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Abstract

We show that linear bijections between quaternion algebras over a commutative
ring preserving norms and identity elements are basically the same as isomorphisms
or anti-isomorphisms. We also show that one-sided ideals of octonion algebras over
a commutative ring are extended from the base.

Introduction. By a composition algebra over a commutative ring k we mean a non-
associative k-algebra C with the following properties: C is finitely generated projective
as a k-module, contains an identity element and is equipped with a quadratic form
nC : C → k (the norm), uniquely determined by the condition that it is non-singular
(see 2. below for the definition) and permits composition: nC(1C) = 1 and nC(xy) =
nC(x)nC(y) for all x, y ∈ C. The rank of a composition algebra (provided it has one)
is known to be one of the numbers r = 1, 2, 4, 8. More precisely, C ∼= k for r = 1, C
is a commutative associative quadratic étale algebra for r = 2, an associative but not
commutative quaternion algebra for r = 4 and an alternative but neither commutative
nor associative octonion (or Cayley) algebra for r = 8. Octonion algebras, in particular,
derive much of their importance from their intimate connection with the exceptional
groups of type G2; we refer to Gille-Neher [10] for details

Over a field or, more generally, a semi-local ring, composition algebras are well un-
derstood. They can all be obtained from a (repeated) application of the Cayley-Dickson
construction [21, §6] and, thanks to Witt cancellation of quadratic forms (Baeza [3, III,
Corollary (4.3)]), they are classified by their norms: two composition algebras over a
semi-local ring are isomorphic if and only if their norms are equivalent (Petersson-Racine
[26, Theorem 26.7]), see [27, Theorem 1.7.1] for the field case. Unfortunately, however,
if the base ring is arbitrary, these nice and useful properties are no longer valid. In
fact, there exist octonion algebras that as quadratic spaces are either indecomposable
themselves or, if the base ring contains 1

2 , their subspaces of trace-zero elements are. In
any event, they cannot be realized by the Cayley-Dickson construction, the most inter-
esting examples of this kind being provided by the Dickson-Coxeter octonions living on
the E8-lattice over the integers ([6, 5, 24]), and by the constructions of Knus-Parimala-
Sridharan [16, Theorem (7.7)] over the polynomial ring in two variables with coefficients
in an appropriate field of characteristic not two; for a simplification of this construction,
see Thakur [28]. Moreover, Gille [9, Theorem 3.3] has exhibited examples of octonion
algebras that have isometric norms but fail to be isomorphic; see also Alsaody-Gille [2,
Corollary 6.7] for a characterization of octonion algebras with equivalent norms in terms
of isotopes in the sense of McCrimmon [20]. On the positive side, there is a theorem
of Knus-Paques [15, Theorem (3.10)] which implies that quaternion algebras over any
commutative ring are always classified by their norms. For a refinement of this result,
see Knus [12, V, Corollary (4.3.2)].

Our aim in this paper is twofold. On the one hand, we will be concerned with
more explicit version of the Knus-Paques theorem. More specifically, we show that unit
preserving isometries of quaternion algebras over any commutative ring are basically
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the same as isomorphisms or anti-isomorphisms (Theorem 6). This result, which is well
known to hold over fields (Knus-Merkurjev-Rost-Tignol [13, VIII, Exercise 2]), yields the
Knus-Paques theorem at once (Corollary 7). On the other hand, we will investigate the
(one- or two-sided) ideal structure of composition algebras. Our main result (Theorem 10)
extends earlier ones due to Mahler [19], Van der Blij-Springer [29] and Allcock [1] from the
Dickson-Coxeter octonions over the integers to arbitrary composition algebras and implies
among other things that one-sided ideals of any octonion algebra over any commutative
ring are always extended from the base; this fact is all the more remarkable since the
analogous result for quaternion or quadratic étale algebras breaks down even if the base
ring is an algebraically closed field. In particular, octonion algebras over a commutative
ring are arithmetically simple in the sense of Legrand [17]. The methods we employ to
establish these results are quite elementary, relying only on properties of finitely generated
projective modules and compositions algebras that are basically standard.

1. Notation. Let k be a commutative ring remaining fixed throughout this paper.
We denote by Spec(k) the prime spectrum of k, i.e., the totality of prime ideals in k
equipped with the Zariski topology. Recall that a basis for this topology is furnished by
the principal open sets D(f), f ∈ k, which consist of all prime ideals in k not containing
f . For p ∈ Spec(k), we denote by kp the local ring of k at p, with maximal ideal pp and
residue field κ(p) = kp/pp = Quot(k/p). The category of unital commutative associative
k-algebras will be denoted by k-alg, its morphisms being k-algebra homomorphisms
taking 1 into 1. If M is a (left) k-module, then its base change or scalar extension from k
to R ∈ k-alg will be denoted by MR := M ⊗R, unadorned tensor products always being
taken over k; ditto for (non-associative) algebras instead of modules. For p ∈ Spec(k),
we abbreviate Mp := Mkp , M(p) := Mκ(p).

2. Quadratic forms. Let M be a k-module and q : M → k a quadratic form, so q is
homogeneous of degree 2 and the map M ×M → k, (x, y) 7→ q(x, y) := q(x+ y)− q(x)−
q(y) is (symmetric) bilinear, called the bilinearization of q. We say that q is non-singular
if M is finitely generated projective and the linear map from M to its dual canonically
induced by the bilinearization of q is an isomorphism. The property of a quadratic form
to be non-singular is stable under base change, so if q : M → k is a non-singular quadratic
form over k, its scalar extension qR : MR → R is a non-singular quadratic form over R,
for any R ∈ k-alg.

3. Basic properties of composition algebras. Recall that a composition algebra
over k is a (non-associative) k-algebra C that is unital (i.e., contains an identity element),
finitely generated projective as a k-module, and equipped with its norm nC : C → k, a
non-singular quadratic form permitting composition:

nC(1C) = 1, nC(xy) = nC(x)nC(y) (x, y ∈ C).

Note that the non-singularity condition prevents the base ring from being counted as a
composition algebra unless it contains 1

2 . In order to avoid this awkward phenomenon,
the notion of a composition algebra has to be modified: rather than insisting that the
norm be non-singular, one should merely require that it be separable in the sense of Loos
[18, 3.2]. This approach has been worked out in [26, Chap. 4], with a summary given
in [25, §4]. It should also be noted that what we call non-singular (resp. separable)
quadratic forms are called regular (resp. non-singular) ones in [2].

Now let C be a composition algebra over k. Referring to [12, V, (7.1)], [21, 22] for
details, we collect a few properties of C that will be used frequently later on.

(a) C is alternative, so its associator [x, y, z] := (xy)z−x(yz) is alternating in x, y, z ∈ C.
Hence the expression xyx is unambiguous and the Moufang identities hold.

x
(
y(xz)

)
= (xyx)z, (xy)(zx) = x(yz)x,

(
(zx)y

)
x = z(xyx). (1)
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Writing
tC : C −→ k, x 7−→ tC(x) := nC(1C , x),

for the trace of C (a linear form) and

ιC : C −→ C, x 7−→ x̄ := tC(x)1C − x

for its conjugation (an algebra involution), the following identities hold, for all x, y, z ∈ C.

x2 = tC(x)x− nC(x)1C , (2)

xx̄ = nC(x)1C = x̄x, (3)

nC(x, ȳ) = tC(x)tC(y)− nC(x, y) = tC(xy). (4)

In particular, we conclude from (3) that x is invertible in C if and only if nC(x) is
invertible in k, in which case x−1 = nC(x)−1x̄. The set of invertible elements in C (resp.
k) will be denoted by C× (resp. k×).

(b) Composition algebras are stable under base change: CR is a composition algebra over
R, for any R ∈ k-alg, the norm of CR being the R-quadratic extension of the norm of
C.

(c) The trace tC is an associative linear form in the sense that tC([x, y]) = tC([x, y, z]) = 0
for all x, y, z ∈ C, where [x, y] := xy − yx is the commutator of x and y.

(d) 1C ∈ C is unimodular in the sense that some linear form λ : C → k has λ(1C) = 1,
making C a faithful k-module and k1C a free k-module of rank 1.

(e) If C has rank r > 2, then C is central in the sense that its centre, i.e.,

Cent(C) :=
{
x ∈ C | [x,C] = [x,C,C] = {0}

}
satisfies Cent(C) = k1C . Similarly, if C is an octonion algebra, then C is nuclear in the
sense that its nucleus, i.e.,

Nuc(C) :=
{
x ∈ C | [x,C,C] = {0}

}
satisfies Nuc(C) = k1C [2, Lemma 2.8].

4. The Cayley-Dickson construction. Let B be an associative composition algebra
over k and µ ∈ k an invertible element. Then the k-algebra C defined on the direct sum
B ⊕Bj of two copies of B as a k-module by the multiplication

(u1 ⊕ v1j)(u2 ⊕ v2j) = (u1u2 + µv̄2v1)⊕ (v2u1 + v1ū2)j (5)

for ui, vi ∈ B, i = 1, 2, is a composition algebra whose unit element, norm and conjuga-
tion for u, v ∈ B are respectively given by

1C = 1B ⊕ 0 · j, nC(u⊕ vj) = nB(u)− µnB(v), u⊕ vj = ū⊕ (−vj) (6)

in terms of the corresponding data for B. We write C =: Cay(B,µ) and call it the com-
position algebra arising from B,µ by the Cayley-Dickson construction. The assignment
u 7→ u⊕ 0 · j gives an embedding, i.e., an injective homomorphism of unital k-algebras,
allowing us to identify B ⊆ C as a unital subalgebra. We then have u + vj = u ⊕ vj
for all u, v ∈ B, and B⊥ = Bj is the orthogonal complement of B in C relative to the
bilinearized norm. By (6) and 3. (a), therefore, j ∈ B⊥ is invertible in C.

Conversely, let C be a composition algebra over k and B ⊂ C a proper composition
subalgebra. Then B is associative and for any l ∈ B⊥ ∩ C× (which always exists if k is
a semi-local ring), the inclusion B ↪→ C has a unique extension to an embedding from
the Cayley-Dickson construction Cay(B,µ), µ := −nC(l) ∈ k×, into C that sends j to l.
This embedding is an isomorphism provided C,B have rank r, r2 , respectively.
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5. The Knus-Paques theorem. Let B,B′ be quaternion algebras over k. Using the
theory of Clifford algebras, Knus-Paques [15, Theorem (3.10)] have shown that B and
B′ are isomorphic if and only if, for some β ∈ k×, the quadratic forms βnB and nB′

are isometric. In the present paper, we give this equivalence an explicit form. More
specifically, calling an isometry from nB to nB′ that preserves identity elements a unital
norm equivalence, and guided by [13, VIII, Exercise 2], we will establish the following
result.

6. Theorem. Let B,B′ be quaternion algebras over k. A map f : B → B′ is a unital
norm equivalence if and only if there exists a decomposition k = k+⊕ k− of k as a direct
sum of ideals such that the induced decompositions

B = B+ ⊕B−, B± := Bk± , B′ = B′+ ⊕B′−, B′± := B′k± , (7)

f = f+ ⊕ f−, f± := fk±

make f+ : B+ → B′+ an isomorphism of quaternion algebras over k+ and f− : B− → B′−
an anti-isomorphism of quaternion algebras over k−.

Proof. If such a decomposition exists, f is clearly a unital norm equivalence. Conversely,
let this be so. We put X := Spec(k) and conclude that the subsets

X+ := {p ∈ X | fp : Bp → B′p is an isomorphism},
X− := {p ∈ X | fp : Bp → B′p is an anti-isomorphism}

of X are Zariski-open (since B is finitely generated as a k-module, so the conditions
imposed on X± may be characterized by finitely many equations) and disjoint (since
quaternion algebras are not commutative). Suppose we can show that they cover X.
Then Bourbaki [4, II, §4, Proposition 15] yields a complete orthogonal system (ε+, ε−)
of idempotents in k satisfying X± = D(ε±). Now it suffices to put k± = kε±, which
implies for any p± ∈ Spec(k±) that p := p± ⊕ k∓ ∈ D(ε±) makes f±p± = (fp)k±p±

an
isomorphism in case of the plus-sign and an anti-isomorphism in case of the minus-sign.
Hence f+ is an isomorphism and f− is an anti-isomorphism.

We are thus reduced to showing X = X+ ∪X−. Equivalently, we may assume that
k is a local ring and must show that f is either an isomorphism or an anti-isomorphism.
Writing m for the maximal ideal of k, the quaternion algebra B(m) over the field κ(m)
contains a quadratic étale subalgebra generated by an element of trace 1, which in turn
lifts to a quadratic étale subalgebra D = k[u] ⊆ B, for some trace-one element u ∈ B.
Since units, norms, and traces are preserved by f , so are squares (by (2)), and we
conclude that D′ := f(D) = k[u′], u′ := f(u), is a quadratic étale subalgebra of B′,
making f |D : D → D′ an isomorphism. Now apply 4. to reach B from D by means
of the Cayley-Dickson construction: there exists a unit µ ∈ k× such that the inclusion
D ↪→ B extends to an identification B = Cay(D,µ) = D ⊕ Dj, j ∈ D⊥, nB(j) = −µ.

Moreover, setting j′ := f(j) ∈ D′⊥ ⊆ B′, we obtain nB′(j
′) = −µ, and conclude that f |D

extends to an isomorphism g : B → B′ satisfying g(j) = j′. Hence f1 := g−1 ◦f : B → B
is a unital norm equivalence inducing the identity on D and satisfying f1(j) = j. Since
f1 stabilizes D⊥ = Dj, we find a k-linear bijection ϕ : D → D such that f1(vj) = ϕ(v)j
for all v ∈ D. Then ϕ(1D) = 1D, and since nB permits composition, ϕ leaves nD
invariant and is thus a unital norm equivalence of D, hence an automorphism. By [12,
III, Lemma (4.1.1)], therefore, we are left with the following cases.

Case 1. ϕ = 1D. Then f1 = 1B , and f = g : B → B′ is an isomorphism.

Case 2. ϕ = ιD. One checks easily that the reflection in D (Jacobson [11, p. 12]), i.e.,
the map ψ : B → B defined by ψ(v+wj) := v−wj for all v, w ∈ D is an automorphism
satisfying f1 = ψ◦Int(j)◦ιB , where Int(j) stands for the inner automorphism x 7→ jxj−1

of B affected by j. Hence f = g ◦ ψ ◦ Int(j) ◦ ιB : B → B′ is an anti-isomorphism. �
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7. Corollary (Knus-Paques [15, Theorem (3.10)]). For quaternion algebras B,B′ over
k, the following conditions are equivalent.

(i) B and B′ are isomorphic.

(ii) B and B′ are norm-equivalent, i.e., their norms are isometric.

(iii) B and B′ are norm-similar, i.e., there exists a scalar β ∈ k× such that βnB and
nB′ are isometric.

Proof. The implications (i) ⇒ (ii) ⇒ (iii) being obvious, it remains to establish the
implication (iii) ⇒ (i), so let us assume for some β ∈ k× that g : B → B′ is an isometry
from βnB to nB′ . Then u := g−1(1B′) ∈ B has nB(u) = β−1 and hence is invertible.
Thus, since nB permits composition, the assignment x 7→ g(ux) defines a unital norm
equivalence f : B → B′, and we obtain a decomposition k = k+ ⊕ k− as a direct sum
of ideals such that the induced decompositions (7) enjoy the properties spelled out in
Theorem 6. Hence f+⊕ (f− ◦ ιB) : B → B′ is an isomorphism of quaternion algebras. �

8. Remarks. (a) Another proof of Theorem 6 using group schemes may be found in
a forthcoming monograph by Gille-Neher [10]. A scheme-theoretic proof of Corollary 7
is due to Gille [9, Theorem 2.4].

(b) It is easy to see that a unital norm equivalence between quadratic étale algebras is an
isomorphism. More precisely, given a unital norm equivalence f : D → D′ of quadratic
étale algebras, and arguing as in the proof of Theorem 6, one obtains decompositions as
in the theorem such that f+ = 1D+ is the identity of D+ and f− = ιD− is the conjugation
of D−. This result is well known [12, Proposition (4.1.2)].

(c) At the other extreme, Theorem 6 breaks down for octonion algebras, even if the base
ring is an algebraically closed field. In order to illuminate this well-known phenomenon,
we refer to McCrimmon’s notion of isotopy [20], a special case of which may be described
as follows.

Let C be an octonion algebra over k, an arbitrary commutative ring. For p ∈ C×,
the k-module C together with the multiplication (xp−1)(py) is again an octonion algebra
over k, denoted by Cp and called the p-isotope of C; it has the same identity element,
norm, trace, and conjugation as C. For another invertible element q ∈ C×, the Moufang
identities (1) imply (Cp)q = Cpq and, using 3. (e), one checks that Cp = Cq if and only
if q = αp for some α ∈ k×. Now suppose B ⊆ C is a quaternion subalgebra and let
p ∈ B×. Then C = B ⊕B⊥ as k-modules and, localizing if necessary, a straightforward
verification shows that

f : C
∼−→ Cp, f(u+ v) := p−1up+ v

for u ∈ B, v ∈ B⊥ is an isomorphism. In particular, f is a unital norm equivalence
but not an automorphism of C unless p ∈ k1C . It follows from Gille [9, Theorem 3.3]
and Alsaody-Gille [2, Corollary 6.7] that, if C is split and k is chosen judiciously, some
p ∈ C× has Cp � C. Such a p, therefore, cannot be embedded into a quaternion
subalgebra of C, in stark contrast to the general situation over fields (Springer-Veldkamp
[27, Proposition 1.6.4]).

The preceding examples are in some sense typical: it follows from the principle of
triality [27, Theorem 3.2.1] combined with the formalism of [23] that, if k is a field, any
rotation (resp. reflection) of the quadratic space (C, nC) fixing the identity element is
an isomorphism (resp. anti-isomorphism) from C to Cp, for some p ∈ C×. Whether the
same conclusion holds over any commutative ring seems to be an open problem.
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9. Ideals. In order to put our approach to ideals of octonion algebras in perspective,
it seems appropriate to discuss them in the broader context of arbitrary composition
algebras. We begin by distinguishing three types of ideals in a composition algebra C:
the general type, i.e., one-sided ideals, the middle ground, i.e., arbitrary two-sided ideals,
and the special type, i.e., ideals of (C, ιC) as an algebra with involution, equivalently,
ideals stable under conjugation.

The final result of this paper basically says that, if C has rank r > 1, all its ideals
of the right type are extended from the base ring provided as r increases so does the
generality of the type. More precisely, we can prove:

10. Theorem. Let C be a composition algebra of rank r > 1 over k and identify
k = k1C ⊆ C canonically via 3. (d). Then the assignment

a 7−→ aC

defines an inclusion-preserving bijection from the ideals of k to

(i) the one-sided ideals of C for r = 8,

(ii) the two-sided ideals of C for r = 4,

(iii) the ideals of (C, ιC) as an algebra with involution for r = 2.

The inverse of this map is given by the assignment

I 7−→ I ∩ k.

Proof. We proceed in several steps by proving the following intermediate assertions.

10. For r = 8, i.e., if C is an octonion algebra, its one-sided ideals are two-sided ones.
In order to see this, let I ⊆ C be a one-sided ideal. Replacing I by Ī if necessary, we
may assume that I is a right ideal in C. Since the assertion is local on k, we may further
assume that k is a local ring. From 4. we conclude C = Cay(B,µ) = B ⊕ Bj for some
quaternion algebra B over k and some invertible scalar µ ∈ k. For l = 1, 2, let πl : C → B
be the l-th projection defined by x = π1(x) + π2(x)j for x ∈ C. Then Il := πl(I) is a
k-submodule of B satisfying I ⊆ I1 ⊕ I2j. From (5) we deduce

(u+ vj)w = uw + (vw̄)j, (u+ vj)(wj) = µw̄v + (wu)j

for all u, v, w ∈ B. Assuming u+ vj ∈ I, the first equation shows that Il is a right ideal
in B, while the second one gives CI2 ⊆ I1, CI1 ⊆ I2. Hence I1 = 1CI1 ⊆ I2 = 1CI2 ⊆ I1,
so I0 := I1 = I2 is a two-sided ideal in B such that I ⊆ I0⊕ I0j. Now let u, v, w1, w2 ∈ B
and assume again u+ vj ∈ I. Then I contains the quantity(
(u+vj)w1

)
w2−(u+vj)(w2w1) = uw1w2+(vw̄1w̄2)j−u(w2w1)−(vw2w1)j = u[w1, w2].

Let m be the maximal ideal of k and κ := k/m its residue field. Since [B(m), B(m)],
being the space of trace-zero elements in the quaternion algebra B(m) over the field κ,
contains invertible elements, so does [B,B], and we conclude u, v ∈ I. Thus I = I0⊕ I0j
is a two-sided ideal in C.

20. Let I be a two-sided ideal in C. Then I ∩ k = {0} implies I = {0} provided r > 2 or
I is stable under conjugation. Suppose first I is stable under conjugation and let x ∈ I.
Then tC(x) = x + x̄ ∈ I ∩ k = {0}. But I ⊆ C is an ideal, so xz̄ ∈ I for all z ∈ C, and
from (4) we conclude nC(x, z) = tC(xz̄) = 0, hence x = 0 by non-singularity.

Next consider the case r > 2. Since I ∩ Ī ⊆ C is a two-sided ideal stable under
conjugation and satisfying I ∩ Ī ∩ k ⊆ I ∩ k = {0}, the previous case yields I ∩ Ī = {0}.
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Now let x ∈ I be non-zero. Then x̄ = tC(x)− x does not belong to I, forcing tC(x) 6= 0.
Thus the linear map tC : I → k is injective. From 3. (c) we deduce the relations

tC([x, y]) = tC([x, y, z]) = 0

for y, z ∈ C, which therefore imply [x, y] = [x, y, z] = 0, so x belongs to the centre of C,
which by 3. (e) is k. Hence I ⊆ I ∩ k = {0}, which proves our claim.

30. There is a k-submodule M ⊆ C such that

C = k ⊕M (8)

and (aC)∩ k = a for all ideals a ⊆ k. Indeed, the first part follows immediately from 1C
being unimodular (cf. 3. (d)) and implies (aC) ∩ k = (a⊕ aM) ∩ k = a. Thus 30 holds.

It remains to establish

40. Let I be a two-sided ideal in C and assume r > 2 or that I is stable under conjugation.
Then I = (I ∩ k)C. The right-hand side being contained in the left, it suffices to show

I ⊆ (I ∩ k)C. (9)

Setting a := I ∩ k, we pass to the base change k′ := k/a ∈ k-alg and consider the
composition algebra C ′ := C ⊗ k′ = C/aC over k′, denote by I ′ = I/aC the image of I
under the canonical map x 7→ x′ from C to C ′ and claim that a′ := I ′ ∩ k′ = {0}. To see
this, we first note that (8) implies

C ′ = k′ ⊕M ′, M ′ := M ⊗ k′ = M/aM.

Given α1 ∈ a′ ⊆ I ′, we can therefore find elements ξ ∈ k, y ∈M satisfying x := ξ+y ∈ I
and x′ = α1. This yields ξ′ = α1, y′ = 0, hence y ∈ aM ⊆ aC ⊆ I and ξ = x−y ∈ I∩k =
a. But then α1 = ξ′ = 0, and we have arrived at the desired conclusion a′ = {0}. Now
20 implies I ′ = {0}, hence I ⊆ aC, as claimed in (9). Thus the proof of 40 is complete.

�

11. Concluding remarks. (a) Since quaternion algebras by [12, III, Theorem (5.1.1)]
are Azumaya algebras, part (ii) of Theorem 10 is not new [14, III, Corollaire 5.2]. Neither
is part (iii), of course, since a quadratic étale D over k by [12, V, (4.1)] is a Galois
extension with Galois group the constant group scheme Z/2Z, so the assertion follows
from Ford [8, 12.2.2 (7)].

(b) Part (i) of Theorem 10 breaks down for quaternion algebras since even the split
quaternions (of 2×2-matrices with entries in k) allow one-sided ideals not extended from
the base ring. Similarly, part (ii) breaks down for quadratic étale algebras since even the
split one (direct sum of two copies of k) allows (two-sided) ideals not extended from k.

(c) Step 10 in our proof of Theorem 10 is devoted to showing that one-sided ideals of
octonion algebras are, in fact, two-sided. After localizing, we do so by appealing to the
Cayley-Dickson construction. This seems to be in keeping with the final remark 6.10 of
[21] and also relates to an earlier result of Erdmann [7, Korollar 1 of Satz 7], who showed
over fields of characteristic not 2 that algebras arising from the base field by a more than
two-fold iteration of the Cayley-Dickson construction fail to admit non-trivial one-sided
ideals.

Acknowledgments. The author is greatly indebted to Erhard Neher for useful com-
ments on an earlier version of the paper.
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