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Abstract. Let L be a Lie algebra over a field F of characteristic zero or p > 3. An element

c ∈ L is called Clifford if ad3
c = 0 and its associated Jordan algebra Lc is the Jordan algebra

F⊕X defined by a symmetric bilinear form on a vector space X over F. Roughly speaking,

we prove in this note that c is a Clifford element if and only if there exists a centrally closed

prime ring R with involution ∗ such that c ∈ Skew(R, ∗), c3 = 0, c2 6= 0 and c2kc = ckc2 for

all k ∈ Skew(R, ∗).

1. Introduction

Let L be a Lie algebra over a field F of characteristic not 2 or 3. An element a ∈ L is called

a Jordan element if ad3
aL = 0. In [8], a Jordan algebra was attached to any Jordan element

a ∈ L. This Jordan algebra, denoted by La, inherits most of the properties of the Lie algebra

L, as well as the nature of the Jordan element in question is reflected in the structure of

the attached Jordan algebra. For instance, if L is nondegenerate (ad2
xL = 0 ⇒ x = 0) so is

the Jordan algebra La, and in this case, La is unital if and only if a is von Neumann regular

(a ∈ ad2
aL).

By a Clifford element of L we mean a Jordan element c ∈ L such that Lc is the Jordan

algebra J = F⊕X defined by a symmetric bilinear form on a vector space X over F (we do not

discard the case X = 0, i.e., J = F1). Suppose now that L is nondegenerate, char(F) = 0

or p > 5, and c is a Clifford element of L. Since Lc is then unital, c is von Neumann

regular (see 2.6), and hence, by the Jacobson-Morozov Lemma (see [5, Proposition 1.18], L

has a 5-grading L = L−2 ⊕ L−1 ⊕ L0 ⊕ L1 ⊕ L2 such that the Jordan pair V = (L−2, L2)
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is isomorphic to the Clifford Jordan pair defined by the Jordan algebra Lc, whose Tits-

Kantor-Koecher algebra TKK(V ) is a finitary orthogonal Lie algebra (see [6, 5.11]), that

is, TKK(V ) ∼= Skew(R, ∗), where R is a simple ring coinciding with its socle and ∗ is an

involution of the first kind and transpose type. Thus every Clifford element c actually lives

in a ring, and in this associative context verifies c3 = 0 and c2 6= 0, except for the case that

R is the algebra of 2× 2 matrices over a field with the transpose involution (see [7, Lemma

3.7(ii)]). In this paper we prove the following converse of the above result:

Let R be a centrally closed prime ring of characteristic zero or greater than three, let ∗ be

an involution of R and let c be a Jordan element of the Lie algebra K = Skew(R, ∗) such

that c3 = 0 and c2 6= 0. Then ∗ is of the first kind and c is a Clifford element of K.

2. Preliminaries

Throughout this section Φ will denote a ring of scalars, i.e., a commutative ring with 1,

and F will stand for a field. An algebra over Φ (in short, a Φ-algebra) is a Φ-module A

with a product (bilinear operation). Thus no associativity condition is assumed; neither it

is supposed the existence of a unit in A. According to this definition, a ring is an associative

Z-algebra.

Jordan algebras and Lie algebras.

2.1. Suppose that 2 is invertible in Φ. A (linear) Jordan algebra is a Φ-algebra J whose

product, denoted by •, is commutative and satisfies the identity x2 • (y • x) = (x2 • y) • x,

for all x, y ∈ J , where x2 = x • x. For each x ∈ J , the U-operator Ux : J → J , defined by

Uxy = 2x • (x • y) − x2 • y, y ∈ J , satisfies the identity UUxy = UxUyUx, for all x, y ∈ J . A

Jordan algebra is said to be nondegenerate if Ux = 0 implies x = 0.

2.2. Suppose that 2 is invertible in Φ and that A is an associative Φ-algebra, whose product

is denoted by juxtaposition. In the Φ-module A, we define a new product by x◦y := xy+yx.

The resulting algebra is a Jordan algebra denoted by A+, with Uxy = 2xyx. Note that A

is semiprime if and only if A+ is nondegenerate. A Jordan algebra J is called special if it is
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isomorphic to a subalgebra of A+ for some associative algebra A. As usual, we denote by

A− the Lie algebra defined in the Φ-module A by the bracket-product: [x, y] = xy − yx.

2.3. Let F be a field of characteristic not 2 and let X be an F- vector space with a symmetric

bilinear form 〈 , 〉. Then the vector space J = F⊕X is endowed with a structure of Jordan

algebra by defining

(α, x) • (β, y) = (αβ + 〈x, y〉, βx + αy),

for α, β ∈ F and x, y ∈ X. This Jordan algebra is unital, with (1, 0) as unit element, and

special; in fact, it is isomorphic to a Jordan subalgebra of the Clifford (associative) algebra

defined by 〈 , 〉 (see [9, II.3]). For this reason, J = F ⊕ X is sometimes called a Clifford

Jordan algebra.

2.4. Let L be a Lie algebra over Φ, with [x, y] denoting the product and adx the adjoint

map determined by x (sometimes we will use capital letters instead, i.e., X by adx). An

inner ideal of L is a Φ-submodule B of L such that [[B,L], B] ⊆ B. An abelian inner ideal

is an inner ideal B which is also an abelian subalgebra, i.e., [B, B] = 0. For example, if

L =
⊕

−n≤i≤n

Li is a finite Z-grading, then L−n and Ln are easily checked to be abelian inner

ideals of L. An element a ∈ L is said to be a Jordan element whenever ad3
aL = 0; every

element in an abelian inner ideal is easily shown to be a Jordan element, and conversely, if

L is 3-torsion free and a ∈ L is Jordan, then B = Φa + ad2
aL is an abelian inner ideal of L

(see [2, Lemma 1.8]).

The following identities (see [2, Lemma 1.7]) will be used in what follows. Let L be a

3-torsion free Lie algebra and a, x ∈ L, where a is a Jordan element. Then:

(JE1) A2XA = AXA2,

(JE2) ad2
A2x = A2X2A2.

where A = ada and X = adx.

2.5. Suppose that 2 and 3 are invertible in Φ. Let L be a Lie Φ-algebra and let a ∈ L

be a Jordan element. In the Φ-module L a new product is defined by x • y = [[x, a], y],
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x, y ∈ L. Denote by L(a) the resulting algebra. Then Ker(a) := {x ∈ L : ad2
ax = 0} is an

ideal of La) and the quotient algebra La := La)/Ker(a) is a Jordan algebra (with product

x̄ • ȳ = [[x, a], y], where x̄ stands for the coset of x, for any x ∈ L), called the Jordan algebra

of L at a (see [8, Theorem 2.4]).

2.6. If a is von Neumann regular, i.e., a is Jordan and a ∈ ad2
aL, then La is unital with b̄

as unit element for any b ∈ L such that a = [[a, b], a]. In this case, La is isomorphic to the

Jordan algebra J(a, b) defined in the Φ-module ad2
aL by the product x • y = [[x, b], y]] for all

x, y ∈ ad2
aL. We provide here a proof of these results under conditions less restrictive than

those required in [8].

Proof. (i) Proving that La is unital with b̄ as unit element it is equivalent to show that

A2[B, A] = A2BA = A2 (since A3 = 0). Now a = [[a, b], a] implies

A = ad[[a,b],a] = [[A,B], A] = 2ABA− A2B −BA2,

and hence, by (JE1), A2 = 2A2BA− ABA2 = A2BA (since A3 = 0), as required.

(ii) Let us now show that the map ϕ : La → J(a, b) defined by ϕ(x̄) := −A2x is an algebra-

isomorphism. Clearly, ϕ is a linear isomorphism, and since both algebras are commutative

and 1
2
∈ Φ, it suffices to check that ϕ(x̄)2 = ϕ(x̄2).

ϕ(x̄)2 = [[A2x, b], A2x] = −ad2
A2xb = −A2X2A2b = A2X2a = −A2XAx = ϕ(x̄2),

where we have used (JE2) and XAx = [x, [a, x]] = −X2a. ¤

Prime rings.

2.7. Let R be a prime ring. The extended centroid C of R (see ([1, Section 2.2]) is a field

containing the centroid Γ if R, and the central closure CR of R is a prime associative algebra

over the field C. A prime ring R is centrally closed if it coincides with its central closure.

The following lemma (see [3, Theorem A.7]) will play a fundamental role in the proof of

our main result.
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Lemma 2.8 (Martindale). Let R be a prime ring with extended centroid C. Let ai, bi ∈ R

with b1 6= 0 be such that
∑n

i=1 aixbi = 0 for every x ∈ R. Then a1 ∈
∑n

i=2 Cai.

Involutions.

2.9. Let A be an associative Φ-algebra with an involution ∗, that is, ∗ : A → A is a Φ-linear

map satisfying ∗2 = IdA and (ab)∗ = b∗a∗ for all a, b ∈ A. Denote by H (respectively by K)

the set of the symmetric (respectively, skew-symmetric) elements of A, i.e., H := {x ∈ A :

x = x∗} and K = {x ∈ A : x = −x∗}. Then K is a subalgebra of the Lie Φ-algebra A−,

and if 1
2
∈ Φ, then H is a subalgebra of the Jordan Φ-algebra A+ (so it is a special Jordan

algebra) and A = H ⊕K.

2.10. Set κ(x) := x − x∗ ∈ K for every x ∈ R. Note that the mapping x 7→ κ(x) is

Φ-linear and it satisfies κ(axa∗) = aκ(x)a∗ for all a, x ∈ R. Note also that for h ∈ H, k ∈ K,

h ◦ k := hk + kh = hk − (hk)∗ = κ(hk) ∈ K, a simple identity that will show up frequently.

If M is a Φ-submodule of R which is ∗-invariant, i.e., M∗ = M , then κ(M) = Skew(M, ∗),
since if k ∈ Skew(M, ∗) then k = 1

2
(k + k) = 1

2
(k − k∗) = 1

2
κ(k) and κ(x) = x − x∗ ∈

M ∩ K = Skew(M, ∗) for every x ∈ M . In particular κ(R) = K. If M is not ∗-invariant,

then κ(M) = κ(M∗) implies that κ(M) = κ(M) + κ(M∗) = κ(M + M∗) = (M + M∗) ∩K.

2.11. Let A be an associative Φ-algebra with involution ∗. If a ∈ A is von Neumann regular,

i.e, a = axa for some x ∈ A, then, by replacing x by b = xax, we obtain a = aba and b = bab.

If a is also symmetric and 1
2
∈ Φ, then b can be chosen to be symmetric by replacing x by

1
2
(x + x∗). The following lemma is a further step in the choice of b.

Lemma 2.12. Let A be an associative Φ-algebra and let c ∈ A be a von Neumann regular

element such that c2 = 0. Then there exists d ∈ A such that c = cdc, d = dcd and d2 = 0.

Moreover, if A has an involution ∗, 1
2
∈ Φ and c is symmetric (skew-symmetric), then d can

be chosen to be symmetric (respectively, skew-symmetric).

Proof. Let c be a von Neumann regular element of A. By above, there exists b ∈ A such that

cbc = c and b = bcb. We claim that d := b− b2c satisfies the required properties. Indeed,
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d2 = (b− b2c)(b− b2c) = b2 − b3c− b(bcb) + b(bcb)bc = b2 − b3c− b2 − b3c = 0,

cdc = c(b− b2c)c = cbc = c, and

bcb = (b− b2c)c(b− b2c) = bc(b− b2c) = bcb− (bcb)bc = b− b2c = d.

Suppose now that c is symmetric. Since 1
2
∈ Φ, we can take b ∈ H such that cbc = b and

b = bcb. We claim that d := b − 1
2
(cb2 + b2c) + 1

4
cb3c satisfies the required properties. It is

clear that d∗ = d. Moreover, we have:

d2 =

(
b− 1

2
(cb2 + b2c) +

1

4
cb3c

)(
b− 1

2
(cb2 + b2c) +

1

4
cb3c

)
= b2 − 1

2
(bcb)b

− 1

2
b3c +

1

4
(bcb)b2c− 1

2
cb3 +

1

4
cb(bcb)b +

1

4
cb4c− 1

8
cb(bcb)b2c− 1

2
b(bcb)

+
1

4
b(bcb)bc +

1

4
cb2(bcb)− 1

8
cb2(bcb)bc = b2 − 1

2
b2 − 1

2
b3c +

1

4
b3c− 1

2
cb3

+
1

4
cb3 +

1

4
cb4c− 1

8
cb4c− 1

2
b2 +

1

4
b3c +

1

4
cb3 − 1

8
cb4c = 0,

cdc = c(b− 1
2
(cb2 + b2c))c = cbc = c, and

dcd =

(
b− 1

2
(cb2 + b2c

)
)c

(
b− 1

2
(cb2 + b2c)

)
= (b− 1

2
cb2)c(b− 1

2
b2c)

= bcb− 1

2
(bcb)bc− 1

2
cb(bcb) +

1

4
cb(bcb)bc = bcb− 1

2
b2c− 1

2
cb2 +

1

4
cb3c = d.

If c is skew-symmetric, then the same d works taking b ∈ K. ¤

2.13. Let R be a centrally closed prime ring with involution ∗ such that char(R) 6= 2. Then

∗ naturally extends to an involution of the extended centroid C of R, also denoted by ∗. If

∗ acts trivially) on C, then it is called of the first kind. In this case, K can be regarded as a

Lie algebra over C.

3. Clifford element of a prime ring

Throughout this section R will denote a centrally closed prime ring of characteristic not

2 or 3 which is endowed with an involution ∗. Then K, the set of skew-symmetric element
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of R, is a Lie algebra over the field Sym(C, ∗). It follows from [4, Propostion 6.2] that if K

is not abelian and ∗ is of the first kind, then any Jordan element a of K is zero-cube. This

leads us to the following.

Definition 3.1. By a Clifford element of R we mean a Jordan element c of K such that

c3 = 0 and c2 6= 0.

The square of a Clifford element of R.

Proposition 3.2. Let c ∈ K be a Clifford element of R. Then:

(1) c2kc = ckc2 for all k ∈ K

(2) c2Kc2 = 0.

(3) (c2xc3)∗ = c2x∗c2 = c2xc2 for all x ∈ R.

(4) c2Rc2 = Cc2.

(5) The involution ∗ is of the first kind.

(6) R has nonzero socle with division ring isomorphic to C and ∗ is of the transpose type.

Proof. (1) Since c is a Jordan element of K, for every k ∈ K we have 0 = ad3
ck = c3k −

3c2kc + 3ckc2 − kc3 = −3(c2kc− ckc2). Since char(R) 6= 3, this implies that ckc2 = c2kc.

(2) By (1), c2kc2 = c(ckc2) = c(c2kc) = c3kc = 0.

(2) It follows from (2).

(4) Let x, y ∈ R. Since c2 is symmetric, it follows from (3) that

c2xc2yc2 = c2(xc2y)∗c2 = (c2y∗c2)x∗c2 = c2y(c2x∗c2) = c2yc2xc2.

Thus, fixed x, for every y ∈ R, we get (c2xc2)y(c2)− (c2)y(c2xc2) = 0, with c2 6= 0. Then, by

Martindale’s Lemma (2.8), for each x ∈ R there is a λx ∈ C such that c2xc2 = λxc
2. Since

c2 6= 0 and R is prime, c2Rc2 6= 0 and hence c2Rc2 = Cc2, since C is a field.

(5) by (4), given α ∈ C there exists x ∈ R such that αc2 = c2xc2. Then, by (3),

α∗c2 = c2x ∗ c2 = c2xc2 = αc2, so α∗ = α, proving that ∗ is of the first kind.
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(6) By (4), c2 = c2ac2 for some a ∈ R, and hence c2R = eR where e = c2a is an idempotent

of R. Then eRe = c2Rc2a = Cc2a = Ce, which proves ([1, Proposition 4.3.3]) that eR is a

minimal right ideal of R, so R has nonzero socle with associated division ring isomorphic

to the field C ([1, Theorem 4.3.7]). Now it follows from Kaplansky’s Theorem ([1, Theorem

4.6.8]) that the involution ∗ of R is either of transpose type or of symplectic type; but the

latter cannot occur because c2 is a symmetric rank-one element, so ∗ is of transpose type. ¤

3.3. Let c be a Clifford element of R. Since c2 is a symmetric zero-square element which is

also von Neumann regular 3.2(4), we have by (2.12) that there exists d ∈ R such that

d∗ = d, d2 = 0, c2dc2 = c2 and d = dc2d.

Such an element d will be called a regular partner of c2. Then e := dc2 is a ∗-orthogonal

idempotent, i.e., e2 = e and ee∗ = e∗e = 0.

Proposition 3.4. Let c be a Clifford element of R, let d be a regular partner of c2 and set

e := dc2. Then:

(1) dKd = 0.

(2) dRd = Cd.

(3) eRe = Ce, e∗Re = Cc2, eRe∗ = Cd and eKe∗ = e∗Ke = 0.

(4) ec = ce∗ = 0, e∗c2 = c2e = c2 and de∗ = ed = d.

(5) [K,K] 6= 0.

(6) e + e∗ 6= 1 in the unital hull R̂ = C1 + R of R.

Proof. We will frequently use the fact that c2Mc2 = Cc2 for any abelian subgroup M of R

such that c2Mc2 6= 0, which follows from 3.2(3).

(1) dKd = dc2(dKd)c2d = 0, where we have used 3.2(2) and the fact that dkd is skew-

symmetric for every k ∈ K. Similarly, we have:

(2) dRd = (dc2d)R(dc2d) = dc2(dRd)c2d = dCc2d = Cdc2d = Cd, since c2 = c2dc2 and

d = dc2d imply that c2(dRd)c2 6= 0.
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(3) eRe = dc2(Rd)c2 = dCc2 = Ce, since c2 = c2(dc2d)c2 ∈ c2(Rd)c2 and therefore the

latter is nonzero. In a similar way it is proved that e∗Re = Cc2 and eRe∗ = Cd. Now

eKe∗ = dc2Kc2d = 0 by 3.2(2), and e∗Ke = 0 is obtained in a similar way.

(4) The identities of this item follow straightforward from the very definition of e.

(5) By (4), [c, e − e∗] = ce + e∗c = cdc2 + c2dc 6= 0. Otherwise cdc2 = −c2dc would lead

to the contradiction c2 = c2dc2 = −c3dc = 0. Since [c, e− e∗] ∈ [K,K], [K, K] 6= 0.

(6) It follows from (3) and (4) that (e + e∗)c(e + e∗) = 0, so e + e∗ 6= 1. ¤

Remark 3.5. Regular partners d for c2 are not unique. In fact, the elements

dλ := d + λ(dc− cd)− λ2cdc + 1
2
λ2(dc2 + c2d) + 1

2
λ3(c2dc− cdc2) + 1

4
λ4c2, where λ ranges in

C, are proved to be distinct regular partners for c2.

As we have seen in the above proposition, any Clifford element c of R gives rise to two

nonzero orthogonal elements e and e∗, associated to any regular partner d of c2. Moreover,

the idempotent e+ e∗ is no complete (3.4(6)), i.e., the symmetric idempotent g := 1− e− e∗

in the unital hull R̂ = C1 + R of R is nonzero. We next prove that the complete system

{e, e∗, g} induces a 3-grading in the Lie algebra K.

Proposition 3.6. Let c be a Clifford element of R, e = dc2 and g = 1 − e − e∗, where d

is a regular partner of c2. Then K = K−1 ⊕ K0 ⊕ K1 is a a 3-grading of K, with K−1 =

κ((1 − e)Ke) = κ((1 − e)Re) = κ(gRe), K0 = κ(eRe) ⊕ gKg and K1 = κ(eK(1 − e)) =

κ(eR(1− e)) = κ(eRg).

Proof. Consider the complete system {e0 := e∗, e1 := g, e2 := e} of orthogonal idempotents of

R̂ and set Ri =
⊕

m−n=i

emRen, −2 ≤ i ≤ 2. Then (see [10, p.174] for instance), R =
⊕

−2≤i≤2

Ri

is an (associative) 5-grading of R. Explicitly,

R = e∗Re⊕ (e∗Rg ⊕ gRe)⊕ (e∗Re∗ ⊕ gRg ⊕ eRe)⊕ (gRe∗ ⊕ eRg)⊕ eRe∗.

Since all the components Ri are ∗-invariant subspaces, K =
⊕

−2≤i≤2

Ki, where Ki := Ri∩K =

Skew(Ri, ∗) for each index i and [Ki, Kj] ⊆ [Ri, Rj] ∩ [K, K] ⊆ Ri+j ∩ K = Ki+j. Thus
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K =
⊕

−2≤i≤2

Ki is (a priori) a 5-grading of the Lie algebra K. But K−2 = κ(e∗Re) =

e∗κ(R)e = e∗Ke = 0 and similarly K2 = e∗Ke = 0. Moreover, the i-th homogenous

component ki of any k ∈ K coincides with
⊕

m−n=i

κ(emken), so k ∈ K−1 if and only if

kgke + e∗kg = (1− e− e∗)ke + e∗k(1− e− e∗) = (1− e)ke + e∗k(1− e∗)

(1− e)ke− ((1− e)ke)∗ = κ((1− e)ke),

since e∗Ke = 0 by 3.4(4), which proves that K−1 = κ(gRe) = κ((1 − e)Ke). Similarly,

K1 = κ(eRg) = κ(eK(1−e)). Therefore K = κ((1−e)Ke)⊕ (κ(eRe)⊕gKg)⊕κ(eK(1−e))

is a 3-grading of K. Now, for any x ∈ R,

κ(gxe) = κ((1− e)xe)− κ(e∗xe) = κ((1− e)xe)− e∗κ(x)e = κ((1− e)xe)

since e∗κ(x)e ∈ e∗Ke = 0, which proves that K−1 = κ((1− e)Re). Similarly we obtain that

K1 = κ(eR(1− e). ¤

Although the 3-grading of K has been defined by choosing a regular partner d of c2, it will

be seen now that the component K−1 = κ((1− e)Ke) only depends on the Clifford element

c.

Proposition 3.7. Let c be a Clifford element of R, e := dc2, where d is a a regular partner

of c2, and B = κ((1− e)Ke). Then:

(1) If b ∈ B then eb = 0 and b = e∗b + be.

(2) B = c2 ◦K.

(3) c = e∗c + ce = c2dc + cdc2.

(4) c ∈ B.

(5) cKc = Cc.

Proof. (1) Let b = (1−e)ke+e∗k(1−e∗) ∈ B. Then eb = e((1−e)ke+e∗k(1−e∗)) = 0 and

e∗b = e∗k(1− e∗), since e∗e = 0 and e∗Ke = 0. Similarly, be = (1− e)ke. Thus b = e∗b + be.
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(2) c2 ◦ k = c2k + kc2 = κ(kc2) = κ(ke∗c2) − (eke∗)c2) = κ((1 − e)k(e∗c2)) = κ((1 −
e)k(c2e)) ∈ κ((1−e)Re) = B. Conversely, let b ∈ B. Then bc2 = (1−e)bec2+e∗b(1−e∗)c2 =

0, since ec2 = dc2c2 = 0 and (1− e∗)c2 = (1− e∗)e∗c2 = 0. Hence c2b = −(bc2) = 0. Now we

have b = e∗b + be = c2db + bdc2 = c2(db + bd) + (bd + db)c2 ∈ c2 ◦K.

(3) As in the proof of (3.6), set g = 1− e− e∗. We have

c = (e + e∗ + g)c(e + e∗ + g) = e∗c + ce + gcg

since ec = ce∗ = 0 by 3.4(4). Thus all we need to prove it is that gcg = 0. Set z := gcg,

which is a skew-symmetric element and let k ∈ K. Recall that c2 = c2e and e, e∗, g are

orthogonal idempotents. As c2kc = ckc2, (c2kc)g = (ckc2)g = ck(c2e)g = (ckc2)(eg) = 0.

But since ec = 0, c2 = c2e and eKe∗ = 0, we have c2kz = (c2kg)gz = c2k(1 − e − e∗)cg =

c2kcg − c2k(ec)g − c2ke∗cg = 0. Hence c2Kz = 0, and therefore zKc2 = (c2Kz)∗ = 0. So

c2xz = c2x∗z and zxc2 = zx∗c2 for every x ∈ R. Now pick x, y ∈ R. Then c2κ(xzy)c2 = 0

since c2Kc2 = 0, so that 0 = c2(xzy + y∗zx∗)c2 = c2xzyc2 + c2y∗zx∗c2 = c2xzyc2 + c2yzxc2 =

(c2xz)y(c2) + (c2)y(zxc2) = 0, with c2 6= 0. By Martindale’s Lemma (2.8), for every x ∈ R

there is λx ∈ C such that c2xz = λxc
2. But since z = gcg and g = g(1 − e), we have

c2xz = c2xz(1 − e) = λxc
2(1 − e) = 0, so c2Rz = 0. But R is prime and c2 6= 0; therefore

z = 0. Thus c = e∗c + ce = c2dc + cdc2, as required.

(4) By (3), c = c2dc+ cdc2 = c2(dc+ cd)+(dc+ cd)c2 ∈ c2 ◦K = B by (2). Another proof

of this result: ec = dc3 = 0 implies c = e∗c+ ce = (1−e)ce+e∗ c(1−e∗) ∈ κ((1−e)Ke = B.

(5) We know that c = ce + e∗c, e∗Ke = 0 = eKe∗, ckc ∈ K and eRe = Ce; moreover,

for every x ∈ R it is true that if exe = λxe, then e∗xe∗ = (ex∗e)∗ = (λx∗e)
∗ = λx∗e

∗. Pick

k ∈ K. Then we have ckc = (ce+e∗c)k(ce+e∗c) = c(ekce)+c(eke∗)c+e∗(ckc)e+(e∗kce)∗c =

λkcce + λ(ck)∗e
∗c = λkc(ce + e∗c) = λkcc, which proves that cKc ⊆ Cc. The equality follows

because c(cd + dc)c = c2dc + cdc2 = c by (3), with cd + dc ∈ K since c ∈ K and d ∈ H. ¤

The square root of d.
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3.8. Given a Clifford element c of R and a regular partner d of c2, we set
√

d := cd + dc.

As will be seen now, the square-root notation is absolutely justified.

Proposition 3.9. Let c be a Clifford element of R and let d be a regular partner for c2.

Then:

(1)
√

d ∈ K1 in the 3-grading of Theorem 3.6. In particular
√

d is a Jordan element.

(2) (
√

d)2 = d.

(3) (
√

d)3 = 0.

(4)
√

dK
√

d = C
√

d.

(5)
√

dc
√

d =
√

d.

(6) c
√

dc = c.

(7) c2 ◦
√

d = c.

(8) d ◦ c =
√

d.

(9) [[c,
√

d], c] = c.

(10) [[
√

d, c],
√

d] =
√

d.

(11) [[c,
√

d], b] = b for every b ∈ Be.

Proof. (1) Since c ∈ K and d ∈ H,
√

d = cd + dc ∈ K. Now we have

κ(e
√

d(1− e)) = e(cd + dc)(1− e) + (1− e∗)(dc + cd)e∗ = edc(1− e)

+ (1− e∗)cde∗ = edc− edce + cde∗ − e∗cde∗ = (dc2d)c

− e(dcd)c2 + c(dc2d)− c2(dcd)e∗ = dc + cd =
√

d,

since ec = dc2c = dc3 = 0, dc2d = d and dcd ∈ dKd = 0. We have thus proved (see 3.6) that
√

d ∈ κ(eK(1− e)) = K1. And since K1 is an abelian inner ideal (because is the extreme of

a finite grading),
√

d is a Jordan element of K.

(2) (
√

d)2 = (cd + dc)(cd + dc) = c(dcd) + cd2c + dc2d + (dcd)c = dc2d = d.

(3) (
√

d)3 = (
√

d)2
√

d = d(cd + dc) = dcd + d2c = 0.

(4) If follows from (1), (2) and (3) that
√

d is a Clifford element of R. Hence, by 3.7(3),
√

dK
√

d = C
√

d.

(5)
√

dc
√

d = (cd + dc)c(cd + dc) = c(dc2d) + c(dcd)c + dc3d + (dc2d)c = cd + dc =
√

d.

(6) c
√

dc = c(cd + dc)c = c2dc + cdc2 = c, by 3.7(1).

(7) c2 ◦
√

d = c2(cd + dc) + (cd + dc)c2 = c2dc + cdc2 = c.

(8) d ◦ c = dc + cd =
√

d.
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(9) [[c,
√

d], c] = 2c
√

dc− c2 ◦
√

d = 2c− c = c, by (6) and (7).

(10) [[
√

d, c],
√

d] = 2
√

dc
√

d− (
√

d)2 ◦ c = 2
√

d−
√

d =
√

d, by (2), (5) and (8).

(11) [[c,
√

d], b] = [[c, cd + dc], b] = [c2d− dc2, b] = [e∗ − e, b] = e∗b + be = b by 3.7(1). ¤

4. The theorem

As in the previous section, R will denote a centrally closed prime ring of characteristic

not 2 or 3 which is endowed with an involution ∗. We prove here that if c is a Clifford

element of R, then the abelian inner ideal c2 ◦K = κ((1− e)Ke) (see 3.7) can be endowed

with a structure of Jordan algebra of Clifford type (see 2.3) and that this Jordan algebra is

isomorphic to Kc. We begin by defining a linear form and a symmetric bilinear form on the

C-vector space K (recall that ∗ is of the first kind by 3.2(5)).

4.1. By Proposition 3.7(4), there exists a linear map tr : K → C such that

tr(k)c = ckc

for every k ∈ K. Note that

(1) tr(
√

d) = 1 since c
√

dc = c by Proposition 3.9(6), and hence

(2) K = C
√

d⊕Ker(tr).

4.2. Since c2Rc2 = Cc2 (3.2(4)) with c2k1k2c
2 = c2k2k1c

2 for all k1, k2 ∈ K (3.2(2)), we have

a symmetric bilinear form 〈 , 〉 : K ×K → C defined by

〈k1, k2〉c2 = c2k1k2c
2

for all k1, k2 ∈ K.

Remarks 4.3. The trace can be realized from the bilinear form and vice versa. Let k, k′ ∈ K:

(1) 〈
√

d, k〉c2 = c2
√

dkc2 = c2(cd + dc)kc2 = c3dkc2 + c2dckc2 = c2dckc2 = c2d(ckc)c =

tr(k)c2dc2 = tr(k)c2, since c3 = 0 and c2dc2 = c2. Thus tr(k) = 〈k,
√

d〉.
(2) tr(κ(ckk′))c2 = (cκ(ckk′)c)c = c2kk′c2 + ck′kc3 = c2kk′c2 = 〈k, k′〉c2. Thus 〈k, k′〉 =

tr(κ(ckk′)).
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Proposition 4.4. Let c be a Clifford element of R and B = c2 ◦K. Then:

(1) B = Cc⊕X, where X := {c2 ◦ k : k ∈ Ker(tr)}.
(2) B = ad2

cK.

Proof. (1) By 4.1(2), K = Ker(tr)⊕ C
√

d. Hence

B = c2 ◦K = c2 ◦Ker(tr) + Cc2 ◦
√

d = c2 ◦Ker(tr) + Cc

since c2 ◦
√

d = c by 3.9(7). But this sum is direct since c2 ◦ k0 = αc, with tr(k0) = 0 and

α ∈ C, implies αc2 = c(c2k0 + k0c
2) = (ck0c)c = tr(k0)c = 0, and hence α = 0, since c2 6= 0

by the very definition of Clifford element.

(2) For any k ∈ K, we have ad2
ck = c2k − 2ckc + kc2 = c2 ◦ k − 2tr(k)c ∈ B. Conversely,

let c2 ◦ k0 + µc ∈ B, with k0 ∈ Ker(tr) and µ ∈ C. Taking k = k0 − µ
√

d, we have

c2 ◦ k = c2 ◦ k0 − µc2 ◦
√

d = ad2
ck0 − µc = ad2

c(k0 + µ
√

d)

since c2 ◦
√

d = c by 3.9(7), ck0c = 0 and ad2
c

√
d = −c by 3.9(9). ¤

Lemma 4.5. The symmetric C-bilinear form defined on X by

〈c2 ◦ k, c2 ◦ k′〉0 := −〈k, k′〉

is well defined.

Proof. Suppose that c2 ◦ k1 = c2 ◦ k′1. By multiplying the two members of this equality on

the right by k2c
2, we obtain c2k1k2c

2 = c2k′1k2c
2 since c2Kc2 = 0. This proves that 〈 , 〉0 is

well defined. ¤

Remarks 4.6. Consider the 3-grading K = K−1 ⊕K0 ⊕K1 due to e := dc2 (3.6(3)), with

K−1 = B, K0 = κ(eKe)⊕ gKg and K1 = κ(eKg).

(1) It follows from the symmetry of the previous theorem, that

K1 = d ◦K = {d ◦ k : k ∈ K,
√

dk
√

d = 0} ⊕ C
√

d = ad2√
d
K.
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(2) B0 can be zero and therefore B = Cc. But this can only happen if R is 3-dimensional

over C. Let X = H ⊕ Fz be the orthogonal sum of a hyperbolic plane H = Fx⊕ Fy

and the line Fz = H⊥ with z being an anisotropic vector, and let R the simple ring

End(X) with the adjoint as involution. For any u, v ∈ X, let u ⊗ v be the linear

map defined by w(u⊗ v) = 〈w, u〉v for all w ∈ X. Then (u⊗ v)∗ = v ⊗ u and hence

c := x⊗ z − z ⊗ x is in the Lie algebra K = Skew(R, ∗). It is easy to check that c is

a Clifford element of R such that ad2
cK = Fc.

Theorem 4.7. Let R be a centrally closed ring of characteristic not 2 or 3, let ∗ be an

involution of R and let c be a Jordan element of the Lie algebra K such that c3 = 0 and

c2 6= 0. Then:

(1) The involution ∗ is of the first kind.

(2) The C-vector space X = {c2 ◦ k : ckc = 0} is endowed with a symmetric bilinear

form denoted by 〈 , 〉0.
(3) Kc is isomorphic to the Clifford Jordan algebra C⊕X defined by 〈 , 〉0.

Proof. That the involution ∗ is of the first kind was proved in 3.2(5), and that 〈 , 〉0 is a

well defined symmetric bilinear form on the C-vector space X follows from 4.5. Thus only

the item (3) needs to be proved. But since c = [[c,
√

d], c] (3.9(9)), we have by (2.6) that

Kc
∼= J(c,

√
d), the Jordan algebra defined on the C-vector space ad2

cK = c2◦K = B = Cc⊕X

(4.4) by the product (α1c + c2 ◦ k1) • (α2c + c2 ◦ k2) = [[α1c + c2 ◦ k1,
√

d], α2c + c2 ◦ k2], for

all α1, α2 ∈ C and k1, k2 ∈ K such that ck1c = ck2c = 0. Let us then see that the linear

isomorphism (αc + c2 ◦ k) 7→ (α, c2 ◦ k) of J(c,
√

d) onto C ⊕X is actually an isomorphism

of Jordan algebras. Since 1
2
∈ Φ, it suffices to check the identity

(αc + c2 ◦ k)2 = [[αc + c2 ◦ k,
√

d], αc + c2 ◦ k] = α2c + 〈c2 ◦ k, c2 ◦ k〉0 + 2α(c2 ◦ k).

Using the bilinearity of the bracket-product reduces the checking to three products: (i) scalar

by scalar, (ii) scalar by vector, and (iii) vector by vector.

(i) [[αc,
√

d], αc] = α2[[c,
√

d], c] = α2c, by 3.9(9).
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(ii) [[αc,
√

d], c2 ◦ k] = α[[c, cd + dc], c2k + kc2] = α[c2d− dc2, c2k + kc2] = α(c2 ◦ k), where

we have used c2dc2 = c2, c4 = 0 and c2kc2 = c2(dk + kd)c2 = 0, the latter because c2Kc2 = 0

and (dk + kd)∗ = −(kd + dk), since d∗ = d and k∗ = −k.

(iii) [[c2 ◦ k,
√

d], c2 ◦ k] = 2(c2 ◦ k)
√

d(c2 ◦ k)− (c2 ◦ k)2 ◦
√

d,

with

(c2 ◦ k)
√

d(c2 ◦ k) = (c2k + kc2)(cd + dc)((c2k + kc2)) = (c2kdc + kc2dc)(c2k + kc2) = 0,

since c3 = 0 and ckc = 0 (tr(k) = 0), and

(c2◦k)2◦
√

d = c2k2c2(cd+dc)+(cd+dc)c2k2c2 = c2k2c2dc+cdc2k2c2 = 〈k, k〉(c2dc+cdc2) = 〈k, k〉c

since c = c2dc + cdc2 by 3.7(1). Therefore, (c2 ◦ k) • (c2 ◦ k) = −〈k, k〉c = 〈c2 ◦ k, c2 ◦ k〉0c,
which completes the proof. ¤

Remark 4.8. Since
√

d is a Clifford element of R (see 3.9), the theorem above also proves

that K√
d is a Clifford Jordan algebra with

√
d as unit element and symmetric bilinear

〈k, k′〉d d := −dkk′d for every k, k′ ∈ K.
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