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Abstract. Recently J.A.Anquela, T.Cortés, and H.Petersson [2] proved
that for elements x, y in a non-degenerate Jordan algebra J , the relation
x ◦ y = 0 implies that the U -operators of x and y commute: UxUy = UyUx.
We show that the result may be not true without the assumption on non-
degeneracity of J . We give also a more simple proof of the mentioned result
in the case of linear Jordan algebras, that is, when char F ̸= 2.
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1. An Introduction

In recent paper [2] J.A.Anquela, T.Cortés, and H.Petersson have studied the
following question for Jordan algebras:

(1) does the relation x ◦ y = 0 imply that the quadratic operators Ux and
Uy commute?

They proved that the answer is positive for non-degenerate Jordan algebras,
and left open the question in general case.

We show that the answer to question (1) is negative in general case. We
give also a more simple proof of the result for linear non-degenerate Jordan
algebras, that is, over a field F of characteristic ̸= 2.

2. A counter-example

Let us remind some facts on Jordan algebras. We use for references the
books [1, 4], and the paper [3].

Consider the free special Jordan algebra SJ [x, y, z] and the free associative
algebra F ⟨x, y, z⟩ over a field F . Let ∗ be the involution of F ⟨x, y, z⟩ identical
on the set {x, y, z}. Denote {u} = u + u∗ for u ∈ F ⟨x, y, z⟩, then {u} ∈
SJ [x, y, z] [1]. Below ab is the product in F ⟨x, y, z⟩ and a ◦ b = ab + ba and
aUb = bab are linear and quadratic operations in SJ [x, y, z].
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For an ideal I of SJ [x, y, z] denote by Î the ideal of F ⟨x, y, z⟩ generated by
I. By Cohn’s Lemma [1, lemma 1.1], the quotient algebra J = SJ [x, y, z]/I is

special if and only if I = Î ∩ SJ [x, y, z].

Lemma 1. The following equality holds

z[Ux, Uy] = {(x ◦ y)zxy} − zUx◦y.

Proof. We have in F ⟨x, y, z⟩
z[Ux, Uy] = yxzxy − xyzyx = (y ◦ x)zxy − xyzxy − xyzyx =

= (y ◦ x)zxy − xyz(x ◦ y) = {(x ◦ y)zxy} − (x ◦ y)z(x ◦ y).
2

Theorem 1. Let I denote the ideal of SJ [x, y, z] generated by x ◦ y = xy+ yx
and J = SJ [x, y, z]/I. Then for the images x̄, ȳ of the elements x, y in J we
have x̄ ◦ ȳ = 0 but [Ux̄, Uȳ] ̸= 0.

Proof. It suffices to show that k = z[Ux, Uy] /∈ I. By lemma 1, k = {(x ◦
y)zxy} (mod I). Now, the arguments from the proof of [1, theorem 1.2], show
that k /∈ I when F is a field of characteristic not 2 (see also [1, exercise 1, page
12]).

The result is also true in characteristic 2 for quadratic Jordan algebras. In
this case, one needs certain modifications concerning the generation of ideals
in quadratic case. The author is grateful to T. Cortés and J.A. Anquela who
correct the first “naive” author’s proof and suggest the proper modifications
which we give below.

We have to prove that {(x ◦ y)zxy} ̸∈ I. By [6, (1.9)], the ideal I is the

outer hull of F (x ◦ y) + Ux◦y ̂SJ [x, y, z], where Ĵ denotes the unital hull of
J . Assume that there exists a Jordan polynomial f(x, y, z, t) ∈ SJ [x, y, z, t]
with all of its Jordan monomials containing the variable t, such that {(x ◦
y)zxy} = f(x, y, z, x ◦ y). By degree considerations, f = g + h, where g, h ∈
SJ [x, y, z, t], g is multilinear, and h(x, y, z, t) is a linear combination of Utz and
z ◦ t2. On the other hand, arguing as in [1, Theorem 1.2], g ∈ SJ [x, y, z, t] ⊆
H(F ⟨x, y, z, t⟩, ∗), and because of degree considerations and the fact that z
occupies inside position in the associative monomials of {(x ◦ y)zxy}, g is a
linear combination of

{xzyt}, {xzty}, {tzxy}, {tzyx}, {yztx}, {yzxt},
and h is a scalar multiple of Utz. Hence f has the form

f(x, y, z, t) = α1{xzyt}+ α2{xzty}+ α3{tzxy}
+ α4{tzyx}+ α5{yztx}+ α6{yzxt}
+ α7tzt,



and therefore

{(x ◦ y)zxy} = α1{xzy(x ◦ y)}+ α2{xz(x ◦ y)y}+ α3{(x ◦ y)zxy}
+ α4{(x ◦ y)zyx}+ α5{yz(x ◦ y)x}+ α6{yzx(x ◦ y)}
+ α7(x ◦ y)z(x ◦ y),

Comparing coefficients as in [1, Theorem 1.2], we get

α1 = α2 = α5 = α6 = 0,

α3 = λ+ 1, α4 = λ, α7 = −2λ,

for some λ ∈ F . Going back to f , we get

f = (λ+ 1){tzxy}+ λ{tzyx} − 2λtzt = {tzxy}+ λ{tz(x ◦ y)} − 2λUtz,

so that {tzxy} ∈ SJ [x, y, z, t], which is a contradiction.
In fact, the standard arguments with Grassmann algebra do not work in

characteristic 2, to prove that {tzxy} /∈ SJ [x, y, z, t], but one can check directly
(or with aid of computer) that the space of symmetric multilinear elements in
F ⟨x, y, z, t⟩ has dimension 12 while the similar space of Jordan elements has
dimension 11.
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3. The non-degenerate case

Here we will give another proof of the main result from [2] that the answer
to question (1) is positive for nondegenerate algebras, for the case of linear
Jordan algebras (over a field F of characteristic ̸= 2).

Let J be a linear Jordan algebra, a ∈ J, Ra : x 7→ xa be the operator of
right multiplication on a, and Ua = 2R2

a −Ra2 .
As in [2], due to the McCrimmon-Zelmanov theorem [5], it suffices to con-

sider Albert algebras. We will need only the fact that an Albert algebra A is
cubic, that is, for every a ∈ A, holds the identity

a3 = t(a)a2 − s(a)a+ n(a),

where t(a), s(a), n(a) are correspondingly linear, quadratic, and cubic forms
on A [1]. Linearizing the above identity on a, we get the identity

2((ab)c+ (ac)b+ (bc)a) = 2(t(a)bc+ t(b)ac+ t(c)ab)

−s(a, b)c− s(a, c)b− s(b, c)a+ n(a, b, c),

where s(a, b) = s(a+ b)− s(a)− s(b) and n(a, b, c) = n(a+ b+ c)− n(a+ b)−
n(a + c) − n(b + c) + n(a) + n(b) + n(c) are bilinear and trilinear forms. In



particular, we have

a2b+ 2(ab)a = t(b)a2 + 2t(a)ab− s(a, b)a− s(a)b+ 1
2
n(a, a, b).(1)

Lemma 2. Let a, b ∈ J with ab = 0. Then [Ua, Ub] = [Ra2 , Rb2 ].

Proof. Linearizing the Jordan identity [Rx, Rx2 ] = 0, one obtains

[Ra2 , Rb] = −2[Rab, Ra] = 0,

and similarly [Ra, Rb2 ] = 0. Therefore,

[Ua, Ub] = [2R2
a −Ra2 , 2R

2
b −Rb2 ] = 4[R2

a, R
2
b ] + [Ra2 , Rb2 ].

Furthermore, [R2
a, R

2
b ] = [Ra, R

2
bRa + RaR

2
b ]. By the operator Jordan identity

[1, (1.O2)],

R2
bRa +RaR

2
b = −R(ba)b + 2RabRb +Rb2Ra = Rb2Ra,

therefore [R2
a, R

2
b ] = [Ra, Rb2Ra] = [Ra, Rb2 ]Ra = 0, which proves the lemma.

2

Theorem 2. Let J be a cubic Jordan algebra and a, b ∈ J with ab = 0. Then
[Ua, Ub] = 0.

Proof. For any c ∈ J we have by Lemma 2 and by the linearization of the
Jordan identity (x, y, x2) = 0

c[Ua, Ub] = c[Ra2 , Rb2 ] = (a2, c, b2) = −2(a2b, c, b).

By (1), we have

(a2b, c, b) = t(b)(a2, c, b)− s(a)(b, c, b)− s(a, b)(a, c, b)

= −2t(b)(ab, c, a)− s(a, b)(a, c, b) = −s(a, b)(a, c, b).

Substituting c = a, we get (a2b, a, b) = ((a2b)a)b = (a2(ba))b = 0, which
implies 0 = s(a, b)(a, a, b) = s(a, b)(a2b). Therefore, s(a, b) = 0 or a2b = 0. In
both cases this implies c[Ua, Ub] = 0. 2

Corollary 1. In an Albert algebra A, the equality ab = 0 implies [Ua, Ub] = 0.

In connection with the counter-example above, we would like to formulate

an open question. Let f, g ∈ SJ [x, y, z] such that g ∈ (̂f) but g ̸∈ (f),

where (f) and (̂f) are the ideals generated by f in SJ [x, y, z] and in F ⟨x, y, z⟩,
respectively. Then the quotient algebra SJ [x, y, z]/(f) is not special, due to
Cohn’s Lemma. It follows from the results of [7] that the quotient algebra

(̂f)/(f) is degenerated. The question we want to ask is the following:

If f = 0 in a nondegenerate Jordan algebra J , should also be g = 0?

Of course, there is a problem of writing f and g in arbitrary Jordan algebra,
we know only what they are in SJ [x, y, z], but in the free Jordan algebra



J [x, y, z] they have many pre-images (up to s-identities), and one may choose
pre-images for which the question has a negative answer. For example, the
answer is probably negative for f = x ◦ y and g = z[Ux, Uy] +G(x, y, z), where
G(x, y, z) is the Glennie s-identity [1].

But assume that f and g are of degree less then 2 on z, then by the
Macdonald-Shirshov theorem they have unique pre-images in J [x, y, z], and
we may ask: if f = 0 in a non-degenerate Jordan algebra J , should also be
g = 0?
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