Commuting U-operators in Jordan algebras
Given arbitrary elements x,y in a non-degenerate non-unital
Jordan algebra over a commutative ring, the relation xoy = 0 (Jordan
circle product) is shown to imply that their U-operators commute. The
proof rests on the Zel'manov-McCrimmon classification of strongly prime
quadratic Jordan algebras.
(This paper has appeared in Trans. Amer. Math.
Soc. 366 (11) 2014, 5877-5902)
José A. Anquela < anque@orion.ciencias.uniovi.es >
Teresa Cortés < cortes@orion.ciencias.uniovi.es >
Holger P. Petersson < holger.petersson@fernuni-hagen.de >