Commuting U-operators in Jordan algebras

Given arbitrary elements x,y in a non-degenerate non-unital Jordan algebra over a commutative ring, the relation xoy = 0 (Jordan circle product) is shown to imply that their U-operators commute. The proof rests on the Zel'manov-McCrimmon classification of strongly prime quadratic Jordan algebras.

(This paper has appeared in Trans. Amer. Math. Soc. 366 (11) 2014, 5877-5902)


José A. Anquela < anque@orion.ciencias.uniovi.es >

Teresa Cortés < cortes@orion.ciencias.uniovi.es >

Holger P. Petersson < holger.petersson@fernuni-hagen.de >