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Abstract. We describe all the fine group gradings, up to equivalence, on the
Lie algebra d4. This problem is equivalent to finding the maximal abelian
diagonalizable subgroups of the automorphism group of d4. We prove that
there are fourteen by using two different viewpoints. The first approach is
computational: we get a full description of the gradings by using a particular
implementation of the automorphism group of the Dynkin diagram of d4 and
some algebraic groups stuff. The second approach, more qualitative, empha-
sizes some algebraic aspects, as triality, and it is mostly devoted to gradings
involving the outer automorphisms of order three.

1. Introduction

The increasing mathematical activity around gradings on Lie and other kind of
algebras is a phenomenon which is in the background of the choices of bases and of
maximal sets of quantum observables with additive quantum numbers, as pointed
out by Patera et al. in a series of papers on the subject [27, 24, 25, 26]. The
Cartan decomposition of a semisimple Lie algebra is one of the most interesting
fine gradings (in fact the unique toral one), with a heavy influence in the structure
of Lie algebras and in representation theory. But this influence invades also the
nearby fields of particle physics via the usual identification of observables with
generators in a Cartan subalgebra, and particles living comfortably in the root
spaces of a suitable Lie algebra. So, for instance, it is possible to model the strong
interaction of nature by means of the g2 exceptional Lie algebra. The possibility
of using this algebra for describing hypercharge and isospin third component, for
a series of 14 elementary particles (quarks u, d, s and mesons π+, K+, K0, π0

together with their antiparticles), was highlighted by Gunaydin and Gursey in the
early seventies (see [11].) In this nice description, two generators of the Cartan
subalgebra are identified with the observables of hypercharge and isospin third
component. These act simultaneously ad-diagonally on the root spaces (so that the
roots give the quantum numbers.) And root space generators are the elementary
particle mentioned above. So this is a physical picture of the fine toral grading
of g2. In a more recent development, this scheme is repeated when describing the
strong interaction force by means also of g2 (see for instance [10, p. 5].) Thus,
strong interaction in nature may be described as the fine toral grading of g2 with
six gluons as long roots (grḡ, gr̄g, grb̄, gr̄b, gḡb and ggb̄), and color quarks qr, q̄r, qg,
q̄g, qb and q̄b as short roots, so that each antiquark is the opossite root of the given
quark. Along the lines used to describe strong interactions, other Lie algebras are

The first and second authors are partially supported by the MCYT grant MTM2007-60333 and
by the JA grants FQM-336, FQM-1215 and FQM-2467. The third author is partially supported
by the MCYT grant MTM2007-60016, and by the JA grants FQM-213 and P07-FQM-2863.

1
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being used to tentatively describe the rest of the forces in nature. In many of these
attempts, fine gradings appear as a common feature.

Other independent motivations toward gradings come from the theory of con-
traction of Lie algebras. As claimed in [9], contractions are important in physics
because they explain in terms of Lie algebras why some theories arise as a limit of
more exact theories. For example, the passage from the Poincaré algebra to the
Galilei algebra (as c → ∞.) Contraction consists in multiplying the generators of
the symmetry by contraction parameters, such that when these parameters reach
some singularity point one obtains a non-isomorphic Lie algebra with the same
dimension. Graded contractions are a key ingredient when studying contractions
that keep “undeformed” certain subalgebra (e.g. see [21].)

Gradings on Lie algebras are also of interest in the setting of Jordan algebras:
given a group grading on L =

∑
g∈G Lg and a nontrivial element g ∈ G, any element

k ∈ Lg−1 gives rise to a Jordan algebra structure in Lg by defining x ◦ y = (xk)y.
This also provides a bridge between group gradings and physics, by the classical
work of Jordan [18].

The Lie algebra of type d4, realized as the algebra of skew-symmetric matrices
o(8,K), is considered as exceptional by many authors. In spite of being a member
of the family of classical Lie algebras dn, it is the only one enjoying the benefits of a
triality automorphism coming from the special triangular symmetry of its Dinkyn
diagram. It can be said that this is the most symmetric algebra in the family. But
more symmetries imply more gradings. This may be the reason why the study of
gradings on d4 does not match the general scheme of gradings in the rest of the
algebras dn. For instance, the gradings on the algebras o(n,K) are computed in [1]
and [12], but only for n 6= 8.

The main notions about Lie gradings are given in [27] by Patera and Zassenhaus,
with a certain rectification in [7] about the existence on a grading group, which must
be assumed. Continuation of that work are the papers [12], which deals with the
gradings on the classical Lie algebras of types sl(n,K) and o(n,K), and [13], where
the real case is considered. An alternative line of working is followed by Shestakov
and Bahturin in [1], but again by using tools of associative algebras. The first work
containing a treatment of the gradings on a exceptional Lie algebra is [3], which
describes the gradings on g2 by taking the octonions as a starting point (see also
[2].) But the techniques used in that case are not enough to obtain the gradings
on f4, so that the same authors develop some computational techniques in [4] to
obtain a complete description of the nontoral gradings on f4. Such tools are applied
successfully in this paper to obtain the fine gradings on d4, but we want to remark
the existence of alternative methods which could be useful possibly in algebras of
bigger rank.

The paper is organized as follows. In Section 2 we give a quick review of the main
notions relative to Lie gradings and their translation in terms of groups. Section 3
deals with the problem of finding fine gradings of d4 from a computational approach.
Since every MAD-group of aut d4 lives in the normalizer of a maximal torus, the
first task is to fix a maximal torus. Now, to compute the normalizer we need one
automorphism extending each element in the isometry group of the root system.
Next, in Theorem 1, we give an explicit expression of all the MAD’s in terms of
these elements, which, in particular, gives us their grading groups and the types of
the gradings. Notice that the MAD’s of aut d4 that map into a 2-sylow of the group
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of components of aut d4, denoted by Out d4
∼= S3, are essentially described in [12]

(at least, how to get them, although without specifying the properties, description
or grading groups.) That is why, in Theorem 1, we prove that there are exactly
three MAD’s which map onto the 3-sylow of Out d4, and we add a description of
the remaining MAD’s for its possible applications (a complete matrix description
of all the fine group gradings on d4 is given in [5].)

In Section 4 we obtain the same results from a completely different approach,
that does not require any computer calculation. This allows to have a quick idea
of which are these three MAD’s containing outer 3-automorphisms. In fact, we
can understand them deeply (with the concrete homogeneous components of the
induced grading) only by knowing the gradings on the simpler Lie algebras g2 and
a2 (or easier still, the gradings on the octonion algebra and on M3×3(C).) This
suggests an inductive process based in the knowledge the gradings on Lie algebras
of less rank to compute the unknown gradings on the Lie algebras e6, e7 and e8
(applied to e6 with success in [6].)

2. Preliminary notions

If V is a finite-dimensional Lie algebra and G is an abelian group, we shall
say that the decomposition V = ⊕g∈GVg is a G-grading whenever for all g, h ∈
G, VgVh ⊂ Vgh and G is generated by the set Supp(G) := {g ∈ G : Vg 6= 0},
called the support of the grading. We say that two gradings V = ⊕g∈GXg =
⊕g′∈G′Yg′ are equivalent if the sets of homogeneous subspaces are the same up
to isomorphism, that is, there are an automorphism f ∈ aut(V ) and a bijection
between the supports α : Supp(G) → Supp(G′) such that f(Xg) = Yα(g) for any
g ∈ Supp(G). A convenient invariant for equivalence is that of type. Suppose
we have a grading on a finite dimensional algebra, then for each positive integer
i we will denote (following [15]) by hi the number of homogeneous components of
dimension i. In this case we shall say that the grading is of type (h1, h2, . . . , hl),
for l the greatest index such that hl 6= 0. Of course, the number

∑
i ihi agrees with

the dimension of the algebra. We shall say that the G-grading is a refinement of
the G′-grading if and only if each homogeneous component Yg′ with g′ ∈ G′ is a
direct sum of some homogeneous components Xg. A grading is fine if its unique
refinement is the given grading. Our objective is to classify fine gradings up to
equivalence.

The ground field K will be supposed to be algebraically closed and of characteris-
tic zero throughout this work. Notice that the group of automorphisms of the alge-
bra V is an algebraic linear group. There is a deep relationship between gradings on
V and quasitori of the group of automorphisms aut(V ), according to [23, §3, p. 104].
If V = ⊕g∈GVg is a G-grading, the map ψ : X(G) = hom(G,K×) → aut(V ) mapping
each α ∈ X(G) to the automorphism ψα : V → V given by Vg 3 x 7→ ψα(x) := α(g)x
is a group homomorphism. Since G is finitely generated, then ψ(X(G)) is a qua-
sitorus. And conversely, if Q is a quasitorus and ψ : Q → aut(V ) is a homomor-
phism, ψ(Q) is formed by semisimple automorphisms and we have a X(Q)-grading
V = ⊕g∈X(Q)Vg given by Vg = {x ∈ V : ψ(q)(x) = g(q)x ∀q ∈ Q}, with X(Q) a
finitely generated abelian group. If V = ⊕g∈GVg is a G-grading, the set of automor-
phisms of V such that every Vg is contained in some eigenspace is an abelian group
formed by semisimple automorphisms, which contains to ψ(X(G)). The grading is
fine if and only if such set is a maximal abelian subgroup of semisimple elements,
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usually called a MAD (“maximal abelian diagonalizable”)-group. It is convenient
to observe that the number of conjugacy classes of MAD-groups of aut(V ) agrees
with the number of equivalence classes of fine gradings on V .

3. Computational approach

First of all we must invoke a version of the Borel-Serre theorem ([28, Theo-
rem 3.15, p. 92]) asserting that a supersolvable subgroup of semisimple elements in
an algebraic group is contained in the normalizer of some maximal torus. In par-
ticular, this can be applied to finitely generated abelian groups. As we are able to
implement a concrete maximal torus and its normalizer in a computer, we will use
computational methods to find the maximal quasitori, which, up to conjugation,
live in that normalizer.

Fix the symmetric matrix C =
(

0 I4

I4 0

)
and consider the Lie algebra L := {x ∈

Mat8×8(K) : xtC = −Cx}, of type d4. Take the Cartan subalgebra h formed by the
diagonal matrices of L. Let L =

∑
α∈h∗ Lα be the root decomposition relative to h,

that is, Lα = {x ∈ L : [h, x] = α(h)x ∀h ∈ h}, and Φ = {α ∈ h∗ −{0} : Lα 6= 0} is
the root system. Let ei,j denote the elementary matrix whose all entries are trivial
but the (i, j)-entry, which is 1. If we write hi = ei,i−ei+4,i+4, then {hi : i = 1, . . . , 4}
is a basis of h.

If h =
∑4

i=1 wihi is an arbitrary element in h, and we define αi : h → K by
αi(h) = wi − wi+1, for i = 1, 2, 3, and α4(h) = w3 + w4, then ∆ = {α1, α2, α3, α4}
is a basis of Φ. Indeed, if bi,j := ej,i − ei+4,j+4, ci,j := ej,i+4 − ei,j+4 and di,j :=
ei+4,j−ej+4,i, we have [h, bi,j ] = (wj−wi)bi,j , [h, ci,j ] = (wj +wi)ci,j and [h, di,j ] =
(−wi − wj)di,j . Thus we can choose B = {hi : i = 1, . . . , 4} ∪ {bi,j : i 6= j, i, j =
1, . . . , 4} ∪ {ci,j , di,j : i < j, i, j = 1, . . . , 4} a basis formed by root vectors, with b’s,
c’s and d’s ordered following the rows in the next array

(1)

b2,1 ∈ Lα1 b3,2 ∈ Lα2 b4,3 ∈ Lα3

c3,4 ∈ Lα4 b3,1 ∈ Lα1+α2 b4,1 ∈ Lα1+α2+α3

b4,2 ∈ Lα2+α3 c4,1 ∈ Lα1+α2+α4 c4,2 ∈ Lα2+α4

c2,1 ∈ Lα1+2α2+α3+α4 c3,1 ∈ Lα1+α2+α3+α4 c2,3 ∈ Lα2+α3+α4

followed by the opposite roots (take bj,i ∈ L−α when bi,j ∈ Lα, and di,j ∈ L−α

when ci,j ∈ Lα) in the same order.
Take T := {t ∈ autL : t|h = id}. This is a maximal torus of autL such that each

element acts diagonally on the root spaces. More precisely, if the automorphism
acts with eigenvalues α, β, γ and δ in Lαi respectively for i = 1, . . . , 4, then its
matrix relative to the basis B is

diag{1, 1, 1, 1, α, β, γ, δ, αβ, αβγ, βγ, αβδ, βδ, αβ2γδ, αβγδ, βγδ,
1
α , 1

β , 1
γ , 1

δ , 1
αβ , 1

αβγ , 1
βγ , 1

αβδ , 1
βδ , 1

αβ2γδ , 1
αβγδ , 1

βγδ}
and the automorphism will be denoted by tα,β,γ,δ.

In order to get the normalizer of T, we need to describe the abstract Weyl group
of d4. The Cartan matrix of d4 is




2 −1 0 0
−1 2 −1 −1
0 −1 2 0
0 −1 0 2


 .
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So, for E =
∑4

i=1 Rαi the euclidean space with the inner product 〈 , 〉, the Weyl
group of d4 is the subgroup W of GL(E) generated by the (simple) reflections si

with i = 1, 2, 3, 4, given by si(x) := x−〈x, αi〉αi, where the Cartan integers 〈·, ·〉 are
extracted as usual from the Cartan matrix above. Identifying GL(E) to GL(4,R)
by means of the matrices relative to the R-basis ∆, the reflections si are represented
by

s1 =




−1 0 0 0
1 1 0 0
0 0 1 0
0 0 0 1


 , s2 =




1 1 0 0
0 −1 0 0
0 1 1 0
0 1 0 1


 ,

s3 =




1 0 0 0
0 1 1 0
0 0 −1 0
0 0 0 1


 , s4 =




1 0 0 0
0 1 0 1
0 0 1 0
0 0 0 −1


 .

Now the group of isometries of Φ is the semidirect product of the Weyl group
with the group of automorphisms of the Dynkin diagram. These automorphisms
come from permutations σ of {1, . . . , 4} such that 〈αi, αj〉 = 〈ασ(i), ασ(j)〉. Hence,
denoting by

s5 =




0 0 1 0
0 1 0 0
0 0 0 1
1 0 0 0


 , s6 =




1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


 ,

respectively related to the pictures

22
2

¯̄
¯̄

rr

¼¼

HH

22

±±
±±

ºº

EE

the group of automorphisms of the Dynkin diagram of d4 is 〈s5, s6〉 ∼= S3 and the
group aut Φ = 〈si : i = 1, . . . 6〉 ≡ V ∼= W o S3.

We shall consider V ⊂ GL(4,R) ordered lexicographically, that is, first for any
two different couples (i, j), (k, l) such that i, j, k, l ∈ {1, 2, 3, 4} we define (i, j) <
(k, l) if and only if either i < k or i = k and j < l, and second, for any two different
matrices σ = (σij), σ′ = (σ′ij) in V, σ < σ′ if and only if σij < σ′ij where (i, j) is
the least element (with the previous order in the couples) such that σij 6= σ′ij . One
possible way to compute this group with this particular enumeration is provided
by the following code implemented with Mathematica:

V=Table[si,{i,6}];
a[L ,x ]:=Union[L, Table[L[[i]].x,{i,Length[L]}],

Table[x.L[[i]],{i,Length[L]}]]
Do[V=a[V,si],{i,6}] (3 times repeated)

We get a list of 1152 = 2732 elements in the table V which is nothing but the group
autΦ. We are denoting by σi the i-th element of V lexicographically ordered. Now,
for each σ ∈ autΦ, it is possible to choose an automorphism σ̃ ∈ autL mapping
Lα into Lσ(α) such that σ̃|h agrees with σ ∈ End(h∗) by means of the identification
between h and h∗ given by the Killing form (h ∈ h 7→ K(h,−) ∈ h∗.) Concretely,
if vα denotes the root vector specified in (1), we take as σ̃ the only automorphism
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such that σ̃(vα) = vσ(α) according to the isomorphism theorems in [16] (any other
choice would have been in the form σ̃t for some t ∈ T.) Thus we have a precise
description of the normalizer of the maximal torus as

Nautd4
(T) = {σ̃itx,y,z,u : i = 1, . . . , 1152, x, y, z, u ∈ K×} =: N.

The point is that all the MAD-groups of aut d4 live in N (up to conjugation), so we
will be able to find a concrete description of them in terms of σ̃i and tx,y,z,u. This
approach allows us to know in detail the homogenous components.

Theorem 1. There are fourteen maximal quasitori in aut d4. They are isomorphic
to

Zn
2 (n = 5, 6, 7)
K× × Zn

2 (n = 3, 4, 5)
(K×)2 × Zn

2 (n = 2, 3)
(K×)3 × Z2

(K×)4

Z4 × Z3
2

Z3
3, Z3 × Z3

2, Z3 × (K×)2

and their precise descriptions, jointly with the types of the gradings induced by them,
are summarized in the following table.

Grading Automorphisms generating the group Type dim Le

group
Q1 Z7

2 t−1,1,1,1, t1,1,−1,−1, t1,−1,1,1 (28) 0
σ̃1, σ̃3, σ̃19, σ̃259

Q2 Z5
2 × Z t−1,1,1,1, t1,1,−1,−1, t1/u,u,1,1 (28) 1

σ̃1, σ̃3, σ̃19

Q3 Z3
2 × Z2 t−1,1,1,1, t1/u,u,1,1, t1/v,1,v,v (26, 1) 2

σ̃1, σ̃3

Q4 Z2 × Z3 t1/u,u,1,1, t1/v,1,v,v, tw,1,1,1/w2 , σ̃3 (25, 0, 1) 3
Q5 Z3

2 × Z t−1,1,1,1, t1/v,1,v,v, t1,−1,1,−1, σ̃49t1,−1,1,1 (25, 0, 1) 1
Q6 Z3

2 × Z4 t1,−1,1,1, t−1,−1,1,1, σ̃259t−1,−1,−1,−1, σ̃7 (24, 2) 0
Q7 Z4

2 × Z t−1,1,−1,1, t1,−1,1,1, t1,1,1,u, σ̃280, σ̃634 (28) 1
Q8 Z6

2 t−1,1,1,1, t1,−1,1,1, t1,1,−1,−1 (28) 0
σ̃1ti,1,i,−i, σ̃259t1,1,1,−1, σ̃243t−1,−i,1,1

Q9 Z5
2 t−1,1,1,1, t1,−1,1,1, t1,1,−1,1, t1,1,1,−1, σ̃259 (24, 0, 0, 1) 0

Q10 Z2
2 × Z2 t−1,1,1,1, t1/u,u,1,1, t1/v,1,v,v, σ̃1 (20, 4) 2

Q11 Z4 tu,1,1,1, t1,v,1,1, t1,1,w,1, t1,1,1,z (24, 0, 0, 1) 4
Q12 Z3

2 × Z3 t1,−1,1,1, t−1,−1,−1,−1, σ̃20 (14, 7) 0
Q13 Z3 × Z2 t1,y,1/y2,1, tx,1,1/x3,x, σ̃4 (26, 1) 2
Q14 Z3

3 t1,ω,ω,ω, tω,1,ω,1, σ̃59 (24, 2) 0
Table 1

The zero-component Le in a fine grading of a Lie algebra L is an abelian subal-
gebra whose dimension is the dimension of the quasitorus producing such grading,
as showed in [4, Prop. 10].

Observe that the type is not enough to determine the isomorphy classes of fine
gradings on d4, in contrast to the gradings on f4. For instance there are 4 fine
gradings with every homogeneous component one-dimensional.
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Remark 1. The correspondence with the MAD-groups which could be obtained
following the lines in [12] is given by: T

(0)
0,8

∼= Q1 (conjugated groups), T
(0)
2,6

∼= Q2,

T
(0)
4,4

∼= Q3, T
(0)
6,2

∼= Q4, T
(1)
2,2

∼= Q5, T
(2)
0,2

∼= Q6, T
(2)
2,0

∼= Q7, T
(3)
0,1

∼= Q8, T
(1)
0,4

∼=
Q9, T

(1)
4,0

∼= Q10, T
(0)
8,0

∼= Q11. Although that paper does not consider the outer
automorphisms of order 3, it clearly shows how to find explicit expressions for
the generators of the remaining MAD’s, since Int oK(8,C) · Z2 = AdOK(8,C) (for
AdP (x) = PxP−1.) Each of the Tm

2k,8/m−2k is expressed in terms of a convenient
symmetric matrix K.

Before proving Theorem 1, we are going to introduce some tools. Denote by
π : N → V the group epimorphism given by π(σ̃itx,y,z,u) = σi. Notice that the
action V × T → T given by σ · t = σ̃tσ̃−1 ∈ T does not depend on our choice of the
concrete extension σ̃, but σ · tx,y,z,u = tx′,y′,z′,u′ for

x′ = xb11yb12zb13ub14 ,
y′ = xb21yb22zb23ub24 ,
z′ = xb31yb32zb33ub34 ,
u′ = xb41yb42zb43ub44 ,

if σ = (bij)i,j=1,...,4 ∈ V. Now consider the quasitori

T〈j〉 := {t ∈ T : σ̃j · t = t},
Q(j, t0) := 〈σ̃jt0 ∪ T〈j〉〉,

if j ∈ {1, . . . 1152} and t0 ∈ T. Notice that the maximal quasitori not contained in
Int(d4) ·Z2, that is, the ones related to the triality automorphism, will be proved to
be precisely Q12 = Q(20, id), Q13 = Q(4, id) and Q14 = Q(59, id). This explains the
relevance of the considered quasitori. In some groups, like aut f4, every quasitorus
is a subgroup of some Q(j, id) (see [4].) Obviously, this is not our case (some
of the Qi’s have more than 5 generators), but anyway, any Q minimal nontoral
quasitorus (that is, Q is non toral but it does not contain properly any nontoral
quasitorus of aut d4) is always conjugated to a subgroup of some Q(j, t). As Q(j, t)
is isomorphic to some Q(i, t′) if σj is conjugated to σi, we only have to consider
the indices of some representatives of the orbits up to conjugation in V. There are
139 order 2 elements distributed in 7 orbits, 80 order 3 elements distributed in 3
orbits, 228 order 4 elements in 5 orbits, 464 order 6 elements in 7 orbits, 144 order
8 elements in only one orbit, and 96 order 12 elements in the same orbit. One
choice of representatives of these orbits, jointly with the relevant quasitori related
to them, is the following:
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order representative T〈j〉 Q(j, id)
of the orbit is toral?

1 894 T ∼= K×4 yes
2 1 {t x

yz ,y,z,z : x2 = 1} ∼= K×2 × Z2 no
2 3 {tx,y,z, 1

x2y2z
: x, y, z ∈ K×} ∼= K×3 no

2 9 {tx,y, 1
x2y2 ,1 : x, y ∈ K×} ∼= K×2 no

2 19 {tx, y
x ,u,u : y2 = u2 = 1} ∼= K× × Z2

2 no
2 49 {t x

z ,y,z,yz : x2 = y2 = 1} ∼= K× × Z2
2 no

2 259 {tx,y,z,u : x2 = y2 = z2 = u2 = 1} ∼= Z4
2 no

2 270 {t1,y,z,u : y, z, u ∈ K×} ∼= K×3 yes
3 4 {tx,y,x−3y−2,x : x, y ∈ K×} ∼= K×2 no
3 59 {tx,y,xy,y : x3 = y3 = 1} ∼= Z2

3 no
3 96 {t1,x,y, 1

xy
: x, y ∈ K×} ∼= K×2 yes

4 2 {tx, y

x2 ,x,x : y2 = 1} ∼= K× × Z2 no
4 7 {tx, y

x ,1,1 : y2 = 1} ∼= K× × Z2 no
4 30 {t1,y,z, 1

y2z
: y, z ∈ K×} ∼= K×2 no

4 34 {tx,y,x,x : x2 = y2 = 1} ∼= Z2
2 no

4 46 {ty2,y,y2u,u : u2 = 1 = y4} ∼= Z2 × Z4 no
6 10 {t1,x, 1

x2 ,1 : x ∈ K×} ∼= K× no
6 11 {t

x−
2
3 ,x,x−

2
3 ,1

: x ∈ K×} ∼= K× no
6 20 {tx,y,x,x : x2 = y2 = 1} ∼= Z2

2 no
6 55 {tx,y,1,y : x2 = y2 = 1} ∼= Z2

2 no
6 56 {t1,x, 1

x2 ,x : x ∈ K×} ∼= K× no
6 78 {t1,1,x, 1

x
: x ∈ K×} ∼= K× no

6 318 {t1,1,1,1} no
8 8 {t1,y,1,1 : y2 = 1} ∼= Z2 no
12 58 {t1,1,1,1} no

Table 2

Some comments on the torality of the above quasitori follow. The torality
of Q(96, id) and Q(270, id) can be obtained by applying Lemma 2 below, since
σ96, σ270 ∈ W. The remaining cases are nontoral: Q(318, id) because σ318 /∈ W,
and for any other index j because the identity component Le in the grading induced
by Q(j, id) verifies that dim Le < 4 (as in [3, § 2.4] the torality of a grading can be
characterized by rankLe = rankL, taking into account that Le is a reductive Lie
algebra.)

The problem here is the proliferation of nontoral quasitori. Observe that Q(j, id)
is nontoral for 22 of the 25 chosen indices. This is not surprising, because the group
aut d4 is smaller than aut f4 but of the same rank (in fact, V is isomorphic to the
Weyl group of f4), thus there are not so many elements to conjugate. That is why
our aim will be finding only the maximal quasitori.

Notice that the Lie algebra fixed by σ̃3 is of type b3, so σ̃3 is one of the order
2 automorphisms providing the symmetric pair (d4, b3). Concretely s6 is in the
orbit of σ3. On the other hand, s5 is in the orbit of σ4 so that σ̃4 is an order
3 automorphism fixing a Lie algebra of type g2. Thus aut d4 = Int d4 · 〈1, σ̃3〉 ·
〈1, σ̃4, σ̃

2
4〉. In fact, Q(3, id) = Q4

∼= Z2 × (K×)3 and Q(4, id) = Q13
∼= Z3 × (K×)2

are maximal quasitori, since the automorphisms commuting with σ̃3 (respectively,
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σ̃4) are just the extensions of automorphisms of b3 (respectively of g2), so that if
we consider the maximal torus of b3 (resp. g2) we obtain Q4 (resp. Q13.) This will
be explained with more detail in the next section.

In the proof of Theorem 1 and along the paper, we use extensively the following
technical results.

Lemma 1. [4, Prop. 7, p. 27] Let F = {f0, f1, . . . , fn} ⊂ aut d4 be a nontoral
commutative family of semisimple elements such that {f1, . . . , fn} ⊂ Int d4 is toral.
Then, the subgroup generated by F is conjugated to some subgroup of the form
〈f, t1, . . . , tn〉 where ti ∈ T and f ∈ N is conjugated to f0. Moreover, this can be
done in such a way that F ∩ T ⊂ 〈f, t1, . . . , tn〉.
Lemma 2. If L is a simple Lie algebra, T is a torus of aut L and H is a toral
subgroup of autL commuting with T , then HT is toral.

Proof. Let Z be the centralizer of H in aut L. As H is toral, there is T ′ a
maximal torus of autL such that H ⊂ T ′. Hence T ′ ⊂ Z and it is also a maximal
torus of Z. But T ⊂ Z so that there is p ∈ Z such that pTp−1 ⊂ T ′. Consequently
p(HT )p−1 = HpTp−1 ⊂ HT ′ ⊂ (T ′)2 ⊂ T ′ and HT is contained in the torus
p−1T ′p. ¤

Lemma 3. Fix t ∈ T and j ∈ {1, . . . , 1152}.
• If T〈j〉 is finite, there is s ∈ T such that Ad s(σ̃jt) = σ̃j.
• If T〈j〉 is not finite, there are s ∈ T and t′ ∈ T〈j〉 such that Ad s(σ̃jt) = σ̃jt

′.
Therefore Q(j, t) is conjugated to Q(j, id) in all the cases. In particular Q12

∼=
Q(20, t), Q13

∼= Q(4, t) and Q14
∼= Q(59, t) for any t ∈ T.

Proof. According to the proof and notations of [4, Prop. 6, p. 26], it is enough to
check that T〈j〉∩S〈j〉 is finite for the indices j corresponding to the representatives
of the orbits. This is a straightforward computation. For instance, in our remarked
cases T〈59〉 ∼= Z2

3, T〈20〉 ∼= Z2
2, and, although T〈4〉 is not finite, T〈4〉 ∩ S〈4〉 =

{tx,1,1,x : x3 = 1} ∼= Z3 is so. ¤
Notice for further use that the conjugation automorphism has been taken Ad s

for certain s ∈ T, so that it does not “move” the normalizer N nor any element in
T.

Remark 2. One of the most useful tools in the computational approach to the
gradings on f4 was [4, Lemma 2], according to which every quasitorus of aut f4 such
that X(Q) has two generators is toral. Of course we cannot apply this result to
aut d4, because one single outer automorphism generates a nontoral quasitorus. But
even if we consider a subquasitorus Q of the connected component Int d4, it could
happen that Q were nontoral with two generators. Indeed, take Q = 〈σ̃1, t−1,1,1,1〉 ∼=
Z2

2, which is nontoral but σ1 ∈ W (equivalently, σ̃1 is an inner automorphism.)
The nontorality of Q is consequence of the nontorality of Q(1, id) ∼= Q × (K×)2,
by applying Lemma 2. Moreover, it is possible to prove that if Q is a nontoral
subquasitorus of Int d4 such that X(Q) has two generators, Q can be subconjugated
inside Q(1, id). The source of these differences between the behavior of aut f4 and
Int d4 is that Int d4 is not simply connected. Anyway, what we will use is a much
weaker result: Note that if Q is the quasitorus generated by {σ̃it1, t2} with σi ∈ W
of order 3 and tj ∈ T, then Q is obviously toral by Lemma 2 (σi would be conjugated
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to σ96), and also if σi ∈ W is of any other order but t2 is contained in a subtorus
of T〈i〉.

Proof of Theorem 1. First of all notice that these quasitori Qi are not con-
jugated, since the grading groups X(Qi) are not isomorphic. Besides, we have
remarked that Q1, . . . , Q11 are conjugated to the MAD-groups obtained from [12],
which cover all the MAD’s contained in Int d4 · 〈1, σ̃3〉. Thus, what we are going to
prove is that Q12, Q13 and Q14 are maximal quasitori, and that if Q is a maximal
quasitorus not conjugated to any subgroup of Int d4 · 〈1, σ̃3〉, then it is conjugated
to one of these three quasitori.

We now check that Q14 is a maximal quasitorus. Let us prove that if f ∈ aut d4

commutes with Q14, then f belongs to Q14. With that purpose consider Z =
Cautd4

(T〈59〉). The group 〈Q14 ∪ {f}〉 is an abelian subgroup of Z, as well as its
closure in the Zarisky topology. But this is again a quasitorus, whence it is contained
in the normalizer of some maximal torus T of Z. In particular 〈Q14∪{f}〉 ⊂ NZ(T ).
By construction also T ⊂ Z so that there is some p ∈ Z such that pTp−1 =
T. Consequently p〈Q14 ∪ {f}〉p−1 ⊂ Nautd4

(T) = N and pfp−1, pσ̃59p
−1 ∈ N ∩

Cautd4
(T〈59〉) with ptp−1 = t for any t ∈ T〈59〉. Take j1, j2 ∈ 1, . . . , 1152 and t1, t2 ∈

T such that pfp−1 = σ̃j1t1, pσ̃59p
−1 = σ̃j2t2. A straightforward computation in the

computer tell us that {i ∈ 1, . . . , 1152: σi·t1,ω,ω,ω = t1,ω,ω,ω, σi·tω,1,ω,1 = tω,1,ω,1} =
{59, 835, 894}. In particular ji must be one of those indices, and σji = σni

59 for
ni ∈ {0, 1, 2}. Moreover, n2 6= 0, otherwise the grading produced by pQ14p

−1

would be toral. We can take t2 = id by replacing p by sp, being s the element in T
such that sσ̃n2

59 t2s
−1 = σ̃n2

59 as in Lemma 3. As σ̃n1
59 t1 and σ̃n2

59 commute, as well as
σ̃n1

59 and σ̃n2
59 , then t1 commutes with σ̃59 so that t1 ∈ T〈59〉. So pfp−1 = σ̃n1

59 t1 ∈
Q(59, id) = pQ14p

−1 and f ∈ Q14.
Now let f ∈ Cautd4

(Q13) and as before find an automorphism p ∈ aut d4 such
that ptp−1 = t for all t ∈ T〈4〉 and pfp−1 = σ̃j1t1, pσ̃4p

−1 = σ̃j2t2 ∈ CN(T〈4〉)
for t1, t2 ∈ T. Thus σji ∈ {σk ∈ V : T〈4〉 ⊂ T〈k〉} = {σn

4 : n = 0, 1, 2} · {1, σ3}
(isomorphic to the group of permutations S3.) Besides pσ̃4p

−1 has order 3, so there
is l ∈ {1, 2} such that σj2 = σl

4. Now we can assume that t2 ∈ T〈4〉, by replacing
p by sp, being s the element as in Lemma 3 verifying sσ̃l

4t2s
−1 ∈ Q(4, id). Thus

pQ13p
−1 = Q(4, id). Note that σ4 commutes neither with σ3 nor σ3σ4 nor σ3σ

2
4 ,

since σ3σ4 = σ2
4σ3 with σ3 of order 2. But pfp−1 commutes with pσ̃4p

−1, so their
projections by π commute and σj1 ∈ {σn

4 : n = 0, 1, 2}. In particular σ̃j1 commutes
with σ̃l

4t2 and hence t1 does so. Hence t1 ∈ T〈4〉, pfp−1 = σ̃j1t1 ∈ Q(4, id) =
pQ13p

−1 and f ∈ Q13.
Finally, for f ∈ Cautd4

(Q12) we again find an automorphism p ∈ aut d4 such
that ptp−1 = t for all t ∈ T〈20〉 and pfp−1, pσ̃20p

−1 ∈ CN(T〈20〉). Denote J =
{σk ∈ V : T〈20〉 ⊂ T〈k〉}. As pσ̃20p

−1 = σ̃jt for some σj ∈ J , in particular σ2
j ∈

J has order exactly 3 (not 1 because the grading induced by 〈σ̃2
20,T

〈20〉〉 is also
nontoral.) But there are 32 order 3 elements in J , all of them in the orbit of σ4.
Hence (σ̃jt)2 is conjugated to σ̃4t1 without moving N, but also without moving
T〈20〉, since the corresponding 32 conjugating elements in V can be taken inside
J . Selecting now the order 2 elements σi ∈ J commuting with σ4 (looking for
σ3

j ), there is only one, σ259 = −id (here id denotes the 4 × 4 identity matrix.)
Replacing p, we have found that pQ12p

−1 = 〈σ̃4t1, σ̃259t2,T
〈20〉〉 =: Q with pfp−1 ∈
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N commuting with Q. Notice now that σ̃40Qσ̃−1
40 = Q(20, t3), so there is s ∈ T

such that (sσ̃40)Q(sσ̃40)−1 = Q12. Replace again p by sσ̃40p to get pfp−1 ∈
N commuting with pQ12p

−1 = Q12. As there are only 6 elements σi ∈ J with
σiσ20 = σ20σi, they must be just {σn

20 : n = 0, . . . 5}. Thus there is n such that
pfp−1 = σ̃n

20t4, which commutes with σ̃20 ∈ pQ12p
−1, so that t4 ∈ T〈20〉 and

pfp−1 ∈ Q12 = pQ12p
−1. We have already seen that Q12, Q13 and Q14 are maximal

abelian diagonalizable groups.
Suppose now that we have another Q maximal quasitorus contained in N such

that nor Q neither any of its conjugated quasitori are contained in Int d4 · {1, σ̃3}.
Recall that there are three orbits (under conjugation in V) of order 3 elements in V,
given by the representatives σ4, σ59 and σ96. We are going to prove that the abelian
group π(Q) intersects the orbit of either σ59 or σ4. Thus, we will be able to assume
that either σ̃59t or σ̃4t belongs to Q (for some t ∈ T), by conjugating by an element
in N. Indeed, consider V0 = W, V1 = Wσ3, V2 = Wσ3σ4, V3 = Wσ3σ

2
4 , V4 = Wσ4

and V5 = Wσ2
4 (obviously V = ∪6

i=0Vi.) By hypothesis, π(Q) is not contained in
V0 ∪V1. It is neither contained in V0 ∪Vi, for i = 2, 3, since they are conjugated to
V0 ∪ V1 by means of σ4 and σ2

4 respectively, since σ3σ4 = σ2
4σ3. Moreover, π(Q) is

not contained in V0 ∪ V1 ∪ V2 ∪ V3, since π(Q) is abelian, and none of the elements
in Vi commutes with none of the elements in Vj nor Vk, for {i, j, k} distinct indices
in {1, 2, 3}. Hence π(Q) ∩ (V4 ∪ V5) 6= ∅, but every element in V4 ∪ V5 has order
multiple of 3 (3, 6, 12) and one of its powers is an order 3 element in the orbit of
σ59 or σ4 (σ96 ∈ W), which also belongs to π(Q).

First, suppose that σ4 ∈ π(Q). Note that π(Q) = (π(Q) ∩ (V0 ∪ V1)) · 〈σ4〉, but,
since it is abelian, π(Q) = π(Q) ∩ W · 〈σ4〉 (take into account that σ4 does not
commute with any element in V1,2,3.) Suppose that there is an order 3 element
in π(Q) ∩ W. As {σ ∈ W : σσ4 = σ4σ, σ3 = id} = 〈σ952〉 ∼= Z3, we have that
σ952 ∈ π(Q), but {σ ∈ W : σσ4 = σ4σ, σσ952 = σ952σ} = 〈σ952, σ259 = −id〉 ∼= Z6,
so that either π(Q) = 〈σ952, σ4〉 or π(Q) = 〈σ952,−σ4〉. In the first case there are
t1, t2 ∈ T with Q = 〈σ̃4t1, σ̃952t2, t3〉, for 〈t3〉 = T〈4〉 ∩ T〈952〉 = {tx,1,1,x : x3 = 1} ∼=
Z3. As 〈σ̃952t2, t3〉 is necessarily toral by Remark 2, apply Lemma 1 to get that
Q is conjugated to 〈t3, t4, σ̃it5〉 with σ̃it5 conjugated to σ̃4t1, and, in particular,
σi /∈ W (σi could be in other orbit, and could have order 3, 6 and 12, but still
belongs to V4 ∪ V5.) By maximality, Q is conjugated to Q(i, t5) ∼= Q(i, id) and
T〈i〉 = 〈t3, t4〉 ∼= Z3×Zr. The only possibility, according to Table 2, is that σi is in
the orbit of σ59 and Q is conjugated to Q(59, id) = Q14. In the second case, there
are t1, t2 ∈ T with Q = 〈σ̃1149t1, σ̃952t2〉 (−σ4 = σ1149), since T〈1149〉 ∩ T〈952〉 =
{t1,1,1,1}. Obviously the grading induced by 〈σ̃952t2〉 is toral and, by Lemma 1
there are t4, t5 ∈ T such that Q is conjugated to 〈t4, σ̃it5〉 for t4 of order 3l. By
maximality of Q, this set coincides with Q(i, t5) and hence T〈i〉 ∼= Z3l, what it is a
contradiction. Now we suppose that π(Q) ∩W does not contain order 3 elements.
Hence π(Q)∩W ⊂ {±id,±σ111,±σ211,±σ249} (the only elements in W commuting
with σ4 of order coprime with 3.) Consequently the possibilities for π(Q) are: 〈σ4〉,
〈−σ4〉, 〈σ4, σj〉 and 〈−σ4, σj〉, for some j ∈ {111, 211, 249}. If π(Q) = 〈σ4〉, then
Q = Q(4, t) ∼= Q(4, id) = Q13. As −σ4 is in the orbit of σ20, if π(Q) = 〈−σ4〉,
then Q ∼= Q(20, t) ∼= Q(20, id) = Q12. If π(Q) = 〈σ4, σj〉, there are t1, t2 ∈ T

such that Q = 〈σ̃4t1, σ̃jt2〉 · T〈4〉 ∩ T〈j〉. But T〈4〉 ∩ T〈j〉 ∼= K× for any of the three
indices, so the grading induced by {σ̃jt2}∪(T〈4〉∩T〈j〉) is toral by Remark 2, and by
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Lemma 1 there are t3, t4 ∈ T and an index i such that Q = 〈σ̃it3, t4〉 ·T〈4〉 ∩T〈j〉 =
Q(i, t3). In particular T〈i〉 = 〈t4〉 · T〈4〉 ∩ T〈j〉 ∼= Z2s × K×, a contradiction (the
only possibilities with T〈i〉 ∼= Z2s × K× would be i = 2, 7, up to conjugation, but
σ7 ∈ V0 and σ2 ∈ V2.) Finally, if π(Q) = 〈−σ4, σj〉, there are t1, t2 ∈ T such that
Q = 〈σ̃1149t1, σ̃jt2〉 · T〈1149〉 ∩ T〈j〉. Although T〈1149〉 ∩ T〈j〉 ∼= Z2, we can apply
Remark 2 to get that the grading induced by {σ̃jt2} ∪ (T〈1149〉 ∩ T〈j〉) is toral,
because T〈1149〉 ∩T〈j〉 ⊂ T〈4〉 ∩T〈j〉 ∼= K×. Thus, by Lemma 1, the quasitorus Q is
conjugated to Q(i, t) for certain index i verifying T〈i〉 ∼= Z2l×Z2. The only indices
of representatives in these conditions are 34, 46, 20 and 55, but σ55, σ34 ∈ V0 and
σ46 ∈ V1 so that σi is in the orbit of σ20, and Q ∼= Q(20, id) = Q12.

Second, suppose that σ59 ∈ π(Q). This time we can suppose that σ̃59 ∈ Q,
by Lemma 3. As before, π(Q) = (π(Q) ∩ W) · 〈σ59〉 and by maximality Q ∩ T =
∩{T〈i〉 ∩ T〈59〉 : σi ∈ π(Q) ∩ W}. In particular Q ∩ T ⊂ T〈59〉 ∼= Z2

3, so that
Q ∩ T ∼= Z0,1,2

3 . If Q ∩ T = T〈59〉, then Q14 = Q(59, id) ⊂ Q and, by maximality
of Q14 it follows Q = Q14. If Q ∩ T = 〈t1〉 ∼= Z3, then {id} 6= π(Q) ∩ W ⊂
{σi ∈ W : σiσ59 = σ59σi}, which is a subgroup of V with only one order 2 element
(−id = σ259.) If there were some element in π(Q) of order not divisor of 3, then
σ259 ∈ π(Q) and Z3

∼= Q ∩ T ⊂ T〈259〉 ∼= Z4
2, what is absurd. Hence π(Q) ⊂ S :=

{σ ∈ W : σ3 = id, σσ59 = σ59σ}, which is a non abelian set with 9 elements. There
must be σi ∈ S such that π(Q) ∩W = 〈σi〉 (otherwise another σj ∈ S \ 〈σi〉 would
satisfy 〈σi, σj〉 ⊂ π(Q) ∩ W but then π(Q) ∩ W would have at least 9 elements
belonging to S, the whole S, but S is not abelian.) Thus, there is some t2 ∈ T such
that 〈σ̃59, σ̃it2, t1〉 = Q. As {σ̃it2, t1} induces a toral grading by Remark 2 (σi has
order 3), we can conjugate Q to 〈t1, t3, f = σ̃kt4〉 with f a conjugate of σ̃59 (hence
of order just 3.) We can take σk = σ59 or σ4 by conjugating now inside N. In the
first case Q = Q(59, t4) ∼= Q14, and in the second case Q $ Q(4, t4), a contradiction
with the maximality of Q. Finally suppose that Q ∩ T = {id}. If π(Q) ∩W ⊂ S,
π(Q)∩W would have only one order 3 generator and Q would be contained strictly
in one of the quasitori in the paragraph above. Thus −id = σ259 ∈ π(Q). Notice
also that 〈σ̃59, σ̃259t〉 is not a MAD (the second automorphism is inner, so the set
is conjugated by Lemma 1 to 〈σ̃kt1, t2〉, where σ̃kt1 has order 3, and so σk is in
the orbit of σ59 or σ4, hence, it is strictly contained in Q(4, t1) or Q(59, t1)), so
that there is σi ∈ π(Q) ∩W \ 〈σ259〉. Let us check that σi cannot have order 4. In
such case, σiσ59 would have order 12 and it would be conjugated to σ58, so there
would be t ∈ T such that A = 〈(σ̃58t)n : n = 1 . . . 12〉 ⊂ Q ⊂ N (up to conjugation),
but the centralizer CN(A) = A (since T〈58〉 = {id} and {σ ∈ V : σσ58 = σ58σ}
has 12 elements, obviously the powers of σ58), so that Q = A. This is an absurd
since A is not maximal in aut d4 (it is only maximal in N.) Because σ3

58 ∈ W, so
A ∼= 〈(σ̃58t)4, (σ̃58t)3〉 is conjugated to 〈σ̃kt1, t2〉, strictly contained in Q(4, t1) or
Q(59, t1), as above. Therefore σi has order either 6 or 3. It can be taken of order 3
(if σ3

i = −id then −σi ∈ π(Q) has order 3.) Then π(Q) = 〈σ59, σ259σi〉 (any element
in S different than (σi)0,1,2 does not commute with σi), with σiσ259 ∈ W of order
6, so applying Lemma 1 we obtain that Q is conjugated to 〈σ̃kt1, t2〉 with k = 4
(σk /∈ W, σ3

k = id and Z6 ⊂ T〈k〉), strictly contained in Q(4, t1), a contradiction. ¤
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4. Algebraic approach

We are going to revisit the MAD-groups of aut d4 which intersect some connected
component with order 3 outer automorphisms, looking at them under the light of
triality and related stuff. While Section 3 is of a computational nature, this is more
conceptual and qualitative.

According to [19], there are two order 3 outer automorphisms of d4, up to con-
jugation, related to the affine diagrams

ÄÄ??ÄÄÄÄ ??
?? ÄÄ?? ÄÄÄÄ ??

??

obtained from [19, TABLE Aff 3, p. 55], which fix subalgebras of type g2 and a2,
respectively. The first one is known by its relationship with the triality phenomenon,
but the second one is also related to it and both cases can be treated in a uniform
way.

4.1. Automorphisms of d4. Denote by (C, q) a Cayley algebra with standard
quadratic map q. As usual its canonical involution will be denoted by x 7→ x̄. Under
our assumptions on the ground field, such a C is unique up to isomorphism. Now an
algebra of type d4 is o(C, q) = {g ∈ gl(C) : b(g(x), y) + b(x, g(y)) = 0 ∀x, y ∈ C},
where b denotes the polar form of q. In this subsection we would like to get a
description of G := aut(d4) which could be useful in our further study of quasitori
and gradings on d4. Denote by GO(C, q) the algebraic group of all bijective linear
maps f : C → C such that there is λ ∈ K× such that q(f(x)) = λq(x) for any
x ∈ C. The scalar λ is called the multiplier of f and it is usually denoted by µ(f)
(see [20, §12] for more information.) It is well known (for instance [17, Exercise 15,
p. 287]) that the identity component G0 of the algebraic group G is the group of
all automorphisms of the form g 7→ fgf−1 where f ∈ GO(C, q)+ (notation as in
[20, p. 154].) But two elements f1, f2 ∈ GO(C, q)+ induce the same automorphism
g 7→ figf−1

i (i = 1, 2) if and only if f1 = λf2 for some λ ∈ K×. Thus we can
identify G0 with PGO(C, q)+ = GO(C, q)+/K×I.

It is also well known that G is an extension G = G0 · S3 where S3 denotes the
symmetric group of order 3. The aim of this subsection is to clarify the nature
of this extension, which will enable us to make some explicit computations (for
instance on centralizers.) To describe the extension G0 · S3 we need to explicit the
action of the generators of S3 on G0. If we take an element f ∈ GO(C, q)+, we shall
denote by f̄ the new element in GO(C, q)+ such that f̄(x) := f(x̄) for any x ∈ C.
The map f 7→ f̄ induces an order 2 automorphism σ : PGO(C, q)+ → PGO(C, q)+.
This will be identified with an order 2 permutation in S3. Moreover, to describe the
action on G0 of the cyclic order 3 permutation in S3 we need to take into account
the two (unique up to isomorphism) possible 8-dimensional symmetric compositions
which can be constructed from (C, q) ([20, § 34].) The first one is the para-Hurwitz
algebra C̄ with multiplication x ·y = x̄ ȳ, while the second one is the Okubo algebra
Cϕ,ϕ−1 whose multiplication is x · y = ϕ(x̄)ϕ−1(ȳ), where ϕ ∈ aut(C) is an order
three automorphism fixing a four-dimensional algebra (such an automorphism is
unique up to conjugation.) It is easy to check that aut(C̄) = aut(C) = G2 while
aut(Cϕ,ϕ−1) is the identity connected component of A2 = aut(sl(3,K)). Though
this is a well known fact ([8]), one can check it by taking into account that the
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Okubo algebra is isomorphic to (P, ∗) = (Mat3(K)0, ∗) the pseudo-octonion algebra
constructed on the vector space of zero trace 3×3 matrices with entries inK ([22, 8].)
Its product is given by x ∗ y := µxy + (1 − µ)yx − 1

3 tr(xy) for µ = 1−ω
3 , with ω

primitive cube root of unity and tr(·) denotes the matrix trace. If p ∈ GL(3,K),
then x 7→ pxp−1 is an automorphism of P. That is, Int(sl(3,K)) ⊂ aut(P). On the
other hand, the product [x, y] := xy− yx is [x, y] = (2ω− 1)−1(x ∗ y− y ∗ x). Thus
any element in aut(P) is an automorphism of the Lie algebra sl(3,K). Therefore
it is an automorphism of Mat3(K) or the opposite of an antiautomorphism of the
same algebra. But this last possibility does not provide an automorphism of P so
aut(P) ∼= Int(sl(3,K)) = PGL(3,K)(= (A2)0).

If we denote by S to any of the symmetric compositions introduced in the
previous paragraph, and by ∗ its product, then it is well known ([20, Proposi-
tion 35.4]) that for any t ∈ GO(C, q)+ with multiplier µ(t) there are elements
t+, t− ∈ GO(C, q)+ such that (t, t−, t+) is an admissible triple, that is, µ(t)−1t(x ∗
y) = t−(x) ∗ t+(y) for any x, y ∈ C. Moreover t+ and t− are unique up to scalar
multiplication by some nonzero λ and λ−1 respectively. It is also a standard fact
that (t, t−, t+) is admissible if and only if (t−, t+, t) is admissible. Now the map
t 7→ t− induces an order 3 automorphism θS : PGO(C, q)+ → PGO(C, q)+. We
shall write θ := θC̄ and θ′ := θCϕ,ϕ−1 . Denoting by [t] the equivalence class in
PGO(C, q)+ of t ∈ GO(C, q)+, we have θS([t]) = [t−] so that θ3

S = 1 and it can
be easily proved that θSσ = σθ2

S , which together with σ2 = 1 provide a group
monomorphism S3 → aut(PGO(C, q)+). Thus we get a description of aut(d4) as a
semidirect product

G ∼= PGO(C, q)+ o S3

where the product of elements is given by

(2) σ · [t] = [t̄ ]σ, θS · [t] = [t−]θS , θ2
S · [t] = [t+]θ2

S

while products of θS ’s and σ’s are governed by the corresponding relations in S3.
Observe now that we can consider aut S ⊂ G0 independently of the symmet-

ric composition algebra considered (S, ∗). In the para-Hurwitz case, aut C̄ =
autC ⊂ O(C, q)+ ⊂ GO(C, q)+, and, by composing with the canonical projection
GO(C, q)+ → PGO(C, q)+, we still have a monomorphism aut(C) ↪→ PGO(C, q)+.
In the Okubo case, straightforward computations show that (x ∗ y) ∗ x = q(x)y, so
that any f ∈ aut(S, ∗) verifies q(f(x)) = q(x), that is, aut S ⊂ O(C, q). Moreover,
autS ⊂ O(C, q)+ because autS is connected (= (A2)0.) As before, the composi-
tion of aut S ↪→ GO(C, q)+ with the projection GO(C, q)+ → PGO(C, q)+ is still
an embedding (the only multiple of f ∈ aut S which is also an automorphism is f
itself.)

Now we can compute certain centralizers easily.

Proposition 1. For S = C̄ or Cϕ,ϕ−1 , the centralizer in G of θS is CG(θS) =
aut(S) ∪ aut(S)θS ∪ aut(S)θ2

S.

Proof. Recalling that G0 = PGO(C, q)+ we have

G = G0 ∪ G0θS ∪ G0θ
2
S ∪ G0σ ∪ G0σθS ∪ G0σθ2

S .

Taking an element [f ] ∈ G0 = PGO(C, q)+ and imposing the condition that it
centralizes θS , we get θS [f ] = [f−]θS = [f ]θS which implies that there is an ad-
missible triple (f, f, f+) and consequently an admissible triple (f, f+, f). Since
f− and f+ are uniquely determined by f (up to nonzero scalar multiples), we
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have [f ] = [f+] = [f−]. This implies that a certain nonzero multiple of f is an
automorphism of S. So [f ] ∈ aut(S). If we take now n = 1 or 2 and an ele-
ment [f ]θn

S ∈ G0θ
n
S ∩CG(θS), by imposing the commutativity condition we get also

[f ] = [f+] = [f−] as before. The rest of the possibilities ([f ] ∈ G0σθ0,1,2
S ) are not

compatible with the commutativity condition. ¤

Corollary 1. Let S be the para-Hurwitz or the Okubo algebra. For any maximal
quasitorus Q of aut(S) the group Q̂ := 〈Q ∪ {θS}〉 is a maximal quasitorus of
G = aut d4.

Proof. Suppose that r ∈ G is a semisimple element commuting with Q̂. Then
r ∈ CG(θS) = H ∪ HθS ∪HθS

2, for H := aut(S). If r ∈ H then r ∈ CH(Q) and
by the maximality of Q we have r ∈ Q ⊂ Q̂. In case that r ∈ HθS then rθ2

S ∈ H

so that rθ2
S ∈ CH(Q) and therefore rθ2

S ∈ Q implying r ∈ Q̂ (the other possibility
r ∈ Hθ2

S is similar.) ¤
We know that the order 3 outer automorphisms of d4 fall into two categories:

those whose fix a subalgebra of type a2 and the ones whose fix a subalgebra of
type g2, corresponding respectively to those whose centralizer intersected with G0

is isomorphic to Int a2 and aut g2, that is, conjugated to θ′ and θ respectively. Next
we study which is the category of ϕ2θ, which has order 3 since ϕ ∈ aut C ⊂ G0

commutes with θ.

Corollary 2. The centralizer of ϕ2θ in G0 is isomorphic to Int(sl(3,K)). In par-
ticular ϕ2θ is conjugated to θ′.

Proof. Take [t] ∈ PGO(C, q)+ = G0 such that ϕ2θ[t] = [t]ϕ2θ. Then ϕ2[t−] =
[t]ϕ2 or [t−] = [ϕtϕ−1]. A little more computation reveals that [t+] = [ϕ−1tϕ].
Thus there is an admissible triple (t, ϕtϕ−1, ϕ−1tϕ) for C̄. By definition, this
means that µ(t)−1t(x̄ȳ) = ϕtϕ−1(x) ϕ−1tϕ(y) = t(ϕ−1(x)) ∗ t(ϕ(y)) for any x, y ∈
C, if ∗ denotes now the product of Cϕ,ϕ−1 . Making a = ϕ−1(x), b = ϕ(y), we
get µ(t)−1t(ϕ(ā)ϕ−1(b̄)) = t(a) ∗ t(b) or equivalently µ(t)−1t(a ∗ b) = t(a) ∗ t(b)
so that some nonzero multiple of t is an automorphism of P. This implies that
CG0(ϕ

2θ) ⊂ aut(P) ∼= Int(sl(3,K)), so that CG0(ϕ
2θ) can not be isomorphic to G2.

¤
Therefore the centralizer CG(θ) contains a conjugated of θ′.

4.2. On certain quasitori of aut(d4) and their induced gradings. For any
of the previously considered symmetric composition algebras S (para-Hurwitz or
Okubo algebras) we had aut(S, ∗) embedded in G = aut(d4). If we denote by f 7→ f¦

the mentioned embedding, we can use it to construct maximal quasitori in G by
mixing maximal quasitori in aut(S, ∗) together with θS , according to Corollary 1.

First, consider the case S = C̄ the para-Hurwitz algebra. Since aut(C) =
aut(C̄) = G2, there is a lot of available information on this group. Let

B = {e1, e2, u1, u2, u3, v1, v2, v3}
be the standard basis of the Cayley algebra C, defined by

e1uj = uj = uje2,
e2vj = vj = vje1,

uiuj = vk = −ujui,
−vivj = uk = vjvi,

uivi = e1,
viui = e2,

where e1 and e2 are orthogonal idempotents, (i, j, k) is any cyclic permutation of
(1, 2, 3), and the remaining relations are null. Denote by tα,β the automorphism of
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C whose matrix in the standard basis is the diagonal matrix

diag(1, 1, α, β, (αβ)−1, α−1, β−1, αβ),

where α, β ∈ K×. The set of these automorphisms is a maximal torus of aut(C).
In particular,

P1 := 〈θ, t¦α,β : α, β ∈ K×〉 ∼= (K×)2 × Z3

is a maximal quasitorus of G. Consider the Z3-grading induced by θ on L := d4.
This is L = L0̄ ⊕ L1̄ ⊕ L2̄ where the L0̄-modules L1̄ and L2̄ in the grading are
dual for the Killing form, hence seven-dimensional (the fixed subalgebra of d4 by
θ is Der C = g2 = L0̄.) Besides they are irreducible (see [19, Prop 8.6, Ch 8,
p. 138]), so that they are isomorphic to the natural g2-module C0. Since all the
components of the Z2-grading on C0 are one-dimensional (with generators e1 −
e2, u1, u2, u3, v1, v2 and v3), and the same happens for the non-zero homogeneous
components on Der(C) (the root spaces), the Z2 × Z3-grading on L induced by P1

is of type (12, 1) + 2(7, 0) = (26, 1).
Now, consider the maximal quasitorus of aut(C) generated by {t1,−1, t−1,1, f},

where f is the automorphism given by the following matrix relative to the standard
basis

f =




0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 −1
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 −1 0 0 0




.

Again all the components of the grading induced on C0 are one-dimensional, with
generators e1 − e2, u1 ± v1, u2 ± v2 and u3 ± v3, but all the non-zero homogeneous
components of L0̄ are Cartan subalgebras of g2, hence two-dimensional. Thus, the
maximal quasitorus of G given by

P2 := 〈θ, t¦1,−1, t
¦
−1,1, f

¦〉 ∼= Z3
2 × Z3

∼= Z2
2 × Z6

induces a Z2
2 × Z6-grading on L of type (0, 7) + 2(7, 0) = (14, 7).

Second, consider the Okubo algebra which is isomorphic to the pseudo-octonion
algebra P as previously mentioned. If p ∈ GL(3,K), the map

In(p) : P→ P, In(p)(x) = pxp−1

is an automorphism of P. Take

p1 =




0 0 1
1 0 0
0 1 0


 , p2 =




1 0 0
0 ω 0
0 0 ω2


 ,

order-three invertible matrices verifying p1p2 = ωp2p1. Note that

In(p1) In(p2)(x) = p1p2x(p1p2)−1 = ωp2p1xω−1(p2p1)−1 = In(p2) In(p1)(x),

that is, 〈In(p1), In(p2)〉 ≤ aut(P) is an abelian subgroup of automorphisms isomor-
phic to Z2

3. Hence
P3 := 〈θ′, In(p1)¦, In(p2)¦〉 ∼= Z3

3
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is another maximal quasitorus of G. Consider again the Z3-grading L = L0̄⊕L1̄⊕L2̄

induced in d4 by θ′. Then L0̄ is 8-dimensional (isomorphic to sl(3,K)), and L1̄ and
L2̄ are L0̄-dual irreducible modules (again [19, Prop. 8.6, Ch. 8, p. 138]), hence
of dimension 10. More precisely, if V is a tridimensional vector space, the Lie
algebra L0̄ is isomorphic to sl(V ) and the other components are isomorphic to
sl(V )-modules of type S3(V ) and S3(V ∗). When considering the Z3-grading on
V given by an arbitrary basis {v0, v1, v2}, the map f1 : V → V given by f1(vi) =
vi+1 is extended to L as In(p1)¦, and splits S3(V ) into “pieces” of size 4, 3 and 3
respectively. The same happens to In(p2)¦, which is the extension to L of f2 : V →
V given by f2(vi) = ωivi. Both automorphisms together split S3(V ) in one subspace
of dimension 2 and the remaining ones of dimension 1. Thus, the Z3

3-grading induced
on d4 is of type (8, 0) + 2(8, 1) = (24, 2).

To summarize, as 〈t1,−1, t−1,1, f〉 ∼= Z3
2 and 〈tα,β : α, β ∈ K×〉 ∼= (K×)2 are MAD-

groups of aut g2 (the only MAD’s, according to [3]), and 〈In(p1), In(p2)〉 ∼= Z2
3

is a MAD of the group of automorphisms of the pseudo-octonions algebra, by
Corollary 1 we have that the quasitori Pi are maximal (and because of their types,
P1
∼= Q13, P2

∼= Q12 and P3
∼= Q14.)

In order to prove that the Pi’s are all the maximal quasitori (which intersect the
θ-component), we prove first that any other MAD would have some order 3 outer
automorphism.

Consider the maximal torus T of G0 induced by the elements tλ,α,β,γ ∈ GO(C, q)
whose matrix in the standard basis of C is

(3) diag(λ, λ−1, α, β, γ, α−1, β−1, γ−1.)

Straightforward computations reveal that for t ∈ T one also has t̄, t+, t− ∈ T and
if t = tλ,α,β,γ , then t̄ = tλ̄−1,ᾱ,β̄,γ̄ and t± = tλ±,α±,β±,γ± where

λ− =
1√

αβγλ
, α− =

√
λα

βγ
, β− =

√
λβ

αγ
, γ− =

√
λγ

αβ
,

λ+ =

√
αβγ

λ
, α+ =

√
α

βγλ
, β+ =

√
β

αγλ
, γ+ =

√
γ

αβλ
.(4)

Notice that σ, θ and θ′ belong to N(T ), according to their actions on T ⊂ G0 given
in (2).

Lemma 4. For any t ∈ T there is some s ∈ T such that ts(s−)−1 ∈ T (θ) :=
T ∩ CG(θ).

Proof. We must take into account that tλ,α,β,γ ∈ T (θ) if and only if λ = 1 and
αβγ = 1. Thus, making t = tλ,α,β,γ and s = tx,y,u,v the fact that ts(s−)−1 ∈ T (θ)

is equivalent to proving that the equations

λx = x−, αβγyuv = u−v−y−,

have some solution in x, y, u and v. But writing x−, y−, u− and v− as func-
tions of x, y, u and v according to the relations in (4), the resulting equations are
αβγ(uvy)3/2 = x

√
x, λx

√
x = (uvy)−1/2 which can be solved in x, y, u, v for any

given λ, α, β, γ. ¤
Proposition 2. Let Q be a MAD-group of G such that Q∩G0θ 6= ∅. Then there is
an order 3 outer automorphism in Q.
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Proof. Recall that G = G0 ∪ G0σ ∪ G0σθ ∪ G0σθ2 ∪ G0θ ∪ G0θ
2. If f ∈ G0θ has

order 3k · m with gcd(m, 3) = 1, then fm has order 3k and belongs to G0θ or to
G0θ

2, which is conjugated to G0θ. Thus we can consider from the beginning an
element f ∈ G0θ with minimum order 3k. If k = 1 we are done, so suppose k > 1.
We must note that there is a maximal toral subgroup B of Q and a maximal torus
T of G such that B ⊂ T and Q ⊂ N(T ) (see [4, Sect. 5].) Then B = T ∩ Q and
for each f ∈ Q \ T the subquasitorus generated by {f} ∪ (Q∩ T ) is nontoral. As T
is conjugated to the torus given by (3), replace θ, θ′ and σ by their corresponding
conjugated automorphisms inside N(T ). Denote by π : N(T ) → N(T )/T ∼= autΦ =
W oS3 the canonical projection (S3 is generated by π(θ) and π(σ).) Consider also
T 〈σ〉 := {t ∈ T | σ · t = t}, for · the action of the Weyl group W on the torus.
Notice that Q ∩ T = ∩σ∈π(Q)T

〈σ〉, by the maximality of Q. Now, π(f) 6= 1 since
f /∈ T , hence π(f) is an order 3 element (since the Weyl group of d4 has no elements
of order 3n for n > 1.) In particular π(f) is conjugated to π(θ) or π(θ′). More
concretely, it is conjugated to π(θ), because every element in N(T ) projecting in
π(θ′) has order just 3, following [4, Lemma 1, p. 26], so in such case f would also
have order 3. Thus, by conjugating by an element in W if necessary (so we do not
change T nor N(T )) we may suppose that π(f) = π(θ), and f = tθ ∈ Q for some
t ∈ T . Now conjugating by a suitable element s ∈ T we have stθs−1 = st(s−)−1θ
and by Lemma 4 the toral element s can be chosen so that st(s−)−1 ∈ T (θ). Thus
from here on, we suppose f = tθ with t ∈ T (θ).

The quasitorus Q being an abelian group, has no element of the connected com-
ponents G0σ, G0σθ or G0σθ2. Therefore π(Q) = (π(Q)∩W)〈π(θ)〉. Note that there
is not g ∈ Q with π(g) ∈ W of order 3. Because B ∪ {g} would be non toral, but it
is contained in T (g)∪{g}, toral according to Table 2 (and immediate by Lemma 2.)
Therefore any element in π(Q) ∩ W has order a power of 2. If π(Q) ∩ W = {1}
we have π(Q) = 〈π(θ)〉 and Q ∩ T = T 〈π(θ)〉 = T (θ) 3 t so that θ ∈ Q would be
an order 3 element. Otherwise, there is g ∈ Q with π(g) ∈ W of order 2. Thus
B ⊂ T 〈π(gf)〉, but for the order 6 elements π(gf) = π(gθ) ∈ autΦ we know by
Table 2 that T 〈π(gf)〉 is either a one-dimensional torus, or isomorphic to Z2

2, or
{id}. The last two options are not possible because t3 = f3 ∈ B has order 3k−1.
Now the quasitorus generated by T 〈π(gf)〉 ∪ {g} is toral by Lemma 2, so that the
quasitorus generated by B ∪ {g} is also toral, a contradiction with the election of
B. ¤

Up to this point we have “mixed” MAD-groups of aut(S) (where S = C̄ or P)
with θS so as to obtain MAD-groups of G = aut(d4). Notice that in Int(a2) there
is another MAD-group, the maximal torus, but when mixing with θ′ the obtained
quasitori will turn out to be conjugated to P1, as a consequence of Corollary 2.
Thus we arrive at the main theorem.

Theorem 2. P1, P2 and P3 are, up to conjugation, the only maximal quasitori of
G not contained in G0 ∪ G0σ.

Proof. Let S = C̄ or P and consider a MAD-group Q of G containing some
element in the connected component of the element θ. If Q contains some element
conjugated to θ′ = θP, we can suppose that θ′ belongs to Q. Hence Q ⊂ CG(θ′) =
(A2)0 ∪ (A2)0θ′ ∪ (A2)0θ′2 applying Proposition 1. Thus, there is a quasitorus Q′

of (A2)0 = aut(P) such that Q = 〈Q′ ∪ {1, θ′, θ′2}〉. Moreover, the maximality of Q
implies that of Q′ in (A2)0. There are only two MAD-groups of (A2)0 (there are four
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MAD-groups of A2, according to [14], but two of them have outer automorphisms),
and, when we mix them with θ′ we get two maximal quasitori: P3 and

P4 := 〈θ′, In(αE1,1 + α−1E2,2 + E3,3)¦, In(E1,1 + β−1E2,2 + βE3,3)¦ : α, β ∈ K×〉
∼= Z3 × (K×)2,

obtained by joining the maximal torus of A2 with θ′.
On the other hand, if Q does not contain any element conjugated to θ′, by

Proposition 2 there is an element conjugated to θ = θC̄ in Q. Again Q is a copy
of the direct product of a MAD-group of aut g2 with {1, θ, θ2}. Notice that there
are 2 MAD’s of the group G2 (see [3]), which provide just P1 and P2 when mixing
with θ. But Q cannot be conjugated to P2 because in P2 there is an automorphism
conjugated to θ′, by Corollary 2.

Therefore we have proved that there are only three MAD’s in the stated condi-
tions, P1, P3 and P4 (in particular, P2 and P4 are conjugated.) ¤
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[22] S. Okubo. Introduction to Octonion and Other Non-Associative Algebras in Physics. Cam-
bridge University Press 1995.

[23] A. L. Onishchnik, E. B. Vinberg (Editors.) Lie Groups and Lie Algebras III, Encyclopaedia
of Mathematical Sciences, Vol. 41. Springer-Verlag. Berlin, 1991.

[24] J. Patera, E. Pelantov and M. Svobodov: Fine gradings of o(5,C), sp(4,C) and of their real
forms. J. Math. Phys. 42 (2001), 3839-3853.
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