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Abstract

A Jordan algebra J over a field k of characteristic 2 becomes a 2-Lie algebra L(.J)
with Lie product [z,y] = zoy and squaring z[?/ = 2. We determine the precise ideal
structure of L(J) in case J is simple finite-dimensional and % is algebraically closed.
We also decide which of these algebras have smooth automorphism groups. Finally,
we study the derivation algebra of a reduced Albert algebra J = H3(O, k) and show
that Der J has a unique proper nonzero ideal Vj, isomorphic to L(J)/k - 1, with
quotient Der J/V; independent of O. On the group level, this gives rise to a special
isogeny between the automorphism group of J and that of the split Albert algebra,
whose kernel is the infinitesimal group determined by V.

Introduction

We study finite-dimensional simple quadratic Jordan algebras J over fields
of characteristic 2. This situation is of particular interest because it presents
phenomena without counterpart in the linear theory:

(i) The bilinear trace form may be degenerate, giving rise to a proper
outer ideal Def(.J), the defect of J.

(ii) The algebra may be traceless, i.e., its linear trace form may be zero.
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(iii) J may not have capacity in the sense of [7].

(iv) Squaring and circle product make the vector space J into a restricted
Lie algebra L(J).

(v) The left multiplications V; = {V, : « € J} form an ideal in the
derivation algebra Der(.J), isomorphic to L(J) modulo its centre.

(vi) The automorphism group of J is not necessarily smooth.

Our main concern is to explore (iv) — (vi), but this also necessitates a study

of (i) — (iii).

Here is a more detailed description of the contents. In §1 we introduce
the trace forms, the defect, and the notions of rank and primitive rank. We
also classify (Prop. 1.9) the orbits of the automorphism group of a simple
Jordan pair, and as an application give the classification, in a form suitable
for our purposes, of the simple finite-dimensional Jordan algebras over an
algebraically closed field of characteristic 2.

§2 contains a detailed study of the Lie algebra L(J). We compute the
derived series and show that L(J) is solvable if and only if J has primitive
rank < 2 (Cor. 2.9). The ideal structure of L(.J) is completely determined in
Th. 2.11, and simplicity of subquotients of L(J) is studied in Cor. 2.12. We
also show that some of the Lie algebras L(J) occur as Lie algebras of classical
algebraic groups.

The question of smoothness of the automorphism group Aut(J) is dis-
cussed in §3. Our method is based on the result of [14] that the structure
group of a separable Jordan algebra is always smooth. This simplifies and
completes work of Springer [23] who studied smoothness of Aut(J) in his
framework of J-structures which excludes a priori traceless algebras.

The last section (§4) is devoted to the case where J = H3(0O, k) is a reduced
Albert algebra. We show (Th. 4.9) that Der(.J)/V; is a simple 26-dimensional
Lie algebra whose isomorphism class does not depend on O, and that V; is
the unique proper nonzero ideal of Der(J). Finally, using the result of Schafer-
Tomber [22] that Der(J)/V; = Vs, where J*® is the split Albert algebra, we
describe in Th. 4.14 a homomorphism £: Aut(J) — Aut(J®) with infinitesi-
mal kernel, which gives a concrete realization of the special isogeny between
an isotropic and a split group of type Fy.
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1. Preliminaries

1.1. Diagonalizability and defect in Jordan pairs. Let ¥ = (V*+,2U~) be a
finite-dimensional semisimple Jordan pair over an algebraically closed field k,
see [13] for a general reference. We review some properties of the defect and
the rank function from [15], specialized to the present situation.

Every z € U° (0 € {+,—}) is von Neumann regular [13, Th. 10.17] and
can therefore be embedded into a (Jordan pair) idempotent e = (e*,e”) as
x = €7 [13, 5.2]. The rank of x, denoted rk(x), is the capacity of the Peirce
space Vs(e) [15, Prop. 3]. In particular, x has rank one if and only if Us(e) is
a division pair. Since k is algebraically closed, = is of rank one if and only if
Q077 =k -z, ie., zis reduced in the sense of [16]. Also, U itself is reduced
in this sense, i.e., it is spanned by its rank one elements. By [16, §1], there
exists a well-defined bilinear form f: 0% x U~ — k, the Faulkner form, with
the property that

f(xa U).T = Qzv, f(z, y)y = Qyz (1)

for all rank one elements z € U*, y € Y, and arbitrary v € U, z € Y+.

An element x € 27 is called diagonalizable if there exist orthogonal division
idempotents dy, ..., d; such that z = df 4+ -- -+ df, and it is called defective if
Qyz = 0 for all rank one elements y € 2U~°. Then 0 is the only element which
is both diagonalizable and defective, and if U is simple, every element is either
diagonalizable or defective [15, Cor. 1 of Th. 1]. (For U semisimple but not
simple, there may be “mixed” elements which are neither diagonalizable nor
defective). Letting Def(207) denote the set of defective elements of 07, the
defect Def(0) = (Def(U*), Def(0™)) is either zero or a proper outer ideal of
0, which itself has defect zero: Def(Def(20)) = 0. Also, the defect can only be
nonzero if k£ has characteristic two [15, Th. 2].

We next relate the defect to the generic trace form mq: BT x U~ — k [13,
§16].

1.2. Lemma. Let Y be a semisimple finite-dimensional Jordan pair over an
algebraically closed field k.
(a) The Faulkner form agrees with the generic trace: f = m;.

(b) The defect is the kernel of my in the sense that
z € Def(U') <= my(z,07) =0, y € Def(T~) < my(V',y) =0.

Proof. (a) Consider a frame F' = (di,...,d,) of division idempotents of U,
and let € = 377, U;; be the Cartan subpair defined by F'. Since both f and
my are invariant under Aut(%0), and the orbit of €T x €~ under Aut(Y) is
Zariski-dense in U xU~ [13, 15.15], it suffices to show that f and m, agree on
¢t x €. We have my (30, Nid;, S0, ped;”) = S0, Aips by [13, 16.15]. On the



other hand, f(d;,d;) = 0 for i # j by [16, 1.7(b)], and f(d;, d; ) = 1 since the
d; are division idempotents, by 1.1.1. Hence also f(Xi_, \idf, >0_, wid; ) =
2oi=1 Al

(b) This follows from (a) and [16, 1.9(a)].

1.3. Jordan algebras. We recall from [13, §1] the correspondence between
isotopy classes of unital Jordan algebras on the one hand and isomorphism
classes of Jordan pairs containing invertible elements on the other: If v €
(07)* is invertible, then the vector space LT becomes a unital quadratic
Jordan algebra, denoted 9,7, with unit element 1 = v~!, quadratic operators
U, = Q4Q., squaring 2> = Q,v and circle product zoy = {zvy}. Conversely, if
J is a unital Jordan algebra then (J,J) is a Jordan pair containing invertible
elements, with quadratic operators (), = U,. This correspondence is easily
seen to preserve simplicity.

Let J be a finite-dimensional Jordan algebra over a field &, and let tr(z) =
t(z) and Tr(z,y) = t(z,y) be the linear and bilinear trace forms as in [10]. By
[10, (15)], we have

tr(z) = Tr(z,1) (1)
for all z € J, and from [10, (14)] it is evident that Tr is a symmetric bilinear
form on J.

Now let J = U} be obtained from a Jordan pair ¥ and an invertible
element v € 2~ as described above. Then tr and Tr are related to the generic
trace form m, of U by

tr(z) = mq(z,v), Tr(z,y) = mi(z, Quy)- (2)

Indeed, by [13, 16.3(ii)], the generic minimum polynomial of the Jordan pair
¥ := (J,J) is given by

d

m(r,z,y) = ;)(—1)%2-(95, y)r' = N(z)N(ra™" —y), (3)

for all y € J and all invertible x € J*. Here N is the generic norm of J and 7
an indeterminate. By [13, Prop. 1.11], (Id, Q,): U — 9 is an isomorphism of
Jordan pairs. Hence the coefficients of the respective generic minimum poly-
nomials are related by

7’711'(.%', y) = mi(ma va)-
From (3) we obtain by comparing coefficients at 74~ that

mi(z,y) = N(z) - OyN|,-:-

By [18, Th. 3,(17)], we have 9, N|__, = Tr((z )%, y), and by standard prop-
erties of the adjoint [10, Sec. 3], (z 1)f = (z) ! = (N(z)z !)™' = N(z) 'z
Hence, my(z,y) = N(x)Tr(N(z) 'z,y) = Tr(z,y) holds for all invertible =
and thus by density for all € J. (Since the generic minimum polynomial is



compatible with base field extension, we may assume k algebraically closed, so
density arguments involving the Zariski topology are justified) . This proves
the second formula of (2), and the first follows by specializing y = v=! = 1;.
Now [13, 16.8.2] yields the identity

Tr(z,yoz) =Tr(z oy, 2). (4)

Also, if ¢ is any (algebra) idempotent of J and A = Jy(c) = U,J its Peirce-
2-space, then the bilinear trace and the trace of A are just the restrictions of
those of J to A:

Try =Tr|A x A, tra = tr|A. (5)

Indeed, this follows from the corresponding property of the Faulkner form [16,
1.7] and Lemma 1.2(a), applied to ¥ = (J, J) and the Jordan pair idempotent
e = (c, ¢) of B whose Peirce-2 space is Vy(e) = (Ja(c), J2(c)).

We define the defect of J to be Def(J) := Def(U*). From the properties
of Def(0) and Lemma 1.2 it follows easily that Def(.J) is an outer ideal of J,
connected with Tr via

Def(J) = {z € J: Tr(z,J) = 0}. (6)

Thus Def(J) = 0 if and only if Tr is a nondegenerate bilinear form on J. The
algebra J will be called traceless if tr = 0, equivalently, if v € Def(0~) or
1, € Def(J). Clearly, if J has zero defect then its trace will be nonzero, but
not conversely.

1.4. Jordan algebras of quadratic forms with base point. Let k be an alge-
braically closed field of characteristic 2. As an example, we discuss the Jordan
algebras obtained from a Jordan pair of a nondegenerate quadratic form ¢ on
k™, where ¢ is said to be nondegenerate if ¢(x) = b(z,y) = 0 for all y € k"
implies x = 0. Here b(z,y) = q(z + y) — ¢(x) — ¢(y) is the bilinear form
associated with ¢. We may then assume that ¢ is in standard form, given
by q(z) = X%, 29i 129 if n = 2m, and xF + X7 L9 129; if n = 2m + 1,
where x = > x;¢; with respect to the standard basis (¢;) of k™. We always
assume n > 3 because the case n = 2 yields a non-simple Jordan pair, and
the case n = 1 is without interest. The quadratic operators of the Jordan pair
U = (k™, k™) determined by ¢ are

Qzy = b(z,y)x — q(z)y,

and b = m; is the generic trace form of 2. Thus by Lemma 1.2, Def(0) = 0
if n is even, while Def(07) = k - &4 if n is odd.

An element v is invertible in the Jordan pair sense if and only if ¢(v) # 0,
and it suffices to consider the case g(v) = 1. The isotope with respect to v is
then the Jordan algebra J = Jor(k", ¢, v) of the quadratic form with base point
(k™, q,v), with underlying vector space k", unit element v, and U-operators



given by
Uyy = b(z,9)x — q(z)y, where §=b(y,v)v—y. (1)
Hence the squaring and the circle product are

2’ = b(z,v)z —q(z)v, woy=0b(z,v)y+bly,v)z —blz,y)v.  (2)
The trace form tr of J is tr(z) = b(z,v). A typical non-defective invertible
element is v = €1 + &9, while in the odd-dimensional case, v = ¢, is the only
defective element with g(v) = 1. The traceless Jordan algebra Jor(k*™*1, ¢, &),
then has § = y, and hence squaring and circle product are given by

2? = q(x)gy, oy =b(z,y)eq. (3)

1.5. Lemma. Let J be a simple finite-dimensional Jordan algebra of rank r
over an algebraically closed field k of characteristic 2. Then J has nonzero
trace if and only if J has capacity in the sense of [9, Ch. 6], i.e., there exists
an orthogonal system (ci, ..., c.) of division idempotents of the algebra J such
that 1 = ¢1 + - -+ + ¢,. For the Peirce decomposition J = @<;<;j<, Jij of J
with respect to such a system we have

The defect of J 1is
Def(J) = D Ji; @)
i<j
where
Jh = {x € Jij : Tr(x, Jy;) = 0} (3)

Proof. Let J = U} where U is a simple Jordan pair. Then v ¢ Def(0™)
implies, by 1.1, that v is diagonalizable in 0. Hence there exists a frame
F = (dy,...,d,) of division idempotents of U such that v = dy +---+d, , and
then ¢; = d; are the required algebra idempotents. The properties (1) follow
from well-known corresponding ones for the Peirce decomposition of U with
respect to F. Conversely, if J contains an algebra division idempotent ¢ then
(¢,c) is a Jordan pair division idempotent and (1 —¢) L ¢, so 1 = Tr(c,¢) =
Tr(c,1) = tr(c) and thus tr # 0. The formula for the defect follows easily
from 1.3.6, because the Peirce spaces are orthogonal with respect to Tr and
T&'(Ci, Ci) =1.

We will call such a system of algebra division idempotents a frame of the
Jordan algebra J. From the conjugacy of frames in the Jordan pair 20 [13, 17.1]

it follows easily that any two frames of J are conjugate by an automorphism
of J.

In contrast, a traceless J cannot contain any division idempotent in the
algebra sense. As a substitute for the Peirce decomposition above, we have



the following result. By the rank of an element of J we mean its Jordan pair
rank when considered as an element of U". The rank of J is defined as the
rank of 1;.

1.6. Lemma. Let J be a simple finite-dimensional traceless Jordan algebra
of rank r over an algebraically closed field k of characteristic 2.

(a) Any algebra idempotent ¢ of J has even rank and belongs to the defect
of J. In particular, r = tk(1;) = 2s is even. Moreover, c is primitive if and
only if it has rank 2.

(b) There exist orthogonal systems cy,. .., cs of primitive algebra idempo-
tents ¢; with ¢; + --- + ¢s = 1. Any two such systems are conjugate under
an automorphism of J. In the Peirce decomposition J = @i<icj<s Jij with
respect to such a system, J;; is the Jordan algebra of a traceless nondegenerate
quadratic form with base point of odd dimension > 3, and Ji; # 0 for i # j.

(¢) The defect of J is given by

Def(J) = ék‘ -¢; D @JZ] (1)

1<j

Proof. (a) Asin 1.3 we write J = U where 9 is a simple Jordan pair, and
v is a defective invertible element. We put 20 = Def (). An idempotent ¢ of
the algebra J satisfies ¢ = ¢ = Q.v € 20" = Def(J) because 2U is an outer
ideal. Hence also rk(c) = 2 rkgy(c) (by [15, Lemma 6(b)]) is even. It follows that
rk(c) = 2 implies ¢ is primitive, else ¢ = ¢’ +¢” could be decomposed as the sum
of two orthogonal algebra idempotents, which would have rk(¢') = rk(¢”) =

Conversely, let ¢ be a primitive idempotent of J. Then ¢ = (c¢,Q,c) and
e/ = (1 -r¢,Qy(1 —c)) are orthogonal Jordan pair idempotents in 20 with
e'+e" = (1,v). Since 20 has defect zero, ' = d;+- - -+d; is the orthogonal sum
of division idempotents d; € 20, so rk(d;) = 2. Also, d; € Wh(e') = Wy(e"),
so by the Peirce rules, (df)? = Q(d )v = Q(df )e'™ = Q(d])d; = d is an
algebra idempotent. Similarly, one shows that the d; are orthogonal. Since
c=df +---+dj, it follows from primitivity of ¢ that ¢ = 1, so ¢ has rank 2.

(b) As 20 has defect zero, v is diagonalizable in 20, so we can write
v=d; +---+d; where (di,...,ds) is a frame of division idempotents in 20.
In particular, the d; have rank 1 in 20 and therefore rank 2 in . Hence the
c; := dj are orthogonal algebra idempotents of J with sum 1;, and they are
primitive because they have rank two. Now J;; is the isotope of the Jordan
pair s (d;) with respect to d; , and the latter is simple of rank two and has
d; in its defect. By [15, p. 260, Example (a)], Us(d;) is the Jordan pair of a
nondegenerate defective quadratic form, so the structure of J;; follows from
1.4. Tt is a general fact that Peirce-2-spaces inherit simplicity. This implies
Jij # 0, else Jo(c; + ¢j) = Ji; @ Jj; would not be simple.

By the proof of (a), there is a natural bijection between frames (dy, . .., d;)



of 20 with > d; = v and systems of primitive orthogonal idempotents of J
with sum 1;. Now the conjugacy statement follows easily from conjugacy of
frames in 20.

(c) By (a), all ¢; belong to the defect, and hence also all J;; = ¢; o J;;,
because the defect is an outer ideal. Thus we have the inclusion from right to
left in (1). On the other hand, J;; N Def(J) is the defect of .J;; [15, Prop. 2(c)],
and this is k - ¢; by 1.4.

1.7. The primitive rank. Let J be a simple Jordan algebra over an alge-
braically closed field of characteristic 2. By Lemmas 1.5 and 1.6, it makes
sense to define the primitive rank prk(J) of J by

K(J) — rk(J)  if J has nonzero trace
prk() = stk(J) if J is traceless '

The primitive rank can also be characterized as the maximal length of a system
of orthogonal primitive algebra idempotents of J.

1.8. Classification. Using the correspondence between Jordan algebras and
Jordan pairs (cf. 1.3), the classification of simple unital Jordan algebras is
equivalent to

(i) the classification of simple Jordan pairs ¥ containing invertible ele-
ments,

(ii) the determination of the orbits of Aut(0) on the set (U~)* of in-
vertible elements of U~ .

The classification of simple finite-dimensional Jordan algebras over algebraic-
ally closed fields of characteristic # 2 is well known, see, e.g., [8]. In the
characteristic two case, the classification could be extracted from the much
more general results of [19], but there seems to be no explicit handy reference
(the one given in [7] is incomplete). However, under our rather restrictive
assumptions, it seems simpler to use the procedure outlined above. Step (i)
is well-known [13, §17], so it remains to carry out step (ii). It is actually not
difficult to determine all orbits of Aut() on U+ which will be important in
§3.

1.9. Proposition. Let U be a simple finite-dimensional Jordan pair of rank
r over an algebraically closed field k and let o € {£}. Then the automorphism
group Aut(0) and the inner automorphism group Inn (L) have the same orbits
on Y?, and these orbits are described as follows:

(a) If Def(B) = 0 then = and & belong to the same orbit if and only if
rk(z) = rk(Z). Hence there are r+1 orbits, corresponding to the possible values
0,...,7 of the rank function.

(b) If Def(U) # 0 then z and T belong to the same orbit if and only if



rk(z) = 1k(Z), and both x and T are diagonalizable or both are defective. Since
the rank of a defective element is always even, there are r + 1+ [r/2] orbits.

Proof. The rank function and the defect are clearly invariant under auto-
morphisms, so the conditions listed in (a) and (b) are certainly necessary for
x and Z to belong to the same orbit. To prove that they are sufficient, let first
x,Z € U7 both be diagonalizable of the same rank ¢. Then x = d{+- - -+df and
i =dl+---+d? can be embedded into frames (ds, ..., d,) and (dy,...,d,) of
division idempotents of . By [13, 17.1],~there exists an inner automorphism
¢ = (¢p4,p_) of BV such that ¢(d;) = d;, whence x = p,(Z). As the rank
function takes all values between 0 and r, there are r + 1 orbits in case U has

defect zero.

Next, let  and Z both be nonzero and defective of the same rank, and put
20 := Def(0). Then 20 is simple and has Def(20) = 0 [15, Th. 2], and the
rank function of 20 is given by rky (x) = (1/2) rk(z) [15, Lemma 6(b)]. In
particular, z and = have even rank. Now = and Z are diagonalizable and of the
same rank in 20, so they are, by what we proved above, conjugate under some
¥ € Inn(20). Here # is a finite product of inner automorphisms 3(u, v), where
(u,v) € 2 is quasi-invertible in 20. Since quasi-invertibility in 20 implies
quasi-invertibility in ‘U, it follows that ¢ extends to an inner automorphism
@ of 0. The formula for the number of orbits is then immediate.

1.10. Corollary. Let ‘U be a simple finite-dimensional Jordan pair contain-
ing tnvertible elements over an algebraically closed field k.

(a) If U contains no defective invertible elements then Aut(®0) acts tran-
sitively on (07)*.

(b) If U contains defective invertible elements then Aut(0) has two orbits
on (B7)*. In this case, k has characteristic 2 and the rank of U is even.

1.11. Classification, continued. Let k be an algebraically closed field of char-
acteristic 2. We now carry out the classification of simple finite-dimensional
Jordan algebras outlined in 1.8. Of the list of simple Jordan pairs [13, §17],
precisely the following contain invertible elements: 1,,, II5,,, IIL,, IV, VI. From
the computation of the generic trace form in [13, §17], we see that m, is de-
generate, and hence, by Lemma 1.2, the defect of ¥ is nonzero, only in the
cases III,, and IVy,,41.

(a) The isotopes of the types I,,, ITI,, and VI with respect to the unit matrix
yield the Jordan algebras of hermitian matrices with diagonal coefficients in &k
over k@ k, k, and the split octonions O, respectively. It is well known that the

isotope of 11y, with respect to the element v = (10 10T ) is the Jordan algebra
T

H,(Q, k) of hermitian matrices over the split quaternion algebra Q = Mat, (k)

with respect to the involution (3 ? ) = (i 2 >, with diagonal coefficients



in k.

(b) The defect of the Jordan pair III, (n x n symmetric matrices) is

the Jordan pair II,, of alternating n x n-matrices, which contains invertible

]‘P

1, 0

element, and the isotope with respect to v is easily seen to be isomorphic to

H,(Q,9Q), hermitian matrices over Q as above, with diagonal coefficients in
the three-dimensional fixed point set Qg of *.

elements if and only if n = 2p is even. In particular, v = ( ) is such an

(c) The case of Jordan pairs of type IV, that is, Jordan pairs of a nonde-
generate quadratic form, was done in 1.4.
We collect these results in the following table, which also lists the spaces

J o J, determined in 2.7 below.

Pl v J rk |prk| tr | Def(J) | JolJ
z > 1) 1, H, (k& k, k) r| r |#0 0 Ker tr
1127" 01,

(r>1) (17' 0) H,(9Q,k) r| r |#0 0 Ker tr
111,

(r>1) 1, H, (k) r| r |#0]| Alt.(k) | Alt,(k)
1L, 01,

o) (%) H,(Q, Q) 2| p | 0 |Hy(Q,k)|H,y(Q k)
IV, 9

(m> 2) €1+ &2 JOI‘(k m,q,€1+€2) 2 2 #0 0 Ker tr
Iv2m+1 2m+1

(m > 1) g1+ &g |Jor(K*™ [ g,e1+e9)| 2| 2 |#0| k-g Ker tr
%inﬁ) €0 Jor(k*™+1 g, &) 21110 | k-e k-eg
VI 15 H3(0, k) 31 3 |#0 0 Ker tr

There are the following isomorphisms in low ranks:

Hl(k) = Hl(k s> kak) = Hl(Qa k) = ka
H1(Q, Q) & Jor(k®, q,20), Ha(k) = Jor(k?, q,e1 + £3),
Ho(k @ k, k) =2 Jor(k*,q,e1 +e2), Ha(Q, k) = Jor(k®, q,e1 + 2).

Finally, we note that H,(k & k, k) is isomorphic to the full matrix algebra
Mat, (k), considered as Jordan algebra.

2. The Lie algebra L associated with J
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2.1. The structure Lie algebra and the derivation algebra. Let J be a unital
quadratic Jordan algebra over a commutative ring R. Recall [8, p. 437] that
the structure Lie algebra Strl(J) of J is the set of all linear maps A: J — J
such that there exists a linear map A* from .J to itself with the property that
AU, + U, A" = Uz, a(z) for all z € J. This A" is uniquely determined and given
by Af = Ui,aq1) — 4; in fact, the map A — A? := — A! is an automorphism of
period 2 of Strl(J). Thus

A€ Strl(J) <~ Uz,A(z) = [A, Uz] + UzUl,A(l) for all x € J. (1)

The structure Lie algebra is isomorphic to the derivation algebra Der(*U) of
the associated Jordan pair U = (J,J) via A — (A, A?). For z,y,z € J let as
usual {z,y, 2z} =V, 42 = U, ,y. Then it follows from the defining identities of
J that V,, € Strl(J), with V!, =V, .

A derivation of J is an endomorphism A satisfying A(1) = 0 and [A,U,] =
UA(z),s, for all z € J; equivalently, A € Der(J) if and only if A € Strl(J) and
A(l) =0.

Let us specialize now to the case where 2 = 0 in R. Then each left multi-
plication V, = V1 : y = z oy is in Der(J) since z o 1 = 2z = 0. Moreover,
Der(J) is a restricted subalgebra of the restricted Lie algebra End(J) (with
Lie product given by the commutator) because it is easy to see that for any
A € Der(J), its square A? is again in Der(J). This is of course just a spe-
cial case of the general fact that the Lie algebra of a linear algebraic group
in characteristic p is closed under p-th powers and hence a p-Lie algebra. In
particular, Strl(J) is also a 2-Lie algebra.

Recall the following well-known fact:

2.2. Theorem [7, Theorem 4, p. 1.28]|. Let J be a quadratic Jordan algebra
over a ring R with 2R = 0. Then the R-module J is a 2-Lie algebra, denoted
by L = L(J), with commutator [a,b] := ao b and squaring a!? := a?.

Thus the adjoint representation of L is given by ad(z)y = x o y. From the
definitions it follows easily that every derivation of J is also a derivation of
the restricted 2-Lie algebra L because [A,ad(z)] = ad(A(z)) = Vaw) and
A(z?) = z 0 A(z) = [z, A(z)]. This also shows that V; is an ideal of the Lie
algebra Der(.J), and it is even an ideal in the sense of restricted Lie algebras,
i.e., a 2-ideal, since the identity QJ20 of [7] says V> — V. = 2U, = 0.

2.3. Lemma. Let J be a finite-dimensional Jordan algebra over o field k
of characteristic 2 and let tr be its generic trace. Then tr(z)? = tr(z?), in
particular, Kertr is closed under squares.

Proof. This is a consequence of Newton’s identities and probably well known.
Since there seems to be no reference in the literature covering the present
situation, we provide a proof. Let U = (J,J) be the Jordan pair associated
to J and let N(z,y) =1 — my(x,y) + ma(x,y) F - - - be its generic norm [13,
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16.9]. Also, let R = k(¢) ® k() be the tensor product of two copies of the
dual numbers. For the moment, we don’t assume that k£ has characteristic 2.
Since (e + 6)? = 28 and (¢ + ) = 0 for 4 > 3 and the m; are homogeneous
of degree 7 in x and in y, we have in U Q R,

N(z,(e+0)y) =1— (e +6)my(z,y) + 2edma(x, y). (1)

On the other hand, (z, y) is quasi-invertible with quasi-inverse ¥ = z+eU,y,
so by [13, Th. 16.11],

N(z, (e +0)y) = N(z,ey) - N(z + eUsy, 0y)
=1 —emi(z,y)) - (1 —dmi(z+eUzy,y))
=1—(e+8mi(z,y) +ed(mi(z,y)? —mi(Upy, ). (2)

Comparing coefficients at ¢§ and putting y = 1, yields, because m;(z,1;) =
tr(z) by 1.3.1 and 1.3.2, that tr(z)? — tr(z?) = 2ms(z, 1), and this vanishes
in characteristic 2.

Our next aim is to determine the ideal structure of L in the finite-dimens-
ional simple case. Recall that a simple algebra over a field k£ is said to be
absolutely simple if it remains simple under any base field extension.

2.4. Lemma. Let J be a simple Jordan algebra of primitive rank p over
an algebraically closed field k of characteristic 2 and and let ci,...,c, be a
complete orthogonal system of primitive idempotents, with associated Peirce
decomposition J = @1<icj<p Jij-

(a) We have

Ji=k-¢; and ijzk-(ci+cj) fori # j. (1)
(b) Let a;; € Ju Then

aiiOJii:{O ZfaiiEk.Ci};

k-ci ifa;¢k-c
(0 ifdimJy=1
JiiOJii_{k.ci ifdimJii>1}.

(c) Suppose J has nonzero trace. Then for i # j and a;; € Jjj,

T f
aj o Jij = {0 ¥ € T } (4)

k- (ci+c;) otherwise
where Jihj 1s defined in 1.5.3. Also,
. (0 dfdimJj; is even}
dim Jj; = { 1 if dim Jy; is odd
and hence
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Jij © Jij - {k . (Ci + Cj) ZfdlmJZ] >1

Proof. J;; is either k - ¢; or the Jordan algebra of a traceless nondegenerate
quadratic form ¢ with base point ¢; of dimension > 3. Now the first formula
of (1), formula (2) and hence (3) follow easily from 1.4.3.

Let A:=k-c;® Jij ® k- c;. If J has nonzero trace, the ¢; are division
idempotents so J;; = k- ¢; and therefore A = Jy(c; +¢;). If, on the other hand,
J is traceless and K := Def(J), then the ¢; are division idempotents of K
and 1.6.1 shows that A = Ky(¢; + ¢;). Thus in any case, A is a subalgebra
which is simple of rank 2 and has nonzero trace. By the classification, A &
Jor(k™, q,e1 + €2) is the Jordan algebra of a nondegenerate quadratic form
g with nonzero trace of dimension n > 3. Thus ¢ is given by ¢(Ac; + pc; +
zij) = Mt + g(z;;) and ¢|J;; is again nondegenerate. Since J;; is orthogonal to
¢i +¢j = 14, formula 1.4.2 shows 2 = ¢q(x)(c; + ¢;) for x € J;;. This proves
the second formula of (1).

Now let J have nonzero trace. By 1.4, the bilinear trace of A is Try = b,
the bilinear form associated to ¢, and by 1.3.5 this is also the restriction of
the bilinear trace Tr of J to A. Thus we have z o y = Tr(z,y)(¢c; + ¢;) for
all z,y € J;; and therefore (4). In characteristic 2, a nondegenerate quadratic
form has its associated bilinear form equal to zero if and only if it is one-
dimensional. Hence we have (5) and (6).

2.5. Proposition. Let J be a finite-dimensional absolutely simple Jordan
algebra over a field k of characteristic 2. Then V, = 0 for x € J if and only if
x € k-1, so the centre of the associated Lie algebra L = L(J) is k - 1.

Proof. We have V; = 2Id = 0 since k has characteristic two. For the converse,
it is no restriction, after extending scalars, to assume £ algebraically closed.
We use the Peirce decompositions given in Lemmas 1.5 and 1.6. Choose an

orthogonal system c;, . .., ¢, of primitive idempotents of J such that ¢; 4---+
cp = 1, decompose & = 31 <;<j<, T4 relative to (cy, ..., c,), and put zy; = 1y
for convenience. Then for all [ =1, ..., p, using the Peirce rules and 2 = 0 in
k, we have

O=Vea=azyoc+Y zioa =2+ Y Tyoc =Y Ty
i<j il 7l

This shows that all off-diagonal z; vanish, so x = Y¥_, z;. Furthermore,
0 =2xo0J; =z 0 J; implies x; = \;¢; is a scalar multiple of ¢;, by 2.4.2.

Now let ¢ # j. Since all off-diagonal Peirce spaces J;; are nonzero, we may
choose 0 # z;; € J;; and then obtain 0 = z 0 z;; = Aj¢; 0 z;5 + A\jej o zij = (N +
Aj)zij, whence A;+A; = 0 or \; = A;. It follows that z = A(c1+- - -+¢,) = A-1,
as asserted.

2.6. Corollary. We keep the assumptions of 2.5, and assume that Tr is
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nondegenerate. Then [L, L] = Kertr is a 2-ideal of codimension one.

Proof. For a subspace X of J let X+ = {y € J : Tr(X,y) = 0}. Then
ye[L, Lt < 0=Tr(JoJ,y)=Tr(J,Joy) (by 1.3.4) < Joy=0 (by
nondegeneracy of Tr) <— y € k-1 (by 2.5). Again by nondegeneracy of Tr,
it follows that [L, L] = [L, L]** = (k-1)* = Ker tr, and Ker tr is closed under
squares by Lemma 2.3.

2.7. Proposition. Let J be a finite-dimensional simple Jordan algebra of
rank v > 2 over an algebraically closed field k of characteristic 2, and L the
associated Lie algebra.

(a) If J is traceless we have [L,L] = = Def(J).

(b) If J has nonzero trace, let ¢y, ..., c, be a frame of division idempotents
of J, and let J = @, k-c;®D,<; Ji; the associated Peirce decomposition. Then

Def(J) = ®i<j Jij Zf dim J12 =1
L L=
[ ] Kertr = {Z )‘ici . E )‘z = O} D ®i<j Jij Zf dim J12 >1

and L2 = L.

Proof. (a) We have 1 € Def(J), and hence also J o J = {J,1,J} C Def(J),
because the defect is an outer ideal. To prove the reverse inclusion, we choose a
frame ci, ..., ¢, of primitive idempotents and use formula 1.6.1 for the defect:
Jij = ¢;ioJdi; C JodJ fori ;é j,and JZZ has dimension > 3 by 1.6(b),so¢; € JoJ
by 2.4.3. Finally, L =Y JE 4+ Sic; Ji 4+ JoJ, so LN = J o J follows
from Lemma 2.4(a).

(b) Always [L, L] C Kertr, because
tr(zoy) =Tr(zxoy,1) = Tr(z,yo 1) = 2Tr(z,y) = 0.

As before, J;; = ¢;0J;; C JoJ for i # j. The only way elements in (JoJ)NY Jj;
can arise is from J;; o J;; for i # j, because J;; 0 J;; = 0, and J;; 0 J;; C Jy for
different ¢, j, [. From conjugacy of frames, it follows that dim Jio = dim J;; for
all 7 # j. Hence there are the following two cases:

(i) dimJy; = 1 for all @ # j. Then Jij o0 J;; = 0 by 2.4.6, 80 JoJ =
@i<; Jij = Def(J), by 1.5.2 and 2.4(c).

(ii) dimJ;; > 1 for all ¢ # j. Then J o J contains all J;; as well as all
¢; + ¢, for i # j, by 2.4.6. Now an element = Y7 ; \;j¢; has tr(z) = Y1 A
because tr(c;) = 1, and the formula z = tr(z)c; + Y7, Ai(¢; + ¢1) shows that
every element of trace zero belongs to J o J. The final assertion is clear from
the fact that all ¢; = ¢? € L2,

It is now easy to determine the derived series of the Lie algebra L. Recall
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that this is defined inductively by L = L, LD = [L(™ L(M™]. We also use
the notation L/, L" etc. instead of L(Y) L®) etc.

2.8. Corollary. Let J be a finite-dimensional simple Jordan algebra of rank
r > 2 over an algebraically closed field k of characteristic 2, with associated
Lie algebra L.

(a) If J has nonzero trace and r > 3 then
LRI = L' #0,
where L' = [L, L] is described in 2.7(b).

(b) Let J be traceless and r = 2s > 6, and put K = Def(J). Then K is a
simple Jordan algebra of rank s with nondegenerate trace form Trg and hence
trg # 0, and the derived series of L is

LPL = KPL" = Ker(trk) = L" # 0.

(c) If J is traceless of rank 2, i.e., J = Jor(k*™! q,&0) is the Jordan
algebra of a traceless quadratic form with base point of dimension 2m+1 > 3,
then

LRl =k -1,2L" = 0.

(d) If J has rank 2, dimension n > 4 and nonzero trace, i.e., J =
Jor(k™, q,e1 + €3) is the Jordan algebra of a quadratic form with base point
and nonzero trace, then

LPL = KertrpL" = k-12L" = 0.

() If J = Jor(k3 q,e1 + e3) = Hy(k) is the Jordan algebra of a 3-
dimensional quadratic form with base point and nonzero trace, then

L2LI =k- 802[1” =0.

(f) Let J be traceless and r = 4, and let K = Def(J). Then K =
Jor(k®, q,e1 + €2) is as in case (d), and the derived series is

LRL' = KRL" = Ker(trg) 2L" = k- 12L™% = 0.

Proof. (a) By 2.7(b), J;; C [L, L] for i # j. Since r > 3, there exists | # 1, j,
and therefore J;; = JyoJ;; C L". If dim Jy3 = 1 then by 2.7(b), L' = @,; Ji; C
L". If dim Ji > 1 then again by 2.7(b), [L, L] = @c; Jij + Xicj k - (ci + ¢;).
Here ¢; +¢; € J;j o0 J;; C L", so we again have L" = L'.

(b) Here L' = K by 2.7(a), and K has rank s > 3 and nondegenerate trace
form, so the assertion follows from what we proved in (a) (applied to K) and
Cor. 2.6.
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(c), (d), (e) This follows by easy computations in the Jordan algebra of a
quadratic form with base point. The details are left to the reader.

(f) By 2.7(a), K = Def(J) is a rank two algebra with nondegenerate trace
form Trg, hence of the form K = Jor(k*™,q,e, + €2), and m > 2. These
algebras have been dealt with in case (d), so the form of the derived series
in this case follows from (d). In fact, by the classification in 1.11 we have
J =Hy(9,9) and K = Hy(Q, k) = Jor(k5, ¢, &1 + &3).

2.9. Corollary. Under the assumptions of 2.8, L is a solvable Lie algebra if
and only if J has primitive rank < 2.

We can now determine all ideals of the Lie algebra L, which we also call
Lie ideals to distinguish them from the Jordan ideals. A Lie ideal which is
closed under the squaring map will be called a 2-ideal. Of course, 0, L, and
the centre Z(L) = k-1 (by 2.5) are always Lie ideals and even 2-ideals, so we
will concentrate on the non-central proper ideals. Also the defect, being an
outer ideal of J, is a Lie ideal (but not necessarily a 2-ideal, as the example
J = H,(k), Def(J) = Alt,(k) shows). Note that in any Lie algebra L, an
arbitrary subspace containing the derived algebra L' = [L, L] is always an
ideal.

2.10. Lemma. Let J be a simple finite-dimensional Jordan algebra of rank
r and primitive rank p over an algebraically closed field k of characteristic
2. Let c1,...,cp be an orthogonal system of primitive idempotents of J, with
associated Peirce decomposition J = 31 <;i<j<p Jij- Also let a be a Lie ideal of

J.

(a) We have
P
azaﬂ(ZJii) ® Plan Jy). (1)
i=1 i<j
(b) Suppose that p > 2. Then a is central if and only if an J;; =0 for all
17 7.
(c) Suppose that r > 3. Then a non-central Lie ideal a contains all J;;,
it # 7. If ais a 2-ideal then it also contains all ¢; +¢;, © # j.

Proof. (a) Decompose an arbitrary element a € a into its Peirce components:
a =Y a;j. Then ¢; o (¢j 0 a) = a;; for i # j by the Peirce rules and because &
has characteristic 2, so a;; € a, and we have (1).

(b) If a C k-1 is central then clearly anJ;; = 0. Conversely, let anJ;; =0
for all 4 # 7, so a C @Y, Ji; by (1). Decompose an element a € a accordingly
as a =Y ay. If a; ¢ k-c; for some ¢ then by 2.4.2, aoJ; = az0Jy; = k-¢; C a,
and hence ¢; o J;; = J;; C a, contradiction. Thus we have a; = Ajc; € k- ¢; for
all . Now a o J;; = (A + Aj)Ji; CanJ;; =0 for ¢ # j shows A\; + X; =0, so
all \; are equal, and therefore a € k - 1.
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(c) Let a be a non-central Lie ideal. First, let J have nonzero trace. Then
p=r >3 and J; = k-c; is one-dimensional. By (b) we have, say, anJis # 0. If
J12 has dimension 1, this already implies .Ji15 C a. Otherwise, as a consequence
of the classification (r > 3 is essential here), Jj5 has even dimension > 2, and
it follows from 2.4(c) that a0 Jio = k- (¢1 + ¢2) for any nonzero ajp € anJio,
so we conclude that ¢; + ¢y € a. Since r > 3, (¢1+¢p)0J13 = c1o0Ji3 = Ji3 C a.
Now the well-known relations

Jij = Ju o Jij (2)

for three distinct indices 4, j,! imply that a contains all J;;, 7 # j.

Next, assume J traceless. Since the rank of a traceless algebra is even, we
then have r = 2p > 4. By the classification 1.11, J = H,(Q, Q) is the algebra
of hermitian matrices over the split quaternion algebra Q = Maty(k) with
diagonal coefficients in the fixed point space Qy = {(:g) : o, B,7 € k} of
the involution *. Denote the usual matrix units by E;; and put a[ii] := aEj;
and b[ij] := bE;; + b*Ej;, for i # j, where a € Qp, b € Q. Then ¢; = Ej;
(i =1,...,p) is a frame of primitive idempotents of .J, with Peirce spaces

Let again a be a non-central Lie ideal. Then by (b) we have, say, M := an
Jio # 0. Since a is a Lie ideal, it follows from the Peirce rules that J;o M C M.
A computation shows a[11] o b[12] = (ab)[12] and a[22] 0 b[12] = (ba)[12], for
all a € Qp, b € Q. Hence M = B[12] where B C Q is a subspace with the
property that QuB + BQy, C B. It is an easy exercise to show that B is then
a two-sided ideal of the associative algebra Q. As Q is simple and M # 0, it
follows that M = J12 C a. Now J;; C a for all ¢ # j follows again from (2).
Finally, the last statement is immediate from the fact that J3; = & - (¢; + ¢;)
by 2.4.1.

2.11. Theorem. Let J be a simple finite-dimensional Jordan algebra of rank
r > 2 and primitive rank p over an algebraically closed field k of characteristic
2, and let L = L(J) be the associated 2-Lie algebra with underlying vector
space J, Lie product [z,y] = xoy and squaring v1? = 22. We choose a complete
orthogonal system ci,...,c, of primitive idempotents of J, with associated
Peirce decomposition J = 3"1<i<j<p Jij-

(a) If J has nonzero trace and dim J;; = 1, i.e., J = H,(k), then the proper
non-central Lie ideals of L are precisely the subspaces a satisfying LYa O L' =
Alt,(k), while Ker tr is the only proper non-central 2-ideal.

(b) If J has nonzero trace, r > 3 and dim J;; > 1 for i # j, i.e., J =
H,(C, k) where C is a composition algebra of dimension > 2 (and r = 3 in
case € = Q) then L' = Kertr is the only non-central proper Lie ideal of L,
and it is a 2-ideal.
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(c) If J is traceless of rank r = 2p > 4, i.e., J = Hy(Q, Qo) then the proper
non-central Lie ideals of L are L" and all subspaces a with L2a O L'. Here
L' = K :=Def(J) 2 H,(Q, k) and L" = Kertrg. All Lie ideals are 2-ideals.

(d) Let J have nonzero trace, rank 2 and dimension n > 4, so that J =
Jor(k™, q,e1 + €2) is the Jordan algebra of a quadratic form with base point
and nonzero trace. Then for n even, the proper non-central Lie ideals of L are
precisely the subspaces a with k- 1&a C L' = Kertr, and in addition, for n
odd, the 1-dimensional ideal Def(J) =k - e9. All Lie ideals are 2-ideals.

(e) If J is traceless of rank 2, i.e., J = Jor(k®™, q,e0) is the Jordan
algebra of a traceless quadratic form with base point, then L' = Z(L) =k -1
by 2.8(c), and the proper non-central ideals of L are precisely the subspaces
LPapk - 1. All Lie ideals are 2-ideals.

Proof. (a) We leave the case » = 2, which consists of simple computations
with 2 x 2-matrices, to the reader, and assume r > 3. By Lemma 2.10(c) and
2.7(b), we have a O L' = @, Jij, and by the remark made after Cor. 2.9,
these spaces are indeed Lie ideals. If a is a 2-ideal then it contains all ¢; + ¢;
by Lemma 2.4(a), and therefore a = Ker tr. Conversely, Ker tr is closed under
squares by 2.3 and hence a 2-ideal.

(b) By Lemma 2.10(c), a contains all J;; (¢ # j), and ¢;+¢; € Ji;0J;; Ca
by 2.4.6, whence a = Ker tr.

(c) By 1.6.1, the defect is K = Yk - ¢; ® @,; Ji;. By (b) and (f) of 2.8,
we have ' = K and L" = Ker(trK) = {E )\ici . Z)\Z = 0} -+ ®i<j J” All
Ji; C a for i # j, by Lemma 2.10(c). Furthermore, the classification shows
that dim J;; = 4. Now 2.4.6, applied to K, which has nonzero trace and Peirce
spaces K;; = J;j, yields ¢; + ¢; € a for all ¢ # j. This shows L" C a. Now
assume L"Ga. As a contains all .J;; for 7 # j, there must be an element of the
form a = Y a; € a for which either a; ¢ k - ¢; for some 7, or for which all
ai; = A\ic; but > \; # 0. In the first case, ao J; = a;;0J; = k-¢; C aby 2.4.2,
so K =k-c;+ K' C a. In the second case, a € K and trg(a) = > \; # 0, so
again K = k-a+ K' C a. Since L" is closed under squares by Lemma 2.3 and
Ll = K by Prop. 2.7(a), all these ideals are 2-ideals.

(d) A frame of division idempotents of J is ¢; = ¢; (i = 1,2), with Peirce
spaces Ji; = k- c; and Jip = 32,410k - €5, of dimension n — 2 > 2. The trace is
given by tr(c;) = 1 and tr(Ji2) = 0. Hence by 2.7(b), L' = Kertr = k- 1+ Jo,
so that a subspace a with k& -1&a C L' has the form a = k-1 @ M, for an
arbitrary nonzero subspace M of Ji5. From 1.4.2 it follows easily that such
a are non-central proper ideals of L. Also, in the odd-dimensional case, it
is clear that Def(J) = k - g9, which is an outer ideal of J, is an ideal of L.
Conversely, let a be a non-central proper ideal of L. Then by Lemma 2.10,
a=(an(k-c1+k-c))® M, where M := an Jip # 0. We claim that
an(k-ci+k-cp) C k-1. Indeed, suppose a contains an element a = Ajcq + Aaco
with A\ ?é Ao. Then a o Jip = (/\1 + /\2)J12 = Jig C a. As dim J;5 > 1, the
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restriction to Jio of the bilinear form b associated to ¢ is nonzero, so by 1.4.2,
Jig 0 Jis = k-1 C a, which implies ¢, ¢; € a, and thus a = L would not be a
proper ideal. Now there are two possibilities:

Case 1: an(k-cy+k-cy) =k-1. Then a =k -1@ M has the required
form.

Case 2: Clﬂ(k'cl-i-k'CQ) = 0. Then MOJ12 = b(M, J12)'1 C aﬂ(k-cﬁ—k-q) =
0. From b(M, ¢;) = 0 we see that M is contained in the kernel of b. As M # 0,
it follows that n is odd and a = M = k - g;, the defect of J.

Finally, part (e) (where r = 2) is evident from 2.8(c). The fact that all Lie
ideals are 2-ideals follows easily from the formulas for 22 in 1.4.

We now discuss simplicity of subquotients of L. Since L is solvable for
p = prk(J) < 2, we assume p > 3.

2.12. Corollary. Let J be a simple finite-dimensional Jordan algebra over
an algebraically closed field k of characteristic 2, of rank r and of primitive
rank p > 3.

(a) Let J have nonzero trace, sor =p > 3.
(i) If dim Ji2 =1 (and thus J = H,.(k)) then L' = Alt,.(k) is simple
forr # 4, and isomorphic to Altg(k) x Alts(k) for r = 4.
(ii) Ifdim Jyp > 1 then L'/Z(L) N L' is simple.

(b) Let J be traceless, so p=r1/2 > 3 and J = H,(Q, Q) by 1.11. Then
L"/Z(L)N L" is simple.

Proof. (a) The well-known proof about the structure of the Lie algebra
Alt, (k) works in any characteristic and yields (i).

Next, consider case (ii). By 2.7(b), L' = Ker tr contains all ¢; + ¢;. Now let
a C L' be an ideal of L' with a ¢ k-1. By 2.4.6, it suffices to show that J;; C a
for all 7 # j. Decompose an element a € a\k-1as a = > A\ic; + ;< a;; where
tr(a) = Y A; = 0. If all a;; = 0 then not all \; can be equal; say, A\; # Aq.
Hence a o Ji9 = (Al + )\Q)Jlg = Ji; C a.

If, say, a12 # 0 then by 2.4(c), ¢; + ¢ € a, hence (¢; + ¢3) o J13 = Ji3 C .
Now 2.10.2 implies that a contains all J;;.

(b) Here K = Def(J) = L' has nonzero trace and rk(K) = p > 3. Also
dim K5 = dim Ji5 = 4, so the assertion follows from case (ii) of (a) applied
to K.

2.13. Corollary. Let J = H3(0O,k) where O is an octonion algebra and k
has characteristic 2 but is not necessarily algebraically closed. Then V7 is a
simple 2-ideal of dimension 26 in Der(J).

Proof. As noted after Th. 2.2, V; is always a 2-ideal in Der(J), so it remains
to show that V; is simple. Since J is absolutely simple we may assume k
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algebraically closed. Let L = L(J) as in 2.2. We have Z(L) = k-1, by
Prop. 2.5, and Ker(tr) = L' by Prop. 2.7(b). It follows that Z(L) N L' = {0},
soV; =2 J/k-1; 2 L' =L"/Z(L)N L is simple by case (ii) of the previous
Corollary.

For later use, we now show that the Lie algebras L(H,(Q, k)) are isomorphic
to Lie algebras of orthogonal groups of even rank, and that their trace forms
correspond to the spinor trace. We begin by introducing this concept, the
infinitesimal version of Bass’ spinor norm [3].

2.14. The spinor trace. Let k be a an arbitrary field and let ¢ be a nonde-
generate quadratic form on a k-vector space X of dimension 2n. We denote
by Cliff(q) the Clifford algebra of ¢, by Cliffy(q) its even part, by O(q) the
orthogonal group, and by

Spin(q) = {u € Cliffy(¢)* : uXu™' = X and uu* =1} (1)

the spin group, cf. [11, Ch. IV]. Here * denotes the main involution of Cliff(g),
characterized by z* = z for all z € X, where we identify X with its canonical
image in Cliff(¢). By “varying the base ring” we obtain the spin group and
orthogonal group schemes of ¢, i.e.,

Spin(¢)(R) = Spin(¢ ® R) for all R € k-alg,
and similarly for O(g). The Lie algebras of Spin(gq) and O(g) are then

spin(q) = {v € Cliffy(q) : [v, X] C X and v + v* = 0}, (2)
0(q) ={A € End(X) : b(z, A(z)) =0 for all x € X}, (3)

where b is the bilinear form associated with g. Let x: Spin(q) — O(q) be the
vector representation, and x := Lie(x): spin(q) — 0(g) the corresponding Lie
algebra homomorphism. It is well known that Cliff(¢) is an Azumaya algebra.
From this, one sees easily that Ker(x) = p,-1 where p, denotes the group of
second roots of unity. Hence, if k£ has characteristic # 2, we have Lie(u,) =0
and x: spin(q) — o(q) is injective, while Ker(x) = Lie(Ker(x)) = k-1 if k
has characteristic 2

We now consider the question of surjectivity of x. Let k(e) be the algebra
of dual numbers. Every A € o(q) defines an element g = Id+¢cA € O(q)(k(¢)).
Using the universal property of the Clifford algebra, one sees that g induces
an automorphism « of Cliff(q) ® k(e) such that a(x) = g(z), for all z € X.
Since the Clifford algebra is an Azumaya algebra and k(¢) is a local ring,
« is inner [12, IV, Cor. 1.3|, given by conjugation with an element u, and
it is easily seen that we may assume u in the form v = 1 + v for some
v € Cliffy(¢). Then we have [v,z] = A(z) for all z € X, but v + v* # 0 in
general, so v is not necessarily in spin(g). However, v + v* € k - 1, because
v+ v 2] = [v,2] + [v5,2%] = [v,z] + [z,0]* = [v,z] + [z,v] = 0 for all
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xz € X, 50 v+v* = \-1is central in Cliff(q). If £ has characteristic # 2, then
v' = $(v—v") = v—\/2isin spin(q) and satisfies x(v') = A, so x is surjective
and therefore an isomorphism. Now let £ have characteristic 2. Then there is a
linear form trs: o(q) — k, called the spinor trace, given by trs(A) -1 = v+ v*.
This is well-defined, because if also [w, z] = A(x) for allz € X then w—v = 7-1
for v € k, so w+w* = v+v*+2v-1 =v+v*. By construction, it is clear that
A belongs to the image of x if and only if trs(A) = 0. Also, it is easily seen
that trs is in fact a Lie algebra homomorphism, so we have the exact sequence

trs

0 — k-1 — spin(q) =5 0(q) =k — 0
of Lie algebras. We put
o'(g) := X(spin(q)) = Ker(trs).

2.15. Proposition. Let q be a nondegenerate quadratic form on a vector
space X of dimension 2n over a field k of characteristic 2. Let Q = Maty(k)
be the split quaternion algebra, and L = L(J) the Lie algebra associated to
J=H,(9k).

(a) There is an isomorphism ¢: o(q) — L of 2-Lie algebras such that
Idx — 1; and the spinor trace on o(q) corresponds to the trace form of J.

(b) Ifn=2m+1 > 3 then o(q) = k - Idx @ 0'(q) (direct sum of ideals)
and 0'(q) is a simple Lie algebra, while for n = 2m > 4, we have Idx € 0'(q)
and 0'(q)/k - Idx is simple.

Proof. (a) Since £ has characteristic 2, the bilinear form b associated with ¢ is
symplectic. Hence there exists a basis e1, . .., €s, of X such that b(eg_1,e9;) =
1 for i = 1,...,n, while b(e;,e;) = 0 otherwise. Using the characterization
2.14.3 of an element A € o(q), it is an easy exercise to check that the matrix
©(A) of A with respect to ey, ..., es, belongs to J and this yields the desired
isomorphism of 2-Lie algebras.

We identify 0(¢) and L and show that tr; = trs. Since trs is a Lie algebra
homomorphism, it vanishes on [L, L]. By 1.11, J has nondegenerate bilinear
trace form Tr so [L, L] = Ker(tr;) by Cor. 2.6. Thus tr; and trs have the same
kernel, and it remains to prove that tr; and trs take the same nonzero value
on one element, say, on the matrix unit A = E; € H,(Q, k). Now A(e;) = ey,
A(ez) = eg while A(e;) = 0 otherwise. Consider the element v = ejey €
Cliffy(¢q). We claim that A(z) = [v,z] for all x € X (where the products are to
be taken in Cliff(¢)). Indeed, b,(e;, ez) = 1 implies ejes + eze; = 1 in Cliff(g),
hence ve; —e v = ejeze; —ei1€165 = —egei+e;—eles = —q(e1)ea+e1—q(er)ey =
e1, and similarly ves — eav = eq, while ve; — e;v = 0 for 7 > 2 follows from
e1e; + e;e; = ege; + e;ea = 0, because by(er, e;) = by(ez, e;) = 0. Furthermore,
v+ v* =ejes +ege; = 1, 50 trs(Eyy) = 1 = try(Eq), as required.

(b) This follows from Prop. 2.5 and Cor. 2.12(a), part (ii).

21



We leave it to the reader to prove in a similar way the following result.

2.16. Proposition. (a) The Lie algebra sp,, (k) of the symplectic group over
a field k of characteristic 2 is isomorphic as a 2-Lie algebra to L(H,(Q, Qp)).

(b) L(H,(k)) is the Lie algebra of the automorphism group of the standard
bilinear form h(z,y) = X, z;y; on k™.

3. Smoothness of the automorphism group

3.1. The structure group. In this section, we discuss the question of smooth-
ness of the automorphism group scheme of a separable finite-dimensional Jor-
dan algebra. This is closely related to the structure of the orbit of the unit
element under the structure group. Recall that the structure group Str(J)
of a Jordan algebra J (over a commutative ring R) is the set of g € GL(J)
for which there exists g* € GL(J) such that Uy, = gU,g* for all z € J.
Such a ¢* is uniquely determined by g; in fact, ¢* = ¢7'Uy1), and the map
V: g — g% := (¢*)~! is an automorphism of period two of Str(.J). Also, Str(J)
is isomorphic to the automorphism group of the Jordan pair (J, J) associated
to J under the map g — (g, ¢%). The automorphism group Aut(.J) is just the
isotropy group of the unit element 1; in Str(J).

We establish some notation and terminology for algebraic groups. Let &
be a field. Following [5], we will always embed algebraic k-groups into the
category of group functors on the category k-alg of (commutative associative
unital) k-algebras. For a k-group functor G and R € k-alg, we denote by
G(R) the associated (abstract) group. The Lie algebra of G is denoted by
Lie(G).

For a finite-dimensional Jordan algebra J over k£ we have the group functors

Str(J)(R) := Str(J ® R), Aut(J)(R) := Aut(J® R) (R € k-alg),

which are affine algebraic k-groups. By abuse of language, these will also be
referred to simply as the structure group and the automorphism group. Their
Lie algebras are then just Strl(J) and Der(J), respectively.

Example. Let J = Jor(k", ¢, 1) be the Jordan algebra of a nondegenerate
quadratic form ¢ with base point 1 = 1; as in 1.4, and let GO(q) be the
general orthogonal group of g, i.e., g € GO(q)(R) if and only if g € GL,(R)
and there exists A € R* such that ¢(g(z)) = Ag(z) for all z € R". Note
that A = A(g) = ¢(g(1)) is uniquely determined by g. The Lie algebra of
GO(q) consists of all A € End(k™) for which there exists p € k such that
b(z, A(z)) = pg(z), for all z € k™. It is easily seen that GO(gq) C Str(J), with
g* = X(g)g~!, and consequently, Lie(GO(q)) C Strl(.J).

The bilinear trace Tr is invariant under the structure group and the struc-
ture Lie algebra in the following sense:
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3.2. Lemma. Let J be a finite-dimensional Jordan algebra over a field k and
put G := Str(J) and g := Strl(J). Then

Tr(g(z),y) = Tr(z, ¢*(y)) for all g€ G(R), z,y € J ® R, R € k-alg, (1)
Tr(A(z),y) = Tr(z, A*(y)) forall Acg, z,y€J. (2)

Consequently, the defect is stable under G and g, i.e.,

g(Def(J) ® R) C Def(J) @ R for all g € G(R), R € k-alg, (3)
A(Def(J)) C Def(J) for all A € g. (4)

Proof. Formula (1) is a consequence of [13, Prop. 16.7] and the fact that
Tr(z,y) = mi(x,y) where m; is the generic trace of the Jordan pair (., .J)
associated with J, cf. 1.3. Formula (2) then follows by letting R = k(g) (dual
numbers) and g = Id + €A, and (3) and (4) are immediate from (1) and (2).

Recall that a Jordan algebra (or pair) over a field is said to be separable if
any base field extension has trivial lower radical [16, 3.5]. The basic fact on
Str(J) is

3.3. Theorem [14, Cor. 6.6]. The structure group Str(J) of a finite-dimen-
stonal separable Jordan algebra is a reductive, hence in particular smooth,
algebraic k-group.

In contrast, the automorphism group of J is in general not smooth. How-
ever, this can only happen in characteristic 2.

3.4. Group actions. We recall some notions for actions of algebraic groups.
Let k be a field with algebraic closure k, let G be a smooth algebraic k-group
acting on a smooth algebraic k-scheme X on the left, let € X (k) be a k-
rational point of X, and denote by H = Centg(z) the stabilizer of z in G.
Also let m: G — X be the orbit map sending g € G(R) to g - zg for all
R € k-alg (where zg € X(R) is the image of x under the map X (k) — X(R)
induced from k£ — R).

The orbit of z under G is the image sheaf Im(7) (in the flat topology) of =,
cf. [5, II1, §1, 2.3]. Denote by G/H the sheaf (in the flat topology) associated
to the functor R — G(R)/H(R), cf. [5, 111, §3, 1.4]. Then 7 induces a canonical
isomorphism G/H = Im(7) by [5, III, §3, 1.6].

For an algebraic k-scheme Y and a k-rational point y € Y (k), let T,,(Y) be
the Zariski tangent space of Y at y. Finally, let e € G(k) be the unit element
of G(k), and let g = Lie(G) = T.(G) and h = Lie(H) be the respective Lie
algebras. Then we have h = Ker(d.m), where dem: g — T,(X) denotes the
differential of 7 at the unit element of G(k).

3.5. Lemma. In the situation of 3.4, assume furthermore that G acts tran-

sitively on X in the sense that m: G(k) — X(k) is surjective.
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(a) 7 induces an isomorphism G/H — X, and

dim G = dim H + dim X. (1)

(b) The following conditions are equivalent:

(i) H is smooth,

(ii) m G — X is smooth,

(iil) dem: g — T,(X) is surjective,
(iv) dimH = dimb.

Proof. (a) The first statement follows from [5, III, §3, Prop. 2.1], and the
dimension formula follows from [5, III, §3, 5.5(a)].

(b) (i) = (ii): By [5, I1I, §3, Cor. 2.6] the canonical morphism G — G/~H
is smooth, and hence so is the composite 7: G — G/H =X (note that the
subgroups H and H' of loc. cit. are {e} and H in our situation).

(ii) = (iii): This follows from [5, I, §4, Cor. 4.14, Remark 4.15].

(iii) = (iv): We have dimb = dimKer(d.7) = dimg — dimIm(d.7) =
dimG — dimX = dimH (by (1)).

(iv) = (i): See [5, II, §5, Th. 2.1(vi)].

3.6. Let J be a separable finite-dimensional Jordan algebra over a field k.
We denote by J the affine scheme defined by the vector space J, and by J*
the open dense subscheme of invertible elements of J; thus

JR)=J®R and J*(R)=(J®R)* forall R € k-alg. (1)
For the rest of this section, we will always let
G := Str(J),

which is smooth by Th. 3.3, act on a suitably chosen G-stable subscheme X
of J containing the unit element x =1 of J, so that

H := Centg (1) = Aut(J).
We denote the Lie algebras of G and H by
g = Lie(G) = Strl(J) and & = Lie(H) = Der(J).

The orbit map 7 is just evaluation of an element g € G(R) at 1, and like-
wise, dem: g — T,(X) is simply evaluation A — A(1) of an element A in the
structure Lie algebra at the unit element of J.

Clearly, J and J* are smooth affine schemes; in fact, a defining function
for J* is the generic norm of J. The defect of J gives rise to functors Jge and
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Js in analogy to (1) by
Jaet(R) = Def(J)® R for all R € k-alg, and J5;=JaeNI*.  (2)

Again, Jger and JJ,; are smooth and affine, and J3; is open in Jger. We will
also need the subfunctor of non-defective elements J,4 of J, defined by

Jnda(R) = {z € J(R) : there exists y € J(R) such that Tr(z,y) € R*}, (3)

for all R € k-alg. This is an open (hence smooth) but in general not affine
subscheme of J. To see this, choose a vector space basis vq,...,v, of J and
define functions f; on J by f;(x) := Tr(z,v;). Then J,q is the open subscheme
of J defined by the f; in the sense of [5, I, §1, 3.7], i.e., z € Jpq(R) if and only
if R is generated as an ideal by fi(z),..., fu(x). We finally put

J% =T N JI”. (4)

From the fact that elements of the structure group preserve invertibility and
the bilinear trace form Tr by Lemma 3.2, it follows that G acts on each of the
schemes J*, J3 and JJg.

3.7. Proposition. If k has characteristic # 2 then the orbit of 1 under G
is J*, and H is smooth.

Proof. Let X = J*. By Prop. 1.9, G(k) acts transitively on X (k) = (J®k)*
so the first assertion follows from Lemma 3.5(a). Also, T7(X) is canonically
identified with the vector space J because X is open in J. For any given a € J,
we have A = 1V, € g, and d.m(4) = A(1) = $(a o 1) = a. Hence H is smooth
by Lemma 3.5(b).

3.8. To decide smoothness of the automorphism group in characteristic 2 re-
quires a more detailed discussion. We remark that Springer [23], in his frame-
work of J-structures, has also studied this problem. However, his definition
of J-structure is rather restrictive and in characteristic 2 rules out, a priori,
the case where the orbit of 1 under the structure group is not open. For an
absolutely simple Jordan algebra, this happens precisely when the algebra is
traceless. Our approach includes these cases and it is simpler than Springer’s
since it uses the result 3.3, not available to him. — Until further notice, we
assume that

J is simple and k is an algebraically closed field of characteristic 2.
We will use repeatedly the fact that V;; C g (cf. 2.1) and hence

JolJ= VJ}J(].) C Im(dew). (1)
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3.9. Lemma. IfJ has nondegenerate bilinear trace form Tr, i.e., Def(J) = 0,
then the orbit of 1 under G is J*, and H is smooth.

Proof. We apply Lemma 3.5 in case X = J*. By Prop. 1.9, G(k) acts tran-
sitively on X(k), so the first statement follows from Lemma 3.5(a). Also, we
have T1(X) = J and by Cor. 2.6, [L,L] = J o J = Ker(tr) has codimension
one in J. Hence by 3.8.1, it suffices, for d.m to be surjective, to find an element
of trace one in the image of d.m. We remark also that Id, always belongs to
Strl(J). Now we distinguish the following cases.

Case 1: r := rk(J) is odd. Here tr(1) = r -1y = 1j because k has
characteristic 2. Hence 1 = Id(1) is an element of trace one in the image of
dem.

When the rank is even we use the classification.

Case 2: v =2. Then J = Jor(k*,q,e; + &5) is the Jordan algebra of an
even-dimensional quadratic form with base point 1 = €1 4+ €9, n > 2. Define
A € End(J) by A(e;) = ¢; if 7 is odd and A(g;) = 0 if 7 is even. One checks
easily that A belongs to the Lie algebra of the general orthogonal group of ¢,
in fact, b(z, A(x)) = ¢(x), and hence A belongs to the structure Lie algebra
by the example in 3.1. Now A(e;) = €1, A(e2) = 0, and therefore A(1) = ¢
which has trace one.

Case 3: 1 even and > 4. Then J = H,(C, k) is the Jordan algebra of
hermitian matrices with scalar diagonal coefficients over a composition algebra
C. The assumption r > 4 eliminates the case where € is an octonion algebra,
and the assumption Def(J) = 0 eliminates the case € = k. Thus either € =
k@ k or C = Maty(k), the split quaternions. In both cases, 1l¢ = &1 + &2 is the
sum of two primitive orthogonal idempotents which are interchanged by the
involution of €. One checks easily that every a € Mat,(C) defines an element
A, in the structure Lie algebra by A,(x) = ax + za*, so all A,(1) =a +a* €
Im(dm). Now let in particular @ = €;e;; where the e;; are the usual matrix
units. Then a + a* = ey; is the desired element of trace one in the image of

d.T.

3.10. Lemma. If J is traceless, i.e., 1 € Def(J), then the orbit of 1 under
G is I} and H is smooth.

Proof. Let X = J} as in 3.6.2. Then 1 € X(k) and the tangent space of
X at 1 is just the vector space Def(J). By Prop. 1.9, G(k) acts transitively
on X(k), so the orbit of 1 under G is X by Lemma 3.5(a). By Prop. 2.7(a),
JoJ=|[L,L] = Def(J), so H is smooth by 3.8.1 and Lemma 3.5(b).

3.11. Lemma. Let J have tr # 0 and Def(J) # 0, and let r := rk(J). Then

the orbit of 1 under G is J*y and dimbh —dimH =r — 1 > 1; in particular,
H is not smooth.
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Proof. Let X =J); asin 3.6.4. Then 1 € X(k), and by Prop. 1.9, G(k) acts
transitively on X (k) so the orbit of 1 is X. Also, 77(X) = 71(J) = J because
X is open in J. We determine the image of the evaluation map d.m: g — J,
using the classification. There are two cases:

Case 1: J = H,(k), symmetric matrices over k, r > 2, with unit element
1 = 1, the 7 x r unit matrix, and Def(J) = Alt,(k), the alternating r x r-
matrices. We claim that

Im(d,r) = k- 1 & Alt, (k). (1)

For the inclusion from right to left, let e;; be the usual matrix units. Then
c; = ey (1=1,...,r) is a frame of division idempotents of J and the Peirce
space J;; =k - (e;; + e;;) (for i < j) is 1-dimensional. Hence by the first case
of Prop. 2.7(b), Alt,(k) = J o J is contained in Im(d,7), and so is 1. To prove
the inclusion from left to right, let A € Strl(J). Since now U,y = zyz (matrix
product), formula 2.1.1 says

2yA(z) + A(x)yx = A(zyz) — 2A(y)z + z(A(D)y + yA(1))x, (2)

for all z,y € J. Write A(1) = X, umeim and A(z) = 3, Biméim as linear
combinations of the matrix units. Now put z = y = e;; + €j; (where ¢ # j) in
(2), and multiply the resulting equation with e; on the left and with e;; on
the right. An elementary matrix calculation then yields the relation

Bij + Bij = Bij — Bji + o5 + s
J J J J 23

Since A(z) € H, (k) is symmetric we have (;; = (;;. Hence 2 = 0 in k implies
a;; = «j, so all diagonal coefficients of A(1) are equal, proving the inclusion
from left to right in (1).

Case 2: J = Jor(k*™*! q,e, + e9) with m > 1. In fact, we can assume
m > 2 because Jor(k®,q,e1 + €2) = Hy(k). Then ¢; and &, form a frame of
division idempotents of J whose Peirce space Jio has dimension 2m — 1 > 3.
We claim that

Im(d.m) = Ker(tr). (3)
Indeed, the inclusion from right to left holds because Ker(tr) = J o J by the
second case of Prop. 2.7(b), and 3.8.1.

Let us prove the inclusion from left to right. From 1.4.1 we obtain &, = g¢
and Uzey = q(x)ep whence Uy ,e¢ = b(z, 2)q, for all =,z € J. In particular,
U..0 = €0 (because ¢q(gg) = 1) and U, 60 = 0 for all z € J. Now let A €
Strl(J). By 3.2.4, A(ey) € k - €y, which implies [A4,U,Jeo = 0. Hence 2.1.1
yields

0 = Usy,a(e0)60 = [A, Ugleo + UeUra)go
=0+ U,b(1,A(1))eo = b(1, A(1))eo = tr(A(1))eo,
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which proves the inclusion from left to right in (3).

Observe that the results of the previous three lemmas also hold for an
arbitrary base field &, provided J is absolutely simple. This follows by passing
to the algebraic closure of £ because the structure group commutes with base
change, and smoothness of G and G ® k are equivalent [5, I, §4, 4.1]. We
collect our results in the following theorem.

3.12. Theorem. Let J be an absolutely simple finite-dimensional Jordan al-
gebra of rank r over a field k of arbitrary characteristic. Then Aut(J) is not
smooth if and only if k has characteristic 2 and J has both nonzero trace and
nonzero defect. In this case, dim Der(J) — dim Aut(J) =r — 1.

4. The exceptional case

4.1. Definitions and notations. Let R be a commutative ring and let either
€ = R or let € be a composition algebra of constant rank » > 2 over R in
the sense of [21], with norm form ¢ and associated bilinear form b,. Thus €
is finitely generated and projective of rank r = 1,2,4,8 as an R-module. If
r =1 and 2 is not a unit in R then b, is singular, while in the other cases, it is
nonsingular. To cover the case r = 1 as well, we will let B = b, if r > 2, and
put B(a,b) = ab in case r = 1, i.e., € = R. As usual, a denotes the involution
of €. For an endomorphism & € End(€) we define h by h(a) = h(a). We also
introduce the trilinear form (a,b,c) = B(ab,¢) on C. Then ( , , ) behaves as
follows under permutation of its arguments:

(a1, a9,a3) if o is even } ' (1)

(ag(1), Ao (2); aa(3)> = { (@1, Gg,a3) if o is odd

This follows from well-known formulas for b, (and is of course trivial in case
r=1).

Consider the Jordan algebra J = H3(C, R) of hermitian matrices over €
with scalar diagonal coefficients which by [17] is generically algebraic of degree
3. Denoting the usual matrix units by e;;, we put e; = [ii] = e; and a[ij] =
alji] = ae;; + aej; for i # j and a € C. There is an action of the symmetric
group &3 on J by automorphisms given by

a(e) = esi),  olalij]) = alo(i), o(4)]-
This is easily verified. Let
E:=R-€1@R'€2€BR'€3§R3

be the subalgebra of diagonal matrices in J. We will denote the subgroup of
all g € Aut(J) fixing E pointwise by M = M(J). Then &3 acts on M on
the right via ¢° = 07! o g 0 0. Finally, we denote by P the set of all pairs
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(4,7) in {1,2,3}? with ¢ # j. Clearly, &3 acts simply transitively on P by

a(i,§) = (0(i), 0 (j))-

4.2. Lemma. With the above notations, let g € M. For every pair (i,j) € P
there exists a unique g;; € O(q), the orthogonal group of q, such that

g(alif]) = gi;(a)[i], (1)
for all a € C. The g;; satisfy the relations
Gij = Gjis (2)
9ii(a)g;k(b) = gix(ab), (3)
<gij(a')’ 9ik (b), gki(c)> = <a'7 b, C>7 (4)

for all a,b,c € € and all pairwise different i,j,k. The map g — (gij) is
an isomorphism n from M to the subgroup S = S(C) C O(q)¥ of all tuples
(9ij) G, jyep satisfying (2) and (3), or, equivalently, (2) and (4). This isomor-
phism is G3-equivariant with respect to the natural right action of G3 on S,
i.e., (9%)ij = 9o(i).0 )

Proof. An element g € M preserves the Peirce spaces J;; = {a[ij] : a € C},
so there exist unique g;; € GL(C) satisfying (1). Since g preserves squares and
alij]? = q(a)([i1] + [47]), we have g;; € O(g), and (2) follows from the fact that
alij] = a[ji]. Finally, (3) is a consequence of the formula a[ij] o b[jk] = ab|ik].
Conversely, given (g;;) € S, define g € GL(J) by g(e;) = e; and (1). Then a
simple computation shows that g preserves squares and traces in J. As J is
generically algebraic of degree 3, we have g € Aut(J) by [17, Th. 5.1]. The
Gj-equivariance is clear from the definitions. The equivalence of (3) and (4)
for (gi;) € O(q)” satisfying (2) follows easily from the definition of (, , ) and
nondegeneracy of B.

Remark. In [6], A. Elduque introduces the notion of related triples (o,
01, p2) € O(q)? by requiring @1 (ab) = pg(a)ps(b) for all a,b € €. Any element
(gi5) of S(C) gives rise to related triples, e.g., (g12, 913, g23) O (g31, gs2, g12). The
approach via related triples seems less natural because it involves a particular
choice of indices. Also, the action of the symmetric group becomes somewhat
cumbersome to describe, and the trilinear form considered in [6, p. 52| does
not satisfy the equivariance property 4.1.1.

4.3. Theorem. Let O be an octonion algebra over a ring R with norm form
q, Clifford algebra Cliff(q) and even part Cliffy(q). Let Spin(q) C Cliffa(q)™ be
the spin group and x: Spin(q) — O(q) its vector representation.

(a) Themap8¢,¢10—>End(0@0)f“H(10 l(()l) anda'_)(;) 73)’

where l, and r, denotes left and right multiplication in O, induce isomorphisms

®,w: Cliff(q) — End(O ® 0)

29



which restrict to isomorphisms

By, Wy: Cliffy(q) — (En%(o) Eng( 0)) .

(b) For (i,j) € P, define homomorphisms p;;: Spin(q) — GL(O) by

I Y )]
021(u) = 012(u), Yy(u) = <9310(U) 9320(u)> )

for all u € Spin(q). Then o = (0ij),j)ep: Spin(g) — S(O), u — (0i;(v))j)epr,
s an tsomorphism of groups.

(c) The centre of Spin(q) contains py(R) X py(R), where py(R) = {X €
R : X2 = 1}. More precisely, we have: For A\, s € py(R) there exists a
unique element u in the centre of Spin(q) such that go3(u) = p32(u) = A1de,
913(U) = Q31(U) = Xoldo, and le(u) = Q21(U) = M Aoldp.

Proof. (a) and (b) are proved in [6, Th. 1.1] for the case of a base field,
but the proof applies with slight modifications also in case of a base ring. We
therefore omit the details. For part (c), define g;; € O(q) by g3 = g32 = Ai1d,
g1z = 031 = )\QId and gi2 = Qo1 = )\1/\21(1 Then it is easy to verify that
g = (gi;) is a central element of S(0Q), so the assertion follows from (b).

4.4. Corollary. Let J = H3(0,k) be a reduced Albert algebra over a field
k. Define group functors M C H = Aut(J) and S C O(q)F by M(R) =
M(J®R) and S(R) = S(C®R) for all R € k-alg, and let Spin(q) be the spin
group as in 2.14.1. Then M, S and Spin(q) are smooth (in fact, semisimple)
algebraic group schemes of dimension 28 over k, and the maps n of Lemma 4.2
and o of Th. 4.3 induce isomorphisms

M —S and o: Spin(q) — S. (1)

Hence the Lie algebra m of M is isomorphic to the subalgebra s = Lie(S)
of o(q)" consisting of all (Ajj) satisfying Ai; = Aji and Ay(ab) = A;;(a)b +
aA;(b), for all a,b € O and all i, 4,1 #, and also to the Lie algebra spin(q) of
Spin(q), and all three are of dimension 28. If k has characteristic p > 0 then
these isomorphisms are isomorphisms of restricted Lie algebras.

Proof. Since the maps 1 and ¢ of 4.2 and 4.3 are compatible with base
ring extension, we have the asserted isomorphisms of group functors. The
rest follows from well-known facts about the spin group of a nondegenerate
quadratic form.
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4.5. The scheme of frames. With J as above, let F C J® be the functor of
frames of J, i.e., for every R € k-alg, F(R) is the set of complete systems
¢ = (c1, ¢, c3) of orthogonal idempotents of J ® R whose Peirce 2-spaces are
R-modules of rank 1. We claim that F is an affine algebraic k-scheme. Indeed,
it is easily seen that the conditions ¢ = ¢;, U,,¢c; = 6;j¢; and ¢ + ¢o + ¢3 = 1,
which express the fact that ¢ is a complete system of orthogonal idempotents,
define a closed subscheme F’ of J3. Now F C F' is singled out by the conditions
that the ¢; be in addition rank 1 idempotents. Since the Peirce 2-spaces of the
¢; are direct summands of J ® R and hence finitely generated and projective
R-modules, their rank functions are locally constant on Spec(R). From this,
it easily seen that F is an open and closed subscheme of F’; in particular, it
is affine algebraic.

4.6. Proposition. (a) F is smooth of dimension 24.

(b) H acts transitively on F and the stabilizer of €= (e1, ez, e3) € F(k) is
M. Hence the dimension of H and of b s 52.

Proof. (a) Since F is open in F', it suffices to show that the latter is smooth.
By [5, I, §4, Cor. 4.6], we must show that the map F'(R) — F'(R/I) induced
from the canonical map R — R/ is surjective, for every ideal I of square zero
of R. The kernel of the map J® R — J ® (R/I) is a nilideal, so the assertion
follows from the well-known lifting of finite orthogonal systems of idempotents
through nil ideals. Now let € = (cy, ¢2,¢3) € F(k). Then ¢ = (v1, vq, v3) € Te(F)
if and only if ¢+ v’ € F(k(¢g)), where k(¢) denotes the dual numbers. It is an
easy exercise to show that this is equivalent to the conditions v; = z;; + zy
where {i,j,l} = {1,2,3} and z;; = —xj; € J;;, the Peirce spaces of J with
respect to ¢. Hence T#(F) as a vector space is isomorphic to Jip @ Jog @ Ji3,
of dimension 24.

(b) Obviously, H acts on F via g-¢ = (g(c1), g(c2), 9(cs3)), and the stabilizer
of €is just M. By conjugacy of frames (cf. the remark after Lemma 1.5), H(k)
acts transitively on F(k), and H is smooth by Th. 3.12. Thus we are in the
situation of Lemma 3.5 and conclude that dimh = dimH = dimM +dim F =

28 + 24 = 52.

4.7. From now on, we will always assume that
k is a field of characteristic 2 and J = H3(0, k)

is a reduced Albert algebra over k. As before, we let ) = Der(J) denote the Lie
algebra of H = Aut(J). By Cor. 2.13, V; is a simple 26-dimensional ideal of
h. Our aim is to determine the structure of V; as well as that of the quotient
algebra b/V;. Since tr(e;) = 1, we have tr(l;) = 3 = 1 # 0 and therefore
J=k-1;® Jy where Jy = Ker(tr) = V; as a 2-Lie algebra.

The following remark will be useful: Let L and L' be p-Lie algebras over a
ring R with pR = 0 and let f: L — L' be an isomorphism of Lie algebras. If
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L (and hence L') has trivial centre then f is an isomorphism of restricted Lie
algebras. Indeed, this follows easily from the formula ad(z!) = (adz)? and
the fact that the adjoint representations of L and L' are faithful.

4.8. Lemma. We have h = V;4+m and V; Nm = Vg is a 2-dimensional
central ideal of m.

Proof. Let D € b be a derivation and e an idempotent of .J. Then e = €2
implies

D(e) =eo D(e). (1)
Now put D' := D + Vp(e,) and D" := D' + Vpr(e,). Then

D =Vp(er) + V/(es) + D"

holds because 2 = 0 in k, and we claim that D" € m. Indeed, we have first
D'(e;) = D(e1) + e; o D(ey) = 0 by (1). Moreover, e; o e = 0 implies,
because D' is a derivation, 0 = D'(e;) o ey + €1 0 D'(e3) = e3 o D'(e3). Hence,
D"(e;) = D'(e1) + D'(eg) oe; = 0, and also D"(eq) = D'(e3) + D'(e2) o ey = 0,
again by (1). This shows D" € m. That V;Nm = Vg is an easy consequence of
the Peirce decomposition of J with respect to the e;. For D € m and = € E,
we have [D, V;| = Vp) = 0, so Vg is central in m.

4.9. Theorem. Let 3 be the centre of Cliffy(q), which by Th. 4.3 is isomor-
phic to k -1dg & k - Idey under the isomorphism ®.

(a) 3 C spin(q) is the centre of spin(q), Vg is the centre of m, and there
are tsomorphisms of 2-Lie algebras

h/V; 25 m/Ve 25 spin(q)/3 225 o' (¢)/k - Ide 25 Hy(Q%, k)o/k - 14, (1)

where Hy(Q%, k)y denotes the subspace of trace 0 elements in the Jordan al-
gebra of 4 x 4 hermitian matrices with scalar diagonal entries over the split
quaternion algebra Q° = Maty(k). In particular, the quotient h/V; is a simple
Lie algebra, which is up to isomorphism independent of the Cayley algebra O.

(b) V7 is the unique proper nonzero ideal of b.

Proof. (a) The isomorphism ¢ is clear from Lemma 4.8. We next establish
¢3. By Th. 4.3(c), Spin(q) contains p, X p, as a central subgroup, and the Lie
algebra of this is 3 because k has characteristic 2 and therefore Lie(u,) = k.
Thus 3 is a central subalgebra of spin(g). Also, k-1 = Ker(x) C 3. Hence x(3) is
a central ideal of dimension 1 in x(spin(q)) = 0'(g), cf. 2.14. By Prop. 2.15(b),
0"(q) := 0'(q)/k - Ide is a simple Lie algebra. Hence can(x(3)) = 0 in 0”(q)
where can: 0’(q) — 0”(¢) denotes the canonical map, so we have x(3) = k-Ido,
and therefore spin(q)/3 = 0”(q). This establishes 3, and also shows that 3
equals the centre of spin(q). By Lemma 4.8, V} is a 2-dimensional central ideal
of m. By Cor. 4.4, we have a Lie algebra isomorphism ¢ = Lie(p™' on): m —
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spin(q), which of course preserves centres, so Vi equals the centre of m. Now
¢ induces the isomorphism ¢y. Finally, ¢4 follows from Prop. 2.15(a).

(b) Let a be a proper nonzero ideal of b and can: h — bh/V; the canonical
map. Then can(a) C h/V; is either zero or h/V}, so either a C Vj or a+V; =
h. The first case yields a = V; because V; is simple, so we must derive a
contradiction from the second case. By simplicity of V; we have an'V; = 0,
so h = a® V; (direct sum of ideals) and therefore dima = 26. We also have
mNa # 0, otherwise dimbh > dimm + dima = 28 + 26 which is impossible.
Choose 0 # D € m N a. Because D annihilates the e;, there exist 7 # j and
z € J;; such that D(z) # 0, and D(z) € J;;, because the elements of m
stabilize the Peirce spaces. This implies e; o D(z) = D(z) # 0. On the other
hand, [D,V;] = Vpu) € [a,V;] = 0, because h = a @ V; is a direct sum of
ideals, and therefore also Vp(,)(e;) = e; o D(z) = 0, contradiction.

Remarks. (i) The isomorphism (1) was also pointed out to us by A. El-
duque with a different proof.

(ii) We remind the reader that the above theorem deals only with reduced
Albert algebras. When J is a division algebra, it is clear, by passing to the
algebraic closure, that §/V; is still a simple Lie algebra, but it is not clear
whether it is isomorphic to H4(Q, k)o/k - 14, independently of J. However, part
(b) continues to hold in case of a division algebra, as is seen by passing to the
algebraic closure of &.

4.10. Schafer’s isomorphism. Let O° be a split Cayley algebra and Q a quater-
nion algebra over k. In [22], Schafer and Tomber prove that there is a Lie
algebra isomorphism X: H3(0% k)o — H4(Q, k)o/k - 14, where the subscript 0
indicates the spaces of trace zero elements. We now give a more convenient
description of this isomorphism.

Let O° = Q @ Q be the Cayley-Dickson double of Q, with multiplication,
involution and norm given by

(u,v)-(2z,w) = (uz+wd, dw+2zv), (u,v)=(4,—v), ¢qu,v)=ua—vo. (1)

There is a natural embedding of H3(Q, k) into H4(Q, k)¢ by adding a row and
column of zeros. We extend this to a linear map f: H3(O% k) — Hy(Q, k) by

f(l]) = o] + [44], f((u, 0)[35]) := ulig] + v[k4], (2)

where {i,7,k} = {1,2,3}. Note that this is well defined: We have al[ij] = a[ji]
for a € O°, but because of (1) and 2 = 0 also f(a[ij]) = f(a[ji]). Now it is
easy to compute that f behaves as follows with respect to squaring and circle
products, where a = (u,v) € O° and 4, j, k € {1,2,3}:

F(@a)*) = f(al)?, (3)
falij]*) = f(alif])® +vo - 14, (4)
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f(alij] o bljk]) = flalij]) o f(bLjK])  ({i, 5, k} = {1,2,3}), (5)
flid] o [55]) = f([e]) o f([55]), (6)
f(lid] o aljk]) = f([éd]) o f(aljk]). (7)

Let x = Y7701 &id]+ Y 1<icjcs aijli] € H3(O%, k), where a;; = (uij,vi;) € QQ.
Then (3) - (7) imply

1@ = f@P=( T vgg) L

1<i<j<3
Now it is clear that
5 Hy (0%, k) -1 H(Q, K)o =5 Hy(Q, k)o/k - 14

is a vector space isomorphism preserving the squaring, and hence is an iso-
morphism of restricted Lie algebras.

4.11. Corollary. Let O and O° be, respectively, an octonion algebra and a
split octonion algebra, and let J = H3(0, k) and J* = H3(O%, k) be the corre-
sponding reduced and split Albert algebras over k. We identify the 2-Lie algebra
Jo = Ker(tr) with V; under the map x — V, as in 4.7, and similarly for J°.

(a) There is an isomorphism of restricted Lie algebras

W)= Zilogo: h/VJi)H4(Q,/€)0//€'14E—_1>Jg, (1)

obtained by composing the isomorphism ¢ := @40 Y30 Yy 0 1 of Th. 4.9(a)
with the inverse of Schafer’s isomorphism X.

(b) If O is an octonion division algebra then §/V is not isomorphic to V;
as a Lie algebra.

Proof. (a) This is evident from 4.10 and Th. 4.9(a).

(b) Assume that h/V; =2 V;. Then Jy =2 V; = h/V; = J§ (by (1)) as
Lie algebras. Since J; and J§ are, by Cor. 2.13, simple Lie algebras, they
have trivial centres. Hence J = J* follows from [17, Cor. 5.3(b)]. Now the
Albert-Jacobson Theorem [20] implies that O = O° is split.

4.12. Remark. The results of Th. 4.9 and Cor. 4.11(a) can also be obtained
by computational algebra techniques contained in the first author’s PHD the-
sis, see [1]. This computational approach allows a detailed description (involv-
ing root space decomposition relative to a Cartan subalgebra) of the ideal V;
and also of the quotient algebra Der(J)/V; for a general octonion algebra.
The split case is contained in [1]. The main routines of [1] where published in
the more handy reference [2].
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4.13. The homomorphism B: H — H*. We keep the notations and assump-
tions of Corollary 4.11. The isomorphism % induces an isomorphism between
Aut(h/V;) and Aut(J§), where Aut refers to the algebraic group of Lie al-
gebra automorphisms. In view of the remark made in 4.7 and our previous
results, this is also the group of automorphisms in the restricted sense. By
[17, Cor. 5.4] we have a further isomorphism

Aut(J5) 2 H® := Aut(J?), (1)

which assigns to an automorphism gy of J; ® R the R-linear extension to
J*Q@R = R-1&(J§® R) fixing the unit element, for all R € k-alg. Composing
these isomorphisms, we obtain an isomorphism

o

9: Aut(h/Vy) = H°. 2)

The group H acts by 2-Lie algebra automorphisms on its own Lie algebra b
via the adjoint representation Ad, and V; is stable under Ad H. Hence we
have an induced homomorphism o: H — Aut(h/V};), and by composing with
Y we obtain a homomorphism

B =190 H-% Aut(h/V;) -2 H".

We introduce the notations

I:=Ker(f), [:=Lie(f) and i:= Lie(I)= Ker(f),

and recall that an algebraic group G over a field £k is called infinitesimal if
G(K) = {1} for every field K € k-alg [5, I, §4, 7.1].

4.14. Theorem. (a) For D € h = Der(J) we have

B(D) = Vig(can(p)) € b°, (1)

where can: h — §/V; is the canonical map, ¢ is as in 4.11.1, and h* =

Lie(H®) = Der(J*). Hence Ker(3) = V; and Im(B) = V.
(b) I is an infinitesimal group with Lie algebra i = V.
(c) B is faithfully flat, so the sequence
1 —>I1—HSH — 1 2)

15 exact in the flat topology.

Proof. (a) It is a standard fact that Lie(Ad) = ad. Hence for D, D' € h we
have, putting & = Lie(«),

a(D)(D'+V;)=[D,D'|+V;=[D+V;,D'+ V],
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ie., &(D) = ady,y, (can(D)). Since ¢ is an isomorphism of Lie algebras, this
implies ¢ o &(D) o ¢! = ad s (¢(can(D)) € Der(J§). From the description of
the isomorphism 4.13.1 it follows at once that the corresponding isomorphism
Der(.J¢) = Der(J*) on the Lie algebra level is just the k-linear extension A of
A € Der(Jg) to J* satisfying A(1:) = 0. Now adys(7) -y =z oy =V,(y) for
all 7,y € J§ and V(1) = 22 = 0, so the extension of ads(z) to J* is V. For
r = 1p(can(D)) we obtain formula (1). The statements about kernel and image
of 3 follow from the isomorphism 1) of 4.11.1 and the fact that J* =k-1&® J;
with J§ = Vj. under z — V,, cf. 4.7.

(b) For I to be infinitesimal, it suffices that I(/K) = {1} for an algebraically
closed field K. It is known [23, 14.20-14.25] that H is a group of type Fy, in
particular, it is an almost simple connected algebraic k-group with trivial
centre (in the sense of group schemes). Hence by [24], the group H(K) of K-
rational points is a simple abstract group. It follows that the homomorphism
Br: H(K) — H*(K) is either constant or injective. The first alternative would
imply, since H is smooth by Th. 3.12, that Lie(3) = 0 which is not the case.
Hence S is injective and therefore I(K) = Ker(fk) = {1}.

(c) Let H' := H/I be the quotient sheaf and m: H — H’ the canonical
homomorphism. By [5, III, §3, 5.6, 2.7, 2.6], H' is a smooth affine group scheme
and 7 is faithfully flat. Moreover, by [5, II1, §3, 1.6], § factors as § = tom where
1: H — H?* is a monomorphism. By Lemma 4.8 and smoothness of H and H?,
both groups have dimension 52, and dimH' = dimH — dimT (by [5, III, §3,
5.5(a)]) = dim H, because I as an infinitesimal group has dimension zero. Now
Lie(¢): Lie(H') — Lie(H?*) is injective and H' and H® are smooth of the same
dimension, so Lie(s) is bijective. It follows that ¢ is an open embedding [5, 11,
§5, 5.5(b)]. But H® is connected, so ¢ is an isomorphism. This completes the
proof.

Remark. By [4, Lemma 3.7, Cor. 3.11], § is the special isogeny between
an isotropic group of type F, and the split group of type Fjy.
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