contained in $\sigma(P), \beta+\alpha_{i_{1}} \in \sigma(P)$ and $\alpha_{i_{1}} \in \sigma(P)+\Phi$. From here, $\Phi^{+} \subset \sigma(P)$. This condition, jointly with (4.2)(i), would force $\Phi^{+}=\sigma(P)=\left\{\alpha_{1}\right\}$, but then $1=\operatorname{rank} P>l=1$, which is a contradiction.
4.3. Remark: Theorem 4.4 provides an alternative proof to [7, Corollary 6.2] when L is a finite dimensional Lie algebra over an algebraically closed field because every nonzero abelian inner ideal B of L can be expressed as $B_{H, \Delta, I}$ for a certain Cartan subalgebra H, a basis $\Delta=\left\{\alpha_{1}, \ldots, \alpha_{l}\right\}$ of the root system associated to H and a nonempty set $I \subset\{1, \ldots, l\}$, and we have already explained in 3.1 and 3.2 how any set of nonnegative integers $\left(p_{1}, \ldots, p_{l}\right)$ satisfying that $p_{i}=0$ if $i \notin I$ induces a \mathbb{Z}-grading on $L=L_{-n} \oplus \cdots \oplus L_{0} \oplus \cdots \oplus L_{n}$ with $n=\sum n_{i} p_{i}$ (where n_{i} are the coordinates of the maximal root) and $B=L_{n}$.
4.4. Remark: Note that, as a consequence of the previous sections, we have proved that, for I and J nonempty subsets of $\{1, \ldots, l\}$ (H and Δ fixed as before) such that $B_{I} \neq B_{J}$, then B_{I} and B_{J} are nonconjugated by an inner automorphism of L.

References

[1] Georgia Benkart, The Lie inner ideal structure of associative rings, J. Algebra, 43(2) (1976), 561-584.
[2] Georgia Benkart, On inner ideals and ad-nilpotent elements of Lie algebras, Trans. Amer. Math. Soc., 232 (1977), 61-81.
[3] Georgia Benkart and Antonio Fernández López, The Lie inner ideal structure of associative rings revisited, to appear in Comm. Algebra.
[4] Nicolas Bourbaki, Eléments de mathématique. Fasc. XXXIV. Groupes et algèbres de Lie. Chapitre IV: Groupes de Coxeter et systèmes de Tits. Chapitre V: Groupes engendrés par des réxions. Chapitre VI: systèmes de racines. Actualités Scientifiques et Industrielles, No. 1337. Hermann, Paris, 1968.
[5] Cristina Draper, Antonio Fernández López, Esther García, and Miguel Gómez Lozano, The socle of a nondegenerate Lie algebra, J. Algebra, 319(6) (2008), 2372-2394.
[6] Antonio Fernández López, Esther García, and Miguel Gómez Lozano, Inner ideals of finitary simple Lie algebras, J. Lie Theory, 16(1) (2006), 97-114.
[7] Antonio Fernández López, Esther García, Miguel Gómez Lozano and Erhard Neher, A construction of gradings of Lie algebras, Int. Math. Res. Not. IMRN, (16):Art. ID rnm051, 34, 2007.
[8] Antonio Fernández López, Eulalia García Rus, Miguel Gómez Lozano and Mercedes Siles Molina, Goldie theorems for associative pairs, Comm. Algebra, 26(9) (2098), 2987-3020.
[9] James E. Humphreys, Introduction to Lie algebras and Representation Theory, Springer-Verlag, 1972.
[10] Nathan Jacobson, Lie algebras, Dover Publications Inc., New York, 1979. Re-publication of the 1962 original.
[11] Ottmar Loos, Jordan pairs, Springer-Verlag, Berlin, 1975. Lecture Notes in Mathematics, Vol. 460.
[12] Ottmar Loos and Erhard Neher, Complementation of inner ideals in Jordan pairs, J. Algebra, 166(2) (1994), 255-295.
[13] Kevin McCrimmon, Inner ideals in quadratic Jordan algebras, Trans. Amer. Math. Soc., 159 (1971), 445-468.
[14] Erhard Neher, Jordan pairs with finite grids, Comm. Algebra, 19(2) (1991), 455-478.
[15] Erhard Neher, Lie algebras graded by 3-graded root systems and Jordan pairs covered by grids, Amer. J. Math., 118(2) (1996), 439-491.
[16] Vinberg E. B. (Eds.) Onishchnik, A. L., Encyclopaedia of Mathematical Sciences, Vol. 41. Lie Groups and Lie Algebras III, Springer-Verlag, Berlin, 1991.

Dpto. de Matemática Aplicada and Dpto. de Álgebra, Geometría y Topología, Universidad de Málaga, 29071 Málaga, Spain.
cdf@uma.es
emalfer@agt.cie.uma.es
magomez@agt.cie.uma.es

Received
and in final form

Dpto. de Matemática Aplicada, Universidad Rey Juan Carlos, 28933 Móstoles, Madrid, Spain. esther.garcia@urjc.es

[^0]: *Partially supported by the MEC and Fondos FEDER, MTM2007-60333, and by the Junta de Andalucía FQM336, FQM1215 and FQM2467.
 ${ }^{\dagger}$ Partially supported by the MEC and Fondos FEDER, MTM2007-61978.
 \ddagger Partially supported by the MEC and Fondos FEDER, MTM2007-62390.

