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Abstract. The algebra of deep matrices E(X,A) is spanned over a coordinate
algebra A by “deep matrix units” Ek

h parameterized, not by single natural

numbers like the standard matrix units Ej
i , but by all “deep indices” or “heads”

h,k (finite strings of natural numbers or some other infinite set X). This

algebra has a natural Frankenstein action on the free right A-module V (X,A)

with basis of all “bodies” b (infinite sequences or strings), where Ek
h chops off

head k from the body b and sews on a new head h (replaces an initial string

k of b by h): Ek
h(kd) = hd, Ek

h(b) = 0 if b doesn’t begin with the string k.
As with ordinary matrix algebras, the center and the ideals of the deep

matrix algebra are just those of the coordinate algebra, because each nonzero

element A is only “distance 1” away from a scalar: there exist a coordinate a
and deep matrix units E, F such that EAF = a1. In particular, over a simple

coordinate algebra A the deep matrices form a simple unital algebra which

acts irreducibly on each tail subspace of V (X,A), spanned by all b having the
same “tail,” where two strings b,b′ have the same tail if they become the same

after chopping off suitable heads (of perhaps different sizes).

Key Words: simple unital algebra, irreducible actions.
2000 MSC: Primary 16D30, Secondary 16D60

1. Prolegomenon

Deep matrices were born of musings on the difficulty of creating ideals in qua-
dratic Jordan algebras, where the ideal generated by an element a consists of all
finite sums of finite quadratic products of a by elements of the algebra. The number
of summands and factors in such an expression could be considered a measure of its
complexity. This is much clearer in an associative algebra: we can define the alge-
braic distance from a to b to be the length of the shortest expression b =

∑n
i=1 xiayi

for b in terms of a (or ∞, if no such expression exists). The diameter of an algebra
would be the supremum of all distances between nonzero elements. An algebra is
simple precisely when every two nonzero elements are a finite distance apart, and
P.M. Cohn showed that an algebra has finite diameter precisely when it is simple
and all its ultrapowers remain simple.

We write dA(a, b) if there is any ambiguity about the algebra in which we are
computing distance. Distance increases (generating power decreases) under mul-
tiplication of a and decreases (reachability increases) under multiplication of b by
elements x̂, ŷ of the unital hull; distances shrink in homomorphic images and grow
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in subalgebras (but remain the same in Peirce subalgebras):

d(x̂aŷ, b) ≥ d(a, b) ≥ d(a, x̂bŷ),

d(a, b + c) ≤ d(a, b) + d(a, c), d(a, c) ≤ d(a, b)d(b, c),

dA(ā, b̄) ≤ dA(a, b), d(A) ≤ d(A), dB(a, b) ≥ dA(a, b),

dB(a, b) = dA(a, b), d(B) ≤ d(A) for B = eAe for an idempotent e ∈ A.

For the subalgebra B = ΦE11 + ΦE12 of the algebra A of 2 × 2 matrices over Φ,
a = E12, b = E11 have b = E11aE21 in A, so dA(a, b) = 1 but dB(a, c) = ∞ for
all c 6= 0 in B. If A is a dense algebra of linear transformations on an infinite-
dimensional right vector space V over a division algebra ∆, A can still retain
finite diameter, but only with difficulty: by Litoff’s Theorem, A contains for each
finite n a subalgebra An having quotient An isomorphic to M(n, ∆) and hence
d(An) ≥ d(An) = n. Despite having these subalgebras of large diameter, A itself
may have finite diameter (even diameter 1, as in the case of Deep Matrices), since
the diameter of subalgebras not of the form eAe may exceed the diameter of A.

The notion of distance rapidly loses significance in commutative algebras: then
b =

∑
xiayi = (

∑
xiyi)a1, so d(a, b) is either ∞ or 1, and A has finite diameter

(= 1) iff A is simple (= a field). But for noncommutative algebras, distance and
diameter do give an algebraic notion of “size”. It is easy to see that the algebra
M(n, ∆) of n×n matrices over a division ring ∆ (equivalently, the algebra End(V∆)
of linear transformations on an n-dimensional right vector space V over ∆) has
diameter n. In particular, every division algebra has diameter 1. But the converse
turns out to be false: just because any two nonzero elements are a distance 1 apart
(each a 6= 0 has two friends x, y such that xay = 1) does not imply the algebra is
a division algebra.

Algebras of diameter 1 have been constructed by L.A. Bokut [1], using transfinite
induction and free algebras to show that every simple algebra without zero divisors
imbeds in an algebra of diameter 1 (indeed, in an algebra A with the property
that for every a 6= 0, b, c, d, e, f, g ∈ A, α, β ∈ Φ, one can solve the equation xay +
ybx + αxy + βyx + cx + xd + ey + yf + g = 0 for x, y, not merely the equation
xay = 1). Prof. Ken Goodearl suggests the following quick argument that every
algebra B over a field Φ imbeds in one of diameter 1. We may assume the algebra
B is unital, and let E = EndΦ(V ) be the ring of Φ-linear transformations of a free
B-module V =

⊕
Ba over an index set of infinite cardinality ℵ ≥ dimΦ(B), so that

dimΦ(V ) = ℵdimΦ(B) = ℵ. B imbeds via the left regular action in A := E/M
for the maximal ideal M = {x ∈ E | rank(x) < ℵ}, since each left multiplication
Lb 6∈ M if b 6= 0. [Note that it has rank dimΦ

( ⊕
a bBa

)
≥

∑
a 1 = ℵ since bBa 6= 0

for b 6= 0 and B unital]. A has diameter 1 since for any endomorphism a ∈ E \M
we have V = ker(a)⊕W = U ⊕ im(a) with a an isomorphism of W on im (a), thus
dim (W ) = dim (im (a)) = rank (a) = ℵ = dim (V ) gives rise to a Φ-isomorphism
y : V → W, hence xay = 1V for

x : V
proj−→ im(a) a−1

−→ W
y−1

−→ V.

Thus in A = E/M we have x̄ ā ȳ = 1̄, and A has diameter 1.
This example is fairly universal. Whenever 1 is a finite distance n < ∞ away

from an element a ∈ End∆(V ) with ℵ = dim∆(V ) infinite, then a must have rank
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r = ℵ. Indeed, if r = dim∆(a(V )) < ℵ were strictly smaller, the dimension of
V = 1(V ) =

∑n
i=1 xiayi(V ) ⊆

∑n
i=1 xia(V ) would be ≤

∑n
i=1 dim∆(xi(a(V ))) ≤∑n

i=1 dim∆(a(V )) (transformations cannot increase dimension) = nr < nℵ = ℵ, a
contradiction. Thus all nonzero elements a in a diameter 1 algebra must be “within
striking distance of invertibility”. In particular, algebras of diameter 1 containing
matrices of finite rank must already be division algebras.

Algebras of diameter 1 have been called “purely infinite” and studied intensively
in the setting of C∗-algebras.1 In particular, J. Cuntz [2] introduced an algebra O∞
which is the C∗-closure of the algebra of deep matrices with complex coordinates
over a countable index set, and established the basic diameter 1 property making
heavy use of the complete norm topology. We will develop a purely algebraic
theory of deep matrices over arbitrary coordinate rings. We will work thoughout
with unital associative algebras over an irrelevant (unital, associative, commutative)
ring of scalars Φ. Andy Warhol used to say that each algebra (he meant, of course,
only associative algebras) deserves to be famous for 10 minutes. We want to give
the algebra of deep matrices a few pages in the limelight, in the hope that it may
find useful employment in the algebraic community.

2. Heads and Bodies

We want to create an algebra of square matrices A =
∑

h,k ah,kEk
h whose entries

ah,k come from some unital associative Φ-algebra A, and whose deep matrix units
Ek

h have “deep” row- and column-indices h,k from a set H(X) of “heads” based
on some underlying nonempty index set X. The set of all “deep X-indices” or
“X-heads”

H(X) =
∞⋃

n=0

Xn

consists of all finite strings (n-tuples) h = (x1, . . . , xn) of arbitrary depth |h| = n ≥
0 whose individual indices xi come from X. The number of heads is infinite. Notice
that we include one important head, the empty head ∅ of depth 0. The reader may
for concreteness think of X as the natural numbers N = {1, 2, . . .}, though neither
countability nor ordering of the indices is relevant. Also, we are primarily interested
in the case when the coordinate algebra A is a division algebra, or at least simple.

Our matrix units act in a gruesome way on a free right A-module

V (X,A) :=
⊕
b∈B

bA

with basis vectors b from the set of all “X-bodies”

B(X) =
∞∏
1

X

consisting of all infinite strings (sequences) b = (y1, y2, . . .) of indices from X. The
number of bodies is uncountable if |X| ≥ 2. When A is commutative we can ignore
the distinction between right and left modules.

1I would like to thank Prof. Goodearl for directing me to the C∗ literature. See [3] for several
equivalent versions of the purely-infinite condition.
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We cannot sew bodies together, but we can sew heads onto bodies: we can
concatenate finite tuples with infinite sequences,

hb := (x1, . . . , xn, y1, y2, . . .).

In addition to sewing heads on, we can also cut them off. The N th head and tail
operations ηN : B(X) → H(X), τN : B(X) → B(X) for finite N = 0, 1, . . . are
defined by

ηN (b) := (y1, . . . , yN ), τN (b) = (yN+1, yN+2, . . .) (b = (y1, y2, . . .)).

Thus the head operation decapitates the N th head (the first N indices) ηN (b) from
the body and carries it away, leaving behind the N th tail τN (b) (all but the first
N indices). We agree that η0(b) = ∅ is the empty head (no decapitation), and
τ0(b) = b is the identity map. The humpty-dumpty concatenation restores the
original body by sewing its N th head back on to its N th tail:

b = ηN (b)τN (b).

If we are careful we can even cut heads off heads, forming ηN (h) as long as
N ≤ |h|. We say that a finite or infinite string d has head or begins with h, or that
h heads d (written h � d) if h = ηN (d) is an initial segment of d for some N, i.e.
d results from concatenation with h. We say h is a proper head or properly heads
or properly begins d (written h < d) if it is a proper initial segment:

h � d ∈ H (resp. B) iff d = hd′ for some d′ ∈ H (resp. B),
h < d ∈ H iff h � d 6= h (i.e. d = hd′ for d′ 6= ∅)

Note that always ∅ � h.
The relation of heading is a partial ordering of heads: it is reflexive, h � h,

transitive, j � h � k =⇒ j � k, and is antisymmetric, j � h � j =⇒ j = h. Two
heads h,k are related under this partial order (written h ∼ k) if one is a head of
the other, h � k or k � h, otherwise they are unrelated (written h 6∼ k). The
direction of a relation is determined by depth:

if |h| = |k| then h ∼ k ⇐⇒ h = k,
if |h| < |k| then h ∼ k ⇐⇒ h < k,
if |h| > |k| then h ∼ k ⇐⇒ k < h.

Note that each of our creatures is polycephalic, having lots of different heads (in-
cluding an empty head), though fortunately all its heads are related.

The key anatomical result is

Theorem 1 (Heads). (i) [Relatedness] Let h,k,h′ ∈ H(X) be heads, d,d′ ∈
H(X) ∪B(X) be heads or bodies. Then h heads kd only if h,k are related; more
precisely, h heads kd iff either h heads k, or k properly heads h and the remainder
of h heads d:

h � kd ⇐⇒

{
(i) h � k or
(ii) k < h = kh′ and ∅ 6= h′ � d = h′d′.

If h,kd are related then so are h,k:

h ∼ kd =⇒ h ∼ k.

(ii) [Unrelatedness] If h 6= k are distinct heads in H(X) and y, z ∈ X are indices
not appearing in either head (y = z allowed), then hy,kz are unrelated:

hy 6∼ kz (y, z 6∈ h,k).
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(iii) [Head Separation] For any finite collection b1, . . . ,bn of distinct bodies in
B(X), there exists a head k such that

k � b1, but k 6� bi for i = 2, . . . , n.

Indeed, there is a natural number N so that all the heads ηN (bi) of depth N are
already distinct.

Proof. (1) Suppose h = (x1, . . . , xr) heads kd = (y1, . . . , ys, z1, z2, . . .) for k =
(y1, . . . , ys) (xi, yj , zk indices in X). When r ≤ s (so k lasts as long as h), we
need x1 = y1, x2 = y2, ..., xr = yr, i.e. that h � k, as in (i). When r > s, so
k stops before h does, we must have y1 = x1, . . . . , ys = xs (i.e. k < h = kh′

for h′ = (w1, . . . , wr−s) of length r − s > 0) and w1 = xs+1 = z1, w2 = xs+2 =
z2, . . . , wr−s = xr = zr−s. i.e. h′ � d, as in (ii).

(2) follows since kd � h =⇒ k � kd � h.
(3) If hy � kz then h � hy � kz =⇒ h � k (since h does not involve

z) =⇒ k = hh′ for h′ 6= ∅ (since k 6= h). But then hy � kz = hh′z =⇒ y � h′z
(cancelling h), whereas y does not appear in the nonempty part h′ of k. Analogously
kz 6� hy.

(4) Since the bodies are all distinct, for any two labels i 6= j the bodies bi,bj are
distinct, and if Nij is the first place they differ then their heads ηN (bi) 6= ηN (bj)
of length N already differ for any N ≥ Nij . If we take N = maxi 6=j Nij to be the
largest of these “differentiating places”, any two bodies will already be different by
their N th place: ηN (bi) 6= ηN (bj) if i 6= j. In particular, if we take k := ηN (b1) we
have k � b1 but k 6� bi for all other i (since their initial segment of depth N is
ηN (bi) 6= ηN (b1) = k). �

3. The Deep Matrix Algebra

Here we put our heads together to construct an algebra of “matrices” spanned
by formal “matrix units” Ek

h labelled by “deep” row and column indices h,k.

Theorem 2 (Deep Matrix Algebra Construction). The deep matrix algebra
E(X,A) based on X over A consists of the free left A-module with the the basis of
all deep matrix units Ek

h for finite strings h,k ∈ H(X), together with the Deep
Multiplication Rules for the products aEi

h · bEk
j (a, b ∈ A) :

(DMI) (aEi
h)(bEk

j ) = (aEi
h)(bEk

ij′) = abEk
hj′ if i � j = ij′,

(DMII) (aEi
h)(bEk

j ) = (aEji′

h )(bEk
j ) = abEki′

h if j � i = ji′,

(DMIII) (aEi
h)(bEk

j ) = 0 if i 6∼ j are unrelated (i 6� j and j 6� i).

This is an associative algebra with unit 1deep = E∅
∅ . The construction is an increas-

ing function of both variables, and the construction for general A is just the usual
scalar extension by A of the construction for the ground ring Φ:

E(X,A) ⊆ E(X,B), E(X,A) ⊆ E(Y,A),
E(X,A) ∼= A⊗Φ E(X, Φ)

under the natural inclusions for unital subalgebras A ⊆ B and subsets X ⊆ Y, and
the natural isomorphism a⊗Ek

h → aEk
h. In particular, E(·, X) is a functor on unital

associative algebras.
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We also have a functor E(X, ·) on unital associative ∗-algebras: if A carries an
involution a → ā (e.g. if A is commutative, ā = a), then E(X,A) carries a natural
conjugate transpose involution uniquely determined by(

aEk
h

)∗ := āEh
k .

In particular, we always have a transpose involution on the subalgebra E(X, Φ).
The deep matrix algebra is generated by the “forward and backward shifts” de-

termined by elements of X :

Ek
h = E∅

hEk
∅ , where for heads h = (x1, . . . , xn), k = (y1, . . . , ym)

E∅
(x1,...,xn) = E∅

x1
· · ·E∅

xn
, E

(y1,...,ym)
∅ = Eym

∅ · · ·Ey1
∅ .

It can be characterized as the free algebra generated over A by “orthogonal shifts”
Sx, S∗x satisfying the defining relations

S∗xSy = δx,y1

under the correspondence Sx1 · · ·SxnS∗ym
· · ·S∗y1

= hk∗ → Ek
h.

Proof. The Deep Multiplication Rules (1) for products of basis elements uniquely
determine an algebra structure E(X,A); it is associative by a tedious direct calcu-
lation (superseded by the Deep Frankenstein Isomorphism 20.7(vii)). E∅

∅ acts as
unit from the left on the basis elements Ek

j by the Deep Multiplication Rule (DMI)
with i = h = ∅, and from the right on Ei

h by (DMII) with j = k = ∅ (note that
always ∅ � j,k with trivial concatenations ∅m = m = m∅).

The natural inclusions (2) follow immediately from the Deep Multiplication
Rules. Since E(X, Φ) is free as Φ-module with basis Ek

h, the tensor product A⊗Φ

E(X, Φ) as well as E(X,A) are free as left A-modules with bases 1 ⊗ Ek
h and Ek

h,
and in view of the Deep Multiplication Rules the natural Φ-linear isomorphism
a ⊗ Ek

h → aEk
h is an algebra isomorphism. Tensoring A → A ⊗Φ E(X, Φ) is al-

ways a functor (or, directly, note A φ−→ A′ extends to E(X,A)
E(φ)−→ E(X,A′) via

E(φ)(aEk
h) = φ(a)Ek

h).
(3) The conjugate transpose involution ∗ certainly defines a linear transforma-

tion on E of period 2, A∗∗ = A, which is an algebra anti-homomorphism (AB)∗ =
B∗A∗ on the basis elements A,B by straight-forward verification: when the mid-
dle deep indices i,j are unrelated we have by (DMIII)

(
(aEi

h)(bEk
j )

)∗ = 0∗ =
0 = (b̄Ej

k)(āEh
i ) =

(
bEk

j

)∗(
aEi

h

)∗
, while when i � j = ij′ we have by (DMI)(

(aEi
h)(bEk

j )
)∗ =

(
abEk

hj′

)∗ = b̄ āEhj′

k = (b̄Ej
k)(āEh

i ) =
(
bEk

j

)∗(
aEi

h

)∗
, and finally

when j � i = ji′ we have by (DMII)
(
(aEi

h)(bEk
j )

)∗ =
(
abEki′

h

)∗ = b̄ āEh
ki′ =

(b̄Ej
k)(āEh

i ) =
(
bEk

j

)∗(
aEi

h

)∗
. Thus ∗ is an algebra involution.

(4) These generation formulas follow immediately from the Deep Multiplication
Rules.

(5) Since the shallow matrix units satisfy Ex
∅E∅

y = δx,yE∅
∅ , the map Sy →

E∅
y , S∗x → Ex

∅ induces an epimorphism S → E of the free algebra. The defin-
ing relations (5) (shortening any product with an S∗x to the left of an Sy) show
that S is spanned over A by elements hk∗, and these spanning elements are sent to
the basis elements Ek

h ∈ E by (4). But then the hk∗ must be A-independent too,
and the map is an isomorphism sending the natural A-basis of S to that of E . This
establishes the description (5). �
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Let us also comment on the “deepness” of these matrix units. Inside E∅ :=
E∅
∅EE∅

∅ = E of depth 0 we have “shallow” matrix units Ey
x (x, y ∈ X), which

by the Deep Multiplication Rules form an infinite family of ordinary matrix units
Ey

xEw
z = δyzE

w
x (δyz = 0 if y 6= z, δyz = 1 if y = z), and thus span an infinite

matrix subalgebraM∞ ∼= span{Ey
x | x, y ∈ X}. But inside any diagonal subalgebra

Em := Em
mEEm

m (the span of all Emk
mh) of arbitrary depth |m| we have another family

of matrix units Emy
mx (x, y ∈ X) with Emy

mxEmw
mz = δyzE

mw
mx , which again spans an

infinite matrix subalgebra ∼= M∞. Thus no matter how deeply we descend, we
still find copies of M∞ stretching below us. Indeed, E has a “fractal” nature: by
the Deep Multiplication Rules every diagonal subalgebra Em is a clone (isomorphic
copy) of the entire algebra E under the map Eh

k −→ Emh
mk , in view of the rules

(i) Emi
mhEmk

mij′ = Emk
mhj′ if i � j = ij′, (ii) Emji′

mh Emk
mj = Emki′

mh if j � i =
ji′, (iii) Emi

mhEmk
mj = 0 if i, j are not related (i 6� j and j 6� i).

4. The Scalar Multiple Theorem

THROUGHOUT THE REST OF THIS PAPER WE WILL ASSUME THAT
X IS AN INFINITE INDEX SET. J. Cuntz showed that the complex C∗-algebra
O∞ of operators on a separable Hilbert space generated by a countable family of
orthogonal isometries Si, S

∗
i satisfied the Deep Multiplication Rules [2, 1.2 p.175]

and, making heavy use of the norm topology, had diameter 1 [2, 3.4 p.184].2 We
now turn to a direct computational proof that, for an arbitrary infinite index set
X and arbitrary coordinate algebra A, every nonzero deep matrix has a two-sided
multiple which is a “scalar”; over a division algebra A this implies E(X,A) has
diameter 1.

Theorem 3 (Scalar Multiple). Every nonzero element of the deep matrix algebra
E(X,A) for an infinite set X has a “scalar multiple”: if 0 6= A ∈ E(X,A) there
exist a nonzero coordinate 0 6= a ∈ A and deep matrix units E,F (backward and
forward shifts) with

EAF = a1deep and EF = δ1deep (δ = 1 or 0).

More specifically, let A =
∑

h,k ah,kEk
h 6= 0 be a finite sum with coefficients ah,k ∈

A, and let ah0,k0 be a nonzero coefficient which is minimal in the sense that ah,k = 0
when h < h0 is a proper initial segment, and also when h = h0 but k < k0 is a
proper initial segment. Then

EAF = ah0,k01deep and EF = δh0,k01deep.

for the backward shift E = Eh0y
∅ and forward shift F = E∅

k0y for any index y ∈ X
which does not appear in any of the finite number of deep indices h,k with ah,k 6= 0.

Proof. It suffices to find shifts E = Eh0y
∅ , F = E∅

k0y which isolate the minimal
matrix unit in the sense that EEk0

h0
F = E∅

∅ but EEk
hF = 0 for all other pairs of

deep indices appearing in A. Then multiplication by E,F will pick out exactly
the given miminal term of A and turn it into ah0,k01, and automatically EF =
Eh0y
∅ E∅

k0y = δh0,k0E
∅
∅ by Heads Unrelatedness 20.1(iii).

2In [2, 1.13 p.179] Cuntz established similar results for C∗-algebra On of operators on a sep-
arable Hilbert space generated by a finite family of n orthogonal isometries Si, S

∗
i subject to the

additional condition
Pn

i=1 SiS
∗
i = 1. In general, for finite |X| = n < ∞, the “correct” deep

matrices require this extra condition
Pn

i=1 xix
∗
i = 1, and require a slightly different treatment.
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Certainly we have Eh0y
∅ Ek0

h0
E∅

k0y = Ek0y
∅ E∅

k0y = E∅
∅ = 1 from the Deep Multipli-

cation Rules for any index y ∈ X.
We claim that E Ek

h F = 0 for all other terms as long as we choose y distinct
from all indices x which appear in h,k (and we can do this for all the nonzero
terms in a simultaneously since there are only finitely many of them and there is
by hypothesis an infinite set X of indices y to choose from).

So assume ah,k is some other nonzero coefficient. By the Deep Multiplication
Rule (DMIII) we already have Eh0y

∅ Ek
h = 0 unless h,h0y are related. Since y was

chosen not to appear in h, h0y cannot be part of h, so we must have h � h0y, and
again since h does not contain y we must have h � h0. By ah,k 6= 0 and minimality
of h0 we cannot have h < h0 a proper initial segment, so we must have h = h0.
Since we are working with different coefficients, we have

h = h0, k 6= k0.

But then by (DMII) E Ek
h F = Eh0y

∅ Ek
h0

E∅
k0y = Eky

∅ E∅
k0y = 0 vanishes by the Deep

Multiplication Rule (DMIII) since ky,k0y are not related by Heads Unrelatedness
20.1(iii). �

Note that is crucial to isolate a minimal matrix unit, and it is crucial for isolation
that X be an infinite set. Also, we must use deep matrix units; for ordinary n× n
matrix units there is no trouble isolating a single matrix unit by multiplication
since all coefficients are automatically minimal, but because ∅ is not allowed as an
index we must create the identity matrix as a finite sum

∑n
j=1 Ej

j of n matrix units
rather than as a single matrix unit E∅

∅ .
The Scalar Multiple Theorem has important consequences for ideals and centers.

First, it guarantees that ideals of E correspond to ideals ofA, just as for finite matrix
algebras.

Theorem 4 (Ideal Lattice). The lattice of ideals K of E(X,A) is isomorphic to
the lattice of ideals I of A, since the ideals of E are precisely all

E(X, I) :=
∑

h,k∈B(X)

IEk
h for I defined by I1deep := K ∩A1deep.

If A has an involution then the lattice of ∗-ideals of E(X,A) under the congjugate
transpose involution is isomorphic to the lattice of ∗-ideals of A.

Proof. Let K be an ideal of E , and define I as above. Clearly I is an ideal of
A, and by definition K ⊇ (I1deep)E ⊇

∑
IEk

h = E(X, I). We must establish the
reverse inclusion, and it suffices by surgery to prove K = 0̄ in the quotient algebra
E(X,A)/E(X, I) ∼= E(X,A) for A := A/I the quotient coordinate algebra. But
by the Scalar Multiple Theorem 20.3 (applied to A), as soon as 0̄ 6= Ā ∈ K there
is a nonzero scalar 0̄ 6= ā1deep = Ē Ā F̄ ∈ K ∩ A1deep. Since the kernel E(X, I) is
contained in K, taking preimages gives a1deep ∈ K ∩ A1deep so by definition a ∈ I
and ā = 0̄, a contradiction. Thus K must be 0̄, as claimed.

In particular, all ideals are invariant under the transpose map, and K is invariant
under the conjugate transpose involution iff I is invariant under the conjugation of
A. �

Theorem 5 (Simplicity). The deep matrix algebra E(X,A) is simple iff the coor-
dinate algebra A is simple, and is ∗-simple iff the coordinate algebra is ∗-simple.
2
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Secondly, the center of the deep matrix algebra consists of the scalar matrices
coming from the center of the coordinate algebra, just as with finite matrix algebras.

Theorem 6 (Center). The centralizer in the deep matrix algebra E(X,A) of the
deep matrix units (even just the shallow backward or forward shifts) consists of the
scalar multiples of the identity, and the center of E(X,A) corresponds to the central
multiples of the identity:

CentralizerE(EX
∅ ) = CentralizerE(E∅

X) = A1deep,
Center(E) = Center(A)1deep.

Proof. It suffices to show a centralizer is a scalar. By the Scalar Multiple Theorem
20.3, if C 6= 0 we have 0 6= a1deep = ECF for matrix units E = Ek

∅ , F = E∅
h with

EF = δ1deep. If C commutes with the shallow backward shifts Ex
∅ it commutes

with all backward shifts Ek
∅ = E

(y1,...,yn)
∅ = Eyn

∅ · · ·Ey1
∅ , so 0 6= a1deep = ECF =

CEF = δC. Then δ 6= 0 forces δ = 1 and C = a1deep is a scalar. Similarly, if C
commutes with all backward shifts then a1deep = ECF = EFC = δC = C. �

5. Frankenstein Actions

We can realize the abstract algebra of deep matrices as operators on the space
spanned by all “bodies.” Because we are dealing with an infinite index set X, the
set B(X) of bodies is always uncountable. The standard matrix units Ej

i (i, j ∈ N)
have a natural representation as A-linear transformations on a free right A-module
with basis {vj} via Ej

i (vk) = viδjk, so Ej
i replaces vj by vi and kills all other vk. In

a similar way, the deep matrix units Ek
h have a natural representation as A-linear

operators Fk
h on the Frankenstein module, the free right A-module with basis

of all bodies b,

V (X,A) =
⊕

b∈B bA,

where Fk
h transforms basic bodies beginning with k into ones beginning with h

according to the basic Frankenstein Action Rules

(FAR) Fk
h (ba) = 0 if k 6� b, Fk

h (kb′a) = hb′a if k � b = kb′ (a ∈ A).

Thus for heads h,k the hth “insertion” or “forward shift” or “sewing operator”
(sewer, but watch the pronunciation!) F ∅

h sews a new head onto the body (in
front of its old one), the kth “deletion” or “backward shift” or “chopping operator”
(chopper) Fk

∅ removes the head k (so the operation is not a success, killing the
patient, if it has a different |k|-th head), and the hkth “chop-and-sewer” or general
Frankenstein operator Fk

h removes the head k and sews on the head h in its
place. The Frankenstein projection Fk

k kills all bodies not having k as head,
but leaves bodies with head k alone (actually, it removes the head and then quickly
sews it back on). In particular, F ∅

∅ is the identity operator.
We can take linear combinations of Frankenstein operators to form an algebra.

Theorem 7 (Frankenstein Algebra). As A-linear transformations on V (X,A)A,
the Frankenstein operators have (for b ∈ B(X), a ∈ A) the actions
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(i) F ∅
∅ is the identity operator F ∅

∅ (ba) = ba,

(ii) F ∅
h is the hth“insertion” or “forward shift” or “sewer”

F ∅
h(ba) = hba,

(iii) Fk
∅ is the kth“deletion” or “backward shift” or “chopper”

Fk
∅ (ba) = 0 if k 6� b, Fk

∅ (kda) = da if k � b = kd
(iv) Fk

h = F ∅
hFk

∅ is the hkth“chop-and-sewer”
Fk

h (ba) = 0 if k 6� b, Fk
h (kba) = hda if k � b = kd,

(v) the Frankenstein projection Fk
k is the projection onto the

subspace of V spanned by all b beginning with k
Fk

k (ba) = 0 if k 6� b, Fk
k (kda) = kda if k � b = kd.

The Frankenstein operators have the following multiplication table as linear trans-
formations on the Frankenstein module V (X,A)A :

(FrI) F i
hFk

j = F i
hFk

ij′ = Fk
hj′ (i � j = ij′)

(FrII) F i
hFk

j = F ji′

h Fk
j = Fki′

h (j � i = ji′)
(FrIII) F i

hFk
j = 0 if i 6∼ j are unrelated (i 6� j and j 6� i).

(vi) The distinguished basis of b’s turns the right Frankenstein A-module V (X,A)A
into an A-bimodule via Lbba := bba, and the Frankenstein operators commute with
this bimodule action. Thus the Frankenstein operators and left A-multiplications
generate a unital associative algebra, the Frankenstein algebra

F(X,A) := LAF
H(X)
H(X) =

∑
h,k∈H(X)AFk

h ⊆ End(V (X,A)A),

consisting of all Frankenstein transformations, the finite A-linear combinations∑
h,k ah,kFk

h of Frankenstein operators. The Frankenstein algebra is a free left
A-module with the Frankenstein operators as basis, and the Frankenstein module
V (X,A)A is naturally a left F(X,A)-module.

(vii) There is a natural Deep Frankenstein Isomorphism∑
h,k ah,kEk

h −→
∑

h,k ah,kFk
h

of the deep matrix algebra E(X,A) with the Frankenstein algebra F(X,A), hence a
faithful action of E(X,A) on V (X,A).

Proof. (1) These are all special cases of the Frankenstein Action Rules (FAR). Note
for (i), (ii) that all bodies have k = ∅ as one of their heads. For (iv), note that
the general Frankenstein operator may, without changing the result, pause in mid-
operation: chopping off head k, pausing (temporarily sewing on an empty head),
then resuming (removing the empty head) and sewing on the correct head h.

(2) First note that the Frankenstein operators act only on the bodies b, and hence
commute with left and right multiplications by A, which act only on the coefficients
a. This allows us to forget about the coefficient a and prove the relations (FrI-III)
only on bodies b. In (FrI), F i

hFk
ij′(b) vanishes unless b = kb′ begins with k, in

which case it produces F i
h(ij′b′) = hj′b′, which coincides with the action of Fk

hj′ .

In (FrII), F ji′

h Fk
j (b) vanishes again unless b = kb′ begins with k, in which case it

produces F ji′

h (jb′), which vanishes unless ji′ � jb′, i.e. i′ � b′ = i′b′′, so the whole
operator vanishes unless b = ki′b′′ in which case it produces F ji′

h (ji′b′′) = hb′′,
which is precisely the action of Fki′

h . In (FrIII), as usual F i
hFk

j (b) vanishes unless
b = kb′, in which case it produces F i

h(jb′), which vanishes by Heads Relatedness
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20.1(i) since we cannot have i beginning jb′ if i,j are not related, so the operator
kills all basic bodies b and is the zero transformation.

(3) Since the Frankenstein operators, together with zero, form a semigroup by (2)
commuting with left multiplications by A, their finite A-linear combinations form
an algebra F of linear transformations. To see that F is free as a left A-module,
suppose some finite A-linear combination of distinct Frankenstein operators with
nonzero coefficients ah,k 6= 0 is the zero transformation,

∑
ah,kFk

h = 0. Following
our usual procedure, choose a minimal head k0 among the k’s this time (not among
the h’s!), so k � k0 =⇒ k = k0. Since X is infinite and only a finite number of
xj ∈ X appear in the finite number of finite strings k, there is at least one y ∈ X
which does not appear in any k. Consider the body b := k0y terminating in all y’s
(where y := (y, y, y, . . .) denotes the constant sequence) . Then Fk

h (b) = 0 unless
k � k0y, which implies k � k0 since k contains no y’s, which in turn implies
k = k0 by minimality of k0. Then 0 =

∑
ah,kFk

h (b) =
∑

k=k0
ah,k0F

k0
h (k0y) =∑

k=k0
ah,k0hy; but the basic bodies hy are all distinct since these h are all distinct

(the pairs (h,k) all have the same k = k0 yet are distinct, so the h must be
distinct), and none of them involve y, so by A-freedom of the b’s this would force
the coefficient ah,k0 of hy to be zero, a contradiction.

(4) The rule ϕ(
∑

h,k ah,kEk
h) :=

∑
h,k ah,kFk

h is a well-defined A-linear bijection
of free left A-modules. This map is a homomorphism of algebras since ϕ(AB) =
ϕ(A)ϕ(B) on the basis matrix units (both deep and Frankenstein matrix units have
the same multiplication rules (DMI-III), (FI-III), so it is an isomorphism of E on
F . �

6. Irreducible Actions

We will identify the irreducible submodules of the Frankenstein action, and
thereby hangs a tail.

Theorem 8 (Tails). (i) We say that two bodies b,b′ ∈ B(X) have the same tail,
or are tail-equivalent b ∼ b′, if they become the same once you chop off a big
enough head: τN (b) = τN ′(b′). Algebraically this means that

b ∼ b′ ⇐⇒ b = hd,b′ = h′d

are obtained from the same tail d by sewing on different heads h,h′. Note that we
do not demand N = N ′, i.e. that the heads be of the same depth. This gives an
equivalence relation on sequences, and the equivalence classes are called the tail
classes.

We can get from any one body in a tail class to any other by means of Franken-
stein operators,

b′ ∼ b ⇐⇒ b′ = Fh
h′(b) ∈ F(b) (for some h,h′ ∈ H(X)),

since by definition b′ ∼ b ⇐⇒ b′ = h′d,b = hd for some tail d ⇐⇒ b′ = Fh
h′(b)

by the Frankenstein Action Rule (FAR).
(ii) For each tail-class τ we define the tail-submodule of the Frankenstein

module V (X,A)A by

Vτ (X,A) :=
∑

b∈τ bA.

Because the Frankenstein operators only affect a finite number of indices in a
body, they do not change tails (Fk

h (b) is 0 or some b′ ∼ b), so the Franken-
stein transformations of the Frankenstein algebra F(X,A) don’t either, and the
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tail-submodules are invariant under the Frankenstein action. Moreover, by (i) each
Vτ (X,A) = F(X,A)bτ is a cyclic right A-module generated by any body bτ in the
tail-class τ .

(iii) We have a direct decomposition

V (X,A) =
⊕

τ Vτ (X,A)

of the Frankenstein module V into an uncountable number of invariant submodules
Vτ (X,A) for the distinct tail-classes τ. More generally, for any two-sided ideal I�A
we obtain an invariant F-submodule

Vτ (X, I) :=
∑

b∈τ bI = I Vτ (X,A)

(equality holding since I is a right ideal), which is a left A-module since I is a
left ideal, and is Frankenstein-invariant since the tail-class is invariant under the
Frankenstein operators Fk

h .

It will be important in analyzing irreducible actions that the Frankenstein oper-
ators act selectively.

Theorem 9 (Body Separation). The Frankenstein projections separate bodies: for
any finite collection b1, . . . ,bn of distinct bodies, there exists a Frankenstein pro-
jection Fk

k such that

Fk
k (b1) = b1, but Fk

k (b2) = · · · = Fk
k (bn) = 0.

Proof. By Head Separation 20.1(iii) there is a head k such that k � b1, k 6� bi

for i 6= 1, and the result follows from Frankenstein Algebra 20.7(v). �

We can now describe all the invariant submodules of the Frankenstein represen-
tation

Theorem 10 (Frankenstein Submodule). The F(X,A)-invariant submodules of
the Frankenstein right A-module are precisely the direct sums

W =
⊕

τ

Vτ (X, Iτ ) (Iτ (W ) := {a ∈ A | a(Vτ ) ⊆ W}�A).

In particular, the irreducible invariant submodules are precisely all Vτ (X, I) for
minimal ideals I�A. If A is a simple algebra, the irreducible invariant A-submodules
of the Frankenstein module are precisely the tail-submodules Vτ (X,A).

Proof. For any F-invariant right A-submodule W the Iτ (W ) as defined above are
two-sided ideals of A : AIτA ⊆ Iτ since (AIτA)(Vτ ) = A(Iτ (A(Vτ ))) ⊆ A(Iτ (Vτ ))
(since Vτ is F-invariant) ⊆ A(W ) (by definition of Iτ ) ⊆ W (since W is F-
invariant). Clearly W ⊇

⊕
τ IτVτ by definition of Iτ ; the trick is the reverse

inclusion. For any w =
∑

i biai ∈ W we can by the Body Separation Theorem 20.9
pick out each individual b-term using a suitable Frankenstein projection: biai =
Fh

h (w) ∈ Fh
h (W ) ⊆ W. Then for any other b′i = Fh

h′(bi) in the tail-class τi of bi)
(using Tails 20.8(i)), and for any a′ ∈ A, we have ai(b′ia

′) = b′iaia
′ = Fh

h′(biai)a′ ∈
F(W )a′ ⊆ Wa′ ⊆ W (using the fact that W is a right A-module). This shows that
ai(Vτi) ⊆ W, so ai belongs to Iτi . Thus w =

∑
i biai =

∑
i ai(bi) ∈

∑
i IτiVτi ⊆∑

IτVτ , giving the reverse inclusion, and W =
⊕

τ IτVτ =
⊕

τ V (X, Iτ ) as claimed.
If A is simple the only minimal ideal is I = A. Alternately, its only ideals are

itself and 0, Iτ = A or 0 with Vτ (X, I) = Vτ (X,A) or Vτ (X, 0) = 0, so the only
invariant submodules are the sums of certain Vτ ’s, the Vτ ’s are the unique minimal
submodules, hence are irreducible. �
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We also have a complete characterization of the F-endomorphisms of any Franken-
stein module.

Theorem 11 (Endomorphism). The only F(X,A)-endomorphisms of the Franken-
stein right A-module V (X,A) over an arbitrary coordinate ring A are the central
coordinate multiplications on the individual tail-submodules Vτ := Vτ (X,A),

EndF (V ) =
⊕

τ Center(A)1Vτ
,

particular the distinct tail-classes provide inequivalent representations of deep ma-
trices: there are no nonzero homomorphism of Vτ into a different Vσ,

HomF (Vτ , Vτ ) = Center(A)1Vτ
, HomF (Vτ , Vσ) = 0 (σ 6= τ).

Proof. (1) The crux is that an F-endomorphism ϕ must act diagonally: it can
only scale up each body, ϕ(b) = ba, from the fact that we can single out b
by the actions of the Frankenstein projections determined by its many heads,⋂∞

N=0 F
ηN (b)
ηN (b) (V ) = bA since F

ηN (b)
ηN (b) (b′) = 0 as soon as b′ has a different N th head

ηN (b′) 6= ηN (b) than b. (Alternately: write ϕ(b) = ba+
∑

i biai as a sum over dis-
tinct bodies, and apply Fk

k of the Body Separation Theorem 20.9 fixing b and killing
the bi, to get ϕ(b) = ϕ(Fk

k (b)) = Fk
k

(
ϕ(b)

)
= Fk

k

(
ba +

∑
i biai

)
= ba.) The mul-

tiplier a must be the same for all equivalent basis bodies because the Frankenstein
operators act transitively on them by Tails 20.8(i): ϕ(b′) = ϕ(F (b)) = F (ϕ(b)) =
F (ba) = F (b)a = b′a. Thus ϕ |Vτ = aτ1Vτ is a left multiplication on each tail-
submodule. Since these multiplications by a must commute with left multiplica-
tions AE∅

∅ ⊆ F , the multipliers must lie in the center of A (and clearly all such
central multiplications are F-linear). This establishes (1).

(2) follows immediately from this and the direct sum decomposition Tails 20.8(iii)
of V into Vτ ’s. �

This chapter is dedicated to J. Marshall Osborn on the occasion of his 70th
birthday.
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