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Preface

These notes are divided into three parts.
The first part is based on material developed for inclusion in Serre’s lecture notes

in [GMS03], but was finally omitted. I learned most of that material from Serre.
This part culminates with the determination of the invariants of PGLp mod p (for
p prime) and the invariants of Albert algebras (equivalently, groups of type F4)
mod 3.

The second part describes a general recipe for finding a subgroup N of a given
semisimple groupG such that the natural mapH1

fppf(∗, N)→ H1(∗, G) is surjective.
It is a combination of two ideas: that parabolic subgroups lead to representations
with open orbits, and that such representations lead to surjective maps in Galois
cohomology. I learned the second idea from Rost [Ros99b], but both ideas seem
to have been discovered and re-discovered many times. We bring the two ideas
together here, apparently for the first time. Representation theorists will note that
our computations of stabilizers N for various G and V — summarized in Table 21a
— are somewhat more precise than the published tables, in that we compute full
stabilizers and not just identity components. The surjectivities in cohomology are
used to describe the mod 3 invariants of the simply connected split E6 and split
E7’s.

The last two sections of this part describe a construction of groups of type E8

that is “surjective at 5”, see Prop. 13.7. We use it to determine the mod 5 invariants
of E8 and to give new examples of anisotropic groups of that type. These examples
have already been applied in [PSZ06].

The third part describes the mod 2 invariants of the groups Spinn for n ≤ 12 and
n = 14. It may be viewed as a fleshed-out version of Markus Rost’s unpublished
notes [Ros99b] and [Ros99c]. A highlight of this part is Rost’s Theorem 19.3 on
14-dimensional quadratic forms in I3.

There are also two appendices. The first uses cohomological invariants to give
new examples of anisotropic groups of types E7, answering a question posed by
Kirill Zainoulline. The second appendix—written by Detlev W. Hoffmann—proves
a generalization of the “common slot theorem” for 2-Pfister quadratic forms. This
result is used to construct invariants of Spin12 in §18.

These are notes for a series of talks I gave in a “mini-cours” at the Université
d’Artois in Lens, France, in June 2006. Consequently, some material has been
included in the form of exercises. Although this is a convenient device to avoid
going into tangential details, no substantial difficulties are hidden in this way. The
exercises are typically of the “warm up” variety. On the other end of the spectrum,
I have included several open problems. “Questions” lie somewhere in between.

Acknowledgements. It is a pleasure to thank J-P. Serre and Markus Rost (both for

things mentioned above and for their comments on this note), Detlev Hoffmann for pro-

viding Appendix B, and Pasquale Mammone for his hospitality during my stay in Lens.

Gary Seitz and Philippe Gille both gave helpful answers to questions. I thank also R. Pari-

mala, Zinovy Reichstein, and Adrian Wadsworth for their comments.
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Part I. Invariants, especially modulo an odd prime

1. Definitions and notations

1.1. Definition of cohomological invariant. We assume some familiarity
with the notes from Serre’s lectures from [GMS03], which we refer to hereafter as
S.a A reader seeking a more leisurely introduction to the notion of invariants should
see pages 7–11 of those notes.

We fix a base field k0 and consider functors

A : Fields/k0 → Sets

and
H : Fields/k0 → Abelian Groups,

where Fields/k0 denotes the category of field extensions of k0. In practice, A(k)
will be the Galois cohomology set H1(k,G) for G a linear algebraic groupb over k0.
In S, various functors H were considered (e.g., the Witt group), but here we only
consider abelian Galois cohomology.

An invariant of A (with values in H) is a morphism of functors a : A→ H, where
we view H as a functor with values in Sets. Unwinding the definition, an invariant
of A is a collection of functions ak : A(k)→ H(k), one for each k ∈ Fields/k0 , such
that for each morphism φ : k → k′ in Fields/k0 , the diagram

A(k) ak−−−−→ H(k)

A(φ)

y yH(φ)

A(k′)
ak′−−−−→ H(k′)

commutes.

1.2. Examples. (1) Fix a natural number n and write Sn for the symmetric
group on n letters. The set H1(k,Sn) classifies étale k-algebras of degree
n up to isomorphism. The sign map sgn: Sn → Z/2Z is a homomorphism
of algebraic groups and so defines a morphism of functors—an invariant—
sgn : H1(∗,Sn) → H1(∗,Z/2Z). The set H1(k,Z/2Z) classifies quadratic
étale k-algebras, i.e., separable quadratic field extensions together with the
trivial class corresponding to k× k, and sgn sends a degree n algebra to its
discriminant algebra.

This example is familiar in the case where the characteristic of k0 is not
2. Given a separable polynomial f ∈ k[x], one can consider the étale k-
algebra K := k[x]/(f). The discriminant algebra of K—here, sgn(K)—is
k[x]/(x2 − d), where d is the usual elementary notion of discriminant of f ,
i.e., the product of squares of differences of roots of f .

(For a discussion in characteristic 2, see [Wat87].)
One of the main results of S is that Sn only has “mod 2” invariants, see

S24.12.
(2) Let G be a semisimple algebraic group over k0. It fits into an exact sequence

1 −−−−→ C −−−−→ G̃ −−−−→ G −−−−→ 1,

aWe systematically refer to specific contents of S by S followed by a reference number. For

example, Proposition 16.2 on page 39 will be referred to as S16.2.
bBelow, we only consider algebraic groups that are linear.
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where G̃ is simply connected and C is finite and central in G̃. This gives a
connecting homomorphism in Galois cohomology

H1(k,G) δ−−−−→ H2(k,C)

that defines an invariant δ : H1(∗, G)→ H2(∗, C).
(3) The map en that sends the n-Pfister quadratic form 〈1,−a1〉⊗· · ·⊗〈1,−an〉

(over a field k of characteristic 6= 2) to the class (a1) .(a2) . · · · .(an) ∈
Hn(k,Z/2Z) depends only on the isomorphism class of the quadratic form.
(Compare §18 of S.)

The Milnor Conjecture (now a theorem, see [Voe03, 7.5] and [OVV, 4.1])
states that en extends to a well-defined additive map

en : In → Hn(k,Z/2Z)

that is zero on In+1 and induces an isomorphism In/In+1 ∼−→ Hn(k,Z/2Z).
(Here In denotes the n-th power of the ideal I of even-dimensional forms
in the Witt ring of k.)

(4) For G a quasi-simple simply connected algebraic group, there is an invariant
rG : H1(∗, G) → H3(∗,Q/Z(2)) called the Rost invariant. It is the main
subject of [Mer03]. When G is Spinn, i.e., a split simply connected group of
type B or D, the Rost invariant amounts to the invariant e3 in (3) above,
cf. [Mer03, 2.3].

The Rost invariant has the following useful property: If G′ is also a
quasi-simple simply connected algebraic group and ρ : G′ → G is a homo-
morphism, then the composition

H1(∗, G′)
ρ−−−−→ H1(∗, G) rG−−−−→ H3(∗,Q/Z(2))

equals nρ rG′ for some natural number nρ, called the Rost multiplier of ρ,
see [Mer03, p. 122].

(5) Suppose that k0 contains a primitive 4-th root of unity. The trace quadratic
form on a central simple algebra A of dimension 42 is Witt-equivalent to
a direct sum q2 ⊕ q4 where qi is an i-Pfister form, see [RST06]. The maps
fi : A 7→ ei(qi) define invariants H1(∗, PGL4) → Hi(∗,Z/2Z) for i = 2
and 4. Rost-Serre-Tignol prove that f2(A) is zero if and only if A⊗A is a
matrix algebra and f4(A) is zero if and only if A is cyclic.c

(For the case where k0 has characteristic 2, see [Tig06].)

1.3. Let C be a finite Gal(k0)-module of exponent not divisible by the characteristic
of k0. We define a functor M by setting

Md(k,C) := Hd(k,C(d− 1))

where C(d− 1) denotes the (d− 1)-st Tate twist of C as in S7.8 and

M(k,C) :=
⊕
d≥0

Md(k,C).

We are mainly interested in

M(k,Z/nZ) = H0(k,Hom(µn,Z/nZ))⊕
⊕
d≥1

Hd(k,µ⊗(d−1)
n ).

Many invariants take values in M(∗,Z/nZ), for example:

cThe term “cyclic” is defined in 5.4 below.
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(2bis) For G = PGLn, the invariant δ in Example 1.2.2 is

δ : H1(∗, PGLn)→ H2(∗,µn) ⊂M(∗,Z/nZ).

We remark thatH2(k,µn) can be identified with the n-torsion in the Brauer
group of k via Kummer theory.

(4bis) Let G be a group as in 1.2.4. Write i for the Dynkin index of G as in
[Mer03, p. 130] and put n := i if char k0 = 0 or i = p`n for n not divisible
by p if char k0 is a prime p. The Rost invariant maps

H1(∗, G)→ H3(∗,µ⊗2
n ) ⊂M(∗,Z/nZ).

(6) If the characteristic of k0 is different from 2, then Z/2Z(d) equals Z/2Z
for every d, and M(k,Z/2Z) is the mod 2 cohomology ring H•(k,Z/2Z).
So most of the cohomological invariants considered in S take values in the
functor k 7→M(k,Z/2Z).

We remark that for n dividing 24, µ⊗2
n is isomorphic to Z/nZ [KMRT98, p. 444,

Ex. 11]. In that case,

Md(k,Z/nZ) ∼=


H0(k,Hom(µn,Z/nZ)) if d = 0
Hd(k,Z/nZ) if d is odd
Hd(k,µn) if d is even and d 6= 0

The other main target for invariants is M(∗,µn), characterized by

M(k,µn) = Z/nZ⊕
⊕
d≥1

Hd(k,µ⊗d
n ).

This is naturally a ring, and we write Rn(k) for M(k,µn) when we wish to view it
as such. (This ring is a familiar one: the Bloch-Kato Conjecture asserts that it is
isomorphic to the quotient KM

• (k)/n of the Milnor K-theory ring KM
• (k).) When

C is n-torsion, the abelian group M(k,C) is naturally an Rn(k)-module.
For various algebraic groups G and Galois-modules C, we will determine the

invariants H1(∗, G)→M(∗, C). We abuse language by calling these “invariants of
G with values in C”, “C-invariants of G”, etc. We write Inv(G,C) or Invk0(G,C)
for the collection of such invariants.d For example, the invariants in (2bis) and
(4bis) above belong to Inv(PGLn,Z/nZ) and Inv(G,Z/nZ) respectively. Note that
Inv(G,C) is an abelian group for every algebraic group G, and, when G is n-torsion,
Invk0(G,C) is an Rn(k0)-module.

1.4. Constant and normalized. Fix an elementm ∈M(k0, C). For every group
G, the collection of maps that sends every element of H1(k,G) to the image of m
in M(k,C) for every extension k/k0 is an invariant in Inv(G,C). Such invariants
are called constant.

An invariant a ∈ Inv(G,C) is normalized if a sends the neutral class in H1(k,G)
to zero in M(k,C) for every extension k/k0. We write Invnorm(G,C) for the nor-
malized invariants in Inv(G,C).

The reader can find a typical application of cohomological invariants in Appendix
A.

dStrictly speaking, this notation disagrees with the notation defined on page 11 of S. But there
is no essential difference, because in S the target C is nearly always taken to be Z/2Z, and Z/2Z(d)

is canonically isomorphic to Z/2Z for all d.
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2. Invariants of µn

Fix a natural number n not divisible by the characteristic of the field k0. In this
section, we determine the invariants of µn with values in µn, along with a small
variation.

There are two obvious invariants of µn:
(1) The constant invariant (as in 1.4) given by the element 1 ∈ Z/nZ ⊂

M(k0,µn).
(2) The invariant id that is the identity map

H1(k,µn)→ H1(k,µn) ⊂M(k,µn)

for every k/k0.

2.1. Proposition. Invk0(µn,µn) is a free Rn(k0)-module with basis 1, id.

This proposition can easily be proved by adapting the proof of S16.2. Alterna-
tively, it is [MPT03, Cor. 1.2]. In the interest of exposition, we give an elementary
proof in the case where k0 is algebraically closed.

We need the following lemma, which is a special case of S12.3.

2.2. Lemma. If invariants a, a′ ∈ Invk0(µn,µn) agree on (t) ∈ H1(k0(t),µn), then
a and a′ are equal.

Proof. Replacing a, a′ with a−a′, 0 respectively, we may assume that a′ is identically
zero.

Fix an extension E of k0 and an element y ∈ E×. Write M for the functor
M(∗,µn) as in 1.3 and consider the commutative diagram

(2.3) H1(E,µn) //

aE

��

H1(E((t− y)),µn)

aE((t−y))

��

H1(k0(t),µn)oo

ak0(t)

��
M(E) // M(E((t− y))) M(k0(t))oo

The polynomial xn − y/t in E((t − y))[x] has residue xn − 1 in E[x], which has
a simple root, namely x = 1. Therefore xn − y/t has a root over E((t − y)) by
Hensel’s Lemma, and the images of (y) ∈ H1(E,µn) and (t) ∈ H1(k0(t),µn) in
H1(E((t−y)),µn) agree. The commutativity of the diagram implies that the image
of (y) in M(E((t−y))) is the same as the image of ak0(t)(t), i.e., zero. But the map
M(E) → M(E((t − y))) is an injection by S7.7, so aE(y) is zero. This proves the
lemma. �

Proof of Prop. 2.1. We assume that k0 is algebraically closed. Fix an invariant
a ∈ Invk0(µn,µn), and consider the torsor class (t) ∈ H1(k0(t),µn). We claim that
a(t) is unramified away from {0,∞}. Indeed, any other point on the affine line over
k0 is an ideal (t−y) for some y ∈ k×0 because k0 is algebraically closed. Consider the
diagram (2.3) with the E’s replaced with k0’s. As in the proof of Lemma 2.2, the
images of (y) ∈ H1(k0,µn) and (t) ∈ H1(k0(t),µn)) agree in H1(k0((t − y)),µn)
by Hensel’s Lemma, hence the image of (t) in M(k0((t − y))) comes from M(k0).
That is, a(t) is unramified at (t− y). This proves the claim, and by S9.4 we have:

a(t) = λ0 + λ1
.(t)

for uniquely determined elements λ0, λ1 ∈M(k0).
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Put a′ := λ0
.1 +λ1

.id. Since the invariants a, a′ agree on (t), the two invariants
are the same by Lemma 2.2. This proves that 1, id span Invk0(µn,µn).

As for linear independence, suppose that the invariant λ0
.1 + λ1

.id is zero.
Then λ0—the value of a on the trivial class—is zero. The other coefficient, λ1, is
the residue at t = 0 of a(t) in M(k0). �

Recall from S4.5 that every invariant can be written uniquely as (constant) +
(normalized). Clearly, the proposition proves that Invnorm

k0
(µn,µn) is a free Rn(k0)-

module with basis id.
Really, the proof of Prop. 2.1 given above is the same as the proof of S16.2 in the

case where k0 is algebraically closed, except that we have unpacked the references to
S11.7 and S12.3 (which are both elaborations of the Rost Compatibility Theorem)
with the core of the Rost Compatibility Theorem that is sufficient in this special
case.

2.4. Remark. The argument using Hensel’s Lemma in the proof of Lemma 2.2 has
real problems when the characteristic of k0 divides n. For example, when the
characteristic of k0 (and hence E) is a prime p, the element t/y has no p-th root
in E((t − y)) for every y ∈ E×. Speaking very roughly, this is the reason for the
global assumption that the characteristic of k0 does not divide the exponent of C.

2.5. µn invariants of µsn. Let s be a positive integer not divisible by the
characteristic of k0. The s-th power map (the natural surjection) s : µsn → µn fits
into a commutative diagram

(2.6)

1 −−−−→ µsn −−−−→ Gm
sn−−−−→ Gm −−−−→ 1

s

y s

y ∥∥∥
1 −−−−→ µn −−−−→ Gm

n−−−−→ Gm −−−−→ 1

It induces an invariant s : H1(∗,µsn)→ H1(∗,µn). A diagram chase on (2.6) shows
that for each k, s is the surjection

k×/k×sn → k×/k×n given by xk×sn 7→ xk×n.

The proof of Prop. 2.1 with obvious modifications gives:

Proposition. Invk0(µsn,µn) is a free Rn(k0)-module with basis 1, s. �

We will apply this in 15.8 and §18 below in the case s = n = 2. In that case, we
will continue to write s instead of the more logical 2.
2.7. Exercise. Let C be a finite Gal(k0)-module whose order is a power of n, and suppose
that k0 contains a primitive n-th root of unity. For x ∈ H(k0, C(−1)) such that nx = 0,
define a cup product

− • x : H1(k, µn) → H(k, C)

mimicking §23 of S. Prove that every normalized invariant H1(∗, µn) → H(∗, C) can be
written uniquely as id • x for such an x.

2.8. Exercise (char k0 6= 2). Consider the group SL(Q) whose k-points are the norm 1
elements of Q ⊗k0 k for some quaternion algebra Q over k0. The center of this group is
µ2 and the natural map

(2.9) H1(k, µ2) → H1(k, SL(Q))
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is surjective for every k/k0. The Rost invariant of SL(Q) (as defined in Example 1.2.4)
takes values in H3(k, µ⊗2

2 ), and its composition with (2.9) is the cup product x 7→ x .[Q].
Prove that the Rost invariant generates Invnorm

k0 (SL(Q), Z/2Z) as an R2(k0)-module.

3. Quasi-Galois extensions and invariants of Z/pZ

3.1. Let p1, p2, . . . , pr be the distinct primes dividing the exponent of C. There is
a canonical identification C =

∏r
i=1 piC, where piC denotes the submodule of C

consisting of elements of order a power of pi. This gives an identification

Invk0(G,C) =
r∏

i=1

Invk0(G, pi
C)

that is functorial with respect to changes in the field k0 and the group G.

3.2. Lemma. If k1 is a finite extension of k0 of dimension relatively prime to the
exponent of C, then the natural map

Invk0(G,C)→ Invk1(G,C)

is an injection.

Proof. By 3.1, we may assume that the exponent of C is a power of a prime p.
Let a be an invariant in the kernel of the displayed map. Fix an extension E/k0

and an element x ∈ H1(E,G); we show that a(x) is zero in M(E,C), hence a is
the zero invariant.

First suppose that k1/k0 is separable. The tensor product E ⊗k0 k1 is a direct
product of fields E1 × E2 × · · · × Er (since k1 is separable over k0), and at least
one of them—say, Ei—has dimension over E not divisible by p (because p does not
divide [k1 : k0]). We have

resEi/E a(x) = a(resEi/E x) = 0

because k1 injects into Ei. But the dimension [Ei : E] is not divisible by p, so a(x)
is zero in M(E,C).

If k1/k0 is purely inseparable, then there is a compositum E1 of E and k1 such
that the dimension of E1/E is a power of the characteristic, which (by global
hypothesis) is not p. As in the previous paragraph, a(x) is zero in M(E,C).

In the general case, let ks be the separable closure of k0 in k1. The map displayed
in the lemma is the composition

Invk0(G,C)→ Invks(G,C)→ Invk1(G,C),

and both arrows are injective by the preceding two paragraphs. Hence the compo-
sition is injective. �

3.3. Suppose that k1/k0 is finite of dimension relatively prime to the exponent of C
as in 3.2, and suppose further that k1/k0 is quasi-Galois (= normal), i.e., k1 is the
splitting field for a collection of polynomials in k0[x]. The separable closure ks of
k0 in k1 is a Galois extension of k0. (See [Bou Alg, §V.11, Prop. 13] for the general
structure of k1/k0.) We write Gal(k1/k0) for the group of k0-automorphisms of k1.

The group Gal(k1/k0) acts on H1(k1, G) as follows. An element g ∈ Gal(k1/k0)
sends a 1-cocycle b to a 1-cocycle g ∗ b defined by

(g ∗ b)s = gbg−1s.

The Galois group acts similarly acts on M(k1, C), see e.g. [Wei69, Cor. 2-3-3].
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Lemma. If k1/k0 is finite quasi-Galois and [k1 : k0] is relatively prime to the
exponent of C, then the restriction map

M(k0, C)→M(k1, C)

identifies M(k0, C) with the subgroup of M(k1, C) consisting of elements fixed by
Gal(k1/k0). �

Proof. Write ki for the maximal purely inseparable subextension of k1/k0; the
extension k1/ki is Galois. It is standard that the restriction map M(ki, C) →
M(k1, C) identifies M(ki, C) with the Gal(k1/ki)-fixed elements of M(k1, C). To
complete the proof, it suffices to note that restriction identifies Gal(k1/ki) with
Gal(k1/k0) and M(k0, C) with M(ki, C), because ki/k0 is purely inseparable. �

3.4. Invariants under quasi-Galois extensions. Continue the assumption
that k1 is a finite quasi-Galois extension of k0. For every extension E of k0, there
is—up to k0-isomorphism—a unique compositum E1 of E and k1; the field E1 is
quasi-Galois over E and Gal(E1/E) is identified with a subgroup of Gal(k1/k0).
We say that an invariant a ∈ Invk1(G,C) is Galois-fixed if for every E/k0, x ∈
H1(E1, G), and g ∈ Gal(E1/E), we have

g ∗ a(g−1 ∗ x) = a(x) ∈M(E1, C).

Proposition. If k1/k0 is finite quasi-Galois and [k1 : k0] is relatively prime to the
exponent of C, then the restriction map

Invk0(G,C)→ Invk1(G,C)

identifies Invk0(G,C) with the subgroup of Galois-fixed invariants in Invk1(G,C).

Proof. The restriction map is an injection by Lemma 3.2.
Fix an invariant a1 ∈ Invk1(G,C). If a1 is the restriction of an invariant de-

fined over k0, then a commutes with every morphism in AutFields/E
(E1) for every

extension E/k0, i.e., a1 is Galois-fixed.
To prove the converse, suppose that a1 is Galois-fixed. For x ∈ H1(E,G) and

g ∈ Gal(E1/E), we have

g ∗ a1(resE1/E x) = a1(g ∗ resE1/E x) = a1(resE1/E x) ∈M(E1, C)

since a1 is Galois-fixed. Lemma 3.3 gives that a1(resE1/E x) is the restriction of a
unique element a0(x) in M(E,C). In this way, we obtain a function H1(E,G) →
M(E,C). It is an exercise to verify that this defines an invariant a0 : H1(∗, G) →
M(∗, C). Clearly, the restriction of a0 to k1 is a1. �

3.5. Continue the assumption that k1/k0 is finite quasi-Galois and [k1 : k0] is
relatively prime to the exponent of C.

We fix a natural number n not divisible by the characteristic of k0 such that nC =
0, and we suppose that Invnorm

k0
(G,C) contains a1, a2, . . . , ar whose restrictions form

an Rn(k1)-basis of Invnorm
k1

(G,C). We find:

Corollary. a1, a2, . . . , ar is an Rn(k0)-basis of Invnorm
k0

(G,C).

[Clearly, the corollary also holds if one can replaces Invnorm with Inv throughout.]
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Proof. Since k1 is finite quasi-Galois over k0, restriction identifies Rn(k0) with the
Gal(k1/k0)-fixed elements in Rn(k1) (by Lemma 3.3 with C = µn) and the natural
map

(3.6) Invk0(G,C)→ Invk1(G,C)

is an injection by Prop. 3.4.
Let λ1, λ2, . . . , λr ∈ Rn(k0) be such that

∑
λiai is zero in Invk0(G,C). Every

λi is killed by k1, hence λi is zero in Rn(k0) for all i. This proves that the ai are
linearly independent over k0.

As for spanning, let a be in Invk0(G,C). The restriction of a to k1 equals
∑
λiai

for some λi ∈ Rn(k1). But a is fixed by Gal(k1/k0), hence so are the λi, i.e., λi

is the restriction of an element of Rn(k0) which we may as well denote also by λi.
Since a −

∑
λiai is zero over k1, it is zero over k0. This proves that the ai span

over k0. �

3.7. Proposition. If p is a prime not equal to the characteristic of k, then Invnorm
k0

(Z/pZ,Z/pZ)
is a free Rp(k0)-module with basis id.

[The reader may wonder why we have switched to describing the normalized
invariants, whereas in the proposition above and in S, the full module of invariants
was described. The difficulty is that here the invariants are taking values in

H0(∗,Hom(µp,Z/pZ))⊕H1(∗,Z/pZ)⊕H2(∗,µp)⊕ · · · ,
and it is not clear how to specify a basis for the constant invariants.]

Proof. If k0 contains a primitive p-th root of unity, then we may use it to identify
Z/pZ with µp and apply Prop. 2.1.

For the general case, take k1 to be the extension obtained by adjoining a primitive
p-th root of unity; it is a Galois extension of degree not divisible by p, and the
proposition holds for k1 by the previous paragraph. Cor. 3.5 finishes the proof. �

3.8. Exercise. Extend Prop. 3.7 by describing Invnorm
k0 (Z/nZ, Z/nZ), where n is square-

free and not divisible by the characteristic.

3.9. Exercise (mod p Bockstein). Let p be a prime not equal to the characteristic of k0.
The natural exact sequence

1 −−−−−→ Z/pZ −−−−−→ Z/p2Z −−−−−→ Z/pZ −−−−−→ 1

leads to a connecting homomorphism

δk : H1(k, Z/pZ) → H2(k, Z/pZ)

for each extension k/k0. This is a normalized invariant of Z/pZ, and arguments similar
to those above show that it is of the form

δk(x) = c .x

for a uniquely determined c ∈ H1(k0, Z/pZ). Compute c.
[In case p = 2, the answer is well-known to be the class of −1 ∈ k×0 /k×2

0 . In general, c
can be expressed in terms of the cyclotomic character Gal(k0) → Z×p and a homomorphism

Z×p → Z/pZ.]

3.10. Exercise. Let k0 be a field of characteristic zero. What are the mod 2 invariants
of the dihedral group G of order 8? That is, what is Invnorm

k0 (G, Z/2Z)?
[Note that G is the Weyl group of a root system of type B2, so one may apply S25.15:

an invariant of G is determined by its restriction to the elementary abelian 2-subgroups
of G.]
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4. Restricting invariants

4.1. Let A and A′ be functors Fields/k0 → Sets, and fix a morphism φ : A′ → A. (For
example, a homomorphism of algebraic groups G′ → G induces such a morphism
of functors H1(∗, G′)→ H1(∗, G).) We are interested in the following condition:

(4.2)

For every extension k1/k0 and every x ∈ A(k1) there is a finite
extension k2 of k1 such that

(1) resk2/k1(x) ∈ A(k2) is φ(x′) for some x′ ∈ A′(k2) and
(2) the dimension [k2 : k1] is relatively prime to the exponent

of C.
(In the case where [k2 : k1] can always be chosen to be not divisible by a prime

p, we say that φ is surjective at p.)

Lemma. If (4.2) holds, then the restriction map

φ∗ : Invk0(A,C)→ Invk0(A
′, C)

induced by φ is an injection.

We will strengthen this result in Section 6.

Proof. φ∗ is a group homomorphism, so it suffices to prove that the kernel of φ∗ is
zero; let a be in the kernel of φ∗. Fix an extension k1 of k0 and a class x ∈ A(k1),
and let k2 be as in (4.2). By the assumption on a, the class a(x) ∈ M(k1, C) is
killed by k2. But the map M(k1, C) → M(k2, C) is injective by 4.2.2, so a(x) is
zero in M(k1, C). That is, a is the zero invariant. �

4.3. Killable classes. Suppose that there is a natural number e such that every
element of H1(k,G) is killed by an extension of k of degree dividing e for every
extension k of k0. This happens, for example, when:

(1) G = PGLe, a standard result from the theory of central simple algebras
(2) G is a finite constant group and e = |G|, because every 1-cocycle is a

homomorphism ϕ : Gal(k1) → G and ϕ is killed by the extension k2 of k1

fixed by kerϕ. The dimension of k2 over k1 equals the size of the image of
ϕ, which divides the order of G. (Compare S15.4.)

Applying Lemma 4.1 with G′ the group with one element gives: If the exponent
of C is relatively prime to e, then Invnorm

k0
(G,C) is zero.

4.4. Example. Suppose that k0 is algebraically closed of characteristic zero, G is
a connected algebraic group, and the exponent of C is relatively prime to the order
of the Weyl group of a Levi subgroup of G. Then Inv(G,C) is zero. Indeed, the
paper [CGR06] gives a finite constant subgroup S of G such that the exponent
of C is relatively prime to |S| and the map H1(k, S) → H1(k,G) is surjective
for every extension k of k0. (We remark that the existence of such a subgroup S
answers the question implicit in the final paragraph of S22.10.) As a consequence of
the surjectivity, the restriction map Inv(G,C) → Inv(S,C) is an injection. Hence
Inv(G,C) is zero by 4.3.

4.5. The previous example gives a “coarse bound” in the case where G is simple.
For G simple of type E8, the order of the Weyl group is 214 .35 .52 .7. So—roughly
speaking—the previous example shows there are no nonconstant cohomological in-
variants mod p for p 6= 2, 3, 5, 7. Tits [Tit92] showed that every E8-torsor is split
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by an extension of degree dividing 29 .33 .5, hence by 4.3 there are no nonconstant
invariants mod p also for p = 7.

In Table 4, for each type of exceptional group G and prime p, we give a reference
for classification results regarding the invariants Invnorm(G,C) where the exponent
of C is a power of p. The preceding argument shows that Invnorm(G,C) is zero for
all exceptional G and p 6= 2, 3, 5.

type of G p = 2 p = 3 p = 5
G2 S18.4 X X
F4 S22.5 Th. 7.4 X

inner type E6 Exercise 22.9 in S Th. 10.9 X
outer type E6 ? Exercise 10.10 X

E7 ? 12.2, Exercise 12.3 X
E8 ? ? Th. 14.1

Table 4. References for results on Invnorm(G,C) where G is ex-
ceptional and the exponent of C is a power of a prime p

For entries marked with an X, Invnorm(G,C) is zero. For conjectures re-
garding the question marks, see Problems 12.4 and 14.3.

4.6. Example (Groups of square-free order). Suppose now that k0 is algebraically
closed, G is a finite constant group, and |G| is square-free and not divisible by the
characteristic of k0. Then every normalized invariant H1(∗, G)→ Hd(∗, C) is zero
for d > 1. Indeed, by 3.1 and 4.3, we may assume that C is a power of prime p
dividing |G|. For G′ a p-Sylow subgroup of G, S15.4 (a more powerful version of
Lemma 4.1 that is specifically for finite groups) says the restriction map

Invnorm(G,C)→ Invnorm(G′, C)

is injective. As G′ is isomorphic to µp, Exercise 2.7 says that every normalized
invariant H1(∗,µp)→ Hd(∗, C) can be written uniquely as id • x for some p-torsion
element x ∈ Hd−1(k0, C(−1)). But this last set is zero because k0 is algebraically
closed.

4.7. Ineffective bounds for essential dimension. Recall from S5.7 that
the essential dimension of an algebraic group G over k0—written ed(G)—is the
minimal transcendence degree of K/k0, where K is the field of definition of a versal
G-torsor. Cohomological invariants can be used to prove lower bounds on ed(G):
If k0 is algebraically closed and there is a nonzero invariant H1(∗, G)→ Hd(∗, C),
then ed(G) ≥ d, see S12.4.

But this bound need not be sharp, as Example 4.6 shows. Indeed, in that example
we find the lower bound ed(G) ≥ 1 for G not the trivial group. But when k0 has
characteristic zero and G is neither cyclic nor dihedral of order 2 · (odd), ed(G) ≥ 2
by [BR97, Th. 6.2].

Another example is furnished by the alternating group A6. The bound provided
by cohomological invariants is ed(A6) ≥ 2 but the essential dimension cannot be 2
(Serre, unpublished).
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5. Mod p invariants of PGLp

In this section, we fix a prime p not equal to the characteristic of k0. Our goal
is to determine the invariants of PGLp with values in Z/pZ.

The short exact sequence

1 −−−−→ µn −−−−→ SLn −−−−→ PGLn −−−−→ 1

gives a connecting homomorphism δ : H1(k, PGLn) → H2(k,µn), cf. [Ser02,
Ch. III], [KMRT98, p. 386], or Example 1.2.2. We remark that δ has kernel zero
because H1(k, SLn) is zero.

5.1. Proposition. Invnorm
k0

(PGLp,Z/pZ) is a free Rp(k0)-module with basis δ.

The proposition will be proved at the end of this section. The reader is invited
to compare this result with the examples of invariants of PGL4 given in Example
1.2.5.
5.2. Cyclic algebras of degree n. Let n be a natural number not divisible
by char k0 and fix a primitive n-th root of unity ζ in some separable closure of k0.
Let ei denote the i-th standard basis vector of kn

0 . Define u, v ∈ GLn to be the
matrices such that

u(ei) = ζiei and v(ei) =

{
ei+1 for 1 ≤ i < n

e1 for i = n.

The maps Z/nZ → GLn and µn → GLn given by i 7→ vi and j 7→ uj are defined
over k0. Since uv = ζvu, there is a map

c : Z/nZ× µn → PGLn

defined over k0 given by (i, ζj) 7→ viuj for u, v the images of u, v in PGLn.
The sets H1(k,Z/nZ) and H1(k, PGLn) classify cyclic extensions k′ of k and

central simple k-algebras of degree n respectively. Recall thatH1(k,µn) = k×/k×n.
The map

(5.3) c∗ : H1(k,Z/nZ)×H1(k,µn)→ H1(k, PGLn)

sends the cyclic extension k′ and α ∈ k×/k×n to the class of the cyclic algebra
(k′, α), see Exercise 5.4 below.

5.4. Exercise. The cyclic algebra (k′, α) is defined to be the k-algebra generated by k′

and an element z such that z` = ρ(`)z for all ` ∈ k′ and ρ a fixed generator of Gal(k′/k).
Justify the italicized claim in 5.2.

[One possible solution: Fix a separable closure ksep of k. The image of k′ and α under
c define a 1-cocycle in H1(k, PGLn), which defines a twisted Galois action on Mn(ksep).
A 1-cocycle determining k′ also determines a preferred generator of Gal(k′/k); fix an
element ρ ∈ Gal(ksep/k) which restricts to this preferred generator. Prove that the map
f : k′ → Mn(ksep) given by f(β)ei = ρi(β)ei is defined over k. Fix an n-th root a of
α. Prove that the element z = av−1 in Mn(ksep) is F -defined. Conclude that the fixed
subalgebra of Mn(ksep) is isomorphic to (k′, α).]

5.5. Remark. The composition δc∗ is a map

H1(k,Z/nZ)×H1(k,µn)→ H2(k,µn).

There is another such map given by the cup product; they are related by

δc∗(k′, α) = −(k′) .(α),
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see [KMRT98, pp. 397, 415].

5.6. Lemma. If A is a central simple algebra over k of dimension p2, there is a
finite extension k′/k, of degree prime to p, over which A becomes cyclic.

That is, the map (5.3) is surjective at p.

Proof. This is well known. Recall the proof. We may assume that A is a division
algebra, in which case it contains a field L that is a separable extension of k of degree
p. Let E be the smallest Galois extension of k containing L (in some algebraic
closure of k); the Galois group Γ of E/k is a transitive subgroup of the symmetric
group Sp; a p-Sylow subgroup S of Γ is thus cyclic of order p. Take for k′ the
subfield of E fixed by S. We have E = Lk′. Hence E is a cyclic extension of k′ of
degree p which splits A over k′. �

5.7. Invariants of a product. Suppose we have algebraic groups G and G′

such that
There is a set {ai} ⊂ Invnorm

k0
(G,C) that is an Rn(k)-basis of

Invnorm
k (G,C) for every extension k/k0, and(5.8)

There is an Rn(k0)-basis {bj} of Invk0(G
′,µn),(5.9)

where n is the exponent of C. The cup product

Hd1(∗, C(d1 − 1))×Hd2(∗,Z/nZ(d2))→ Hd1+d2(∗, C(d1 + d2 − 1))

induces an Rn(k0)-module homomorphism

(5.10) Invnorm
k0

(G,C)⊗Rn(k0) Invk0(G
′,µn)→ Invnorm

k0
(G×G′, C).

Lemma. The map (5.10) is injective. Its image I is the set of normalized invari-
ants whose restriction to H1(∗, G′) is zero. The images of the ai ⊗ bj form a basis
for I as an Rn(k0)-module.

This is a slight variation of Exercise 16.5 in S. We give a proof because we will
use this result repeatedly later.

Proof. Let c be a normalized invariant of G×G′ with values in C that vanishes on
H1(∗, G′). For a given k-G′-torsor T ′, the map

cT ′ : T 7→ c(T × T ′)
is an invariant of G with values in C. As c vanishes on H1(∗, G′), cT ′ is normalized.
By (5.8), cT ′ is the map T 7→

∑
i λi,T ′ai(T ) for uniquely determined λi,T ′ ∈ Rn(k).

The maps T ′ 7→ λi,T ′ are invariants of G′ and belong to Invk0(G
′,µn), which by

(5.9) can be written uniquely as
∑
λi,jbj for λi,j ∈ Rn(k0). This proves that c is

the image of
∑
λi,jai⊗bj , hence that the image of (5.10) includes every normalized

invariant whose restriction to H1(∗, G′) is zero. As the reverse inclusion is trivial,
we have proved the second sentence in the lemma.

The proof of the first sentence is similar. Suppose that the invariant

T × T ′ 7→
∑
i,j

λi,j
.bj(T ′) .ai(T )

of G×G′ is zero, where the λi,j are in Rn(k0). For each k-G′-torsor T ′, we find that∑
j λi,j

.bj(T ′) is zero by (5.8), hence the invariant
∑

j λi,j
.bj is zero. By (5.9), λi,j

is zero for all i, j.
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Because Invnorm
k0

(G,C) and Invk0(G
′,µn) are free Rn(k0)-modules, the third

sentence in the lemma follows from the first two. �

In the examples below, the set {bj} is a basis of Invk(G′,µn) for every extension
k/k0. This implies that the lemma holds when k0 is replaced with k.

We can now prove Prop. 5.1.

Proof of Prop. 5.1. Combining Lemmas 5.6 and 4.1, we find that the map

(5.11) c∗ : Invnorm
k0

(PGLp,Z/pZ)→ Invnorm
k0

(Z/pZ× µp,Z/pZ)

induced by c is an injection.
It follows from Remark 5.5 or [KMRT98, 30.6] that c∗(x, 1) and c∗(1, y) are the

neutral class in H1(k, PGLp) for every extension k/k0, every x ∈ H1(k,Z/pZ),
and every y ∈ H1(k,µp). In particular the image of (5.11) is contained in the
submodule I of invariants that are zero on H1(∗,µp).

Fix a normalized invariant a in Invk0(PGLp,Z/pZ). By Lemma 5.7, Prop. 3.7,
and Prop. 2.1, its image c∗a under (5.11) is of the form

(x, y) 7→ λ1
.x+ λ2

.y .x (x ∈ H1(k,Z/pZ), y ∈ H1(k,µp))

for uniquely determined λ1, λ2 ∈ Rp(k0). But

(c∗a)(x, 1) = a(c∗(x, 1)) = a(Mp(k)) = 0

for every x ∈ H1(k,Z/pZ) and every extension k, so λ1 is zero. Therefore,

(c∗a)(x, y) = λ2
.y .x.

Since c∗a is aRp(k0)-multiple of c∗δ, we conclude that δ spans Invnorm(PGLp,Z/pZ).
�

5.12. Remark. A versal torsor for Z/pZ×µp gives a PGLp-torsor T . The injectivity
of (5.11) combined with S12.3 shows that invariants a, a′ of PGLp that agree on
T are the same. One may view T as a “p-versal torsor” (appropriately defined) for
PGLp.

5.13. Open problem. (Reichstein-Youssin [RY00, p. 1047]) Let k0 be an alge-
braically closed field of characteristic zero. Is there a nonzero invariantH1(∗, PGLpr )→
H2r(∗,Z/pZ)?

[For p = r = 2, one has the Rost-Serre-Tignol invariant described in Example
1.2.5.]

5.14. Question. Let k0 be an algebraically closed field of characteristic zero. What
are the mod 2 invariants of PGL4? That is, what is Invnorm

k0
(PGL4,Z/2Z)?

[This is a “question” and not an “exercise” because there are central simple alge-
bras of dimension 42 that are neither cyclic nor tensor products of two quaternion
algebras [Alb33].]

6. Extending invariants

6.1. Fix functors A and A′ mapping Fields/k0 → Sets and a morphism φ : A′ → A.
When can an invariant a′ : A′ → M(∗, C) be extended to an invariant a : A →
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M(∗, C)? That is, when is there an invariant a that makes the diagram

A′
a′ //

φ

��

M(∗, C)

A

a

;;v
v

v
v

v

commute?
Clearly, we must have

(6.2) For every extension k/k0 and every x, y ∈ A′(k):
φ(x) = φ(y) =⇒ a′(x) = a′(y)

Proposition. If φ satisfies (4.2), then the restriction

φ∗ : Invk0(A,C)→ Invk0(A
′, C)

defines an isomorphism of Invk0(A,C) with the invariants a′ of A′ satisfying (6.2).

That is, assuming (4.2), condition (6.2) is sufficient as well as necessary.
Note that the proposition gives a solution to Exercise 22.9 in S as a corollary.

That is, if φ satisfies (4.2) and φ is injective, then the restriction map

φ∗ : Invk0(A,C)→ Invk0(A
′, C)

is an isomorphism.
The rest of this section is a proof of the proposition. The homomorphism φ∗ is

injective by Lemma 4.1, so it suffices to prove that every invariant a′ of A′ satisfying
(6.2) is in the image. As in 3.1, we may assume that the exponent of C is the power
of a prime p.
6.3. For each perfect field k/k0 and each x ∈ A(k), we define an element a(x) ∈
M(k,C) as follows. Fix an extension k2 of k as in (4.2), i.e., such that there is an
x′ ∈ A′(k2) such that φ(x′) is the restriction of x.

Lemma A. a′(x′) is the restriction of a unique element of M(k,C).

We define a(x) to be the unique element of M(k,C) such that resk2/k a(x) is
a′(x′). For the proof of this lemma and Lemma B below, we fix a separable closure
ksep of k2 (hence also of k).

Proof. Uniqueness is easy, so we prove that a′(x′) is defined over k.
For each finite extension k3 of k2 in ksep and every σ ∈ Gal(ksep/k) such that

σ(k3) ⊇ k2, we claim that

(6.4) σ∗ resk3/k2 a
′(x′) = resσ(k3)/k2(a

′(x′))

in M(σ(k3), C), i.e., that a′(x′) is “stable” in M(k2, C). The invariant a′ commutes
with σ∗ and res. By (6.2), Equation (6.4) is equivalent to

φ(σ∗ resk3/k2 x
′) = φ(resσ(k3)/k2 x

′).

The morphism φ also commutes with σ∗ and res, so this equation is equivalent to

σ∗ resk3/k2 x = resσ(k3)/k2 x,

which holds because x is defined over k. This proves (6.4).
Combining (6.4) with the double coset formula for the composition res ◦ cor as in

[AM04, Th. II.6.6] shows that a′(x′) is the restriction of an element of M(k,C). �
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Lemma B. The element a(x) ∈M(k,C) depends only on x (and not on the choice
of k2 and x′).

Proof. Let `2 be a finite extension of k in ksep such that res`2/k x is the image of
some y′ ∈ A′(`2) and the prime p does not divide [`2 : k]. (I.e., `2 is an extension
as provided by (4.2), and it is separable because k is perfect.) We prove that
a′(x′) ∈ M(k2, C) and a′(y′) ∈ M(`2, C) are restrictions of the same element in
M(k,C).

Case 1: `2 is a conjugate of k2. Suppose that there is a σ ∈ Gal(ksep/k) such
that σ(`2) equals k2. One quickly checks that φ(σ∗y′) equals φ(x′) in A(k2), hence
a′(x′) equals a′(σ∗y′) by (6.2), i.e., a′(x′) is σ∗a′(y′). The lemma follows in this
special case.

Case 2. Suppose that the compositum K of k2 and `2 in ksep has degree [K : k]
not divisible by the prime p. Since φ(resK/k2 x

′) and φ(resK/`2 y
′) equal resK/k(x),

the restriction of a′(x′) and a′(y′) in K agree. By the hypothesis on the degree
[K : k], the lemma holds in this special case.

Case 3: general case. Let S be a p-Sylow in Gal(ksep/k) fixing k2 elementwise.
There is a σ ∈ Gal(ksep/k) such that σ(`2) is also fixed elementwise by S. It follows
that the compositum of σ(`2) and k2 has degree over K not divisible by p. A
combination of cases 1 and 2 gives the lemma in the general case. �

6.5. For an arbitrary extension k of k0, write kp for the “perfect closure” of k. Since
M(k,C) is canonically isomorphic to M(kp, C), we define a(x) to be the element
a(reskp/k x) ∈M(kp, C) defined in 6.3 above.

For every extension k of k0, we have defined a function ak making the diagram

A′(k)
a′k //

φk

��

M(k,C)

A(k)

ak

::ttttttttt

commute. We leave the proof that this defines a morphism of functors A→M(∗, C)
to the reader.

7. Mod 3 invariants of Albert algebras

In this section, we assume that k0 has characteristic 6= 2, 3 and classify the
normalized mod 3 invariants of Albert algebras. Recall that Albert k-algebras
are 27-dimensional exceptional Jordan algebras—see [SV00, Ch. 5], [PR94a], or
[KMRT98, Ch. IX]—and we write Alb for the functor such that Alb(K) is the
isomorphism classes of Albert K-algebras. We compute Invnorm(Alb,Z/3Z).

The automorphism group of the “split” Albert algebra is a split algebraic group
of type F4, and by Galois descent we have an isomorphism of functors H1(∗, F4) ∼=
Alb(∗), see [KMRT98, p. 517]. This isomorphism identifies Invnorm(Alb,Z/3Z) with
Invnorm(F4,Z/3Z).

7.1. Example. Let M = M3(k) be the algebra of 3-by-3 matrices over k. On the
27-dimensional space J = M ×M ×M , define a cubic form N by

N(a, b, c) = det(a) + det(b) + det(c)− tr(abc).
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Write 1 for the element (1, 0, 0) in J . The “Springer construction” endows J with
the structure of an Albert k-algebra induced by N and the choice of the element
1, see [McC69, §5]. It is the split Albert algebra and its automorphism group F4 is
the subgroup of GL(J) consisting of elements that fix 1 and N [Jac59, Th. 4].

If (g, z) is a point of PGL3 × µ3, let t(g, z) be the element of GL(J) defined by

(a, b, c) 7→ (ig(a), z .ig(b), z2 .ig(c)),

where ig is the inner autormorphism of M defined by g. Since (g, z) fixes both 1
and N , it belongs to the group F4. This gives an inclusion t : PGL3 × µ3 → F4

and a corresponding map

(7.2) t∗ : H1(∗, PGL3)×H1(∗,µ3)→ H1(∗, F4) ∼= Alb(∗).
The image of a pair (A,α) is often denoted by J(A,α); such algebras are known as
first Tits constructions, cf. [KMRT98, §39.A].

Every Albert k-algebra is a first Tits construction or becomes one over a qua-
dratic extension of k—see, e.g., [KMRT98, 39.19]—so the map in (7.2) satisfies (4.2)
when C has odd exponent. In particular, it is surjective at 3, hence the restriction
map

(7.3) t∗ : Invnorm(F4,Z/3Z)→ Invnorm(PGL3 × µ3,Z/3Z)

is injective.

7.4. Invariants of F4 mod 3. Consider the invariant

g3 : H1(∗, PGL3)×H1(∗,µ3)→ H3(∗,µ⊗2
3 )

defined by g3(A,α) = δ(A) .(α) for δ as defined in §5. We now give two arguments
that g3 is the restriction of an invariant of F4.

Proof #1. The meat of [PR96] is their Lemma 4.1, which says that g3 “factors
through” the image of (7.2) in H1(∗, F4). That is, if the first Tits constructions
J(A,α) and J(A′, α′) are isomorphic, then g3(A,α) equals g3(A′, α′). Prop. 6.1
gives that g3 extends to an invariant of F4. �

Proof #2. The Dynkin index of F4 is 6 [Mer03, 16.9], so the mod 3 portion of the
Rost invariant gives a nonzero invariant

g′3 : H1(∗, F4)→ H3(∗,µ⊗2
3 ).

Applying Lemma 5.7, we conclude that t∗g′3 equals λg3 for some fixed λ ∈ R3(k0).
Since the image of g′3 under Invk0(G,Z/3Z)→ InvK(G,Z/3Z) is nonzero for every
extension K/k0, t∗g′3 is nonzero over every K, and we conclude that λ = ±1, i.e.,
t∗g′3 is ±g3. �

We abuse notation by writing g3 also for the invariant (t∗)−1(g3) of F4. This
invariant was originally constructed in [Ros91].

Proposition. Invnorm
k0

(F4,Z/3Z) is a free R3(k0)-module with basis g3.

Proof. We imitate the proof of Prop. 5.1, with the role of Z/pZ × µp played by
PGL3 × µ3. For every central simple algebra A over every extension k/k0 and
every α ∈ k×, the algebra J(A,α) is “split”, i.e., t∗(A,α) is the neutral class in
H1(k, F4), if and only if α is the reduced norm of an element of A× by [Jac68,
p. 416, Th. 20] or [McC69, Th. 6]. In particular, t∗(M3(k), α) is the neutral class
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for every α, and Lemma 5.7 gives that the restriction of a normalized invariant in
Invk0(F4,Z/3Z) to PGL3 × µ3 can be written as

(A,α) 7→ λ1
.[A] + λ2

.(α) .[A]

for uniquely determined λ1, λ2 ∈ R3(k0). But the algebra J(A, 1) is also split for
every A. It follows that λ1 is zero. This proves that g3 spans Invnorm

k0
(F4,Z/3Z). �

Combining the proposition with the classification of the invariants mod 2 in
S22.5, we have found just three interesting invariants of F4, namely g3, f3, and f5.
Perhaps the outstanding open problem in the theory of Albert algebras is:

7.5. Open problem. (Serre [Ser95, §9.4], [PR94a, Q. 1, p. 205]) Is the map

g3 × f3 × f5 : H1(∗, F4)→ H3(∗,Z/3Z)×H3(∗,Z/2Z)×H5(∗,Z/2Z)

injective? That is, is an Albert algebra J determined up to isomorphism by its
invariants g3(J), f3(J), and f5(J)?

[The map is injective on the kernel of g3 [SV00, 5.8.1], i.e., “reduced Albert
algebras are classified by their trace form”. Also, Rost has an unpublished result
on this problem, see [Ros02]. Note that it is still unknown if the map is injective
on the kernel of f3 × f5, i.e., for first Tits constructions.]

7.6. Symbols. We now drop the assumption that the characteristic of k0 is 6= 2, 3,
and instead assume that it does not divide some fixed natural number n. We call
an element x ∈ Hd(k,µ⊗(d−1)

n ) = Md(k,Z/nZ) (for d ≥ 2) a symbol if it is in the
image of the cup product map

H1(k,Z/nZ)×H1(k,µn)× · · · ×H1(k,µn)︸ ︷︷ ︸
d − 1 copies

→ Hd(k,µ⊗(d−1)
n ).

In particular, the zero class is always a symbol. In the usual identification of
H2(k,µn) with the n-torsion in the Brauer group of k, symbols are identified with
cyclic algebras of dimension n2 as defined in §5.

7.7. Example. In the case n = 2, Md(k,Z/2Z) is just Hd(k,Z/2Z), and it is
isomorphic to Id/Id−1 as in 1.2.3. Symbols in Md(k,Z/2Z) correspond to the
(equivalence classes of) d-Pfister quadratic forms. Further, one has the following
nice property: If there is an odd-degree extension K/k such that resK/k(x) is a
symbol in Hd(k,Z/2Z), then x is itself a symbol by [Ros99a, Prop. 2].

In the case n = 3 (and char k0 6= 3), we have the following weaker property,
mentioned in [Ros99a]:

7.8. Lemma. Fix x ∈ H2(k,µ3). If there is an extension K/k such that 3 does
not divide the dimension [K : k] and resK/k(x) is a symbol in H2(K,µ3), then x is
itself a symbol.

Proof. We identify H2(k,µ3) and H2(K,µ3) with the 3-torsion in the Brauer group
of k and K respectively. We assume that x is nonzero, hence that it corresponds to
a central division k-algebra A of dimension (3r)2 for some positive r. By hypothesis,
A ⊗K is isomorphic to Mr(B) for a cyclic K-algebra B of dimension 32. But as
3 does not divide [K : k], the index of A and A ⊗K agree [Dra83, §9, Th. 12]. It
follows that A is a division algebra of dimension 32 over k, hence by Wedderburn’s
Theorem [KMRT98, 19.2] A is cyclic, i.e., x is a symbol. �
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Returning to groups of type F4, the image of the invariant

g3 : H1(k, F4)→ H3(k,µ⊗2
3 )

consists of symbols by [Tha99, p. 303]. For an alternative proof, combine [KMRT98,
40.9] with Lemma 7.8.
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Part II. Surjectivities and invariants of E6, E7, and E8

8. Surjectivities: internal Chevalley modules

Consider the following well-known example.

8.1. Example. Let q be a nondegenerate quadratic form on a vector space V over
a field k of characteristic 6= 2. Fix an anisotropic vector v ∈ V . Over a separable
closure ksep of k, the orthogonal group O(q)(ksep) acts transitively on the open
subset of P(V ) consisting of anisotropic vectors by Witt’s Extension Theorem. The
stabilizer of an anisotropic line [v] in O(q) is isomorphic to µ2 ×O(v⊥). It follows
from [Ser02, §I.5.5, Prop. 37] that the natural map

(8.2) H1(k,µ2 ×O(v⊥))→ H1(k,O(q))

is surjective. Repeating this procedure, we find a surjection
dim V⊕

H1(k,µ2)→ H1(k,O(q)).

Since H1(k,µ2) is the same as k×/k×2, this surjection can be viewed as reflecting
the fact that quadratic forms can be diagonalized.

8.3. Let G be an algebraic group over k. Roughly speaking, we now abstract
the example by finding a subgroup N of G such that the natural map H1(∗, N)→
H1(∗, G) is surjective. We suppose that k is infinitee and thatG has a representation
V such that there is an open G-orbit in P(V ) over an algebraic closure of k. As k
is infinite, there is a k-point [v] in the open orbit.

Theorem. The natural map

H1
fppf(k,N)→ H1(k,G)

is surjective, where N is the scheme-theoretic stabilizer of [v] in G.

We write H1
fppf(k,N) for the pointed set of k-N -torsors relative to the fppf

topology as in [DG70]. When N is smooth, this group agrees with the usual Galois
cohomology set H1(k,N) [DG70, p. 406, III.5.3.6], so the reader who wishes to
avoid flat cohomology may simply add hypotheses that various groups are smooth
or—more restrictively—only consider fields of characteristic zero.

In the case where N is smooth, a concrete proof of the theorem can be found in
[Gar01a, 3.1] or by applying [Ser02, §III.2.1, Exercise 2] with B,C,D replaced by
G,N,GL(V ).

Proof. Write O for the G-orbit of [v] in P(V ) (equivalently, G/N). For z ∈
H1(k,G), there is an inclusion of twisted objects Oz → P(V )z. As G acts on P(V )
through GL(V ), the twisted variety P(V )z is isomorphic to P(V ) and the k-points
are dense in P(V )z (because k is infinite). Moreover, Oz is open in P(V )z because
O is open in P(V ). Hence Oz has a k-point and the map H1

fppf(k,N) → H1(k,G)
is surjective [DG70, p. 373, Prop. III.4.4.6b]. �

eThis hypothesis is harmless. In the examples, G will be connected, so H1(k, G) will be zero
when k is finite.
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8.4. Example (char k = 0). Let G be a semisimple group. The adjoint representa-
tion V of G has an open orbit in P(V ) if and only if G has absolute rank 1, i.e., G
is of type A1. Indeed, if G is of rank 1, then the regular semisimple elements in V
form an open orbit in P(V ), because G acts transitively on the collection of maxi-
mal toral subalgebras of V [Hum80, 16.4]. Conversely, if there is an open G-orbit
in P(V ), it contains a regular semisimple element v. The stabilizer of [v] normalizes
the centralizer of v in the Lie algebra, i.e., normalizes a maximal toral subalgebra t
of V containing v. Hence N normalizes the maximal torus T of G with Lie algebra
t. As T fixes v, we have:

rankG = dimN = dimG− dim P(V ) = 1.

8.5. A non-example is furnished by a representation V of G on which G acts
trivially. If dimV = 1, then P(V ) is a point, N equals G, and the conclusion of
Th. 8.3 is uninteresting. If dimV is at least 2, then P(V ) does not have an open
orbit (exercise).

8.6. Example (Reducible representations). Let V be a representation of G as in
8.3, and suppose that there is a proper G-invariant subspace W of V . The quotient
map V → V/W gives a G-equivariant rational surjection f : P(V ) 99K P(V/W ). If
[v] is in the open G-orbit in P(V ), then f is defined at [v] and the orbit of f([v]) is
dense in P(V/W ), hence open.

8.7. Example (char k = 0). A group G of type E8 has no nontrivial representations
V with an open G-orbit in P(V ). Indeed, by Example 8.6, it suffices to prove that
no faithful irreducible representation V of G has an open orbit in P(V ). By the
following exercise, the constraint dimG ≥ P(V ) leaves the adjoint representation
as the only possibility, and there is no open G-orbit in that case by Example 8.4.

8.8. Exercise (char k = 0). Check that the split group of type E8 has unique irreducible
representations of dimensions 1, 248 (adjoint), 3875, 27000, and 30380, and no others of
dimension < 105.

[Compare [Gar].]

8.9. Internal Chevalley modules. How to find groups and representations
that satisfy the hypotheses of Theorem 8.3? We now give a mechanism from rep-
resentation theory that produces such.

Let G̃ be a semisimple algebraic group that is defined and isotropic over k. We
fix a maximal k-torus T̃ in G̃ that contains a maximal k-split torus T̃d. Fix also a
set ∆̃ of simple roots of G̃ with respect to T̃ . We suppose that there is some π ∈ ∆̃
that is fixed by the Galois group (under the ∗-action, which permutes ∆̃) and is not
constant on T̃d. (In the notation of Tits’s classification paper [Tit66], the vertex π
in the Dynkin diagram is circled and the circle does not include any other vertices.)
Finally, we assume that k has characteristic 6= 2 if G̃ is of type B, C, or F4 and
6= 2, 3 if G̃ has type G2. This concludes our list of assumptions.

We define G to be the semisimple subgroup of G̃ that is generated over a sep-
arable closure ksep of k by the 1-dimensional unipotent subgroups Uα of G̃ as α
varies over the roots of G̃ with π-coordinate zero. The Dynkin diagram of G is the
diagram of G̃ with the vertex π deleted. If G̃ is simply connected, then so is G by
[SS70, 5.4b]. The reader can find a list of Dynkin diagrams in Table 8 below and
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q
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n

E6 q q q q q
qq

1 3 4 5 6

2

E7 q q q q q q q
q

1 3 4 5 6 7

2

E8 q q q q q q q q
q

1 3 4 5 6 7 8

2

F4
q q q q q<
4 3 2 1

G2
q q q<
1 2

Table 8. Extended Dynkin diagrams.

Vertices are numbered as in [Bou Lie]. The unlabeled vertex corresponds
to the negative −α̃ of the highest root, and omitting this vertex leaves the
usual Dynkin diagram. Type A is omitted entirely.

a list of concrete examples of groups G that we will consider by looking ahead at
Tables 21a or 11 below.

Over ksep, there is a cocharacter λ : Gm → T̃ such that π(λ) is negative and α(λ)
is zero for α ∈ ∆̃ \ {π}. The cocharacter λ is even defined over k by [BT65, 6.7,
6.9]; its image is in T̃d. We take P̃ (respectively, L) to be the parabolic subgroup
of G̃ (resp., Levi subgroup of P̃ ) picked out by λ in the sense of [Spr98, 13.4.1], i.e.,
the subgroup generated over ksep by T̃ and the Uα where α varies over the roots
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of G̃ with non-positive π-coordinate (resp., π-coordinate zero). Note that G is the
derived subgroup of L.

The Levi subgroup L acts on the unipotent radical Q of P̃ . We fix a positive
integer i and write Q(i) for the subgroup of Q spanned by the Uα where the π-
coordinate of α is ≤ −i. We put V := Q(1)/Q(2); it is a representation of L
and there is an open L-orbit in V over an algebraic closure of k [ABS90, Th. 2].
The representation V is called an internal Chevalley module. It is irreducible with
highest weight −π [ABS90, Th. 2].

8.10. Remarks. (1) The addition on V comes from the multiplication in G̃.
What is the scalar multiplication that turns V into a k-vector space? Sup-
pose that T̃ is split. Number the roots of G̃ with π-coordinate −1 arbitrarily
as ρ1, ρ2, . . . , ρs. The product map

Uρ1 × Uρ2 × · · · × Uρs

m−→ V

is an isomorphism by [Bor91, Prop. 14.4(2)]. The group Uα is the image
of a homomorphism xα : Ga → G̃ and the scalar multiplication is the naive
one: For λ ∈ k× and ui ∈ k, we have

λ ·m
(∏

xρi
(ui)

)
= m

(∏
xρi

(λui)
)
,

see [ABS90, p. 554].
(2) If, instead of the parabolic P̃ , we chose the “opposite” parabolic, then

everything would work out the same except that the highest weight of V
would be the highest positive root with π-coordinate 1—something that is
more difficult to read off of the Dynkin diagrams. The resulting V would
be the L-module that is dual to the one we consider here.

(3) In most of the examples considered below, the vertex π of the Dynkin
diagram is adjacent to only one other vertex—call it δ—and the two vertices
are joined by a single bond, so the highest weight of V is the fundamental
weight corresponding to δ.

(4) Although one could consider the modules Q(i)/Q(i + 1) for various i, no
real generality is gained, see [Röh93c, 1.8].

(5) Although the root π is fixed by the Galois group under the ∗-action (and
the cocharacter λ is k-defined), π need not be fixed by the usual Galois
action. Indeed, [Gar98] gives a concrete construction of groups of type 3D4

with k-rank 1 where the root π := α2 is fixed by the ∗-action (and is non-
constant on the split torus), but the usual Galois action interchanges α2

and α1 + α2 + α3 + α4.
(6) In case G̃ is split, there is an open P̃ -orbit in the unipotent radical Q whose

elements are known as “Richardson elements”. Clearly, any Richardson
element with π-coordinate −1 maps to an element of the open L-orbit
in V . For G̃ of classical type, the reader can find concrete examples of
Richardson elements in [Bau06].

8.11. We maintain the assumptions from 8.9, and we further assume—as in 8.3—
that the field k is infinite. We fix a k-point [v] in the open L-orbit in P(V ).

Theorem. The natural map

H1
fppf(k,N)→ H1(k,G)
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is surjective, where N is the scheme-theoretic stabilizer of [v] ∈ P(V ) in G.

Proof. Write O for the L-orbit of [v] in P(V ). Note that since the L-orbit of v
is dense in V , O is dense in P(V ), hence open in P(V ) because orbits are locally
closed.

As V is an irreducible representation of L, the torus S in the center of L acts
on V by scalar multiplication. But G and S generate L, so the G- and L-orbits in
P(V ) coincide. That is, the G-orbit of [v] ∈ P(V ) is open. Theorem 8.3 completes
the proof. �

Note that Theorems 8.3 and 8.11 give surjections H1
fppf(K,N) → H1(K,G)

for every extension K/k, where N is the scheme-theoretic stabilizer of a k-point
in the open orbit. We summarize this by saying that the morphism of functors
H1

fppf(∗, N)→ H1(∗, G) is surjective or that the inclusion N ⊂ G induces a surjec-
tion on H1’s.

8.12. Example (F4 × µ3 ⊂ E6). The natural inclusion of root systems leads to
an inclusion of split simply connected groups E6 ⊂ E7. We take these groups as
G and G̃ respectively in the notation of 8.11, so that π is the root α7 of E7. (We
number the simple roots as in Table 8.) The representation V of G is irreducible
and 27-dimensional with highest weight ω6.

There is a split group of type F4 inside of E6, and we denote it also by F4.
Writing xα : Ga → E6 for the generators of E6 as in [Ste68], F4 is generated by the
maps

(8.13) xα2 , xα4 , u 7→ xα3(u)xα5(u), u 7→ xα1(u)xα6(u),

etc., where the displayed maps correspond to the roots α1, α2, α3, and α4 respec-
tively in F4, cf. [Spr98, §10.3]. We claim that N is the direct product of F4 with
the center Z of E6, which is isomorphic to µ3.

Restricting the representation V of E6 to F4, we find that V is a direct sum of
an F4-invariant line [v] (for some v) and an indecomposable 26-dimensional repre-
sentation W (which is even irreducible if the characteristic of k0 is not 3 [GS88,
p. 412]). We take v to be a generator of the line.

Note that the maximal proper parabolics of L have Levi subgroups of type

D5, A1 ×A4, A1 ×A2 ×A2, A5,

and these semisimple parts all have dimension strictly less than 52, the dimension
of F4. Therefore F4 is not contained in a proper parabolic subgroup of L. By
[Röh93a, Prop. 3.5], it follows that v belongs to the open L-orbit in V .

Clearly, F4 is contained in the stabilizer N of [v] in E6, and by dimension count
it is the identity component of N . Since Z is also contained in N , it suffices to
prove that F4 and Z generate the normalizer of F4 in E6. But every automorphism
of F4 is inner and F4 has trivial center, so the normalizer of F4 in E6 is the product
F4 × C, where C is the centralizer of F4 in E6. Therefore it suffices to prove that
the center Z is all of C.

Write T4 for the maximal torus (F4 ∩ T )◦ of F4. The centralizer of T4 in E6

contains T , is reductive [Bor91, 13.17, Cor. 2a], and is generated by T and the
images of the xγ ’s, where γ varies over the roots of E6 whose inner product with
α2, α4, α3 +α5, and α1 +α6 is zero. Such a root γ is a Q-linear combination of the
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weights

ω3 − ω5 =
1
3
(α1 + 2α3 − 2α5 − α6) and ω1 − ω6 =

1
3
(2α1 + α3 − α5 − 2α6).

But such a γ would have disconnected support,f which is impossible by [Bou Lie,
§VI.1.6, Cor. 3a to Prop. 19]. So the centralizer of T4 in E6 is T , and in particular
C is contained in T . But C commutes with the images of the maps in (8.13), hence
with the image of xαi for 1 ≤ i ≤ 6. That is, C is contained in the center Z of E6.
This completes the proof that N equals F4 × Z.

Combining this example with Th. 8.11 gives that every k-E6-torsor can be writ-
ten (not necessarily uniquely) as a pair (J, β), where J is an Albert k-algebra and β
belongs to k×/k×3. For a classical proof of this in characteristic 6= 2, 3, see [Spr62].
For an application, see [GH06, §5] or 10.9 below.

Context. The representations appearing in 8.3 are nearly the same as the preho-
mogeneous vector spaces appearing in [SK77]. Recall that a prehomogeneous vector
space is a representation V of an algebraic group G such that there is a G-orbit in V .
These too lead to surjections in cohomology, by the same proof as in 8.3. However,
we are interested in the case where G is semisimple (and not merely reductive), for
which there are not enough prehomogeneous vector spaces.

Continuing the comparison of G-orbits in V and P(V ), we note that in the
examples of 8.11 considered below (listed in Table 21a), the G-orbit of v in the affine
space V is a hypersurface, more specifically a level set of a homogeneous G-invariant
polynomial on V . However, this need not be true, as considering G = Spin10

shows: Viewing G as a subgroup of E6, the recipe of 8.11 gives that V is a half-spin
representation, and the G-orbit of v in that case is dense in V [Igu70, Prop. 2].
(In Example 15.8, we view G as a subgroup of Spin12, the resulting V is the 10-
dimensional vector representation, and the G-invariant polynomial on V is the
quadratic form.)

In the setup for Th. 8.11, we cited [ABS90] because it is a convenient reference,
but the core idea can certainly be found in other, earlier references, e.g., [Vin76].

9. New invariants from homogeneous forms

A (homogeneous) form of degree d on a k0-vector space V is a nonzero element
of the d-th symmeric power Sd(V ∗). Equivalently, fixing a basis x1, x2, . . . , xn for
the dual space V ∗, it is a homogeneous polynomial of degree d in k0[x1, x2, . . . , xn].
In this section, we give a mechanism for constructing new invariants of a group G
from G-invariant forms.

Suppose that V is a representative of an algebraic group G and that V supports
a G-invariant form f . Each y ∈ H1(k,G) defines a twisted form fy on V ⊗ k.

We are concerned with the case where f is a form of degree d such that dC = 0.
For an invariant a ∈ Invk0(G,C) and v ∈ V ⊗ k such that fy(v) is not zero, we
consider the element

(9.1) a(y) .(fy(v)) ∈M(k,C).

(We view (fy(v)) as an element of H1(k,µd).) The following proposition is adapted
from [Ros99c, Prop. 5.2].

fRecall that every root γ can be written uniquely as an integral linear combination of the
simple roots. The support of γ is the set of those simple roots whose coefficient is nonzero in this
expression.
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9.2. Proposition. If a(y) is zero whenever fy has a nontrivial zero, then the el-
ement (9.1) depends only on y (and not on the choice of v) and the map y 7→
a(y) .(fy(v)) defines an invariant of G over k0.

Recall that fy is said to have a nontrivial zero if there is some nonzero v ∈ V ⊗k
such that fy(v) = 0. (Obviously, fy always has the “trivial” zero fy(0) = 0.)

9.3. Example. In the “smallest” case, when V is 1-dimensional, we can see the
proposition directly. If we fix a dual basis x for V , then f is αxd for some α ∈ k×0 .
The action of G on V is given by a homomorphism χ : G→ µd and this defines an
invariant χ : H1(∗, G)→ H1(∗,µd). For y ∈ H1(k,G), fy is the form αχ(y)xd, and
for nonzero v ∈ V ⊗ k, we have (fy(v)) = (α) + (χ(y)). In particular, (9.1) is the
value of the invariant (α) .a+ χ .a at y.

Proof of the proposition. By the example, we may assume the dimension of V is at
least 2. Fix a basis for V ∗ as above. Writing fy (viewed as an element of k[V ]) in
terms of this basis is equivalent to evaluating it at the generic point of V . Put

ω := a(y) .(fy) ∈M(k(V ), C).

We claim that ω is the restriction of some ω0 ∈M(k,C). By S10.1, it suffices to
check that ω is unramified at every discrete valuation of k(V )/k that corresponds to
an irreducible hypersurface in V . Such a hypersurface is defined by some irreducible
π ∈ k[V ]. If π does not divide fy (i..e, the hypersurface is not a component of the
variety {fy = 0}), then ω is unramified on the hypersurface by definition. If π does
divide fy in k[V ], we write fy = πnε for some ε not divisible by π, so

ω = a(y) .(ε) + na(y) .(π).

The residue of the first term is zero and the residue of the second is a multiple
of resk(π)/k a(y). The form fy is zero on the sum of the vectors in the dual basis
in V ⊗ k(π), and this is a nontrivial zero because the dimension of V is not 1. It
follows that ω has residue zero. This proves the claim.

Specializing the generic point to v ∈ V⊗k maps fy 7→ fy(v) and ω 7→ (a(y)) .(fy(v)),
but does not change ω0. This proves that a(y) .(fy(v)) does not depend on the choice
of v. The remainder of the proposition is clear. �

9.4. Example. The invariants produced by the lemma need not be interesting. In
the following examples, we consider the case where f is a quadratic form.

(1) Suppose that a is an invariant as in the lemma. Applying the proposition
once produces an invariant a′, and this new invariant also satisfies the
hypothesis of the proposition. Applying the proposition again, we obtain
an invariant

a′′ : y 7→ a(y) .(fy(v)) .(fy(v)) = a′(y) .(−1).

That is, a′′ = (−1) .a′.
(2) Suppose that—in the situation of the proposition—the form fy is Witt-

equivalent to an n-Pfister form for every y ∈ H1(k,G) and every k/k0, and
a is the invariant y 7→ en(fy). (For example, take G to be the split group of
type G2 and a to be the invariant from S18.4, i.e., the Rost invariant.) Then
for each y, fy is Witt-equivalent to some ⊗n

i=1〈1,−αi〉 and the invariant a′

given by the proposition satisfies

a′(y) = [(α1) .(α2) · · · (αn)] .(−αn) = 0.
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That is, a′ is the zero invariant.

10. Mod 3 invariants of simply connected E6

In this section we assume that the characteristic of k0 is different from 2 and 3.
10.1. Invariants of the split E6. We compute the invariants of the simply
connected split group of type E6, which we denote simply by E6. The mod 2
invariants were computed in Exercise 22.9 in S. We note that E6 has no invariants
modulo primes 6= 2, 3 by the remarks in 4.5.

As in Example 8.12, we have an inclusion

i : F4 × µ3 ↪→ E6

that identifies µ3 with the center of E6 such that the induced map

(10.2) i∗ : H1(∗, F4 × µ3)→ H1(∗, E6)

is a surjection. Two classes (J, β) and (J ′, β′) have the same image in H1(k,E6) if
and only if there is a vector space isomorphism f : J → J ′ such that βNJ = β′NJ′f ,
where NJ and NJ′ denote the cubic norms on J and J ′, see [Gar01b, 2.8(2)].
10.3. Exercise. Albert algebras J, J ′ are isotopic (see [Jac68] for a definition) if and
only if their norm forms are similar, i.e., i∗(J, β) = i∗(J

′, β′) for some β, β′ ∈ k×, see
pages 242–244 of [Jac68]. Prove that J and J ′ are isotopic if and only if their norms are
isomorphic, i.e., i∗(J, 1) = i∗(J

′, 1). Prove also that i∗(J, 1) = i∗(J, β) if and only if β is
the norm of an element of J .

Composing (10.2) and (7.2) gives a functor

H1(∗, (PGL3 × µ3)× µ3)→ H1(∗, E6)

where the PGL3 × µ3 in parentheses is the subgroup of F4 from §7. This functor
is surjective at 3 because every Albert algebra is in the image of (7.2) after an
extension of the base field of degree 1 or 2. Therefore the restriction map

(10.4) Invnorm(E6,Z/3Z)→ Invnorm(PGL3 × µ3 × µ3,Z/3Z)

is injective.
10.5. An invariant of degree 3. Consider the invariant g3 of PGL3×µ3×µ3

defined by

(10.6) g3 : (A,α, β) 7→ [A] .(α) ∈ H3(k,µ⊗2
3 )

for (A,α, β) defined over k. We now give two arguments to show that it is in the
image of (10.4).

Proof #1. If (A,α, β) and (A′, α′, β′) have the same image in H1(k,E6), then the
Albert algebras J(A,α), J(A′, α′) have similar norms. But as they are first Tits con-
structions, this implies that the algebras are isomorphic [PR84, 4.9], hence [A] .(α)
equals [A′] .(α′) as in 7.4. That is, g3 satisfies (6.2) and so extends uniquely to an
invariant of E6. �

Proof #2. The Dynkin index of E6 is 6 [Mer03, 16.6], so the mod 3 portion of the
Rost invariant defines a nonzero invariant

g′3 : H1(∗, E6)→ H3(∗,µ⊗2
3 ).
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As the inclusion F4 ↪→ E6 has Rost multiplier one [Gar01a, 2.4], the restriction of
g′3 to H1(∗, F4) is εg3 for ε = ±1 and g3 the invariant from 7.4. The composition

H1(k, F4)×H1(k,µ3)→ H1(k,E6)
g′3−→ H3(k,µ⊗2

3 )

sends an Albert k-algebra J and a β ∈ k×/k×3 to the element εg3(J). (When β
is 1, this is clear. In general, one uses a twisting argument as in [GQ06, Remark
2.5(i)].) The invariant εg′3 restricts to the map g3 from (10.6). �

We abuse notation and write also g3 for the invariant of E6 that restricts to the
g3 from (10.6). Note that the image of this invariant of E6 consists of symbols in
H3(k,µ⊗2

3 ), because the same is true for the invariant g3 of F4.

10.7. An invariant of degree 4. Define an invariant g4 of PGL3×µ3×µ3 by
putting

(10.8) g4 : (A,α, β) 7→ [A] .(α) .(β) ∈ H4(k,µ⊗3
3 ).

We give two proofs of the fact that g4 extends to an invariant H1(∗, E6) →
H4(∗,µ⊗3

3 ).

Proof #1. We check (6.2). Suppose that (A,α, β) and (A′, α′, β′) have the same
image in H1(k,E6). As in 10.5, J(A,α) and J(A′, α′) are isomorphic and [A] .(α)
equals [A′] .(α′). Further, β/β′ is a similarity of the norm of J(A,α). By Exercise
10.3, β/β′ is a norm from J(A,α), hence J(A,α) is isomorphic to J(A′′, α′′) for
some central simple algebra A′′ such that β/β′ is reduced norm from A′′ [PR84,
4.2]. We conclude that

[A] .(α) .(β)− [A′] .(α′) .(β′) = [A] .(α) .(β/β′) = [A′′] .(α′′) .(β/β′) = 0.

This verifies (6.2), hence g4 extends to an invariant of H1(∗, E6). �

Proof #2 (sketch). Observe that H1(k,E6) classifies cubic forms that become iso-
morphic to the norm of an Albert algebra over a separable closure of k. The
statement “i∗ is surjective” says that such a cubic form is a scalar multiple—say,
β.NJ—of the norm on an Albert k-algebra J . Moreover, g3(J) is zero whenever
the norm NJ has a nontrivial zero (i.e., whenever J is reduced), so Prop. 9.2 gives
that the map

g4 : β.NJ 7→ g3(J) .(β)

is a well-defined invariant of E6. �

As usual, we write also g4 for the invariant of E7 that restricts to give the g4
defined in (10.8).

10.9. Proposition. Invnorm
k0

(E6,Z/3Z) is a free R3(k0)-module with basis g3, g4.

Proof. We imitate the proofs of Propositions 5.1 and 7.4. The restriction map

i∗ : Invnorm
k0

(E6,Z/3Z)→ Invnorm
k0

(F4 × µ3,Z/3Z)

is an injection.
The center of E6 is contained in a maximal split torus, hence the image of the

map H1(∗,µ3)→ H1(∗, E6) is zero. Applying 5.7 and Propositions 2.1 and 7.4, we
find that g3 and g4 span Invnorm

k0
(E6,Z/3Z). �
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10.10. Exercise (Mod 3 invariants of the quasi-split E6). For K a quadratic field exten-
sion of k0, write EK

6 for the simply connected quasi-split group of type E6 associated with
the extension K/k. Describe the “mod 3” invariants of EK

6 .

10.11. Open problem. [PR94a, p. 205, Q. 4] Let J, J ′ be Albert k-algebras.
If J and J ′ have similar norms, then their images in H1(k,E6) are the same,
hence they have the same Rost invariant. In the notation §7 of this note and §22
of S, f3(J) = f3(J ′) and g3(J) = g3(J ′). Does the converse hold? That is, if
f3(J) = f3(J ′) and g3(J) = g3(J ′), are the norms of J and J ′ necessarily similar?

[If J and J ′ are reduced, the answer is “yes”, see [Jac68, p. 369, Th. 2].]

11. Surjectivities: the highest root

We now describe a general situation where — in the setting of 8.11 — we can
describe the identity component N◦ of the stabilizer. We will use this to apply
Th. 8.11 to the simply connected group of type E7.
11.1. Let G̃ be a simply connected split algebraic group not of type A. The highest
root α̃ is connected to a unique simple root—see Table 8—which we take to be π
in the notation of 8.11. This situation was studied by Röhrle in [Röh93b], and for
convenience of reference, we adopt the hypotheses of his main theorem. Namely,
we assume that π is long (equivalently, G̃ is not of type C), the rank of G is at least
4, and the characteristic is 6= 2.

As −α̃ is joined to π by a single bond, α̃ is the fundamental weight corresponding
to the simple root π, i.e., for every root β, the integer 〈α̃, β〉 is the coordinate of π
in β. For example, the π-coordinate of α̃ is 〈α̃, α̃〉 = 2. For w0 the longest element
of the Weyl group of G̃, clearly w0(α̃) = −α̃, hence w0(π) = −π.

We take V to be Q(1)/Q(2), where Q is the unipotent radical of the parabolic
subgroup opposite to the one chosen in 8.11, so that Q is generated over ksep by
the Uα where α has positive π-coordinate. We do this both to agree with Röhrle’s
notation and for the convenience of working with positive roots. As mentioned in
Remark 8.10.1, this V is the dual of the irreducible L-module with highest weight
α̃, meaning it has highest weight −w0(α̃) = α̃ also. Changing from the parabolic
in 8.11 to its opposite has not changed the isomorphism class of V .

G̃ G V dimV (N◦)ss dimZ(N◦)
D4 (SL2)×3 k2 ⊗ k2 ⊗ k2 8 1 2
F4 Sp6 14 SL3 0
E6 SL6 ∧3k6 20 SL3 × SL3 0
E7 Spin12 half-spin 32 SL6 0
E8 E7 minuscule 56 E6 0

Spind (d ≥ 9) SL2 × Spind−4 k2 ⊗ vector 2d− 8 Spind−6 1

Table 11. Internal Chevalley modules corresponding to the high-
est root

The last line of the table combines the cases where G̃ is of type Bn (n ≥ 4)
or Dn (n ≥ 5).

Table 11 describes the possibilities we consider. The last two columns will be
explained below. Readers who know some nonassociative algebra will immediately
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recognize that V must be a Freudenthal triple system. Some convenient compar-
isons are [Mey68, (8.4)] and [Kru, Table 1].

The top five rows of the table are “sisters”: The groups G̃ from these rows form
the bottom row of Freudenthal’s “magic square”, resp. the G’s form the next-to-
the-bottom row. The representations V are the “preferred representations” from
the bottom row of the magic triangle in [DG02, Table 2]. These rows of the table
are related to triple systems coming from cubic Jordan algebras of dimension 3,
6, 9, 15, and 27 respectively. The little one (with dimV = 8) has appeared in
Bhargava’s work on higher reciprocity laws [Bha04, p. 220] and in Gopal Prasad’s
solution [Pra05] to the Kneser-Tits Problem for rank 1 groups of type 3D4 and 6D4.
Note that in Prasad’s case, the group G is not split, but π is circled in the index
of G. In that case, the representation V is defined and there is an open G-orbit in
P(V ) as in 8.11. The stabilizer of a k-point in the open orbit is a “twisted form”
of the N we now compute.

Write Φ̃ for the set of roots of G̃. We view G̃ as defined by generators and
relation as in [Ste68]. In particular, for each root α ∈ Φ̃, the unipotent subgroup
Uα is the image of a homomorphism xα : Ga → G.

We put
v := xπ(r)xeα−π(s)Ueα ∈ V

for some r, s ∈ k×. It belongs to the open L-orbit in V [Röh93b, 4.4], and we define
N to be the scheme-theoretic stabilizer of [v] in G.

11.2. Lemma (char k0 6= 2). The identity component N◦ of N is reductive. Its
semisimple part is simply connected and generated by the subgroups Uβ as β varies
over the roots in Φ̃ whose support contains neither π nor any root adjacent to π.
The rank of its central torus equals deg π − 1.

The notation deg π denotes the degree of the vertex π of the Dynkin diagram,
i.e., the number of simple roots that are distinct from and not orthogonal to π. The
lemma says that the Dynkin diagram of N is obtained from the Dynkin diagram of
G̃ by deleting π and every vertex adjacent to π.

Proof. Let β ∈ Φ̃ be as in the statement of the lemma. The support of π ± β has
two connected components—the support of π and β—so π ± β is not a root of G̃.
For sake of contradiction, suppose that α̃−π±β is a root of G̃. It has π-coordinate
1, hence

〈α̃, α̃− π ± β〉 = 1 and seα−π±β(α̃) = π ∓ β.
(Here and below we write sβ for the reflection defined by a root β.) That is, π∓ β
is a root of G̃, a contradiction.

The previous paragraph is summarized by saying: β is strongly orthogonal to π
and to α̃ − π. It follows that the subgroup H of G generated by the Uβ ’s fixes v
and so is a subgroup of N . The type of H is listed in the next-to-the-last column
of Table 11, and H is simply connected by [SS70, 5.4b]. We note that, line-by-line
in the table, H has dimension

0, 8, 16, 35, 78,
d2 − 13d

2
+ 21.

Next consider the largest subtorus TZ of T̃ on which π, α̃, and the simple roots
belonging to H vanish. This torus belongs to N , commutes with H, and has
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dimension
rank G̃− rankH − 2 = deg π − 1.

This number is listed in the last column of Table 11.
The subgroup H.TZ of G is connected and reductive with derived subgroup H.

To complete the proof of the lemma, it suffices to check that H.TZ and N have the
same dimension, i.e., to to check the equation

(11.3) dimH + dimTZ = dimG− dimV + 1.

The dimension of G, line-by-line in the table, is

9, 21, 35, 66, 133,
d2 − 9d

2
+ 13,

so equation (11.3) holds in each case. �

11.4. Orthogonal long roots in Φ̃1. We put Φ̃j for the roots whose π-
coordinate is j. For a positive root β ∈ Φ̃, the π-coordinate of β is 0, 1, or 2, and
it is 2 if and only if β equals α̃, see [Bou Lie, §VI.1.8, Prop. 25(iv)]. That is, Φ̃j is
nonempty only for j = 0,±1,±2 and Φ̃2 is the singleton {α̃}.

As in [Röh93b, p. 145], there is a sequence µ1, µ2, µ3, µ4 of pairwise orthogonal
long roots in Φ̃1.

Lemma. The roots µ1, µ2, µ3, µ4 are pairwise strongly orthogonal.

Proof. If µi + µj is a root, then it has π-coordinate 2, hence it equals α̃. But

0 = 〈µi, µj〉 = 〈α̃− µj , µj〉 = −1,

a contradiction. Further, µi and µj are orthogonal, so since µi + µj is not a root,
neither is µi − µj . �

11.5. Strongly orthogonal roots in G. The Weyl group ofG acts transitively
on the roots in Φ̃1 of the same length [ABS90, §2, Lemma 1], so we may assume
that µ1 equals π. For j = 2, 3, 4, we set:

γj := α̃− π − µj .

Lemma. γ2, γ3, γ4 are pairwise strongly orthogonal long roots of G. For various
x, y, the value of 〈x, y〉 is given by the table:

y
α̃ π µj γj

α̃ 2 1 1 0
x π 1 2 0 −1

µj 1 0 2 −1
γj 0 −1 −1 2

Proof. The top row of the table is the π-coordinate of y, and we know these already.
We calculate that γj equals sπsµj

(α̃), so in particular, γj has the same length as α̃:
long. As all the roots in table have the same length, the table is symmetric. As for
π and µj , they are orthogonal by construction. The entries for 〈γj , π〉 and 〈γj , µj〉
are straightforward computations.

Similarly, for i 6= j we have 〈γj , µi〉 = 1, hence 〈γi, γj〉 = 0. Further, γi − γj =
µi − µj is not a root. As in the proof of Lemma 11.4, γi + γj is not a root. �
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We note that µ2 + µ3 + µ4 = 2α̃− π [Röh93b, 1.4], so

(11.6) γ2 + γ3 + γ4 = α̃− 2π.

11.7. A copy of SL2. Define 1-parameter subgroups x, y : Ga → G via

x(u) :=
4∏

j=2

xγj
(u) and y(u) :=

4∏
j=2

x−γj(u).

Since the γj ’s are strongly orthogonal, the images of the xγj commute [Ste68, p. 30,
(R2)], i.e., it does not matter in what order the displayed products are written.
The images of x and y generate a copy of SL2 in G which we denote simply by
SL2. For t ∈ Gm, we set

w(t) := x(t)y(−t−1)x(t) and h(t) := w(t)w(−1).

The map h is a homomorphism and its image is a maximal torus in SL2. How
does SL2 act on V ? Identity (R8) from [Ste68, p. 30] says that for roots β, δ, we
have:

(R8) hβ(t)xδ(u) = xδ(t〈δ,β〉u)hβ(t)

where hβ : Gm → T̃ is the cocharacter corresponding to the coroot β̌. In particular,

(11.8) h(t)xπ(u) = xπ(t−3u)h(t) and h(t)xeα−π(u) = xeα−π(t3u)h(t)

Moreover, we have:

Lemma. There exists a c ∈ {±1} such that

w(t)xπ(u) = xeα−π(ct3u)w(t) and w(t)xeα−π(u) = xπ(−ct−3u)w(t)

for all t ∈ Gm and u ∈ Ga.

Proof. Steinberg gives the formula [Ste68, p. 67, Lemma 37a]:

wβ(t)xδ(u) = xsβδ(c(β, δ)t−〈δ,β〉u)wβ(t),

where wβ(t) is defined to be xβ(t)x−β(−t−1)xβ(t) and c(β, δ) = ±1 depends only
on β and δ. Applying this with δ = π and successively with β = γ2, γ3, γ4, we find
c ∈ {±1} such that

w(t)xπ(u) = xeα−π(ct3u)w(t).

(For the exponent of t, note e.g. that 〈sγ2π, γ3〉 = 〈π, sγ2γ3〉 = 〈π, γ3〉 = −1.)
Similarly, we obtain

w(t)xeα−π(u) = xπ(c′t−3u)w(t)

for some c′ ∈ {±1}.
The equations (11.8) give h(−1)xπ(u) = xπ(−u)h(−1) and since h(−1) = w(−1)2,

we have:
xπ(−u)h(−1) = w(−1)2xπ(u) = xπ(cc′u)h(−1).

So c′ = −c. �



36 SKIP GARIBALDI

11.9. Remark. We can describe this copy of SL2 concretely in the notation of
Dynkin [Dyn57b, Ch. III]. For simplicity, we consider the cases where G̃ is simply
laced, so we may identify roots and coroots by defining all roots to have length 2
with respect to the Weyl-invariant inner product ( , ). By (11.6), the intersection
of the maximal torus T̃ of G̃ with SL2 is the image of the cocharacter heα−2π. For
δ a simple root of G, the inner product (α̃ − 2π, δ) is 2 if δ is adjacent to π and 0
otherwise. (Recall that π is not a root of G.) That is, Dynkin would denote the
corresponding copy of sl2 in the Lie algebra of G by attaching a 2 to the vertices
of the Dynkin diagram of G that are adjacent to π.

11.10. We take N to be the scheme-theoretic stabilizer of

v := xπ(1)xeα−π(−c)Ueα ∈ V
for c as in Lemma 11.7. For a primitive 4-th root of unity i, we have w(i)v = iv.
(See Remark 8.10 for the vector space structure on V .) The map i 7→ w(i) defines
an injection µ4 ↪→ N , and we abuse notation by writing also µ4 for the image in
N .

So far, what we have written holds for the general setting of 11.1. We now
specialize to the case where G is E7.

11.11. Lemma. In E7, the centralizer C of E6 is the rank 1 torus from 11.9 and
the normalizer of E6 is the group generated by C, E6, and the copy of µ4 from
11.10.

Proof. Write T6 and T7 for the maximal tori in E6 and E7 respectively, obtained by
intersecting with the maximal torus T̃ of E8. We argue along the lines of Example
8.12. First note that the centralizer of T6 in E7 contains T7, is reductive, and is
generated by root subgroups Uγ of E7 for roots γ of E7 whose inner product with
the simple root αi is zero for 1 ≤ i ≤ 6. Such a γ is a multiple of the fundamental
weight ω7 with integer coefficients, i.e., an integer multiple of 2ω7. However, 2ω7 has
height 27 and the highest root of E7 has height 17, so no such γ exists. Therefore
the centralizer of T6 in E7 is T7.

It follows that the centralizer of E6 in E7 is the subgroup of T7 formed by
intersecting the kernels of the roots of E6. This is a computation in terms of root
systems: the character group of this centralizer is the quotient of the E7 weight
lattice by the sublattice generated by the αi for 1 ≤ i ≤ 6; this quotient is free of
rank 1. Therefore the centralizer is a rank 1 torus in T7. To prove the first claim
in the lemma, it suffices to observe that the inner product (α̃ − 2π, δ) is zero for
every root δ of E6, which is clear because α̃− 2π equals 2ω7.

The quotient group of “outer automorphisms” (automorphisms modulo inner au-
tomorphisms) of E6 is Z/2Z, so to prove the claim about the normalizer it suffices
to show that conjugation by a generator w(i) of µ4(ksep) gives an outer automor-
phism of E6. As µ4 belongs to N , it normalizes the identity component E6 of N .
Further, conjugation by w(i) inverts elements of the maximal torus C of SL2. But
C contains the center of E6 by the previous paragraph, so conjugation by w(i) is
an outer automorphism of E6. �

11.12. Remark. The torus C appearing above is the image of the cocharacter h2ω7 :
Gm → T̃ , which maps

t 7→ hα1(t
2)hα2(t

3)hα3(t
4)hα4(t

6)hα5(t
5)hα6(t

4)hα7(t
3).
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Restricting this homomorphism to µ3 and µ2 respectively, we find

ζ 7→ hα1(ζ
2)hα3(ζ)hα5(ζ

2)hα6(ζ) and ε 7→ hα2(ε)hα5(ε)hα7(ε).

The images of these maps are the centers of E6 and E7 respectively, see [GQ06,
8.2, 8.1].

11.13. Example (E6 o µ4 ⊂ E7). We now show that the inclusion E6 o µ4 ⊂ E7

from 11.10 induces a surjection

(11.14) H1(k,E6 o µ4)→ H1(k,E7)

for every extension k/k0. By Th. 8.11, it suffices to show that E6 o µ4 is the
stabilizer N of [v] ∈ P(V ) for v as in 11.10. The subgroup of the torus C stabilizing
[v] is the image of µ6 by (11.8), which is the subgroup of C generated by the center
of E6 and the copy of µ2 in µ4. Combining Lemma 11.11 and the fact that E6 and
µ4 belong to N , we conclude that N equals E6 o µ4.

The surjectivity of (11.14) can be interpreted as a statement about Freudenthal
triple systems; see [Gar01b, 4.15] for a precise statement and an algebraic proof.

12. Mod 3 invariants of E7

The goal of this section is to compute the invariants of a split group of type E7

(simply connected or adjoint) with values in Z/3Z. We write E7 for the simply
connected split group of that type, and we assume throughout this section that the
characteristic of k0 is 6= 2, 3. (Roughly speaking, we avoid characteristic 2 in order
to use the results of the previous section, and we avoid characteristic 3 because we
wish to describe the invariants mod 3, cf. Remark 2.4.) The “heavy lifting” was
already done in the previous section.

Recall that the split group F4 of that type can be viewed as a subgroup of E6

as in Example 8.12.

12.1. Lemma. The inclusion F4 ⊂ E7 gives a morphism

H1(∗, F4)→ H1(∗, E7)

that is surjective at 3.

Proof. We have inclusions

F4 × µ3 ⊂ E6 ⊂ E6 o µ4 ⊂ E7.

The first and third of these induce surjections on H1 by Example 8.12 and 11.13.
The second inclusion gives a morphism that is surjective at 3.

The image of µ3 in E7 is the center of E6 as in Remark 11.12, so the inclusion
F4 × µ3 ⊂ E7 factors through the subgroup F4 × C. As H1(k,C) is zero for every
k/k0, the images of H1(k, F4) and H1(k, F4 × µ3) in H1(k,E7) agree. The claim
follows. �

12.2. Mod 3 invariants of E7. We now give two proofs that the invariant g3 of
F4 defined in 7.4 extends to an invariant of E7, which we will also denote by g3.

Proof #1. Let J, J ′ ∈ H1(k, F4) be Albert algebras whose images in H1(k,E7)
agree. Then J and J ′ have similar norms by [Fer72, 6.8] and g3(J) equals g3(J ′)
by 10.5. Lemma 6.1 gives that g3 extends to an invariant of E7. �
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Proof #2. The Rost invariant of E7 has order 12 [Mer03, 16.7], so the mod 3 portion
defines a nonzero invariant of E7 with values in Z/3Z. Moreover, the inclusion
F4 ⊂ E7 has Rost multiplier 1, so the restriction ofthis invarinat of E7 to F4 is —
up to sign — the g3 from 7.4. �

Combining Lemmas 4.1 and 12.1, we conclude that the restriction

Invnorm
k0

(E7,Z/3Z)→ Invnorm
k0

(F4,Z/3Z)

is injective; by the above and Th. 7.4, it is an isomorphism. We conclude:

Theorem. Invnorm
k0

(E7,Z/3Z) is a free R3(k0)-module with basis g3. �

12.3. Exercise (Mod 3 invariants of adjoint E7). Write Eadj
7 for the split adjoint group

of type E7. Prove that the invariant g3 of E7 induces an invariant gadj
3 : H1(∗, Eadj

7 ) →
H3(∗, µ⊗2

3 ) and that Invnorm
k0 (Eadj

7 , Z/3Z) is a free R3(k0)-module with basis gadj
3 .

For the mod 2 invariants of E7, the situation is much less clear.

12.4. Open problem. (Reichstein-Youssin [RY00, p. 1047]) Let k0 be an alge-
braically closed field of characteristic zero. Is there a nonzero invariant

H1(∗, Eadj
7 )→ H8(∗,Z/2Z)?

[Some readers have expressed skepticism about the precise degree — 8 — sug-
gested above. Nonetheless, the core of the question remains: What are the invari-
ants of degree > 3?]

13. Construction of groups of type E8

Write E8 for the split algebraic group of that type over k0. Since it is adjoint
and every automorphism is inner, the set H1(k,E8) is identified with the group of
isomorphism classes of groups of type E8 over k. (This same phenomenon occurs
with groups of type G2 and F4.) Here we describe a construction of groups of type
E8 that is analogous to the first Tits construction of groups of type F4 (equivalently,
Albert algebras) from 7.1. The fruit of this construction will appear in the next
section. As the results of §8 do not apply to E8 by Example 8.7, we take a new
approach here. We assume throughout this section that the characteristic of k0 is
6= 5.
13.1. A subgroup H of E8. Let G be split of type E8. We write H for the
subgroup of G generated by the root subgroups U±eα and U±αi

for i 6= 5. This
subgroup is of type A4×A4. We identify the first component of H — generated by
U±αi

for i = 1, 2, 3, 4 — with SL5 via an irreducible representation whose highest
weight is 1 on α1 and 0 on α2, α3, and α4. We identify the second component of
H with SL5 via an irreducible representation whose highest weight is 1 on α6 and
0 on α7, α8, and −α̃.

Write % for the homomorphism µ5 → E8 defined by

(13.2) % : ζ 7→ h1(ζ)h2(ζ4)h3(ζ2)h4(ζ3).

Applying the method described in [GQ06, §8], one finds that the image of % is the
center of both copies of SL5 in E8. More precisely, the canonical identification of
the center of SL5 with µ5 is the map % for the first component of H and %3 for
the second component of H. That is, we have identified H with the quotient of
SL5 × SL5 by the subgroup generated by (ζ, ζ2) for ζ ∈ µ5.
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For i = 1, 2, write πi : H → PGL5 for the projection on the i-th factor.

13.3. Lemma. For η ∈ H1(k,H), write Ai for the central simple k-algebra of degree
5 defined by πi(η). Then 2[A1] = [A2] in the Brauer group of k.

The twisted group Hη is isomorphic to (SL(A1)× SL(A2))/µ5.

Proof. Consider the diagram with exact rows
1 −−−−→ µ5 × µ5 −−−−→ SL5 × SL5 −−−−→ PGL5 × PGL5 −−−−→ 1

q

y y ∥∥∥
1 −−−−→ µ5

%−−−−→ H
π1×π2−−−−→ PGL5 × PGL5 −−−−→ 1

where q is given by (x, y) 7→ y/x2. The diagram commutes because y/x2 = x(y/x3)
and (y/x2)3 = y(y/x3)2. We obtain a commutative diagram with exact rows:

1 −−−−→ H1(k, PGL5 × PGL5) −−−−→ Br5×Br5y ∥∥∥ yq

H1(k,H) π1×π2−−−−→ H1(k, PGL5 × PGL5)
δ−−−−→ Br5 .

In the Brauer group, we find the equation:

0 = δ(π1 × π2)(η) = q(π1(η), π2(η)) = −2[A1] + [A2]. �

13.4. The subgroup C of H. Write C for the group Z/5Z × µ5. We define
a homomorphism t : C × µ5 → H such that t restricted to µ5 is the map % from
(13.2) and the restriction of t to C is given by

t|C(i, ζj) = (viuj , viu2j)

in the notation of 5.2, where ζ is a fixed primitive 5-th root of unity. The formula
uv = ζvu shows that t is indeed a group homomorphism.

For each extension k/k0, there is an induced function

(13.5) t∗ : H1(k,C × µ5)→ H1(k,E8).

Because H1(k,E8) classifies groups of type E8 over k, we view t∗ as a construction
of groups of type E8 via Galois descent.

13.6. Example. We now compute t∗(γ, z) for some γ ∈ H1(k,C) and z ∈ H1(k,µ5).
Put η := t∗(γ, 1) and write A1 for π1(η) as in Lemma 13.3. Twisting SL5 and E8

by η, we find a subgroup SL(A1) of (E8)η.
The diagram

C
t //

c
""FFFFFFFF H

π1

��
PGL5

commutes for c as in 5.2, so π1(η) = c∗(γ).
(1) Suppose that c∗(γ) is zero, i.e., A1 is split. Then Hη is split. Since η and

t∗(γ, z) — viewed as elements of H1(k,H) — differ by a central cocycle
t∗(1, z), the twisted group Ht∗(γ,z) is also split. Hence E8 twisted by t∗(γ, z)
is split. We conclude that t∗(γ, z) is zero in H1(k,E8).
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(2) Suppose now that z1, z2 ∈ H1(k,µ5) differ by a reduced norm from A. The
inclusion % of µ5 into H ⊂ E8 is unaffected by twisting by η, and we obtain
a map H1(k,µ5)→ H1(k, (E8)η). The composition

H1(k,µ5)
%−−−−→ H1(k, (E8)η)

∼=−−−−→
τη

H1(k,E8),

where τη is the twisting isomorphism, sends zi to t∗(γ, zi). However, the
first arrow factors through H1(k, SL(A1)), hence z1 and z2 have the same
image in H1(k,E8).

13.7. Proposition. The morphism

t∗ : H1(∗, C × µ5)→ H1(∗, E8)

is surjective at 5.

Proof. Step 1. We first show that — for H the subgroup of E8 defined in 13.1 —
the morphism H1(∗,H)→ H1(∗, E8) is surjective at 5.

Let ξ be in Z1(k,E8). Fix a maximal and k-split torus T of E8 and a k-defined
maximal torus T ′ in the twisted group (E8)ξ. There is some g ∈ E8(ksep) such that
g−1T ′g = T , and replacing ξ with σ 7→ g−1ξσ

σg, we may assume that ξσσ(T ) = T
for every σ ∈ Gal(ksep/k), i.e., that ξ takes values in NE8(T ).

The Galois group acts trivially on the Weyl group NE8(T )/T , so the image
ξ ∈ Z1(k,NE8(T )/T ) is a continuous homomorphism ξ : Gal(ksep/k)→ NE8(T )/T .
Fix a 5-Sylow subgroup S of NE8(T )/T . Take K to be the subfield of ksep fixed by
ξ
−1

(S); it is an extension of K of dimension not divisible by 5.
Because S and a 5-Sylow in NH(T )/T both have order 52, there is a w ∈

(NE8(T )/T )(K) such that the image of the map σ 7→ w−1ξσw is contained in
NH(T )/T . Further, T isK-split, so there is some w ∈ NE8(T )(K) such that w maps
to w. Replacing ξ with σ 7→ w−1ξσ

σw, we may assume that resK/k(ξ) ∈ H1(K,E8)
is in the image of H1(K,H).

Step 2. We now show that the morphism H1(∗, C × µ5) → H1(∗,H) is surjec-
tive at 5. Fix η ∈ Z1(K,H) and let A be the central simple algebra of degree 5
representing π1(η) ∈ H1(K,PGL5). By Lemma 5.6, there is an extension L/K of
dimension not divisible by 5 such that A ⊗ L is cyclic, i.e., equals c∗(γ) for some
γ ∈ H1(L,C). We have a commutative diagram with exact rows:

1 −−−−→ µ5 −−−−→ C × µ5 −−−−→ C −−−−→ 1∥∥∥ t

y y
1 −−−−→ µ5

%−−−−→ H
π1×π2−−−−→ PGL5 × PGL5 −−−−→ 1.

By Lemma 13.3, γ and η have the same image in H1(k, PGL5×PGL5), namely the
class of (π1(η), π2(η)). It follows that η and t∗(γ) are in the same H1(k,µ5)-orbit.
Fixing a λ ∈ H1(k,µ5) such that η = λ · t∗(γ), we have:

t∗(λ · γ) = λ · t∗(γ) = η,

as desired. �

13.8. The Rost invariant. We now compute the composition

(13.9) H1(k,C × µ5)
t∗−−−−→ H1(k,E8)

rE8−−−−→ H3(k,Q/Z(2))
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for every extension k/k0. As the Dynkin index of E8 is 60 = 5 · 12 [Mer03, 16.8],
4.3 says that the image of the composition is 5-torsion, hence lies in H3(k,µ⊗2

5 ).
Recall that C is Z/5Z× µ5. We have:

13.10. Lemma. There is a uniquely determined λ ∈ H1(k0,µ5) and a natural
number m not divisible by 5 such that the composition (13.9) is given by

((x, y), z) 7→ λ .x .y +mx .y .z

for every x ∈ H1(k,Z/5Z) and y, z ∈ H1(k,µ5) and every k/k0.

Proof. We first prove the claim in the case where z is zero and k0 contains a
primitive 5-th root of unity, which we use to identify µ5 with Z/5Z. If x or y is
zero, the class t∗(x, y, 1) is zero in H1(k,E8) by Example 13.6.1. Applying Lemma
5.7, we conclude that the composition (13.9) is (x, y, 1) 7→ λ .x .y for a unique
λ ∈ R5(k0). That is, the claim holds in this case.

We now consider the case where z is zero, but the extension k1 obtained by
adjoining a primitive 5-th root of unity to k0 may be proper. By the previ-
ous paragraph, the restriction of (13.9) to H1(∗, C) and viewed as an invariant
Fields/k1 → Abelian Groups is given by

(x, y) 7→ λ1
.x .y

for a uniquely determined λ1 ∈ H1(k1,µ5). Write λ0 for the unique class in
H1(k0,µ5) whose restriction to k1 is λ1. Since the invariants (13.9) and (x, y) 7→
λ0

.x .y agree over every extension k/k1, Lemma 3.2 proves the claim.
Finally, we consider the general case. Put η := c∗(x, y) and consider the diagram

H1(k,µ5) //

t∗(x,y,?) ''OOOOOOOOOOO
H1(k, (E8)η)

∼= τη

��

r(E8)η// H3(k,Q/Z(2))

?+rE8 (η)

��
H1(k,E8)

rE8 // H3(k,Q/Z(2))

where τη is the twisting isomorphism. The triangle obviously commutes and the
square commutes by [Gil00, p. 76, Lemma 7]. The image of z ∈ H1(k,µ5) in
the lower right corner going counterclockwise is rE8(t∗(x, y, z)), i.e., the image
of (x, y, z) under (13.9). The arrow in the upper left factors as H1(k,µ5)

%−→
H1(k, SL(A1)) → H1(k, (E8)η). Since the inclusion of SL(A1) in (E8)η has Rost
multiplier 1, the composition on the top row is z 7→ mx .y .z for some natural
number m not divisible by 5. This proves the claim. �

13.11. A twisted morphism. Fix a 1-cocycle µ ∈ Z1(k,µ5) such that µ = −m∗λ
in H1(k,µ5), where m∗ denotes a natural number such that mm∗ is congruent to
1 mod 5, and λ is as in Lemma 13.10. Define i to be the composition

i : H1(∗, C × µ5)
µ+?−−−−→ H1(∗, C × µ5)

t∗−−−−→ H1(∗, E8).

Since t∗(x, y, z) = i(x, y, z−µ), Prop. 13.7 holds with t∗ replaced by i. Furthermore,
by Lemma 13.10 we have:

(13.12) rE8i(x, y, z) = rE8t∗(x, y, µ+ z) = mx .y .z.
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13.13. Theorem. Suppose that k is perfect. For x ∈ H1(k,Z/5Z) and y, z ∈
H1(k,µ5), we have: i(x, y, z) is zero in H1(k,E8) if and only if rE8i(x, y, z) is
zero.

Proof. The “only if” direction is a basic property of the Rost invariant, so we
suppose that rE8i(x, y, z) is zero, i.e., that x .y .z is zero in H3(k,µ⊗2

5 ). By the
Merkurjev-Suslin Theorem, z is a reduced norm from the cyclic algebra c∗(x, y), so
by Example 13.6.2 we have:

i(x, y, z) = t∗(x, y, z + µ) = t∗(x, y, µ) = i(x, y, 1).

Now consider the class i(x, u, 1) in H1(k(u), E8) for u an indeterminate. Note
that this class is split by the cyclic extension of degree 5 defined by x and it has
rE8i(x, u, 1) = 0 by (13.12). The proof of [Gil02a, 1.4] shows that — for every
completion K of k(u) with respect to a discrete valuation trivial on k — the image
of i(x, u, 1) in H1(K,E8) is the image of some element of H1(k,E8), i.e., i(x, u, 1)
is unramified on A1

k. (This argument uses Bruhat-Tits theory, in particular the
hypothesis that k is perfect.) We conclude that i(x, u, 1) ∈ H1(k(u), E8) is also
the image of a class in H1(k,E8). By specialization, the value of i(x, y, 1) does not
depend on y. In particular, we have:

i(x, y, 1) = i(x, 1, 1) = t∗(x, 1, µ) for y ∈ H1(k,µ5).

But c∗(x, 1) is the the matrix algebra M5(k), so t∗(x, 1, µ) is zero by Example
13.6.1. �

14. Mod 5 invariants of E8

We now derive consequences of the construction in the previous section. We
classify the invariants mod 5 of the split group E8 of that type, recover Chernousov’s
result on the kernel of these invariants, and give new examples of anisotropic groups
of type E8 over a broad class of fields. We continue the assumption that the
characteristic of k0 is 6= 5.

As in 13.4, the 5-torsion in H3(k,Q/Z(2)) is identified with H3(k,µ⊗2
5 ). Com-

posing the Rost invariant rE8 with the projection on 5-torsion, we find a normalized
invariant

h3 : H1(∗, E8)→ H3(∗,µ⊗2
5 ).

14.1. Theorem. Invnorm
k0

(E8,Z/5Z) is a free R5(k0)-module with basis h3.

Proof. By Cor. 3.5, we may assume that k0 is perfect and that it contains a primitive
5-th root of unity, which we use to identify µ5 with Z/5Z. Because i is surjective
at 5, the restriction map

(14.2) i∗ : Invnorm(E8,Z/5Z)→ Invnorm(Z/5Z× Z/5Z× Z/5Z,Z/5Z)

is an injection. By the same proof as for Z/2Z×Z/2Z×Z/2Z in S16.4, we see that
every normalized invariant of Z/5Z× Z/5Z× Z/5Z is of the form

(x, y, z) 7→ λx
.x+ λy

.y + λz
.z + λxy

.x .y + λxz
.x .z + λyz

.y .z + λxyz
.x .y .z

for uniquely determined λ’s in R5(k0). However, if x, y, or z is zero, then x .y .z is
zero, hence i(x, y, z) is zero in H1(k,E8) by Th. 13.13. It follows that the image of
(14.2) is contained in the span of the invariant

(x, y, z) 7→ λxyz
.x .y .z.
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But this R5(k0)-submodule of Invnorm(Z/5Z × Z/5Z × Z/5Z,Z/5Z) is also the
submodule spanned by the restriction of h3 by (13.12), so the theorem is proved. �

14.3. Open problem. (Reichstein-Youssin [RY00, p. 1047]) Let k0 be an al-
gebraically closed field of characteristic zero. Do there exist nonzero invariants
mapping H1(∗, E8) into H9(∗,Z/2Z) and H5(∗,Z/3Z)?

14.4. Comparison with groups of type F4. There are tantalizing similarities
between the behavior of groups of type F4 relative to the prime 3 and groups of
type E8 relative to the prime 5, see e.g. [Gil02a, 3.2] or compare Theorems 7.4 and
14.1. We now investigate these similarities. For E8, the morphism i from 13.11
plays the role of the first Tits construction of Albert algebras.

As groups of type F4 and E8 have trivial centers and only inner automorphisms,
the groups H1(k, F4) and H1(k,E8) are in bijection with isomorphism classes of
split groups of type F4 and E8 respectively. Using this bijection, it makes sense to
write g3(G) when G is of type F4 and g3 denotes the invariant from 7.4, as well as
to write h3(G) for G of type E8 and h3 as defined above.

14.5. Splitting by extensions prime to p. Every group G of type F4 over
k is of the form Aut(J) for some Albert k-algebra J . If g3(G) ∈ H3(k,µ⊗2

3 ) is
nonzero, then clearly G cannot be split by an extension of degree not divisible by
3. Conversely, if g3(G) is zero, then J is reduced, i.e., constructed from an octonion
algebra O and a 2-Pfister form. In that case, every quadratic extension of k that
splits O also splits J and G [Jac68, p. 369, Th. 2].

For groups of type E8, the analogous result is the following. It is due to
Chernousov, see [Che95].

Proposition. An algebraic group G of type E8 over k is split by an extension of k
of dimension not divisible by 5 if and only if h3(G) = 0.

Proof. As h3 is normalized, the “only if” direction is clear. So assume that h3(G)
is zero. After replacing k by an extension of dimension not divisible by 5, we may
assume that k is perfect and that G equals i(x, y, z) for i the map defined in 13.11
and some x, y, z. Since rE8i(x, y, z) equals h3(G), Th. 13.13 gives the claim. �

14.6. Anisotropy. For a group G = Aut(J) of type F4, one knows that G is
isotropic if and only if J has nonzero nilpotents [CG06, 9.1]. If g3(G) is nonzero,
then J has no zero divisors (i.e., is not reduced), see [Ros91] or [PR96], and in
particular G is anisotropic.

We now prove the corresponding result for E8.

Proposition. If a group G of type E8 has h3(G) 6= 0, then G is anisotropic.

Proof. If G is split, then clearly h3(G) = 0. So suppose that G is isotropic but
not split. According to the list of possible indexes in [Tit66, p. 60], the semisimple
anisotropic kernel A of G is a strongly inner group of type D4, D6, D7, E6, or E7.
That is, A is obtained by twisting a split simply connected group S of one of these
types by a 1-cocycle η ∈ Z1(k, S). Tits’s Witt-type Theorem [Spr98, 16.4.2] implies
that G is isomorphic to E8 twisted by η.
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The inclusion of S in E8 comes from the obvious inclusion of Dynkin diagrams,
so has Rost multiplier one. That is, the diagram

H1(k, S) rS−−−−→ H3(k,Q/Z(2))y ∥∥∥
H1(k,E8)

rE8−−−−→ H3(k,Q/Z(2))
commutes. However, for each of the possibilities for S, the Dynkin index is 2, 2, 2,
6, or 12 respectively by [Mer03, 15.4, 16.6, 16.7], so the mod 5 portion of rE8(η),
namely h3(G), is zero. �

14.7. Anisotropic groups split by extensions of degree p. If G = Aut(J)
is a group of type F4 over k where J is a first Tits construction that is not split,
then G is anisotropic over k but split by a cubic extension of k. That is, nonzero
symbols in H3(k,µ⊗2

3 ) give anisotropic groups of type F4 that are split by a cubic
extension.

The analogous statement for E8 is the following:

Corollary (of Prop. 14.6). If H3(k,µ⊗2
5 ) contains a nonzero symbol, then k sup-

ports an anisotropic group of type E8 that is split by a cyclic extension of dimension
5.

Proof. Fix x ∈ H1(k,Z/5Z) and y, z ∈ H1(k,µ5) such that x .y .z is not zero
in H3(k,µ⊗2

5 ). Then h3i(x, y, z) is not zero by (13.12), so the group obtained
by twisting E8 by i(x, y, z) is anisotropic by Prop. 14.6. It is split by the cyclic
extension of k of dimension 5 determined by x by Example 13.6. �

The interesting part of the corollary is that the groups are split by an extension
of degree 5, and not merely that the groups are anisotropic. Indeed, anisotropic
groups of type E8 abound. For example, a number field k supports an anisotropic
group G of type E8 if and only if k has a real embedding by the Hasse Principle
[PR94b, p. 286, Th. 6.6]. But the Hasse Principle also implies that G cannot be
split by an odd-degree extension of k.

As a concrete illustration of the corollary, fix a number field k. It supports a cyclic
division algebra A of dimension 52. (One can specify A by local data, see [Rei75,
§32].) For t an indeterminate, the symbol [A] .(t) is nonzero in H3(k(t),µ⊗2

5 ).

14.8. Failure of the analogy. If G = Aut(J) is a group of type F4 such that
the Rost invariant rF4(G) is 3-torsion (i.e., rF4(G) equals g3(G)), then it is a result
of Petersson and Racine that J is a first Tits construction [KMRT98, 40.5]. In
this case, the analogy between first Tits constructions and the map i fails. Gille
[Gil02b, App.] has given an example of a group G of type E8 over a particular field
k such that rE8(G) is zero but G is not split. By Th. 13.13, such a G cannot be in
the image of i.

14.9. Exercise (prime-to-5-closed fields). Suppose that k is a field such that every finite
separable extension of k has degree a power of 5. Prove that every group of type E8 over
k is split or anisotropic.

[The assumption on k is stronger than necessary; it suffices to assume that the group
H3(k, Z/6Z(2)) defined in [Mer03, App. A] is zero.]
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Part III. Spin groups

15. Surjectivities: Spinn for n ≤ 12

We continue the examples of internal Chevalley modules as defined in 8.11,
focusing on the case where G is Spinn for n ≤ 12. We assume throughout this
section that the characteristic of k0 is different from 2.

15.1. Example (Spin2n−1 ·Z ⊂ Spin2n). Taking G̃ to be the split simply connected
group of type Dn+1 and π to be α1, we find that G is the split simply connected
group Spin2n of type Dn, and V is the vector representation.

There is a G-invariant quadratic form on V and we fix an anisotropic vector
v. The stabilizer of v in SO(V ) is easily seen to be µ2.SO(v⊥) (using that V is
even-dimensional), hence the stabilizer of [v] in G is the compositum Z.Spin2n−1,
where the center Z of G meets Spin2n−1 in a copy of µ2 that is the kernel of the
vector representation. By dimension count, the orbit of [v] is the open orbit in
P(V ).

Theorem 8.11 gives that the induced map

(15.2) H1(k,Spin2n−1 ·Z)→ H1(k,Spin2n)

is surjective for every k/k0. But we can say a little more. Since Z is central, the
multiplication map Spin2n−1×Z → Spin2n−1 ·Z is a group homomorphism, and
composing this with (15.2) gives a map

(15.3) H1(k,Spin2n−1)×H1(k, Z)→ H1(k,Spin2n)

and this map is also surjective. Indeed, the intersection Spin2n−1 ∩Z is the center
of Spin2n−1, i.e., µ2, and there is an exact sequence

(15.4) 1 −−−−→ Spin2n−1 −−−−→ Spin2n−1 ·Z
q−−−−→ µ2 −−−−→ 1.

The center Z of Spin2n satisfies

Z ∼=

{
µ4 if n is odd,
µ2 × µ2 if n is even

and in either case the restriction of q to Z yields a surjection H1(k, Z)→ H1(k,µ2).
(For surjectivity in the n odd case, see 2.5.) A twisting argument combined with
the exactness of (15.4) now gives that the map

H1(k,Spin2n−1)×H1(k, Z)→ H1(k,Spin2n−1 ·Z)

is surjective, hence that (15.3) is surjective, as claimed.

Attempting to do the same for groups of type B (equivalently, odd-dimensional
quadratic forms) gives a stabilizer that is less attractive.

15.5. Example (G2 × µ2 ⊂ Spin7). Take G̃ to be the split group of type F4 and
π := α4. The subgroup G is the split simply connected group Spin7 of type B3 and
V is its spin representation.

Write G2 for the split group of that type. The irreducible representation W
with highest weight ω1 is 7-dimensional (in characteristic 6= 2 [GS88, p. 413]) and
supports a G2-invariant nonsingular quadratic form q. It gives an embedding of G2

in Spin7. We claim that N may be taken to be the direct product of G2 with the
center µ2 of Spin7.
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As a representation of G2, V is a direct sum of W and a 1-dimensional rep-
resentation, say k0v. As in Example 8.12, dimension considerations imply that
[v] belongs to the open L-orbit in P(V ) and G2 is the identity component of the
stabilizer N of [v].

As the kernel µ2 of the map Spin7 → SO(W ) clearly belongs to N , we may
compute N by determining its image in GL(W ). Since W is an irreducible repre-
sentation of G2 and every automorphism of G2 is inner, the normalizer of G2 in
GL(W ) consists of scalar matrices. It follows that N is contained in G2.µ2, hence
N equals G2 × µ2.

For a version of this example over the reals, see [Var01, Th. 3].
Combining this example with Th. 8.11 gives that every 8-dimensional form in I3

that represents 1 is the norm quadratic form of an octonion algebra, hence every
8-dimensional form in I3 is similar to a 3-Pfister form. This is a special case of
the general theorem: a 2n-dimensional form in In is similar to an n-Pfister form
[Lam05, X.5.6].

15.6. Exercise. Prove: If q is an 8-dimensional quadratic form over k such that C0(q) is
isomorphic to M8(K) for some quadratic étale k-algebra K, then q is similar to 〈1〉⊕〈α〉q0

for α ∈ k× such that K = k[x]/(x2 − α) and a uniquely determined 7-dimensional form
q0 such that 〈1〉 ⊕ q0 is a 3-Pfister form.

[This can be proved using standard quadratic form theory, or by combining Examples
15.1 and 15.5.]

In the examples above, we have used internal Chevalley modules as in 8.11 to
produce representations with open orbits. For the cases where G is Spin9 or Spin11,
such arguments are somewhat more complicated than the naive setup in 8.11. (See
[Rub04, 4.3(3), 5.1] for details.) Instead, we refer to Igusa’s paper [Igu70]; he proves
the existence of an open orbit using concrete computations in the Clifford algebra.

15.7. Example (Spin7×µ2 ⊂ Spin9). As in [Igu70, p. 1017], there are inclusions

Spin7 → Spin8 → Spin9

such that Spin9 has an open orbit in P(V ) for V its (16-dimensional) spin repre-
sentation, and Spin7 is the stabilizer of a v ∈ V whose image in P(V ) is in the open
orbit. Recall that there are three non-conjugate embeddings of Spin7 in Spin8,
distinguished by which copy of µ2 in the center of Spin8 they contain, cf. [Dyn57a,
Th. 6.3.1] or [Var01, Th. 5]. The µ2 in this Spin7 is not in the kernel of the map
Spin9 → SO9, i.e., is not the center of Spin9.

Write Z for the copy of µ2 that is the center of Spin9; the element −1 ∈ Z sends
v to −v. But v is an anisotropic vector for the Spin9-invariant quadratic form on
V , hence Z × Spin7 is the stabilizer of the line [v] in Spin9.

15.8. Example (G2 × µ4 ⊂ Spin10). Example 15.1 gives a surjection

H1(k,Spin9 ·µ4)→ H1(k,Spin10).

Example 15.7 gives an inclusion

Spin7×µ2 ⊂ Spin9

that induces a surjection on H1’s, i.e., the map

H1(k,Spin7×µ2)×H1(k,µ4)→ H1(k,Spin10)
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is surjective. The copy of µ2 here is the center of Spin9, which is contained in µ4.
So combining all the previous statements we obtain an inclusion

Spin7×µ4 ⊂ Spin10

that gives a surjection on H1’s.
In terms of quadratic forms, we view Spin10 as the spin group of the quadratic

form q := 〈1,−1〉 ⊕ 4〈1,−1〉, where Spin7 acts on the second summand. Therefore,
we have proved that the image of the map

(15.9) H1(k,Spin(q))→ H1(k,SO(q))

consists of isotropic quadratic forms. On the other hand, the image of (15.9) is
precisely the collection of 10-dimensional forms in I3, so we have recovered Pfis-
ter’s result—see [Pfi66, p. 123] or [Lam05, XII.2.8]—that such forms are isotropic.
(Pfister’s proof used quadratic form theory. Tits gave a characteristic-free proof
using algebraic groups in [Tit90, 4.4.1(ii)]. We remark that this theorem has been
generalized by Hoffmann, Vishik, and Karpenko: There are no anisotropic forms in
In of dimension d such that 2n < d < 2n + 2n−1 for n ≥ 2, see e.g. [EKM].)

We can find a subgroup of Spin10 that is smaller than Spin7×µ4 and yet still
gives a surjection onH1’s. As in the remarks at the end of Example 15.5, everything
in the image of (15.9) is in the image of

(15.10) H1(k,G2 × µ4)→ H1(k,Spin(q))→ H1(k,SO(q)),

where G2 is a subgroup of Spin7 in the natural way. Said differently, everything
in H1(k,Spin(q)) is in the H1(k,µ4)-orbit of something in the image of H1(k,G2),
i.e., the first map in (15.10) is surjective.

Instead of starting with Example 15.1, we could have viewed Spin10 as a subgroup
of E6, in which case the representation V given by 8.11 is a half-spin representation.
However, this gives an ugly stabilizer, see [Igu70, Prop. 2].

The following exercise gives an example of a useful surjection on cohomology.
15.11. Exercise. Recall that for every quadratic étale k0-algebra k1, there is a surjective
functor Quadn → Hermk1/k0,n that sends a quadratic form q to a k1/k0-hermitian form
qH (“hermitian forms can be diagonalized”). That is, in the commutative diagram

H1(∗, O(q)) −−−−−→ H1(∗, U(qH))x?? x??
H1(∗, SO(q)) −−−−−→ H1(∗, SU(qH)),

the top arrow is a surjection. Prove that the bottom arrow is also a surjection.

15.12. Example (SO(6)× µ4 ⊂ Spin12). Take G̃ to be the split simply connected
group of type E7 and π := α1. The subgroup G is the split simply connected group
Spin12 of type D6 and V is a half-spin representation. Speaking concretely, we view
Spin12 as the spin group of the symmetric bilinear form b on the space with basis
e1, e2, . . . , e12 such that

b(ei, ej) = b(e6+i, e6+j) = 0 and b(ei, e6+j) = δij (1 ≤ i, j ≤ 6)

Our b is the same bilinear form used by Igusa in [Igu70]; as he did, we write
eL := e1e2 · · · e6. The element v := 1 + eL ∈ V belongs to the open orbit in P(V ),
and the stabilizer of v in Spin12 is isomorphic to SL6 by [Igu70, Prop. 3] such that
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the copy of µ2 in the center of SL6 is the kernel of the (half-spin) representation
on V .

We identify SL6 with its image in Spin12. As SL6 does not meet the kernel of
the vector representation, it is identified with its image in SO(b). With respect to
our fixed basis, b is the form

b(x, y) = xt
(

0 I6
I6 0

)
y

and SL6 sits inside GL12 as the matrices of the form(
a 0
0 a−t

)
(a ∈ SL6)

We claim that the stabilizer N of [v] is isomorphic to SL6 o µ4. Fix a primitive
4-th root of unity ζ (in some algebraic closure of k0) and put

s := ζ (e1 + ζe7)(e2 + ζe8) · · · (e6 + ζe12).

This element belongs to Spin12 and satisfies s · v = ζv, and s2 is the element
−1 in the Clifford algebra, i.e., the nontrivial element in the kernel of the vector
representation of Spin12. As V supports a Spin12-invariant quartic form [Igu70,
Prop. 3], it follows that N is generated by SL6 and s, hence N is isomorphic to
SL6 o µ4.

We now compute the action of µ4 on SL6. Write χ : Spin(b) → SO(b) for the
vector representation of Spin12. Then

χ(s) =
(

0 ζ
−ζ 0

)
and χ(sas−1) = χ(a−t)

for a ∈ SL6. Hence sas−1 equals a−t in Spin12.
As in Th. 8.11 (or Th. 11.10) we have a surjection

H1(∗, SL6 o µ4)→ H1(∗,Spin12).

Write SO(6) for the special orthogonal group of the dot product on k6
0. It is a

subgroup of SL6 and is fixed elementwise by the map g 7→ g−t, so there is a natural
inclusion

SO(6)× µ4 ↪→ SL6 o µ4

that is the identity on µ4. The induced map

H1(k,SO(6)× µ4)→ H1(k, SL6 o µ4)

is a surjection for every extension k/k0. (To see that a given class in η ∈ H1(k, SL6o
µ4) is in the image, twist by the image of η in H1(k,µ4) and then apply Exercise
15.11.) It follows that the inclusion SO(6) × µ4 → Spin12 induces a surjection on
H1’s.

Concretely, this says that every 12-dimensional quadratic form in I3 is isomor-
phic to 〈1,−a〉q for some a ∈ k× and some 6-dimensional quadratic form q with
determinant 1, a result due to Pfister [Pfi66, pp. 123, 124]. Hoffmann has con-
jectured [Hof98, Conj. 2] a generalization of this statement for forms of dimension
2n + 2n−1 in In with n ≥ 4.

15.13. Example (SO(5)× µ4 ⊂ Spin11). We view Spin12 as the spin group of the
bilinear form b from Example 15.12. In this way, we see Spin11 as a subgroup of
Spin12 consisting of elements that fix the vector

ε1 := e6 − e12
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in the space underlying b. The image of Spin11 under the vector representation
χ : Spin12 → SO(b) is the special orthogonal group of b restricted to the subspace
with basis

ε0 := e6 + e12, e1, e2, . . . , e5, e7, e8, e9, . . . , e11.

(This is the description of Spin2n−1 ⊂ Spin2n used on pages 1000, 1001 of [Igu70].)
The spin representation of Spin11 is the restriction of the half-spin representation

V of Spin12 from the previous example, and v := 1 + eL is again a representation
of an open orbit in P(V ) [Igu70, Prop. 6]. The stabilizer N of [v] in Spin11 is the
intersection of Spin11 with SL6 o µ4.

We first compute the intersection of χ(Spin11) with χ(SL6 o µ4) in SO(b), i.e.,
we find the subgroup of χ(SL6 o µ4) that fixes ε1. The intersection is SL5 o µ2,
where SL5 is viewed as the subgroup of matrices

a
I1

a−t

I1

 (a ∈ SL5)

of GL12 and the nontrivial element of µ2 is

χ
((

ζ−1I5
ζ·I1

)
s
)

=


I5
−I1

I5
−I1

 .

It follows that the stabilizer N of [v] in Spin11 is SL5 o µ4. As in the previous
example, the composition

SO(5)× µ4 → SL5 o µ4 → Spin11

induces a surjection on H1’s.

16. Invariants of Spinn for n ≤ 10

We now determine the invariants of Spinn (for n ≤ 10) with values in Z/2Z. We
assume throughout this section that the field k0 has characteristic 6= 2.
16.1. Invariants of Spin8. Combining Examples 15.5 and 15.1, we find an
inclusion

i : G2 × Z → Spin8

such that the induced map i∗ on H1’s is surjective, where Z is the center of Spin8

and is isomorphic to µ2×µ2. As Spin8 is split, the image ofH1(k, Z) inH1(k,Spin8)
is zero. Applying Lemma 5.7, i∗ identifies Invnorm

k0
(Spin8,Z/2Z) with an R2(k0)-

submodule of the free module I with basis the invariants

e3 .1 .1, e3 .id .1, e3 .1 .id, e3 .id .id

of G2 × Z, where 1 and id are as defined in §2. Fix inequivalent 8-dimensional
representations χ1, χ2 : Spin8 → SO8. They restrict to characters χj : Z → µ2

which induce invariants χ
j
: H1(∗, Z)→ H1(∗,µ2). Clearly, the invariants

(16.2) e3, e3 .χ
1
, e3 .χ

2
, e3 .χ

1
.χ

2

are also an R2(k0)-basis for the module I. We prove that each of the invariants in
(16.2) is the restriction of an invariant of Spin8.
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Let (C, ζ) be a class in H1(k,G2×Z), where C is an octonion algebra. Abusing
notation, we write χj(ζ) for the corresponding element of k×/k×2. The composition

(16.3) H1(k,G2 × Z) −−−−→ H1(k,Spin8)
χj−−−−→ H1(k,SO8)

sends (C, ζ) to the quadratic form 〈χj(ζ)〉NC . Composing (16.3) with the Arason
invariant e3 defined in Example 1.2.3 sends (C, ζ) to e3(C). That is, the invariant
e3 from (16.2) is the restriction of an invariant of Spin8.

Of course, e3(C) is zero whenever 〈χj(ζ)〉NC is isotropic. Applying Prop. 9.2 to
the representations χ1 and χ2, we find that e3 .χ

1
and e3 .χ

2
are also restrictions

of invariants of Spin8. Finally, e3 .χ
1

is zero whenever 〈χ2(ζ)〉NC is isotropic, and
applying Prop. 9.2 again gives that e3 .χ

1
.χ

2
is the restriction of an invariant of

Spin8.
We have proved that Invnorm

k0
(Spin8,Z/2Z) is a free R2(k0)-module of rank 4

with generators of degree 3, 4, 4, 5.

16.4. Invariants of Spin7. By Example 15.5, there is a subgroup G2 × µ2 of
Spin7 such that the induced map

i∗ : H1(∗, G2 × µ2)→ H1(∗,Spin8)

is surjective. Combined with the inclusion Spin7 ↪→ Spin8 obtained by viewing
Spin7 as the identity component of the stabilizer of a vector of length 1, we have
maps

Invnorm
k0

(G2 × µ2,Z/2Z)←↩ Invnorm
k0

(Spin7,Z/2Z)← Invnorm
k0

(Spin8,Z/2Z).

As in 16.1, the image in Invnorm
k0

(G2 × µ2,Z/2Z) is contained in the free R2(k0)-
module I with basis e3, e3 .id and the invariant e3 is the restriction of the Arason
invariant on SO8. Similarly, the copy of µ2 in Spin7 is the kernel of a representation
Spin8 → SO8, say χ2. The invariant e3 .χ

1
of Spin8 restricts to the invariant e3 .id

of G2 ×µ2. This proves that Invnorm
k0

(Spin7,Z/2Z) is a free R2(k0)-module of rank
2 with basis elements of degrees 3 and 4.

16.5. Invariants of Spin10. From Example 15.8 we have an inclusion i : G2 ×
µ4 → Spin10 such that the induced map i∗ on H1’s is surjective. For a Cayley
k-algebra C and α ∈ k×/k×4, define

a3(C,α) = e3(C) and a4(C,α) = e3(C) .s(α)

in Invnorm
k0

(G2 × µ4,Z/2Z). (The invariant s is defined in 2.5.) As for Spin8, i∗

identifies Invnorm
k0

(Spin10,Z/2Z) with a submodule of the free R2(k0)-module with
basis a3, a4. The image of a pair (C,α) in H1(k,SO10) corresponds to the quadratic
form 〈1,−1〉⊕〈α〉NC , so a3 and a4 are obviously restrictions of invariants of Spin10.

16.6. Invariants of Spin9. We view Spin8 ⊂ Spin9 ⊂ Spin10 as the spin groups
of the quadratic forms

4〈1,−1〉, 〈−1〉 ⊕ 4〈1,−1〉, and 〈1,−1〉 ⊕ 4〈1,−1〉
in the obvious manner. Combining Examples 15.5 and 15.7 and putting Z =
µ2 × µ2, we find an inclusion of G2 × Z in Spin9 that gives a surjection

H1(∗, G2 × Z)→ H1(∗,Spin9)

and identifies Invnorm
k0

(Spin9,Z/2Z) with a submodule of Invnorm
k0

(G2 × Z,Z/2Z),
contained in the free R2(k0)-module with basis (16.2).
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For the sake of fixing notation, suppose that the restriction of the vector repre-
sentation of Spin9 to Spin8 is the direct sum of χ1 (as opposed to χ2 or χ3) and a
1-dimensional trivial representation. The image of a pair (C, ζ) ∈ H1(k,G2 × Z)
under the maps

H1(k,G2 × Z)→ H1(k,Spin8)→ H1(k,Spin10)→ H1(k,SO10)

is 〈1,−1〉 ⊕ 〈χ1(ζ)〉NC . Thus the invariants a3 and a4 of Example 16.5 restrict to
invariants e3 and e3 .χ

1
of G2 × Z from (16.2).

We can also view Spin9 as the subgroup of the automorphism group of the
split Albert algebra J consisting of the algebra automorphisms that fix a primitive
idempotent in J [Jac68, §IX.3]. Restricting J to a representation of Spin8, we find
a direct sum of a 3-dimensional trivial representation and the three inequivalent
irreps χ1, χ2, χ3 : Spin8 → SO8. The invariant

f5 : H1(∗,Aut(J))→ H5(∗,Z/2Z)

defined in §22 of S restricts to be nonzero on G2 ×Z. If −1 is a square in k0, then
its restriction is the invariant e3 .χ

1
.χ

2
on G2 × Z from (16.2). (The assumption

on −1 is here only for the convenience of ignoring various factors of −1.)
Finally we claim that the invariant λ .e3 .χ

2
of G2 × Z, for every nonzero λ ∈

R2(k0), is not the restriction of an invariant of Spin9. Let k be the extension of
k0 obtained by adjoining indeterminates x, y, z, w, and write C for the Cayley k-
algebra with e3(C) equal to (x) .(y) .(z). Fix a ζ ∈ H1(k, Z) such that χ1(ζ) = (1)
and χ2(ζ) = (w). The invariant e3 .χ

2
takes different values on (C, 1) and (C, ζ),

namely 0 and λ .(x) .(y) .(z) .(w). However, the two classes have the same image in
H1(k,SO9), the form 〈−1〉 ⊕NC . As this form is isotropic, its spinor norm map is
onto and the fiber of

H1(k,Spin9)→ H1(k,SO9)

over 〈−1〉 ⊕ NC is a singleton. That is, (C, 1) and (C,w) have the same image in
H1(k,Spin9), proving the claim.

In the case where −1 is a square in k0, this determines Invnorm
k0

(Spin9,Z/2Z): it
is free of rank 3 with basis elements of degree 3, 4, 5.

17. Divided squares in the Grothendieck-Witt ring

In this section, we define a function Pn : In → I2n in the Witt ring that will be
used to construct invariants of Spinn for n = 11, 12, 14. It can also be used to give
bounds on the symbol length of a class in Hd(k,Z/2Z), cf. Example A.3.

Recall the Grothendieck-Witt ring Ŵ (denoted WGr in S) over a field k of
characteristic 6= 2: it is the ring of formal differences of (nondegenerate) quadratic
forms over k. It is a λ-ring in the sense of Grothendieck, see e.g. S27.1. For a
quadratic form q = 〈α1, α2, . . . , αn〉 and 0 < p ≤ n, we have

λpq = ⊕i1<i2<···<ip〈αi1αi2 · · ·αip〉.

In particular, λ0q = 〈1〉 and λ1q = q.

17.1. Example. Writing H for a hyperbolic plane, we have:

λ2(nH) ∼= (n2 − n)H⊕ n〈−1〉.

17.2. Exercise. Prove: The Killing form on the Lie algebra so(q) is 〈−2〉〈dim q − 2〉λ2q.
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We will only make use of λ2. Here are a few useful identities in Ŵ , where x and
y denote quadratic forms:

λ2(x+ y) = λ2x+ xy + λ2y(17.3)

λ2(〈c〉x) = λ2x(17.4)

λ2(x− y) = λ2x− y(x− y)− λ2y = λ2x− xy + dim y + λ2y(17.5)

λ2(xy) = x2λ2y + y2λ2x− 2(λ2x)(λ2y)(17.6)

17.7. Example. For a quadratic form z and a natural number n, the image of
λ2(z − nH) in the Witt ring is n + λ2z, as can be seen by combining (17.5) and
Example 17.1.

17.8. Lemma. For every n-Pfister form φ with n ≥ 1, we have: λ2φ ∼= 2n−1φ′.

Proof. By induction on n. As λ2〈1,−α〉 is isomorphic to 〈−α〉, the case n = 1
holds. For φ an n-Pfister form with n > 1, we may writeg φ = 〈〈α〉〉ψ for some
α ∈ k× and (n− 1)-Pfister ψ. In Ŵ , we have

λ2φ = 〈〈α〉〉2λ2ψ + 〈−α〉ψ2 − 2〈−α〉λ2ψ

by (17.6). In the Witt ring, 〈〈α〉〉2 − 2〈−α〉 equals 2, and

λ2φ = 2λ2ψ + 〈−α〉ψ2,

which by the induction hypothesis is

2n−1ψ′ + 〈−α〉ψ2 = 2n−1(ψ′ + 〈−α〉ψ) = 2n−1(〈α〉ψ)′.

Since λ2φ equals 2n−1φ′ in the Witt ring and both have dimension 2n−1(2n − 1),
the conclusion follows. �

For q an even-dimensional quadratic form, there is a canonical lift q̂ to the
Grothendieck-Witt ring Ŵ , namely

(17.9) q̂ := q − rH, where dim q = 2r.

Note that q̂ ∈ Ŵ only depends on q up to Witt-equivalence. (This is just a re-
statement of the fact that the quotient map Ŵ → W restricts to an isomorphism
Î

∼−→ I, where Î is ideal of zero-dimensional virtual forms; q̂ is the inverse image of
q under this isomorphism.) For n ≥ 1, we define

Pn : I →W via Pn(x) := λ2x̂− 2n−1x,

where we conflate λ2x̂ with its image in the Witt ring. We remark that the de-
vice of replacing x with x̂ is necessary, as λ2 is not well-behaved with respect to
Witt-equivalence. (For example, the dimensions of λ2H and λ2(2H) are not even
congruent mod 2.)

Using Example 17.7, it is easy to check that

(17.10) Pn(x+ y) = Pn(x) + xy + Pn(y)

and

(17.11) Pn(〈c〉x) = Pn(x) + 2n−1〈〈c〉〉x
hold, for x, y ∈ I and c ∈ k×.

gHere and below we write 〈〈α1, . . . , αn〉〉 for the n-Pfister form ⊗n
i=1〈1,−αi〉.
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17.12. Proposition. For n ≥ 1:
(1) Pn is zero on n-Pfister forms.
(2) Pn restricts to a map In → I2n.

If n ≥ 2 and −1 is a square in k:
(3) Pn induces a map In/In+1 → I2n/I2n+1.
(4) For ci ∈ k× and n-Pfister forms φi, we have:

Pn

(∑
i
〈ci〉φi

)
=
∑
i<j

〈cicj〉φiφj

Proof. Combining Example 17.7 and Lemma 17.8 gives (1). For (2), we use that
every element of In is a sum of elements of the form 〈c〉φ, where φ is an n-Pfister
form and c is in k×. By (17.10) and (17.11), it suffices to prove that Pn(φ) belongs
to I2n, which is true by (1).

Both (3) and (4) rest on the fact that 2n−1 = 0 in the Witt ring because n is at
least 2 and −1 is a square. We prove (3). Let x, y ∈ In be such that z := x − y
belongs to In+1. Then ẑ = x̂− ŷ in Ŵ , and we have

Pn+1(z) = λ2x̂− λ2ŷ − yz − 2nz

by (17.5). So:
Pn(x)− Pn(y) = Pn+1(z) + yz + 2n−1z.

All three summands on the right belong to I2n+1. For the first term, this is (2).
For the last term, it is because 2n−1 = 0.

As for (4), under our special hypotheses, Equation (17.11) takes the nice form:

Pn(〈c〉x) = Pn(x).

Applying (17.10) and (1) gives (4). �

For the remainder of this section, we maintain the hypotheses that −1 is a square
in k0 and n is at least 2. Applying the map e2n from Example 1.2.3 to Prop. 17.12.4
gives:

(17.13) e2n

(
Pn

(∑
i
〈ci〉φi

))
=
∑
i<j

en(φi)en(φj).

17.14. Example (Invariants of SO(6)). We write the invariants of SO(6) (the
special orthogonal group of the dot product) in terms of the maps en and Pn. By
S20.6, the normalized invariants of SO(6) with values in Z/2Z form a free R2(k0)-
module with basis w2, w4, b, where b satisfies

b(〈α1, α2, . . . , α5, α6〉) = (α1) .(α2) · · · (α5).

(In S20.1, this b was denoted “b1”, where 1 is the nonzero element of H0(k0,Z/2Z),
i.e., the identity element of R2(k0).)

An element of H1(k,SO(6)) corresponds to a 6-dimensional form q in I2. Such a
form is isomorphic to 〈β〉(φ′1⊕〈−1〉φ′2) for some β ∈ k× and 2-Pfister forms φ1, φ2.
Direct computation gives

w2(q) = e2(q),

w4(q) = w2(〈β〉φ′1) .w2(〈β〉φ′2) = e2(φ1) .e2(φ2) = e4(P2(q))

by (17.13), and
b(q) = (β) .w4(q).
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17.15. Prop. 17.12.4 makes Pn look like a “divided square”, meaning a squaring
operation from a divided power structure. We remark that—still assuming that
−1 is a square—there are also divided square operations on Milnor K-theory PM

n :
KM

n /2→ KM
2n/2, see [Kah00, App. A]. For n ≥ 2, the diagram

KM
n /2

P M
n−−−−→ KM

2n/2y y
In/In+1 Pn−−−−→ I2n/I2n+1

commutes, where the vertical arrows are the natural surjections that send the sym-
bol {α1, α2, . . . , αn} to the class of the Pfister form 〈〈α1, α2, . . . , αn〉〉.

18. Invariants of Spin11 and Spin12

We now determine the invariants of Spin12 and Spin11 with values in Z/2Z. We
assume throughout this section that the field k0 has characteristic 6= 2. We begin
with some results on quadratic forms.

18.1. Lemma. Let x, y be quadratic forms of the same dimension and fix c ∈ k×.
if 〈〈c〉〉(x− y) is zero in the Witt ring, then 〈〈c〉〉λ2(x− y) ∈ Ŵ maps to zero in the
Witt ring.

Proof. Replacing x, y with x⊕〈−1〉y, (dim y)H respectively does not change 〈〈c〉〉(x−
y) nor the image of λ2(x − y) in the Witt ring. Therefore, we may assume that x
has even dimension 2r and y = rH.

The hypothesis on 〈〈c〉〉(x− y) says that the quadratic form 〈〈c〉〉x is hyperbolic,
so by [EL73, 2.2], x is isomorphic to a sum ⊕r

i=1〈ci〉〈〈ni〉〉 such that ci ∈ k× and ni

is a norm from k(
√
c). Then by Example (17.7) and (17.3), 〈〈c〉〉λ2(x − rH) maps

to

(18.2) r〈〈c〉〉+ 〈〈c〉〉
r∑

i=1

〈−ni〉+
∑

1≤i<j≤r

〈〈c, ni, nj〉〉 in W .

Because the ni’s are norms, the middle term equals −r〈〈c〉〉 and each of the forms
〈〈c, ni, nj〉〉 is hyperbolic. That is, (18.2) is zero. �

18.3. Proposition. For x ∈ I2, the class of 〈〈c〉〉λ2x̂ in the Witt ring depends only
on the isomorphism class of 〈〈c〉〉x (and not on c or x).

(See (17.9) for a definition of x̂.)

Proof. Write dimx = 2r and suppose that 〈〈c〉〉x is isomorphic to 〈〈d〉〉y for some d ∈
k× and 2r-dimensional form y. We must show that 〈〈c〉〉λ2(x− rH) and 〈〈d〉〉λ2(y−
rH) have the same image in the Witt ring. Let τ be the 2r-dimensional form
provided by Cor. B.5 such that

〈〈c〉〉x = 〈〈c〉〉τ = 〈〈d〉〉τ = 〈〈d〉〉y.

We first prove

(18.4) 〈〈c〉〉λ2(x− rH) = 〈〈c〉〉λ2(τ − rH) in W .
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In view of Example 17.7, it suffices to prove that 〈〈c〉〉(λ2x−λ2τ) is zero in the Witt
ring. Applying (17.5), we find:

(18.5) 〈〈c〉〉(λ2x− λ2τ) = 〈〈c〉〉(λ2(x− τ) + (x− τ)τ) in Ŵ .

Since 〈〈c〉〉x and 〈〈c〉〉τ are isomorphic, 〈〈c〉〉(x − τ) is zero in the Witt ring, and
Lemma 18.1 gives that 〈〈c〉〉λ2(x− τ) is hyperbolic. We conclude that (18.5) is zero
and hence that (18.4) holds. By symmetry, we also have (18.4) where c and x are
replaced by d and y.

It remains to prove

(18.6) 〈〈c〉〉λ2(τ − rH) = 〈〈d〉〉λ2(τ − rH) in W .

Since
〈〈c〉〉 − 〈〈d〉〉 = 〈−c, d〉 = 〈d〉〈〈cd〉〉 in W

and 〈〈c〉〉τ is isomorphic to 〈〈d〉〉τ , the form 〈〈cd〉〉τ is hyperbolic. Applying Lemma
18.1, we find that 〈〈cd〉〉λ2(τ−rH) is zero in the Witt ring. That is, (18.6) holds. �

From here until the end of this section, we assume that −1 is a square in k0. We
now construct invariants a5 and a6 of Spin12 as in Rost’s paper [Ros99c].
18.7. Definition of a5. For η ∈ H1(k,Spin12), Example 15.12 says that the
corresponding quadratic form qη ∈ H1(k,SO12) is isomorphic to 〈〈c〉〉x for some
c ∈ k× and 6-dimensional form x of determinant 1. As −1 is a square in k, the
form x belongs to I2 and 〈〈c〉〉P2(x) is in I5. We define a5(η) ∈ H5(k,Z/2Z) to
be e5(〈〈c〉〉P2(x)), equivalently, (c) .e4(P2(x)). Prop. 18.3 shows that a6(η) is well
defined: As −1 is a square in k, we have 2 = 0 in the Witt ring, so P2(x) =
λ2(x− 3H).

18.8. Example. The invariant a5 is not zero. Indeed, let k be the field obtained
by adjoining indeterminates u,w and v1, v2, v3, v4 to k0. The 12-dimensional form
q := 〈w〉〈〈u〉〉(〈〈v1, v2〉〉 − 〈〈v3, v4〉〉) belongs to I3, hence it is of the form qη for some
class η ∈ H1(k,Spin12). By (17.13), we find:

a5(η) = (u) .(v1) .(v2) .(v3) .(v4).

18.9. Lemma. If qη is isotropic, then a5(η) is zero.

Proof. If qη is isotropic, then it is Witt-equivalent to a 10-dimensional form in I3,
hence by Example 15.8 it is isomorphic to 〈d〉〈〈c〉〉φ + 2H for some c, d ∈ k× and
2-Pfister form φ, equivalently, is isomorphic to 〈〈c〉〉(〈d〉φ +H). As −1 is a square
in k0, we have:

a5(η) = (c) .e4(P2(〈d〉φ)) = 0. �

18.10. Definition of a6. Prop. 9.2 applied to a5 gives an invariant a6 of Spin12

defined by setting
a6(η) = a5(η) .(α),

where α is a nonzero element of k× represented by qη.
In Example 18.8, the form qη represents wv3, so

a6(η) = a5(η) .(wv3) = (u) .(v1) .(v2) .(v3) .(v4) .(w).

In particular, a6 is not the zero invariant.

18.11. Proposition. (
√
−1 ∈ k0) Invnorm

k0
(Spin12,Z/2Z) is a free R2(k0)-module

with basis e3 (the Rost invariant), a5, a6.
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Proof. Recall from S20.6 or Example 17.14 that Invnorm
k0

(SO(6),Z/2Z) is a free
R2(k0)-module with basis w2, w4, b. By Example 15.12, the inclusion SO(6)×µ4 →
Spin12 induces a surjection on H1’s. The image of SO(6) in Spin12 sits in a copy of
SL6, so H1(∗,SO(6))→ H1(∗,Spin12) is the zero map. Applying Lemma 5.7 with
G = µ4 and G′ = SO(6), we find that restricting invariants of Spin12 to SO(6)×µ4

identifies Invnorm
k0

(Spin12,Z/2Z) with a submodule of the free R2(k0)-module with
basis

1 .s, w2
.s, w4

.s, b .s.

The last three are invariants of Spin12 by Example 17.14, e.g., b .s is a restriction
of a6. However, λ .1 .s is not such a restriction for any nonzero λ ∈ R2(k0). To
see this, one argues as in 16.6, comparing the images of the trivial class and an
indeterminate (t) ∈ H1(k0(t),µ4) in H1(k0(t),Spin9). �

18.12. Invariants of Spin11. There are two invariants of Spin11 with values in
Z/2Z that we can find without doing any work. As always, one has the Rost/Arason
invariant e3 : H1(∗,Spin11) → H3(∗,Z/2Z). On the other hand, the inclusion of
Spin11 in Spin12 from Example 15.13 leads to an invariant of Spin11 of degree 5 via
the composition

H1(∗,Spin11)→ H1(∗,Spin12)
a5−→ H5(∗,Z/2Z).

We denote this invariant also by a5. (Note that restricting a6 to Spin11 gives the
zero invariant. Indeed, the image of H1(∗,Spin11) in H1(∗,SO12) consists of those
forms that represent 1.)

Proposition. (
√
−1 ∈ k0) Invnorm

k0
(Spin12,Z/2Z) is a free R2(k0)-module with

basis e3, a5.

Proof. As in the proof of Prop. 18.11, we restrict the invariants of Spin11 to the
subgroup SO(5) × µ4. Recall from S19.1 that Invk0(SO(5),Z/2Z) is a free Z/2Z-
module with basis 1, w2, w4. Therefore, the set of normalized invariants of Spin11

with values in Z/2Z is identified with a subspace of the free R2(k0)-module with
basis

1 .s, w2
.s, w4

.s.

We have a commutative diagram

H1(k,SO(5))×H1(k,µ4) −−−−→ H1(k,SO(6))×H1(k,µ4)y y
H1(k,Spin11) −−−−→ H1(k,Spin12)

The inclusion SO(5)→ SO(6) is given by g 7→
(

g 0
0 1

)
, so the arrow H1(k,SO(5))→

H1(k,SO(6)) sends a 5-dimensional quadratic form q to q ⊕ 〈1〉. The restriction of
wj : H1(k,SO(6))→ Hj(k,Z/2Z) to SO(5) is

wj(q ⊕ 〈1〉) = (1) .wj−1(q) + wj(q) = wj(q),

so the invariants e3 and a5 of Spin12 restrict to w2
.s and w4

.s on H1(k,SO(5)×µ4).
As in the proof of Prop. 18.11, one checks that λ .1 .s is not the restriction of an

invariant of Spin11 for any nonzero λ ∈ R2(k0). �
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19. Surjectivities: Spin14

Throughout this section, we assume that the field k0 has characteristic different
from 2. We fix a primitive 4-th root of unity i in a separable closure of k0.

19.1. Example ((G2 × G2) o µ8 ⊂ Spin14). Returning to the methods of 8.11,
we take G̃ to be the split group of type E8 and we omit the root π := α1. The
semisimple subgroup G is simply connected of type D7—i.e., it is isomorphic to
Spin14—and the representation V is a half-spin representation.

Fix a 7-dimensional quadratic form q such that 〈1〉 ⊕ q is hyperbolic. We view
Spin14 as the spin group of the quadratic form q⊕−q, which gives a homomorphism
Spin(q) × Spin(−q) → Spin14. We may identify the vector spaces underlying the
form q and underlying the 7-dimensional fundamental representation of G2 (which
we call the standard representation of G2) so that q is G2-invariant. (Note that
the standard representation of G2 is irreducible since the characteristic is different
from 2 [GS88, p. 413].) This gives an embedding of G2 in Spin(q), hence of G2×G2

in Spin14.
We now argue as in Example 8.12. The restriction of the representation V to

Spin(q)×Spin(−q) is the tensor product of the (8-dimensional) spin representations
of Spin(q) and Spin(−q). As in Example 15.5, each of these restricts to be a
direct sum of the 7-dimensional irreducible representation ofG2 and a 1-dimensional
trivial representation. We take v to be a tensor product of nonzero vectors that are
fixed by the two G2’s.

To see that G2 × G2 is not contained in a proper parabolic subgroup of L, we
note that G2×G2 has no faithful representations of dimension < 14 [KL90, 5.4.13],
so it cannot be contained in a group of type Dn for n < 7 or An for n < 13. (Popov
[Pop80, p. 225, Prop. 11] gives a proof that G2×G2 is the identity component of N
using concrete computations in the half-spin representation in the style of Igusa’s
paper [Igu70].)

We conclude that G2 × G2 is the identity component of the stabilizer N of [v]
in Spin14. Rather than computing the full stabilizer N , we compute instead the
normalizer of G2 ×G2 in Spin14, which contains N .

Write W for the 14-dimensional vector space underlying q ⊕ −q. The image of
G2 ×G2 in GL(W ) has normalizer

(19.2) ((G2.Gm)× (G2.Gm)) o Z/2Z,
where the nonidentity element in Z/2Z is the matrix ( 0 1

1 0 ). The normalizer of
G2×G2 in SO(W ) is the intersection of (19.2) with SO(W ), namely (G2×G2)oµ4,
where a primitive 4-th root of unity i in µ4 is identified with the matrix(

0 i
i 0

)
∈ SO(W ).

Fix orthogonal bases {xj} and {yj} of the two standard representation of G2 in
W such that q(xj) = −q(yj) = ±1 for all j. The element

s :=
7∏

j=1

1 + ixjyj√
2

in the even Clifford algebra belongs to Spin14, has order 8 since s2 =
∏
ixjyj ,

and maps to ( 0 i
i 0 ) in SO(W ). Therefore, the normalizer of G2 × G2 in Spin14 is

(G2 ×G2) o µ8, where the copy of µ8 is generated by s.
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Th. 8.11 says that the inclusion

(G2 ×G2) o µ8 → Spin14

induces a surjection on H1’s.

We now interpret this result in terms of quadratic forms. Fix a quadratic exten-
sion K := k(

√
d) of k. The trace tr∗(q) of a quadratic form q over K is a quadratic

form over k of dimension 2 dim q. It is defined by viewing the K-vector space V
underlying q as a vector space over k and taking the bilinear form

V × V bilinearization of q−−−−−−−−−−−−→ K
trK/k−−−→ k.

In other words, tr∗(q) is the Scharlau transfer of q via the linear map trK/k, see
e.g. [Lam05, §VII.1].

The goal of this section is to prove:

19.3. Theorem. (Rost [Ros99b]) Every 14-dimensional form in I3k is of (at least)
one of the following two types:

(1) 〈a〉(φ′1 − φ′2) for some a ∈ k× and φ1, φ2 3-Pfister forms over k.
(2) tr∗(

√
dφ′) for some nonsquare d ∈ k× and φ a 3-Pfister form over k(

√
d).

[Here we have written ′ for the pure part of a Pfister form, so for example φ
equals 〈1〉 ⊕ φ′ in (2).]

We remark that a 14-dimensional form in I3k is as in (1) if and only if it contains
a subform similar to a 2-Pfister form, see [HT98, 2.3] or [IK00, 17.2]. The two papers
just cited give concrete examples of 14-dimensional forms that cannot be written
as in (1), see [HT98, p. 211] and [IK00, 17.3]. Izhboldin and Karpenko applied
Th. 19.3 to give a concrete description of 8-dimensional forms in I2k whose Clifford
algebra has index 4, see [IK00, 16.10].
19.4. First, we compute that trace of a 1-dimensional form. Directly from the
definition, we find:

(19.5) For ` ∈ K×, the 2-dimensional quadratic form tr∗(〈
√
d`〉) repre-

sents trK/k(
√
d`) ∈ k and has determinant −NK/k(`) ∈ k×/k×2.

That is,

tr∗(〈
√
d`〉) ∼=

{
hyperbolic plane if ` ∈ k×, i.e., if trK/k(

√
d`) = 0;

〈trK/k(
√
d`)〉〈1,−NK/k(`)〉 otherwise.

To see that this isomorphism holds, it suffices by [Lam05, I.5.1] to observe that the
forms on either side of the isomorphism have the same determinant and represent
trK/k(

√
d`), which follows from (19.5).

Next we compute a toy example.

19.6. Example. Write V for the vector space k2 endowed with the quadratic form
q : ( x

y ) 7→ x2 − y2. Map the group (µ2 × µ2) o µ4 into the orthogonal group O(q)
of q by sending

(ε1, ε2, ir) 7→
(
ε1 0
0 ε2

)(
0 i
i 0

)r

for ε1, ε2 ∈ {±1} and r ∈ Z. The set H1(k,O(q)) classifies 2-dimensional quadratic
forms over k and we ask: Given a class η ∈ H1(k, (µ2 × µ2) o µ4), what is the
2-dimensional quadratic form qη deduced from it?
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The quotient map (µ2 × µ2) o µ4 → µ4 sends η to an element η ∈ H1(k,µ4),
i.e., some dk×4 ∈ k×/k×4.

If d is a square in k, then η comes from H1(k,µ2 ×µ2 ×µ2), i.e., η corresponds
to a triple (α, β, γ) ∈ (k×/k×2)×3. The 2-dimensional k-subspace of V ⊗k ksep fixed
by ησσ for all σ in the Galois group of k is spanned by( √

αγ
0

)
and

(
0√
βγ

)
.

The quadratic form qη is the restriction of q to this subspace, i.e., qη is isomorphic
to 〈γ〉〈α,−β〉.

Suppose now that d is not a square in k. Fix a 4-th root δ of d such that
ησσ(δ) = δ. Note that

ησσ(δ3) =

{
δ3 if σ is the identity on K
−δ3 otherwise.

If we twist µ2×µ2 by η, we find the transfer RK/k(µ2) for K := k(
√
d). Moreover,

η is in the image of the map

K×/K×2 = H1(k,RK/k(µ2))
∼−→ H1(k, (µ2 × µ2)η)→ H1(k, (µ2 × µ2) o µ4),

i.e., η is the image of a class `K×2 ∈ K×/K×2. Write ` for the image of ` under
the nonidentity k-automorphism of K and fix square roots

√
`,
√
` ∈ ksep. Then η

is the image of the 1-cocycle

σ 7→

{
(σ(
√
`)−1
√
`, σ(
√
`)−1
√
`) if σ is the identity on K

(σ(
√
`)−1
√
`, σ(
√
`)−1
√
`) otherwise

with values in (µ2 × µ2)η. By considering separately the cases where σ is and is
not the identity on K, it is easy to check that ησσ fixes the vectors(

δ
√
`

δ
√
`

)
and

(
δ3
√
`

−δ3
√
`

)
in V ⊗ ksep; the quadratic form qη is the restriction of q to the subspace they span.
The value of q on the first vector is

δ2(`− `) = trK/k(
√
d`).

The determinant of the restriction qη of q to this subspace is

det
(
δ2(`− `) δ4(`+ `)
δ4(`+ `) δ6(`− `)

)
= −4d2NK/k(`).

As in 19.4, qη is tr∗(〈
√
d`〉).

Sketch of proof of Th. 19.3. By Example 19.1, it suffices to describe the quadratic
form deduced from a (G2×G2)oµ4-torsor, as that is the image of (G2×G2)oµ8 in
SO(W ). Reasoning as in Example 8.1, one can reduce the descent computation to
the case of a 2-dimensional quadratic form. This computation was done in Example
19.6. �



60 SKIP GARIBALDI

20. Invariants of Spin14

In this section, we exhibit some invariants of Spin14 with Z/2Z coefficients using
results from §19. The results here are all derived from [Ros99c]. We write k for a
fixed base field of characteristic 6= 2.
20.1. We define an invariant a6 of Spin14 to be the composition

a6 : H1(k,Spin14)→ I3 P3−→ I6 e6−→ H6(k,Z/2Z),

where P3 and e6 are the maps from §17 and Example 1.2.3 respectively.
We argue that a6 is not the zero invariant. For a given base field k, define k1 to

be the field obtained by adjoining 6 indeterminates trs for r = 1, 2 and s = 1, 2, 3,
and—if it is not already in k—a square root of −1. Put φr := 〈〈tr1, tr2, tr3〉〉 and
take η ∈ H1(k1,Spin14) to have corresponding quadratic form qη = φ′1 − φ′2. By
(17.13), we have:

a6(η) = e3(φ1) .e3(φ2) =
∏
r,s

(trs) 6= 0.

20.2. Proposition. Fix η ∈ H1(k,Spin14) and write qη for the quadratic form
deduced from it. Suppose that −1 is a square in k.

(1) If qη is isotropic, then a6(η) is zero.
(2) If 3 is a square in k and k has characteristic 6= 3 (and 6= 2), then a6(η) is

a symbol.

Proof. (1): If qη is isotropic, then it is Witt-equivalent to a 12-dimensional form in
I3. By Example 15.12, qη is isomorphic to 〈〈c〉〉x + H for some c ∈ k× and some
6-dimensional form x of determinant 1. As −1 is a square in k, x is an Albert form,
i.e., x = 〈d〉(ψ′1−ψ′2) for 2-Pfister forms ψ1, ψ2 and some d ∈ k× [Lam05, XII.2.13].
In the Witt ring,

qη = 〈d〉(〈〈c〉〉ψ1 − 〈〈c〉〉ψ2).

Equation (17.13) gives:

a6(η) = (c) .(c) .e2(ψ1) .e2(ψ2).

As −1 is a square in k, (c) .(c) is zero, proving (1).
We now prove (2). Computing in the Witt ring, P3(qη) is 7 + λ2qη by Example

17.7, which equals λ2qη + 〈1〉.
Now the Lie algebra so(qη) contains a subalgebra of type G2×G2 or the transfer

of a G2 from a quadratic extension. The Killing form on a Lie algebra of type
G2 associated with a 3-Pfister form ψ is 〈−1,−3〉ψ′—see e.g. S27.21—so it is is
hyperbolic, and contains a 7-dimensional totally isotropic subspace. Hence the
Killing form 〈−24〉λ2q (see Exercise 17.2) contains a totally isotropic subspace of
dimension at least 14. By the previous paragraph, the class of P3(qη) in the Witt
ring is represented by an anisotropic quadratic form of dimension at most

dimλ2qη + 1− 28 = 64.

But P3(qη) belongs to I6, so it is similar to a 6-Pfister form [Lam05, X.5.6]. �

In the proof of (2) above, we assumed that the characteristic was not 3 so that
the Killing form of so(qη) was not identically zero.
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20.3. Suppose now that −1 is a square in k. We define an invariant

a7 : H1(∗,Spin14)→ H7(∗,Z/2Z) via a7(η) := a6(η) .(α)

where α is any nonzero element of k represented by qη. By Propositions 20.2.1 and
9.2, this is a well-defined invariant of Spin14.

20.4. Example. (Assuming
√
−1 ∈ k.) Let η ∈ H1(k,Spin14) be such that qη

equals 〈c〉(φ′1 − φ′2) for some c ∈ k× and φ1, φ2 3-Pfister forms. Write φ1 as
〈〈α1, α2, α3〉〉. we have

a7(η) = (−cα1) .e3(φ1) .e3(φ2)

by (17.13). But (−α1) .e3(φ1) is zero as in Example 9.4.2, hence

a7(η) = (c) .e3(φ1) .e3(φ2).

As in 20.1, it is easy to see that a7 is not the zero invariant.

21. Partial summary of results

Surjectivities. Table 21a summarizes the examples of surjectivites given above.
The restrictions on the characteristic listed in the table should not be taken seri-
ously. They only reflect the availability of easy-to-cite results in the literature.

N ⊂ G char k0 Ref.
Spin2n−1×µ2 ⊂ Spin2n 6= 2 15.1
G2 × µ2 ⊂ Spin7 6= 2 15.5

G2 × µ2 × µ2 ⊂ Spin8 6= 2 15.1 and 15.5
Spin7×µ2 ⊂ Spin9 6= 2 15.7
G2 × µ4 ⊂ Spin10 6= 2 15.8

SO(5)× µ4 ⊂ Spin11 6= 2 15.13
SO(6)× µ4 ⊂ Spin12 6= 2 15.12

(G2 ×G2) o µ8 ⊂ Spin14 6= 2 19.1
F4 × µ3 ⊂ E6 any 8.12
E6 o µ4 ⊂ E7 6= 2 11.13

Table 21a. Examples of inclusions for which H1
fppf(∗, N) →

H1(∗, G) is surjective

This table is obviously not exhaustive. We have only considered a short list of
internal Chevalley modules; the recipe in 8.11 gives others. For example, taking G̃
to be E6, E7, E8 and π = α2, one finds that there is an open GLn-orbit in ∧3kn

(“alternating trilinear forms”) for n = 6, 7, 8, hence an open SLn-orbit in P(∧3kn).
Alternatively, other examples where there is an open G-orbit in P(V ) can be found
by consulting the table at the end of [PV94] or the lists of prehomogeneous vector
spaces in [SK77].
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n ed(Spinn)
Invnorm

k0
(Spinn,Z/2Z)

has basis with elements
of degree

Restrictions on k0? Ref.

≤ 6 0 ∅
7 4 3, 4 16.4
8 5 3, 4, 4, 5 16.1
9 5 3, 4, 5

√
−1 ∈ k0 16.6

10 4 3, 4 16.5
11 5 3, 5

√
−1 ∈ k0 18.12

12 6 3, 5, 6
√
−1 ∈ k0 18.11

13 6 ? [Ros99c, §10]
14 7 ?

√
−1 ∈ k0 20.3

Table 21b. Invariants and essential dimension of Spinn for n ≤ 14

All statements are under the global hypothesis that the characteristic of k0

is 6= 2.

Invariants and essential dimensions of Spin groups. Table 21b summarizes
the results on invariants of Spinn for n ≤ 14. We remark that in the examples
considered in S (On, SOn, the symmetric group on n letters, ...), the description of
the invariants depended in a regular way on n; clearly, that is not the case here.

The values for the essential dimension given in the table are easily deduced
from various results in Part III. For example, the table claims that the essential
dimension of Spin7 is 4. Since Spin7 has a nontrivial cohomological invariant of
degree 4, the essential dimension is ≥ 4, cf. 4.7. (All lower bounds on essential
dimension here are proved by constructing nonzero cohomological invariants. These
bounds can also be obtained by less ad hoc means, see [CS].) On the other hand,
the essential dimension of G2×µ2 is 4, so the surjectivity from Example 15.5 shows
that the essential dimension is ≤ 4.

What of Spin13, which we have not yet discussed? One knows that the essential
dimension is at least 6 by [CS] or because the invariant a6 of Spin14 restricts to be
nonzero on Spin13. One cannot get an upper bound by imitating the methods of
§15 to get a surjectivity in Galois cohomology because the spin representation V
does not have an open orbit in P(V ). See [Ros99c] for a proof that the essential
dimension is at most 6.

21.1. Open problem. (Reichstein-Youssin [RY00, p. 1047]) Let k0 be an alge-
braically closed field of characteristic zero. Is there a nonzero invariantH1(∗,Spinn)→
Hbn/2c+1(∗,Z/2Z) when n ≡ 0,±1 mod 8?

[For n = 7, 8, 9, one has the invariants described in Examples 16.4, 16.1, and
16.6 above.]
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Appendixes

Appendix A. Examples of anisotropic groups of types E7

We use cohomological invariants to give examples of algebraic groups of type E7

that are anisotropic over “prime-to-2 closed” fields or are anisotropic but split by
an extension of degree 2.
A.1. Groups of type E7. Write E7 for the split simply connected group of that
type over a field k The Rost invariant rE7 recalled in Example 1.2.4 maps

rE7 : H1(∗, E7)→ H3(∗,Z/12Z(2)),

see [Mer03, pp. 150, 154]. (In this appendix, the group H3(k,Z/nZ(2)) is as defined
in [Mer03]. If the characteristic of k does not divide n, then H3(k,Z/nZ(2)) is
H3(k,µ⊗2

n ), as in the main body of the notes. In any case, it is n-torsion.) The
group H3(k,Z/12Z(2)) is 12-torsion, and its 4- and 3-torsion are identified with
H3(k,Z/4Z(2)) and H3(k,Z/3Z(2)) respectively. We write r′ for the composition
of rE7 with the projection of H3(k,Z/12Z(2)) onto its 4-torsion, i.e.:

r′ : H1(k,E7)
rE7−−→ H3(k,Z/12Z(2))→ H3(k,Z/4Z(2)).

Proposition. Suppose that, for η ∈ H1(k,E7), the twisted group (E7)η is isotropic.
Then 2r′(η) = 0. If furthermore k contains a primitive 4-th root of unity, then r′(η)
has symbol length ≤ 2 in H3(k,Z/2Z).

The last sentence of the proposition warrants some comments. Note that the hy-
pothesis implies that k has characteristic 6= 2, soH3(k,Z/4Z(2)) andH3(k,Z/2Z(2))
are simply the Galois cohomology groups H3(k,Z/4Z) and H3(k,Z/2Z) respec-
tively. It makes sense to speak of r′(η) as belonging to H3(k,Z/2Z), because the
natural map Z/2Z→ Z/4Z identifiesH3(k,Z/2Z) with the 2-torsion inH3(k,Z/4Z).
As for the symbol length, recall that every element of H3(k,Z/2Z) can be written
as a sum of symbols. The symbol length of a class in z ∈ H3(k,Z/2Z) is the smallest
natural number n such that z can be written as a sum of n symbols.

Proof. We consult the list of the possible Tits indexes of groups of type E7 from
[Tit66, p. 59]. (See 2.3 in that paper for the definition of the Tits index.) In
three of these indexes (E48

7,1, E
31
7,2, and E9

7,4), one of the summands of the semisim-
ple anisotropic kernel is of the from SL(Q) for some quaternion division algebra
Q. However, (E7)η has trivial Tits algebras, so by [Tit71, p. 211] the semisimple
anisotropic kernel cannot have such a summand. In the remaining cases, the vertex
1 or 7 is circled, where the vertices are numbered as in Table 8. We refer to these
possibilities as cases 1 and 7 respectively. If both vertices are circled, we arbitrarily
say we are in case 1.

Fix a maximal split torus T in the split group E7. As E7 is simply connected and
all roots have the same length, the cocharacter group T∗ is identified with the root
lattice. In case c, write S for the image of the cocharacter corresponding to twice
the fundamental weight ωc. Write G for the derived subgroup of the centralizer of
S in E7; it is simply connected and split; it has type D6 in case 1 and type E6 in
case 7. For precision, we write i for the inclusion G ↪→ E7 and i∗ for the induced
map on H1’s.

By Tits’s Witt-type theorem, (E7)η is isomorphic to (E7)i∗τ for some class τ in
H1(k,G). It follows that i∗τ = ζ · η where ζ is a 1-cocycle taking values in the
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center Z of E7. As the Rost invariant is compatible with twisting [Gil00, p. 76,
Lem. 7], we have

r′(i∗τ) = r′(ζ · η) = r′(ζ) + r′(η),

cf. [Gar01a, 7.1]. However, E7 is split, so the image of H1(k, Z) in H1(k,E7) is
zero. In particular, r′(ζ) is zero and r′(i∗τ) = r′(η). Replacing η with i∗τ , we may
assume that η is the image of τ . Since the inclusion i of G in E7 has Rost multiplier
one, rE7(η) equals rG(τ).

To prove the first claim in the proposition, it suffices to observe that the order of
rG is 2 in case 1 and 6 in case 7 by [Mer03, 15.4, 16.6]. In both cases, the 2-primary
part is 2 and not 4.

We now prove the last claim. In case 7, the “mod 2” portion of the Rost invariant
is a symbol over an odd-degree extension of k by S22.9, hence it is a symbol over
k by [Ros99a], see Example 7.7. In case 1, G is the split group Spin12 and as in
18.7 and 18.8 the quadratic form qτ ∈ H1(k,SO12) deduced from τ is of the form
qτ = 〈d〉〈〈c〉〉(φ′1 − φ′2) for some c, d ∈ k× and 2-Pfister forms φ1, φ2. The Rost
invariant of τ is

rG(τ) = e3(qτ ) = (c) .e2(φ1) + (c) .e2(φ2),

a sum of two symbols. �

Suppose that k is a prime-to-2 closed field, i.e., every finite extension of k has
degree a power of 2. Every group of inner type E6 is isotropic. In case k = R, the
unique anisotropic simply connected group of type E7 is not a strongly inner form
of E7 (i.e., it has nontrivial Tits algebras). We now give an example of a prime-to-2
closed field k that supports an anisotropic strongly inner form of E7.

A.2. Example. Rost [Gil00, p. 91, Prop. 8] gives an extension k0 of Q and a class
η ∈ H1(k0, E7) such that 2r′(η) is not zero. If we take k to be the extension of k0

fixed by a 2-Sylow subgroup of the absolute Galois group of k0, then every finite
extension of k has degree a power of 2, yet k supports the strongly inner form of E7

obtained by twisting by resk/k0(η), and this group is anisotropic by the proposition.

In the preceding example, 2r′(η) is not zero over k, so a restriction/corestriction
argument shows that the twisted group (E7)η is not split by a quadratic extension
of k. We can use the second criterion in the proposition to give an example of a
strongly inner form of E7 that is anisotropic but is split by a quadratic extension.

A.3. Example. Let F be a field of characteristic zero containing a primitive 4-
th root of unity. Let k0 be the field obtained by adjoining the indeterminates
t1, t2, . . . , t6 and put k for the field k0(d), for d an indeterminate. We construct a
strongly inner form G of E7 that is anisotropic over k and split over the quadratic
extension K := k(

√
d). Let H denote the quasi-split simply connected group of

type 2E6 associated with the quadratic extension K/k; it is a subgroup of the split
simply connected group E7 and the inclusion has Rost multiplier one. Chernousov
[Che03, p. 321] gives a 1-cocycle η ∈ H1(K/k,H) whose image under r′ is

(A.4) (d) . [(t1) .(t3) + (t2t3t5) .(t4) + (t5) .(t6)] ∈ H3(k,Z/2Z).

We take G to be E7 twisted by η. As η is killed by K, G is K-split. For sake
of contradiction, suppose that G is isotropic over k. Applying Prop. A.1, we note
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that r′(η) can be written as a sum of ≤ 2 symbols in H3(k,Z/2Z). It follows that
the residue with respect to d, namely

(A.5) (t1) .(t3) + (t2t3t5) .(t4) + (t5) .(t6) ∈ H2(k0,Z/2Z)

can be written as a sum of ≤ 2 symbols in H2(k0,Z/2Z). For Pn as in Prop. 17.12.3,
the image of (A.5) under the composition

H2(k0,Z/2Z) ∼−−−−→
e−1
2

I2/I3 P2−−−−→ I4/I5 ∼−−−−→
e4

H4(k0,Z/2Z)

is
(t1) .(t3) .(t2t5) .(t4) + (t1) .(t3) .(t5) .(t6) + (t2t3) .(t4) .(t5) .(t6).

By parts 1 and 4 of Prop. 17.12, this is a (possibly zero) symbol in H4(k0,Z/2Z).
Taking residues with respect to t2 and then t4, we find

(t1) .(t3) + (t5) .(t6) ∈ H3(F (t1, t3, t5, t6),Z/2Z).

Our assumption implies that this is a symbol, which is impossible as the ti’s are
indeterminates. We conclude that G is anisotropic over k.

Appendix B. A generalization of the Common Slot Theorem
By Detlev W. Hoffmann

The purpose of this appendix is to prove Cor. B.5, which is used in the con-
struction of the degree 5 invariant of Spin12 in §18. The corollary as such is due to
Rost, but his original argument had a small flaw. The version we present here is
actually more general and can be considered as a generalization of the well known
Common Slot Theorem, see, e.g., [Lam05, III.4.13]. Recall that the Common Slot
Theorem says that if A =

(
a,x
k

)
and B =

(
b,y
k

)
are quaternion algebras over a field

k with char(k) 6= 2 such that A ∼= B, then there exists z ∈ k∗ with A ∼=
(

a,z
k

)
and

B ∼=
(

b,z
k

)
. Translated into Pfister forms, it means that if 〈〈a, x〉〉 ∼= 〈〈b, y〉〉 then

〈〈a, x〉〉 ∼= 〈〈a, z〉〉 ∼= 〈〈b, z〉〉 ∼= 〈〈b, y〉〉
for some z ∈ k∗. Furthermore, z ∈ Dk(〈〈ab〉〉), i.e., z is represented by the form
〈〈ab〉〉 and hence is a norm of the extension k(

√
ab)/k. Indeed, 〈1,−a,−z, az〉 ∼=

〈〈a, z〉〉 ∼= 〈〈b, z〉〉 ∼= 〈1,−b,−z, bz〉 implies after Witt cancellation and scaling that
〈〈ab〉〉 ∼= 〈z〉〈〈ab〉〉.

In the sequel, all fields are assumed to be of characteristic different from 2. To
state our version, we first recall the notion of linkage of Pfister forms introdued
by Elman and Lam [EL72]. Let α and β be Pfister forms over k of folds m and
n, respectively. Then α and β are called r-linked form some nonnegative integer
r ≤ min(n,m) if there exist Pfister forms ρ, σ, τ of folds m − r, n − r and r,
respectively, such that α ∼= ρτ and β ∼= στ . In other words, α and β are r-linked
if they can be written with r slots in common. It can be shown that α and β are
r-linked if and only if the Witt index of α⊕ 〈−1〉β is ≥ 2r (see [EL72, 4.4]).

If m ≥ n, we call α and β linked if they are (n − 1)-linked in the above sense,
and we say that they are strictly linked if they are (n− 1)-linked but not n-linked
(i.e., α is not similar to a subform of β). So if n = m, being (strictly) linked means
that there exist an (n − 1)-fold Pfister form π and a, b ∈ k∗ such that α ∼= 〈〈a〉〉π
and β ∼= 〈〈b〉〉π (and α 6∼= β). Note that in this situation, we have in the Witt ring
Wk that α− β = 〈b〉〈〈ab〉〉π.
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Recall also that a form φ is called round if φ ∼= 〈a〉φ if and only if a ∈ Dk(φ),
i.e., the group of similarity factors Gk(φ) coincides with the set Dk(φ) of nonzero
elements represented by φ. It is well known that Pfister forms are round. The
following facts about round forms are also well known, see [WS77, Theorem 2] for
a proof (or [EL72, 1.4] in case of Pfister forms).

B.1. Lemma. Let α and q be forms over k and assume that α is round.

(1) If x ∈ Dk(αq), then there exists a form q1 such that φq ∼= α(〈x〉 ⊕ q1).
(2) If φ is anisotropic and αq isotropic, then there exists a form q2 such that

αq ∼= α(H⊕ q2).

The crucial ingredient in the proof of our result is the following theorem by
Wadsworth and Shapiro [WS77, Theorem 3].

B.2. Theorem. Let α and β be strictly linked Pfister forms over k of folds m and
n, respectively, with m ≥ n ≥ 1. Let q be an anisotropic form over k and suppose
that there exist forms φ and ψ over k with q ∼= αφ ∼= βψ. Then there exist forms
qi, φi, ψi, 1 ≤ i ≤ r, such that

• q ∼= q1 ⊕ q2 ⊕ · · · ⊕ qr, and
• dimφi = 2, dimψi = 2m−n+1 for each i, and
• qi ∼= αφi

∼= βψi for each i.

Our result now reads as follows.

B.3. Proposition. Let α and β be n-fold Pfister forms over k that are strictly
linked. Let π be an (n− 1)-fold Pfister form and a, b ∈ k∗ such that α ∼= π〈〈a〉〉 and
β ∼= π〈〈b〉〉, and let γ ∼= π〈〈ab〉〉.

If φ, ψ are forms over k such that αφ = βψ in Wk, then there exists a form
τ over k, a nonnegative integer r, ci ∈ k∗ and di ∈ Dk(γ) (1 ≤ i ≤ r) such that
τ ∼=

⊕r
i=1 〈ci〉〈〈di〉〉, ατ anisotropic and

αφ = ατ = βτ = βψ ∈Wk .

Proof. Note that the assumption on α and β being strictly linked implies that γ is
anisotropic.

By Lemma B.1(2), we may assume that αφ and βψ are anisotropic and hence
αφ ∼= βψ. We denote this anisotropic form by q and apply Theorem B.2 to deduce
that there exist forms qi, φi, ψi, 1 ≤ i ≤ r such that

• q ∼= q1 ⊕ q2 ⊕ · · · ⊕ qr, and
• dimφi = dimψi = 2 for each i, and
• qi ∼= αφi

∼= βψi for each i.

But then, by Lemma B.1(1), there exist ci, xi, yi ∈ k∗ such that ci ∈ Dk(qi) and

qi ∼= 〈ci〉α〈〈xi〉〉 ∼= 〈ci〉β〈〈yi〉〉 .

Hence, α〈〈xi〉〉 ∼= β〈〈yi〉〉, and with α ∼= π〈〈a〉〉, β ∼= π〈〈b〉〉, γ ∼= π〈〈ab〉〉, we get in Wk
that

0 = α〈〈xi〉〉 − β〈〈yi〉〉 = α− β + 〈yi〉β − 〈xi〉α

and therefore
〈b〉γ = 〈xi〉α− 〈yi〉β .
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Comparing dimensions shows that 〈xi〉α ⊕ 〈−yi〉β is isotropic. Thus, there exists
di ∈ Dk(〈xi〉α) ∩ Dk(〈yi〉β), and by Lemma B.1(1), we have 〈xi〉α ∼= 〈di〉α and
〈yi〉β ∼= 〈di〉β. We conclude that α〈〈xi〉〉 ∼= α〈〈di〉〉 and β〈〈yi〉〉 ∼= β〈〈di〉〉, hence

qi ∼= 〈ci〉〈〈di〉〉α ∼= 〈ci〉〈〈di〉〉β .

The proof is now finished by putting τ ∼=
⊕r

i=1 〈ci〉〈〈di〉〉. �

B.4. Remarks. (i) One could relax the condition on being strictly linked by linked,
and the above statement would still hold provided dimφ is even. But this doesn’t
really yield anything new of interest. Indeed, if α and β are linked but not strictly so,
then this just means that α ∼= β which in turn implies that γ is hyperbolic. Hence,
Dk(γ) = k∗. By Lemma B.1, there exists a (necessarily even-dimensional) form
τ such that (αφ)an ∼= ατ , and one can simply take any orthogonal decomposition
τ ∼=

⊕r
i=1 〈ci〉〈〈di〉〉.

(ii) Recall that a field k is called linked if any two Pfister forms over k are
linked. In fact, it is not difficult to check that k is linked iff any two 2-fold Pfister
forms over k are linked. This notion of a linked field has been coined in [EL73].
Well known examples of linked fields are finite, local and global fields, fields of
transcendence degree ≤ 1 over a real closed field or of transcendence degree ≤ 2
over an algebraically closed field.

Hence, if we assume the field k in Proposition B.3 to be linked, then the condition
of the two Pfister forms being strictly linked can be replaced by the two Pfister forms
being nonisometric.

Let us state the case n = 1 for the above proposition explicitly.

B.5. Corollary. Let a, b ∈ k∗ represent different nontrivial square classes. Let ` =
k(
√
ab). If φ, ψ are forms over k such that 〈〈a〉〉φ = 〈〈b〉〉ψ in Wk, then there exists

a form τ over k, a nonnegative integer r, ci ∈ k∗ and di ∈ Dk(〈〈ab〉〉) = N`/k(`∗)
(1 ≤ i ≤ r) such that τ ∼=

⊕r
i=1 〈ci〉〈〈di〉〉, ατ anisotropic and

αφ = ατ = βτ = βψ ∈Wk .

Suppose that, as in the corollary, a and b represent different nontrivial square
classes in k∗. Let φ be an anisotropic form over k. If 〈〈a〉〉φ is isotropic, it is well
known and not difficult to see that there exists a 2-dimensional subform φ′ of φ
such that already 〈〈a〉〉φ′ is isotropic (and hence hyperbolic as it is similar to a 2-fold
Pfister form), cf. [EL73, 2.2].

Indeed, 〈〈a〉〉φ ∼= φ⊕〈−a〉φ being isotropic clearly implies that there are nonzero
vectors x, y in an underlying vector space V of φ such that φ(x) = aφ(y). Since a
is not a square, x and y span a 2-dimensional subspace W of V . Then just take φ′

to be the restriction of φ to W .
Now let K = k(

√
b) and suppose that 〈〈a〉〉φK is isotropic (or possibly even

hyperbolic, in which case 〈〈a〉〉φ ∼= 〈〈b〉〉ψ for some form ψ, see [Lam05, VII.3.2]).
By the above, we see that there exists over K (!) a 2-dimensional subform φ′ of
φK such that 〈〈a〉〉φ′ is isotropic over K. If, in this situation, one could always find
a 2-dimensional subform φ′ of φ already over k (!) such that 〈〈a〉〉φ′K is isotropic
(and hence hyperbolic) over K, then one could use the Common Slot Theorem plus
a staightforward induction on dimφ to easily deduce the above corollary. In fact,
for dimφ = 2, the above corollary is essentially nothing else but the Common Slot
Theorem.
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However, such a 2-dimensional subform φ′ of φ over k doesn’t exist in general as
the following counterexamples will show for forms φ of dimension n for any given
n > 2.

B.6. Example. Recall that the Pythagoras number p(k) of a field k is defined to
be the least positive integer p (provided such an integer exists) such that each sum
of squares in k can be written as a sum of ≤ p squares. If no such integer exists,
then we put p(k) =∞.

Let k be a formally real field with p(k) =∞ (e.g., the rational function field over
the reals in infinitely many variables, cf. [Lam05, IX.2.4]). Let n ≥ 3 and s be such
that 2s < n ≤ 2s+1. Pick an element −b that is a sum of 2s+1 + 2 squares but not
fewer. Note that this is always possible since p(k) > 2s+1 + 1. Now let a = −1, so
〈〈a〉〉 ∼= 〈1, 1〉, φ ∼= 〈1, . . . , 1〉 (sum of n squares), and let K = k(

√
b).

Then 〈〈a〉〉φ is a Pfister neighbor of P ∼= 〈〈−1,−1, . . . ,−1〉〉, a sum of 2s+2 squares.
Now P ∼= 〈1〉 ⊕ P ′ with P ′ a sum of 2s+2 − 1 squares. In particular, P ′ represents
−b, and P has therefore a subform 〈1,−b〉 which becomes isotropic over K. Hence
PK is hyperbolic and the Pfister neighbor 〈〈a〉〉φK is isotropic. Note that if n = 2s+1

then in fact 〈〈a〉〉φK
∼= PK is hyperbolic.

Suppose now that φ contains a subform 〈u, v〉 over k with 〈〈a〉〉〈u, v〉 ∼= 〈1, 1〉〈u, v〉
isotropic over K. Note that both u and v are necessarily sums of n ≤ 2s+1 squares
in k as both are represented by φ.

Let w = uv. Then 〈1, 1, w, w〉 ∼= 〈〈−1,−w〉〉 is similar to 〈1, 1〉〈u, v〉 and thus
isotropic (and hence hyperbolic) over K. But then b can be chosen as a slot of
the Pfister form 〈〈−1,−w〉〉: 〈〈−1,−w〉〉 ∼= 〈〈b, c〉〉 for some c ∈ k∗ (cf. [Lam05,
III.4.1]). By Witt cancellation, 〈1, w, w〉 ∼= 〈−b,−c, bc〉 and thus −b is represented
by 〈1, w, w〉. In particular, there exist x, y, z ∈ k∗ with −b = x2 + w(y2 + z2).

Now w(y2 + z2) = uv(y2 + z2) is the product of three factors, each of which
being a sum of at most 2s+1 squares. A famous result by Pfister states that, for
each nonnegative integer m, the nonzero sums of 2m squares in a field form a
multiplicative group (see, e.g., [Lam05, X.1.9]). Hence, we have that w(y2 + z2)
can be expressed itself as a sum of at most 2s+1 squares. But then, −b can be
written as a sum of at most 2s+1 + 1 squares, a contradiction!
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[BT65] A. Borel and J. Tits, Groupes réductifs, Inst. Hautes Études Sci. Publ. Math. 27
(1965), 55–150.



COHOMOLOGICAL INVARIANTS 69

[CG06] M. Carr and S. Garibaldi, Geometries, the principle of duality, and algebraic groups,

Expo. Math. 24 (2006), 195–234.

[CGR06] V. Chernousov, Ph. Gille, and Z. Reichstein, Resolving G-torsors by abelian base
extensions, J. Algebra 296 (2006), 561–581.

[Che95] V.I. Chernousov, A remark on the (mod 5)-invariant of Serre for groups of type E8,

Math. Notes 56 (1995), no. 1-2, 730–733, [Russian original: Mat. Zametki 56 (1994),
no. 1, pp. 116-121].

[Che03] V. Chernousov, The kernel of the Rost invariant, Serre’s Conjecture II and the Hasse

principle for quasi-split groups 3,6D4, E6, E7, Math. Ann. 326 (2003), 297–330.
[CS] V. Chernousov and J-P. Serre, Lower bounds for essential dimensions via orthogonal

representations, J. Algebra, to appear.

[DG70] M. Demazure and P. Gabriel, Groupes algébriques. Tome I: Géométrie algébrique,
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