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Departamento de Matemáticas, Universidad de Oviedo,

C/ Calvo Sotelo s/n, 33007 Oviedo, Spain

Ivan Shestakov
2

shestak@ime.usp.br
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Introduction

In [5], the following result is proved: if J is a nondegenerate Jordan algebra

and x, y ∈ J satisfy x ◦ y = 0, then the U -operators Ux and Uy commute. The

interest of this question mainly comes from the connection between Moufang sets

and (quadratic) Jordan division rings established by De Medts and Weiss [10] in

2006.

Recently, in [24], the need of nondegeneracy in the main result of [5] is shown

by providing an example of linear Jordan algebra, having two elements with zero

product and non-commuting U -operators.
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On the other hand, the problem of regular imbeddings of algebraic systems has

a long tradition in the literature. In 1930, Van der Waerden [25, Section 13], poses

the question of whether a non commutative ring without zero divisors imbeds in a

skew field. This question is answered negatively by Malcev [16], while Cohn [9] shows

that any ring without zero divisors imbeds in a simple ring without zero divisors. In

1963, Bokut [7] proves that every ring whose additive group is torsion free or of prime

exponent can be imbedded in a simple ring. In a similar fashion [2, 3], associative

systems with a sufficiently regular module structure are shown to imbed in primitive

systems with simple heart.

The possibility of imbedding Jordan systems in primitive systems with simple

heart is studied in [4]. Using the corresponding results in the associative setting

[2, 3, 7], imbedding theorems are established for special Jordan systems, but there

exist exceptional Jordan systems which cannot be imbedded in merely nondegenerate

systems. The examples exhibited in [4] are either based on Jacobson Counterexample

[11, ex. 3, p. 12], or in theorems on the existence of absolute zero divisors in free

Jordan systems which are due to Medvedev [21] and Zelmanov [26, 27, 28]. In the first

case, the ring of scalars Φ should have characteristic two in the sense that 2Φ = 0,

and, in the second case, Φ should be a field of characteristic either zero or quite big.

In this paper, we extend the construction of [24] to arbitrary rings of scalars, and,

as a consequence, we find examples of Jordan systems which cannot be imbedded in

a nondegenerate system without restrictions on the rings of scalars.

The paper is divided into four sections, plus a preliminary one devoted to listing

some basic notions and properties. In the first section we study the free special Jordan

algebra inside the Jordan algebra of hermitian elements of the free associative algebra.

The information here obtained on the rank of certain submodules of multilinear

elements is used in the second section to construct, over an arbitrary ring of scalars,

a Jordan algebra J having two elements x, y ∈ J with x ◦ y = 0 and UxUy �= UyUx.

In the third section, we show that the example built in the previous one cannot

be imbedded in a nondegenerate Jordan algebra. We also give similar examples of

Jordan pairs and Jordan triple systems. Finally, in the fourth section, we show how

the construction given in Section 2 fits in the general framework of the problem on

associative and Jordan ideals studied by Zelmanov in [29], which leads us to some

open problems.

0. Preliminaries

0.1 We will deal with associative and Jordan systems (algebras, pairs, and triple

systems) over an arbitrary ring of scalars Φ. In particular, we will NOT assume

1/2 ∈ Φ.
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The reader is referred to [12, 15, 19, 20] for basic results, notation, and termi-

nology, though we will stress some notions.

— When dealing with an associative system, the (associative) products will be

denoted by juxtaposition.

— Given a Jordan algebra J , its products will be denoted by x2, Uxy, for x, y ∈ J .

They are quadratic in x and linear in y and have linearizations denoted by x◦y = Vxy

and Ux,zy = {x, y, z} = Vx,yz, respectively.

— For a Jordan pair V = (V +, V −), we have products Qxy ∈ V σ, for any

x ∈ V σ, y ∈ V −σ, σ = ±, with linearizations Qx,zy = {x, y, z} = Dx,yz.

— A Jordan triple system J is given by its products Pxy, for any x, y ∈ J , with

linearizations denoted by Px,zy = {x, y, z} = Lx,yz.

0.2 (i) A Jordan algebra gives rise to a Jordan triple system by simply forgetting

the squaring and letting P = U . By doubling any Jordan triple system T one obtains

the double Jordan pair V (T ) = (T, T ) with products Qxy = Pxy, for any x, y ∈ T .

From a Jordan pair V = (V +, V −) one can get a (polarized) Jordan triple system

T (V ) = V + ⊕ V − by defining Px+⊕x−(y+ ⊕ y−) = Qx+y− ⊕Qx−y+ [15, 1.13, 1.14].

(ii) An associative system R gives rise to a Jordan system R(+) by symmetriza-

tion: over the same Φ-module (the same pair of Φ-modules, in the pair case), we

define x2 = xx, Uxy = xyx, for any x, y ∈ R in the case of algebras, Pxy = xyx in

the case of triple systems, and Qxσy−σ = xσy−σxσ, σ = ±, in the pair case.

0.3 A Jordan system J is called special if it is a subsystem of R(+) for some

associative system R. Otherwise J is said to be exceptional.

0.4 An absolute zero divisor of a Jordan algebra (resp., triple system) J is an

element x ∈ J such that UxJ = 0 (resp., PxJ = 0). An absolute zero divisor in

a Jordan pair (V +, V −) is any element x ∈ V σ such that QxV
−σ = 0. A Jordan

system is said to be nondegenerate if it has no nonzero absolute zero divisors.

0.5 We recall that the McCrimmon or nondegenerate radical (also called small

radical in [15, 4.5]) Mc(J) of a Jordan system J is the smallest ideal of J which

produces a nondegenerate quotient. A Jordan system J is said to be McCrimmon

radical if J = Mc(J).

0.6 We recall the following identities valid for arbitrary Jordan algebras which

will be needed in the sequel:

(i) (x ◦ y) ◦ z = {x, y, z}+ {y, x, z},
(ii) Uxy ◦ z = {x ◦ z, y, x} − Ux(y ◦ z),
(iii) {x, y, z} ◦ t = {x ◦ t, y, z} − {x, y ◦ t, z}+ {x, y, z ◦ t},
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(iv) {x2, y, z} = {x, x, y ◦ z} − {x2, z, y},
(v) {x ◦ y, z, t} = {x, y, z ◦ t}+ {y, x, z ◦ t} − {x ◦ y, t, z}.
Indeed, (i, ii, iv) follow from Macdonald’s Theorem [14], (iii) is the linearization

of (ii), whereas (v) is the linearization of (iv).

0.7 A Jordan algebra J is said to be unital if it contains an element 1 ∈ J , called

the unit of J , such that

x2 = Ux1, U1x = x, (1)

for any x ∈ J . In a unital algebra, (1) determines the unit univocally.

0.8 Given a Jordan algebra J over Φ, let Φ1 be a free Φ-module of rank one

spanned by 1. Then the direct sum Ĵ := Φ1 ⊕ J becomes a unital Jordan algebra

with unit 1 called the (free) unital hull or (free) unitization of J with squaring

(λ1 + x)2 = λ21 +
(
2λx+ x2

)

and U -operator

Uλ1+x(μ1 + y) = λ2μ1 + (Uxy + μx2 + 2λμx+ λ(x ◦ y) + λ2y),

for any λ, μ ∈ Φ, x, y ∈ J . The algebra J ⊆ Ĵ becomes an ideal of Ĵ [18].

0.9 Local algebras of Jordan systems are introduced in [22]:

— Given a Jordan triple system J , the homotope J (a) of J at a ∈ J is the

Jordan algebra over the same Φ-module as J with products x(2,a) = x2 = Pxa,

U
(a)
x y = Uxy = PxPay, for any x, y ∈ J . The subset Kera = KerJa = {x ∈ J | Pax =

PaPxa = 0} is an ideal of J (a) and the quotient Ja = J (a)/Kera is called the local

algebra of J at a. When J is nondegenerate, Kera = {x ∈ J | Pax = 0}.
— Given a Jordan pair V , the homotope V σ(a) of V at a ∈ V −σ (σ = ±) is the

Jordan algebra over the same Φ-module as V σ with products x(2,a) = x2 = Qxa,

U
(a)
x y = Uxy = QxQay, for any x, y ∈ J . The subset Kera = KerV a = {x ∈

V σ | Qax = QaQxa = 0} is an ideal of V σ(a) and the quotient V σ
a = V σ(a)/Kera

is called the local algebra of V at a. When V is nondegenerate, Kera = {x ∈
V −σ | Qax = 0}.

0.10 Since Φ is an associative, commutative, unital ring, given a free Φ-module

W of finite rank n, all bases of W have cardinality n, and, moreover, any spanning

set S ⊆ W with cardinality less than or equal to n, has necessarily cardinality n and

is indeed a basis of W [13, Prop. 7.20].
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1. The Free Special Jordan Algebra

1.1 Given a set X , FAss[X ] will denote the free associative algebra over X . It

is a free Φ-module with a basis consisting of the associative algebra monomials or

words xi1 · · ·xin , for arbitrary xi1 , . . . , xin ∈ X . The algebra FAss[X ] is Z-graded by

the degree or length of words, and also ZX-graded by the composition of words.

1.2 The free associative algebra FAss[X ] is equipped with a natural or standard

involution ∗, defined by fixing all the elements in X , hence “reversing” words, i.e.,

(xi1 · · ·xin)
∗ = xin · · ·xi1 .

For an element u ∈ FAss[X ], the trace of u is given by {u} = u + u∗. The set

H(FAss[X ], ∗) of ∗-symmetric elements of FAss[X ] is a subalgebra of FAss[X ](+)

containing X .

Notice that, when dealing with symmetric elements, a, b, c ∈ H(FAss[X ], ∗), the
trace {abc} = abc+ (abc)∗ = abc+ c∗b∗a∗ = abc+ cba of the associative product abc

coincides with the Jordan product {a, b, c} defined in (0.1) and (0.2)(ii).

1.3 It is not difficult to prove that H(FAss[X ], ∗) is a free Φ-module with basis

consisting of all ∗-symmetric associative words together with the traces of associative

words which are not ∗-symmetric. When 1/2 ∈ Φ, a basis of H(FAss[X ], ∗) is given
just by the set of the traces of all associative words (∗-symmetric or not).

1.4 Following [20], a trace of an associative monomial of length n in X will be

called an n-tad (tetrad when n = 4) in X .

1.5 The free special Jordan algebra FSJ[X ] on X is the subalgebra of FAss[X ](+)

generated by X . By (1.2),

FSJ[X ] ⊆ H(FAss[X ], ∗).

1.6 Notice that both FSJ[X ] and H(FAss[X ], ∗) are graded submodules of

FAss[X ].

From now on, in this section, we will assume that X is a set of four elements,

namely x1, x2, x3, x4, and study the Φ-submodule ML(FSJ[X ]) of FSJ[X ] consisting

of all multilinear elements of degree four.

For an arbitrary Φ-submoduleW of FAss[X ], ≡W will denote congruence modulo

W in FAss[X ] (u ≡W v ⇔ u− v ∈ W ).

1.7 Lemma. The Φ-module ML(FSJ[X ]) is spanned by the elements of the form

{a ◦ b, c, d}, and {a, b ◦ c, d}, where a, b, c, d are pairwise different elements in X.
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Proof: Just notice that

((a ◦ b) ◦ c) ◦ d =(0.6)(i) {a ◦ b, c, d}+ {c, a ◦ b, d},
(a ◦ b) ◦ (c ◦ d) =(0.6)(i) {a, b, c ◦ d}+ {b, a, c ◦ d} = {c ◦ d, b, a}+ {c ◦ d, a, b},

{a, b, c} ◦ d =(0.6)(iii) {a ◦ d, b, c} − {a, b ◦ d, c}+ {a, b, c ◦ d}
= {a ◦ d, b, c} − {a, b ◦ d, c}+ {c ◦ d, b, a}.

Let M be the Φ-submodule of FSJ[X ] spanned by all elements of the form

{a ◦ b, c, d}, where a, b, c, d are pairwise different elements in X .

1.8 Lemma. The Φ-module M is spanned by a set SM ⊆ M of cardinality less

than or equal to 9.

Proof: Taking into account that a ◦ b = b ◦ a by (0.1), M is spanned by a set

S of at most 12 elements {a ◦ b, c, d} given by choosing arbitrary c and d in X with

c �= d.

By (0.6)(v) and the fact the {x, y, z} = {z, y, x} (0.1), we have that

{a ◦ b, c, d} = {c ◦ d, b, a}+ {c ◦ d, a, b} − {a ◦ b, d, c},
which allows us to express {x1 ◦ x2, x3, x4}, {x1 ◦ x3, x2, x4}, and {x1 ◦ x4, x2, x3} as

a Φ-linear combination (with coefficients 1 or −1) of the remaining elements of S.

Thus, we just need to take

SM = S \ {{x1 ◦ x2, x3, x4}, {x1 ◦ x3, x2, x4}, {x1 ◦ x4, x2, x3}
}
.

1.9 Proposition. The Φ-module ML(FSJ[X ]) is spanned by a set SML(FSJ[X])

of cardinality less than or equal to 11.

Proof: In the following equality, we will make calculations in H(FAss[X ], ∗) ⊆
FAss[X ], allowing elements outside FSJ[X ]:

{a, b ◦ c, d} =(0.6)(iii) {a ◦ b, c, d}+ {a, c, b ◦ d} − {a, c, d} ◦ b
≡M −{a, c, d} ◦ b = −{acdb} − {dcab}
= −{a ◦ c, d, b}+ {cadb} − {d ◦ c, a, b}+ {cdab}
≡M {cadb}+ {cdab} = {c, a ◦ d, b} = {b, a ◦ d, c}.

(1)

Using (1.7), (1.8), (1) and the fact that, the expression {a, b ◦ c, d} remain the

same when we exchange a and d, or b and c, the Φ-module ML(FSJ[X ]) is spanned

by the set

S = SM ∪ {{x1, x2 ◦ x3, x4}, {x1, x2 ◦ x4, x3}, {x1, x3 ◦ x4, x2}
}
.
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Let SML(FSJ[X]) = SM ∪{{x1, x2 ◦x3, x4}, {x1, x2 ◦x4, x3}
}
= S \{{x1, x3 ◦x4, x2}

}
,

and

N = Φ < SML(FSJ[X]) >= M +Φ < {x1, x2 ◦ x3, x4}, {x1, x2 ◦ x4, x3} > . (2)

We just need to prove that {x1, x3 ◦x4, x2} ∈ N , i.e., {x1, x3 ◦x4, x2} ≡N 0, but

{x1, x3 ◦ x4, x2} = {x1x3x4x2}+ {x1x4x3x2}
= {x1 ◦ x3, x4, x2} − {x3x1x4x2}+ {x1 ◦ x4, x3, x2} − {x4x1x3x2}
≡N −{x3x1x4x2} − {x4x1x3x2}
= −{x3, x1 ◦ x4, x2}+ {x3x4x1x2} − {x4, x1 ◦ x3, x2}+ {x4x3x1x2}
≡N (1),(2) − {x1, x2 ◦ x3, x4}+ {x3x4x1x2} − {x1, x2 ◦ x4, x3}+ {x4x3x1x2}
≡N {x3x4x1x2}+ {x4x3x1x2} = {x3 ◦ x4, x1, x2} ≡N 0.

1.10 Recall that the Φ-submodule ML(H(FAss[X ], ∗)) of multilinear elements

of degree 4 of H(FAss[X ], ∗) is a free module of rank 12 with basis B consisting of

the 12 different multilinear tetrads in the elements of X :

B =
{{x1x2x3x4}, {x1x2x4x3}, {x1x3x2x4}, {x1x3x4x2},
{x1x4x2x3}, {x1x4x3x2}, {x2x1x3x4}, {x2x1x4x3},
{x3x1x2x4}, {x3x1x4x2}, {x4x1x2x3}, {x4x1x3x2}

}
.

1.11 Given a tetrad {xi1xi2xi3xi4} and a permutation σ ∈ S4, we have that

{xi1xi2xi3xi4} ≡ML(FSJ[X]) ±{xiσ(1)
xiσ(2)

xiσ(3)
xiσ(4)

}. (1)

Indeed, we can proceed as in the proof of [11, Cohn’s Theorem on page 8]: the

assertion is true for σ = (1, 2), (2, 3), (3, 4) since

{abcd}+ {bacd} = {a ◦ b, c, d} ∈ ML(FSJ[X ]),

{abcd}+ {acbd} = {a, b ◦ c, d} ∈ ML(FSJ[X ]),

{abcd}+ {abdc} = {a, b, c ◦ d} ∈ ML(FSJ[X ]),

for any pairwise different a, b, c, d ∈ X ; but this implies (1) since (1, 2), (2, 3), (3, 4)

generate the whole symmetric group S4.

1.12 Proposition. The Φ-module ML(FSJ[X ]) is free of rank 11. Hence. any

spanning set of 11 elements of ML(FSJ[X ]) is a basis of ML(FSJ[X ]).
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Proof: Let SML(FSJ[X]) be a spanning set of ML(FSJ[X ]) of cardinality at most

11 (1.9). By (1.10) and (1.11), the set C = SML(FSJ[X])∪
{{x1x2x3x4}

}
is a spanning

set for ML(H(FAss[X ], ∗)). But ML(H(FAss[X ], ∗)) is a free Φ-module of rank 12

(1.10), and C has cardinality at most 12, hence we can use (0.10) to obtain that

C has exactly 12 elements and it is a basis of ML(H(FAss[X ], ∗)). In particular,

the elements of SML(FSJ[X]) are linearly independent, and SML(FSJ[X]) is a basis of

ML(FSJ[X ]), which is then a free module of rank 11. The last assertion follows from

(0.10).

1.13 In the proof of (1.12), the fact that C is a basis implies, in particular, that

{x1x2x3x4} �∈ Φ < SML(FSJ[X]) >= ML(FSJ[X ]).

Moreover, using (1.11), for any σ ∈ S4,

{xσ(1)xσ(2)xσ(3)xσ(4)} �∈ Φ < SML(FSJ[X]) >= ML(FSJ[X ]).

2. A Counter-Example

Throughout this section we fix X to be the set of three elements x, y, z.

The following results are devoted to extending the construction given in [24,

Theorem 1] to arbitrary rings of scalars.

By straightforward computation we have:

2.1 Lemma. In FAss[X ],

[Uy, Ux]z = UyUxz − UxUyz = {(x ◦ y)zxy} − Ux◦yz.

2.2 Let I be the ideal of FSJ[X ] generated by x ◦ y, and J = FSJ[X ]/I. For an

element u ∈ FSJ[X ], we will write ū = u+ I ∈ J .

2.3 Theorem. The elements x̄, ȳ ∈ J satisfy x̄ ◦ ȳ = 0, but Ux̄Uȳ �= UȳUx̄.

Proof: Clearly x̄ ◦ ȳ = x ◦ y = 0, since x ◦ y ∈ I. Now, by (2.1), it is enough to

prove that {(x ◦ y)zxy} �∈ I.

Let us assume, on the contrary, that

{(x ◦ y)zxy} ∈ I. (1)

By [23, 1.9], I is the outer hull of Φ < x◦y > +Ux◦y ̂FSJ[X ], where ̂ denotes the

unital hull (0.8). Thus, (1) implies that we can find a Jordan polynomial f(x, y, z, t) ∈



commuting u-operators and nondegenerate imbeddings 9

FSJ[Y ], where Y is the set of four elements x, y, z, t, such that {(x ◦ y)zxy} =

f(x, y, z, x ◦ y), and all the Jordan monomials of f contain the variable t. By degree

considerations (1.6), we can write f = g + h, where g, h ∈ FSJ[Y ], g is multilinear,

and h(x, y, z, t) is a linear combination of Utz and z ◦ t2. Now we will argue as in [11,

Theorem 1.2]. Notice that g ∈ FSJ[Y ] ⊆ H(FAss[Y ], ∗), and again by (1.6) and the

fact that z occupies inside positions in the associative monomials of {(x ◦ y)zxy}, g
is a linear combination of

{xzyt}, {xzty}, {tzxy},

{tzyx}, {yztx}, {yzxt},
and h is a scalar multiple of Utz. Hence f has the form

f(x, y, z, t) =α1{xzyt}+ α2{xzty}+ α3{tzxy}+
α4{tzyx}+ α5{yztx}+ α6{yzxt}+
α7tzt.

(2)

Therefore

{(x ◦ y)zxy} =α1{xzy(x ◦ y)}+ α2{xz(x ◦ y)y}+ α3{(x ◦ y)zxy}+
α4{(x ◦ y)zyx}+ α5{yz(x ◦ y)x}+ α6{yzx(x ◦ y)}+
α7(x ◦ y)z(x ◦ y).

(3)

We just need to compare the coefficients of the associative monomials in (3) as

in [11, Theorem 1.2], to obtain

α1 = α2 = α5 = α6 = 0

α3 = λ+ 1, α4 = λ, α7 = −2λ

for some λ ∈ Φ. Going back to (2),

f = (λ+ 1){tzxy}+ λ{tzyx} − 2λtzt = {tzxy}+ λ{tz(x ◦ y)} − 2λUtz

= {tzxy}+ λ{t, z, (x ◦ y)} − 2λUtz,

so that {tzxy} ∈ FSJ[Y ], but {tzxy} is multilinear, hence {tzxy} ∈ ML(FSJ[Y ]),

which contradicts (1.13).

3. Nondegenerate Imbeddings

We start with a direct consequence of [5, 9.5].
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3.1 Proposition. Let J be a Jordan algebra which imbeds in a nondegenerate

Jordan algebra. If x, y ∈ J satisfy x ◦ y = 0, then Ux and Uy commute.

Proof: We may assume that J is a subalgebra of J̃ , where J̃ is nondegenerate.

If x, y ∈ J satisfy x ◦ y = 0, we can apply [5, 9.5] to J̃ to obtain that the U -operators

Ux and Uy, defined in J̃ , commute. Hence so do their restrictions to J , i.e., the

U -operators Ux and Uy in J commute.

Taking into account the above result, we get a Jordan algebra that enriches the

list of “pathological” examples of [4, Section 2].

3.2 Corollary. The Jordan algebra J of (2.2) does not imbed in a nondegen-

erate Jordan algebra.

Next, we show how use the algebra of (2.2) to obtain analogous examples of

Jordan pairs and triple systems.

3.3 Let J be the Jordan algebra defined in (2.2). Let Ĵ be the free unitization

of J (0.8), T the Jordan triple system obtained by forgetting the squaring of Ĵ , and

V := V (T ) the Jordan pair obtained by doubling T (0.2)(i).

If T imbeds in a nondegenerate Jordan triple system T̃ , so that we may assume

that T ⊆ T̃ , then we have the map ϕ : J −→ T̃1, given by

ϕ(x) = x+Ker
T̃
1,

for any x ∈ J , where T̃1 is the local algebra of T̃ at the element 1 (0.9). But ϕ is an

algebra homomorphism since, for any x, y ∈ J ,

ϕ(x2) =
((0.7)(1) applied to Ĵ)

ϕ(Ux1) = Ux1 + Ker
T̃
1

=(0.2)(i) Px1 + Ker
T̃
1 =(0.9) (x+Ker

T̃
1)2 = (ϕ(x))2,

and

ϕ(Uxy) =((0.7)(1) applied to Ĵ)
ϕ(UxU1y) = UxU1y +Ker

T̃
1

=(0.2)(i) PxP1y +Ker
T̃
1 =(0.9) Ux+Ker

T̃
1(y +Ker

T̃
1) = Uϕ(x)ϕ(y).

Moreover, ϕ is injective, since ϕ(x) = 0 implies x ∈ Ker
T̃
1, hence

x =(0.7)(1) U1x =(0.2)(i) P1x = 0.

But this is impossible by (3.2) since T̃1 is a nondegenerate Jordan algebra by [1,

3.1(i)].
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Similar arguments apply to the Jordan pair V , so that we have the following

result.

3.4 Corollary. (i) The Jordan triple system T of (3.3) does not imbed in a

nondegenerate Jordan triple system.

(ii) The Jordan pair V of (3.3) does not imbed in a nondegenerate Jordan pair.

4. Some Open Problems Inside the Counter-Example

4.1 Let FJ[X ] denote the free Jordan algebra over a set X . Given a Jordan

algebra J and an element f ∈ FJ[X ], we will say that f = 0 in J if every evaluation

of f vanishes in J , i.e., μ(f) = 0 for any algebra homomorphism μ : FJ[X ] −→ J .

4.2 Given a set of variables X . Let Ψ : FJ[X ] −→ FSJ[X ] be the natural Jordan

algebra epimorphism fixing all the elements in X . Let us consider f, g ∈ FJ[X ]

satisfying

(i) Ψ(g) ∈ IdFAss[X](Ψ(f)) ∩ FSJ[X ], where IdFAss[X](Ψ(f)) is the ideal of

FAss[X ] generated by Ψ(f).

(ii) Ψ(g) �∈ IdFSJ [X](Ψ(f)), where IdFSJ[X](Ψ(f)) denotes the ideal of FSJ[X ]

generated by Ψ(f).

(iii) For any nondegenerate Jordan algebra J̃ , and any Jordan algebra homo-

morphism μ : FJ[X ] −→ J̃ , μ(f) = 0 implies μ(g) = 0.

We claim that

(iv) the algebra J = FSJ[X ]/ IdFSJ [X](Ψ(f)) cannot imbed in a nondegenerate

algebra.

Otherwise, if J imbeds in a nondegenerate Jordan algebra J̃ , we have the homomor-

phism μ : FJ[X ] −→ J̃ given by μ(h) = Ψ(h) + IdFSJ [X](Ψ(f)), for any h ∈ FJ[X ],

contradicting (iii).

4.3 The algebra J of (2.2) fits in the general situation described above when X

is the set of three elements x, y, z, and we take f = x ◦ y, and g = [Uy, Ux]z. Here,

(4.2)(i) is established in (2.1) and lies underneath [5, 4.1], (4.2)(ii) is proved in (2.3),

and (4.2)(iii) in [5, 9.5].

4.4 (i) The algebra J = FSJ[X ]/ IdFSJ [X](Ψ(f)) of (4.2) is exceptional by Cohn’s

Lemma [8, page 255; 11, Lemma 1 on page 10; 17, Corollary to Cohn’s Criterion on

page 763] without assuming (4.2)(iii).
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(ii) In the algebra J = FSJ[X ]/ IdFSJ [X](Ψ(f)) of (4.2) we can find the ideal

M := (IdFAss[X](Ψ(f)) ∩ FSJ[X ])/ IdFSJ [X](Ψ(f))

which is nonzero by (4.2)(i) and (4.2)(ii). In the case when Φ is a field of charac-

teristic not two, we can apply Zelmanov’s result [29, Theorem 1] to show that M is

McCrimmon radical, so that, in particular, J is degenerate again without assuming

(4.2)(iii).

4.5 This leads us to the following problem that can be viewed as a general frame

in which [5] fits:

(I) Does condition (4.2)(i) imply (4.2)(iii)?

The above can be weakened to an alternative problem:

(II) Assuming condition (4.2)(i), is it true that if f = 0 in a nondegenerate

Jordan algebra J̃ , then g = 0 in J̃?

Notice that in (I) we are just assuming that a particular evaluation of f vanishes in

J , i.e., μ(f) = f(a1, . . . , an) = 0, for particular elements a1, . . . , an ∈ J , and wonder

whether the same evaluation μ(g) = g(a1, . . . , an) vanishes. In (II) we assume that

every evaluation of f vanishes and wonder if the same holds for g (see (4.1)).

There is always the difficulty that condition (4.2)(i) is not given for f and g

but for their images Ψ(f) and Ψ(g) in FSJ[X ]. So it is hopeless to expect positive

answers to (I) and (II) for arbitrary f and g satisfying (4.2)(i). In that case, given f

and g satisfying (4.2)(i) (for example, f = g, for an arbitrary f ∈ FJ[X ]), we could

replace g by g′ = g + h, where h is any s-identity, so that Ψ(g) = Ψ(g′), and f , g′

also satisfy (4.2)(i). As a consequence, if (II) had a positive answer, and f = 0 in a

nondegenerate Jordan algebra J̃ , then both g = 0 and g′ = 0 in J̃ , hence h = 0 too,

concluding that J̃ would be an i-special Jordan algebra, which is not true in general.

We can reformulate the above problems as follows (see also [24]):

(I)’ Assume condition (4.2)(i) for f and g. Can there be found g′ such that

g−g′ is an s-identity and, for any nondegenerate Jordan algebra J̃ , and

any Jordan algebra homomorphism μ : FJ[X ] −→ J̃ , μ(f) = 0 implies

μ(g′) = 0.

(II)’ Assume condition (4.2)(i) for f and g. Can there be found g′ such that

g− g′ is an s-identity, so that f = 0 in a nondegenerate Jordan algebra

J̃ implies g′ = 0 in J̃?

Next we give a partial positive answer to the above problems when we restrict

to special Jordan algebras regardless their nondegeneracy.
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4.6 Proposition. If f and g satisfy (4.2)(i), then, for any special Jordan

algebra J̃ , and any Jordan algebra homomorphism μ : FJ[X ] −→ J̃, μ(f) = 0 implies

μ(g) = 0.

Proof: If J̃ is special and R is an associative algebra such that J is a subalgebra

of R(+), then we have the inclusion maps j : J̃ −→ R and k : FSJ[X ] −→ FAss[X ],

and, for any Jordan algebra homomorphism μ : FJ[X ] −→ J̃ , we can find an associa-

tive algebra homomorphism μ : FAss[X ] −→ R such that μkΨ = jμ (apply the fact

that FAss[X ] and FJ[X ] are free objects to the restriction of jμ to X). Now,

μ(g) = jμ(g) = μkΨ(g) = μΨ(g).

but Ψ(g) ∈ IdFAss[X](Ψ(f)) by (4.2)(i), hence Ψ(g) has the form

Ψ(g) = λΨ(f) +
∑
i

aiΨ(f) +
∑
j

Ψ(f)bj +
∑
k

ckΨ(f)dk,

where ai, bj, ck, dk ∈ FAss[X ], λ ∈ Φ, and

μ(g) = λμ
(
Ψ(f)

)
+
∑
i

μ(ai)μ
(
Ψ(f)

)
+

∑
j

μ
(
Ψ(f)

)
μ(bj) +

∑
k

μ(ck)μ
(
Ψ(f)

)
μ(dk)

(1)

since μ is an associative algebra homomorphism. Therefore, if μ(f) = 0, then

μ
(
Ψ(f)

)
= μkΨ(f) = jμ(f) = 0, which implies μ(g) = 0 by (1).

The above result enables us to use the strategy of [5, Proof of 9.5] when dealing

with problems (I), (II), (I)’ and (II)’, so that they now reduce to study the particular

case when J̃ is an Albert algebra.

On the other hand, Zelmanov’s result [29, Theorem 1] can be used to take a first

step towards the solutions to problems (I)’ and (II)’.

4.7 Proposition. Let f and g satisfy (4.2)(i), and assume that the ring of

scalars Φ is a field of characteristic not two. There exists a positive integer n and

an s-identity h such that g̃ = gn + h lies in the ideal of FJ[X ] generated by f .

In particular, for any Jordan algebra J , and any Jordan algebra homomorphism

μ : FJ[X ] −→ J , μ(f) = 0 implies μ(g̃) = 0.

Proof: By using [29, Theorem 1], the quotient

M := (IdFAss[X](Ψ(f)) ∩ FSJ[X ])/ IdFSJ [X](Ψ(f))

is McCrimmon radical. Thus M is locally nilpotent by [6, 3.11], hence nil, and there

exists a positive integer n such that

Ψ(gn) = Ψ(g)n ∈ IdFSJ [X](Ψ(f)). (1)
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But Ψ is surjective, hence IdFSJ [X](Ψ(f)) = Ψ
(
IdFJ [X](f)

)
, and (1) implies that

there exists h ∈ KerΨ such that gn + h ∈ IdFJ [X](f).

4.8 Finally, taking into account (4.4)(ii), we may forget about (4.2)(iii) and

consider the following problem:

(III) Do (4.2)(i)(ii) imply (4.2)(iv)?
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