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1. Introduction

Finite dimensional formally real Jordan algebras were first introduced by Jordan, von
Neumann and Wigner for quantum mechanics formalism in [9], where these algebras were
completely classified. Since then, many far reaching connections to Lie algebras, geometry
and analysis have been found. One such connection to geometry is the seminal result of
Koecher [11] and Vinberg [16], which establishes the one-one correspondence between the
formally real Jordan algebras and a class of Reimmanian symmetric spaces, namely, the
symmetric cones. The latter plays a useful role in the study of automorphic functions
on bounded homogeneous domains in complex spaces and harmonic analysis (see, for
example, [8, 13, 16] and references therein).

In recent decades, infinite dimensional Jordan algebras and Jordan triple systems have
gradually become a significant part of the theory of bounded symmetric domains. While
much of the theory of finite dimensional bounded symmetric domains, which are Rie-
mannian symmetric spaces, can be extended to infinite dimension via Jordan theory, an
infinite dimensional generalisation of symmetric cones and the result of Koecher and Vin-
berg has not yet been accomplished. Our objective in this paper is to carry out this task
by introducing infinite dimensional symmetric cones and show in Theorem 3.1 that they
correspond exactly to a class of infinite dimensional real Jordan algebras with identity,
called unital JH-algebras. In finite dimensions, the unital JH-algebras are exactly the
formally real Jordan algebras and our result is identical to that of Koecher and Vinberg.

Although our approach is a natural extension of the finite dimensional one, there are
some infinite dimensional pitfalls in Lie theory and other obstructions that different argu-
ments are required to circumvent, for instance, a closed subgroup of an infinite dimensional
Lie group need not be a Lie group in the relative topology [10] and an infinite dimensional
orthogonal group need not be compact and lacks an invariant measure. Unlike the finite
dimensional case, the order-unit structures play a prominent role in infinite dimension and
we make use of the weak topology as well as Kakutani’s fixed-point theorem to achieve the
final result. This approach also provides some new perspectives for the finite dimensional

1



2

case. Our focus, however, is to present a proof of Theorem 3.1 as simple as possible, but
not discuss all its ramifications.

For completeness, we review briefly some relevant basics of Jordan algebras and refer to
[5, 15] for more details. In what follows, a Jordan algebra A is a real vector space, which
can be infinite dimensional, equipped with a bilinear product (a, b) ∈ A × A 7→ ab ∈ A
that is commutative and satisfies the Jordan identity

a(ba2) = (ab)a2 (a, b ∈ A).

A Jordan algebra is called unital if it contains an identity. There are two fundamental
linear operators on a Jordan algebra A, namely, the left multiplication La : x ∈ A 7→
ax ∈ A and the quadratic map Qa : x ∈ A 7→ {a, x, a} ∈ A, where the Jordan triple
product {·, ·, ·} is defined by

{a, b, c} = (ab)c+ a(bc)− b(ac) (a, b, c ∈ A).

We have the identities

Qa = 2L2
a − La2 , Q2

a = Qa2 (a ∈ A).

The operator Lab+[La, Lb] : A → A, where [·, ·] denotes the Lie brackets, is often denoted
by a b and is called a box operator.

An element a in a Jordan algebra with identity e is called invertible if there exists an
element a−1 ∈ A (which is necessarily unique) such that aa−1 = e and (a2)a−1 = a. This
is equivalent to the invertibility of the quadratic operator Qa, in which case a−1 = Q−1a (a).
If the left multiplication La is invertible, then a is invertible with inverse a−1 = L−1a (e).

A Jordan algebra A is called formally real if a21 + · · ·+a2n = 0 implies a1 = · · · = an = 0
for any a1, . . . , an ∈ A. A finite dimensional formally real Jordan algebra A is necessarily
unital (cf. [5, Proposition 1.1.13]) and contains an abundance of idempotents, which are
elements p satisfying p2 = p (cf. [5, Theorem 1.1.14]). It is a real Hilbert space in the
trace norm ‖a‖2 = trace (a a) for a ∈ A.

Following [12], we call a real Jordan algebra H a JH-algebra if it is also a Hilbert space
in which the inner product, always denoted by 〈·, ·〉, is associative, that is,

〈ab, c〉 = 〈b, ac〉 (a, b, c ∈ H).

A finite dimensional JH-algebra is called Euclidean in [8]. In fact, the finite dimensional
formally real Jordan algebras are exactly the Euclidean Jordan algebras with identity [5,
Lemma 2.3.7]. JH-algebras are examples of non-associative H*-algebras which have been
studied by many authors and references are detailed in [4, p. 222].

Throughout, all vector spaces are over the real scalar field unless stated otherwise.

2. Symmetric cones

Let V be a real vector space. By a cone C in V , we mean a nonempty subset of V
satisfying (i) C+C ⊂ C and (ii) αC ⊂ C for all α > 0. We note that a cone is necessarily
convex. A cone C is called proper if C ∩ −C = {0}. The partial ordering on V induced
by a proper cone C will be denoted by ≤C , or by ≤ if C is understood, so that x ≤ y
whenever y − x ∈ C. Conversely, if V is equipped with a partial ordering ≤, we let
V+ = {v ∈ V : 0 ≤ v} denote the corresponding proper cone.

Given a real topological vector space V and a set E ⊂ V , we will denote its closure and
interior by E and intE respectively. If C is a cone in V , then its closure C is also a cone.
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If C is an open cone, then we have intC = C. For completeness, we include a proof of
this fact in the next lemma.

Lemma 2.1. Let C be an open convex set in a real topological vector space V . Then
intC = C.

Proof. There is nothing to prove if C is empty. Pick any q ∈ C. Let p ∈ intC. Then
p is an internal point of C, that is, every line through p meets C in a set containing an
interval around p (cf. [7, p.410, 413]). In particular, for the line joining p and q, there
exists δ ∈ (0, 1) such that p± δ(q − p) ∈ C. Since C is open and q is an interior point of
C, we have λ(p− δ(q − p)) + (1− λ)q ∈ C for 0 < λ < 1 (cf. [7, p.413]). Hence

p =
1

1 + δ
(p− δ(q − p)) +

δ

1 + δ
q ∈ C.

�

Given an open cone C such that C ∩−C = {0}, we must have 0 /∈ C since every point
in C is an internal point of C.

Let V be a real vector space equipped with a proper cone V+ and induced partial
ordering ≤. An element e ∈ V is called an order-unit if

V =
⋃
λ>0

{x ∈ V : −λe ≤ x ≤ λe}.

We call V an order-unit space if it admits an order-unit. The real field R with the usual
partial ordering is an order-unit space with order-unit 1. We note that an order-unit space
V , with order-unit e, is determined by its cone V+ completely in that V = V+−V+. Indeed,
each x ∈ V with −λe ≤ x ≤ λe can be written as x = x1 − x2, where 2x1 = λe+ x ∈ V+
and 2x2 = λe− x ∈ V+.

An order-unit e ∈ V is called Archimedean if for each v ∈ V , we have v ≤ 0 whenever
λv ≤ e for all λ ≥ 0. We call V an Archimedean order-unit space if it is equipped with
an Archimedean order-unit. An Archimedean order-unit e ∈ V induces a norm ‖ · ‖e on
V , called an order-unit norm, and is defined by

‖x‖e = inf{λ > 0 : −λe ≤ x ≤ λe} (x ∈ V )

which satisfies −‖x‖ee ≤ x ≤ ‖x‖ee. We denote by (V, e) an Archimedean order-unit
space V equipped with an Archimedean order unit e and the order-unit norm ‖ ·‖e, where
the subscript e will be omitted if it is understood. We call (V, e) a complete Archimedean
order-unit space if the order-unit norm ‖ · ‖e is complete.

We note that the cone V+ in (V, e) is closed in the order-unit norm and the Archimedean
order-unit e belongs to the interior intV+ of V+ [1, Theorem 2.2.5]. In fact, each interior
point u ∈ intV+ is an order-unit (cf. Lemma 2.5) and the corresponding order-unit norm
‖ · ‖u is equivalent to ‖ · ‖e.

A linear map T : V → W between two Archimedean order-unit spaces (V, e) and
(W,u) is called positive if T (V+) ⊂ W+. It is called a positive linear functional on V if
(W,u) = (R, 1). The dual V ∗ of (V, e) is partially ordered by the dual cone V ∗+, which
consists of continuous positive linear functionals on V and is precisely the polar set

(2.1) −V 0
+ := −{f ∈ V ∗ : |f(x)| ≤ 1,∀x ∈ V+} = {f ∈ V ∗ : f(x) ≥ 0,∀x ∈ V+}

(cf. [1, p.30]).
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Lemma 2.2. Let T : V → W be a positive linear map between two Archimedean order-
unit spaces (V, e) and (W,u). Then T is continuous and ‖T‖ = ‖T (e)‖u.

Proof. We need to show sup{‖Tx‖u : −e ≤ x ≤ e} <∞, where {x ∈ V : −e ≤ x ≤ e} is
the closed unit ball of (V, e). Indeed, given −e ≤ x ≤ e, we have

−‖T (e)‖uu ≤ −T (e) ≤ T (x) ≤ T (e) ≤ ‖T (e)‖uu
by positivity. This implies ‖T (x)‖u ≤ ‖T (e)‖u and hence T is continuous with ‖T‖ ≤
‖T (e)‖u. Since ‖T‖ = sup{‖Tx‖u : −e ≤ x ≤ e} ≥ ‖T (e)‖u, we have ‖T‖ = ‖T (e)‖u. �

Proposition 2.3. Let T : (V, e)→ (V, e) be a linear isomorphism such that T (V+) = V+.
Then T is an isometry if, and only if, T (e) = e.

Proof. Let T be an isometry. By Lemma 2.2, we have ‖T (e)‖ = ‖T‖ = 1 = ‖T−1‖ =
‖T−1(e)‖ which implies −e ≤ T (e) ≤ e and −e ≤ T−1(e) ≤ e. Therefore T (e) = e by
positivity.

Conversely, Lemma 2.2 implies

‖T‖ = ‖T (e)‖ = ‖e‖ = 1 = ‖T−1(e)‖ = ‖T−1‖.
Hence T is an isometry. �

We now introduce the concept of an infinite dimensional symmetric cone (cf. [5, p. 105])
which is a natural generalisation of the finite dimensional one.

Definition 2.4. Let V be a real Hilbert space with inner product 〈·, ·〉. An open cone Ω
in V is called symmetric if it satisfies the following two conditions:

(i) (self-duality) Ω = {v ∈ V : 〈v, x〉 > 0,∀x ∈ Ω\{0}};
(ii) (homogeneity) given x, y ∈ Ω, there is a continuous linear isomorphism g : V → V

such that g(x) = y.

Since a cone Ω in a Hilbert space V is convex, its weak and norm closures in V coincide
and is denoted by Ω. If Ω is open, we have Ω = int Ω from Lemma 2.1. By self-duality,
the closure Ω of a symmetric cone Ω is proper and in view of (2.1), also ‘self-dual’ in the
sense of Connes [6], namely,

Ω = {v ∈ V : 〈v, x〉 ≥ 0,∀x ∈ Ω}.
Indeed, given v ∈ V with 〈v, x〉 ≥ 0 for all x ∈ Ω, we have, by picking some e ∈ Ω,

〈v +
1

n
e, x〉 = 〈v, x〉+

1

n
〈e, x〉 > 0 (n = 1, 2, . . .)

for x ∈ Ω\{0}. Hence v + 1
n
e ∈ Ω for n = 1, 2, . . . and v ∈ Ω.

For finite dimensional Euclidean spaces, the preceding definition is the same as the usual
one for a symmetric cone [8]. In finite dimensions, Koecher and Vinberg’s celebrated result
states that the interior of the cone {x2 : x ∈ A} in a formally real Jordan algebra A is
a symmetric cone and conversely, every symmetric cone is of this form. We will extend
this result to the infinite dimensional setting in the next section. We first discuss how a
symmetric cone relates to the underlying Hilbert space structure.

Lemma 2.5. Let V be a real vector space, equipped with a norm ‖·‖ and partially ordered
by the closure Ω of an open cone Ω. Then each point e ∈ Ω is an order-unit. If moreover,
e is Archimedean, then the order-unit norm ‖ · ‖e satisfies ‖ · ‖e ≤ c‖ · ‖ for some c > 0.
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Proof. Let e ∈ Ω. Since Ω is open, there exists r > 0 such that the open ball e− B(0, r)
is contained in Ω, where B(0, r) = {x ∈ V : ‖x‖ < r}. Let v ∈ V \{0}. Then we have
±(r/2‖v‖)v ∈ B(0, r) which implies e∓ (r/2‖v‖)v ∈ e−B(0, r) ⊂ Ω, that is

−2‖v‖
r

e ≤ v ≤ 2‖v‖
r

e.

This proves that e is an order-unit. If e is Archimedean, it also implies that the order-unit
norm ‖ · ‖e satisfies ‖v‖e ≤ (2/r)‖v‖ for all v ∈ V . �

From now on, the inner product norm of a Hilbert space V will always be denoted by
‖ · ‖ = 〈·, ·〉1/2. The following result reveals that a real Hilbert space equipped with a
symmetric cone is a complete Archimedean order-unit space.

Lemma 2.6. Let V be a real Hilbert space partially ordered by the closure Ω of a symmetric
cone Ω and let e ∈ Ω. Then e is an Archimedean order-unit and the order-unit norm ‖ ·‖e
is equivalent to the inner product norm ‖ · ‖ of V .

Proof. By lemma 2.5, e is an order-unit. To see that e is Archimedean, let λv ≤ e for
all λ ≥ 0. By self-duality of Ω, we have 〈e − λv, x〉 ≥ 0 for all x ∈ Ω, which gives
〈e, x〉 ≥ λ〈v, x〉 for all λ ≥ 0. If x ∈ Ω\{0}, then 〈e, x〉 > 0. It follows that 〈v, x〉 ≤ 0 for
all x ∈ Ω and hence −v ∈ Ω by self-duality.

For the second assertion, Lemma 2.5 already implies ‖ · ‖e ≤ c‖ · ‖ for some c > 0.
To complete the proof, we show that ‖v‖2 ≤ 〈e, e〉‖v‖2e for all v ∈ V . Indeed, we have
‖v‖ee±v ∈ Ω and by self-duality, 〈‖v‖ee+v, ‖v‖ee−v〉 ≥ 0. Expanding the inner product
gives ‖v‖2e〈e, e〉 ≥ ‖v‖2. �

Let V be a real Hilbert space partially ordered by the closure of a symmetric cone Ω and
let e ∈ Ω. Then the previous lemma implies that a linear map T : V → V is continuous
with respect to the Hilbert space norm of V if, and only if, it is continuous with respect
to the order-unit norm ‖ · ‖e. In the sequel, we will denote by ‖T‖ and ‖T‖e the operator
norm of T : V → V with respect to the Hilbert space norm and order-unit norm of V ,
respectively.

We refer to [3, 15] for definitions and properties of infinite dimensional Banach Lie
groups and Lie algebras, which are analytic manifolds. Let L(V ) be the Banach algebra
of bounded linear operators on V , equipped with the Hilbert space operator norm ‖ · ‖
and the usual involution ∗. Then L(V ) is a real Banach Lie algebra in the commutator
product [S, T ] = ST − TS for S, T ∈ L(V ). We denote by GL(V ) the open subgroup
of invertible elements in L(V ), which is a real Banach Lie group with Lie algebra L(V ).
Given S, T ∈ GL(V ), we have ‖S−1−T−1‖ ≤ ‖S−1‖‖S−T‖‖T−1‖. Hence the orthogonal
group

O(V ) = {T ∈ GL(V ) : ‖T‖ = ‖T−1‖ = 1}
of V , consisting of linear isometries of V and equipped with the norm topology, is a closed
subgroup of GL(V ) and a real Banach Lie group.

In contrast to the finite dimensional case, a closed subgroup H of an infinite dimen-
sional real Banach Lie group G need not be a Lie group in the relative topology [10].
Nevertheless, it can still be topologised (with a finer topology T ) to form a Banach Lie
group, by [15, 7.8]. In fact, if g is the Lie algebra of G, then the Lie algebra of H is given
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by
h = {X ∈ g : exp tX ∈ H,∀t ∈ R}

and the inclusion map (H, T ) ↪→ G is analytic.
Henceforth, let Ω be a symmetric cone in a real Hilbert space V . The open cone Ω is a

real Hilbert manifold modelled on V , where the tangent space TωΩ at ω ∈ Ω is identified
with V . The positive linear maps in GL(V ) with positive inverse, with respect to the
cone Ω, form a subgroup of GL(V ), which will be denoted by

G(Ω) = {g ∈ GL(V ) : g(Ω) = Ω}.
An element g ∈ GL(V ) belongs to G(Ω) if and only if g(Ω) = Ω. Hence G(Ω) is a closed
subgroup of GL(V ) and can be topologised in a finer topology to a real Banach Lie group
with Lie algebra

g(Ω) = {X ∈ L(V ) : exp tX ∈ G(Ω),∀t ∈ R}.
For each ω ∈ Ω, the map g ∈ GL(V ) 7→ g(ω) ∈ V is analytic and its derivative at the

identity of GL(V ) is the linear map X ∈ L(V ) 7→ X(ω) ∈ V . Since the inclusion map
G(Ω) ↪→ GL(V ) is analytic, the orbital map g ∈ G(Ω) 7→ g(ω) ∈ Ω is analytic.

By a Lie subgroup of G(Ω), we mean a subgroup and submanifold of G(Ω). For instance,
the connected component G0 of the identity in G(Ω) is a Lie subgroup of G(Ω). [3,
Chap. III,§1.3]. The subgroup K = G(Ω) ∩ O(V ) of G(Ω) is closed in the norm and any
finer topologies of G(Ω), and also a real Banach Lie group.

Given g ∈ G(Ω), we note that its adjoint g∗ in L(V ) also belongs to G(Ω). Indeed, for
v ∈ Ω and x ∈ Ω\{0}, we have 〈g∗(v), x〉 = 〈v, g(x)〉 > 0 and hence g∗(v) ∈ Ω.

Lemma 2.7. Let V be a real Hilbert space partially ordered by the closure of a symmetric
cone Ω and let e ∈ Ω with α‖ · ‖ ≤ ‖ · ‖e ≤ β‖ · ‖ for some β > α > 0. Then we have
α
β
e ≤ g(e) ≤ β

α
e for all g ∈ G(Ω) ∩O(V ).

Proof. Let g ∈ G(Ω) ∩O(V ). Then we have

α

β
‖g‖ ≤ ‖g‖e ≤

β

α
‖g‖

where ‖g‖ = 1. By Lemma 2.2, ‖g(e)‖e = ‖g‖e since g(Ω) ⊂ Ω, and the same for g−1. It
follows that

α

β
e ≤ g(e) ≤ β

α
e.

�

Theorem 2.8. Let V be a real Hilbert space partially ordered by the closure of a symmetric
cone Ω. Then there exists ω ∈ Ω such that g(ω) = ω for all g ∈ G(Ω) ∩O(V ).

Proof. Fix an Archimedean order-unit e ∈ Ω and let α‖ · ‖ ≤ ‖ · ‖e ≤ β‖ · ‖ for some
β > α > 0. By Lemma 2.7, the orbit

S = {g(e) : g ∈ G(Ω) ∩O(V )}
is contained in the order interval

[[(α/β)e, (β/α)e]] := {x ∈ V : (α/β)e ≤ x ≤ (β/α)e}
which is convex, bounded in the order-unit norm ‖ · ‖e and hence bounded in the Hilbert
space norm of V . It is clearly closed in the order-unit norm, and hence in the Hilbert
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space norm of V . It follows that the order interval [[(α/β)e, (β/α)e]] is weakly compact
in V . Let Q = coS be the closed convex hull of the orbit S. Then Q ⊂ [[(α/β)e, (β/α)e]]
and is weakly compact.

Since G(Ω) ∩ O(V ) is a group and each g ∈ O(V ) is continuous on V , we see that
g(Q) ⊂ Q for all g ∈ G(Ω) ∩O(V ). Further, G(Ω) ∩O(V ) is equicontinuous on Q in the
weak topology (as defined in [7, V.10.7]), that is, given any weak neighbourhood N of 0,
there exists a weak neighbourhood U of 0 such that for x, y ∈ Q with x− y ∈ U , we have
g(x− y) ∈ N for all g ∈ G(Ω) ∩O(V ).

To prove equicontinuity, we first observe that for any weak neighbourhood of 0 of the
form N0 = {v ∈ V : |〈v, z〉| < ε} for some z ∈ V \{0}, one can find z1, z2 ∈ Ω\{0} such
that N0 contains the following weak neighbourhood of 0:

{v ∈ V : |〈v, zj〉| < ε/2, j = 1, 2}.

Indeed, write z = z1 − z2 with z1, z2 ∈ Ω\{0}, then we have

|〈v, z〉| = |〈v, z1 − z2〉| ≤ |〈v, z1〉|+ |〈v, z2〉| < ε.

Hence, given any weak neighbourhood N of 0, there are positive elements z1, . . . , zk in
Ω\{0} such that

N ⊃ {v ∈ V : |〈v, zj〉| < ε, j = 1, . . . k}
for some ε > 0. We can find c > 1 such that zj ≤ ce for j = 1, . . . , k. Now, for each
g ∈ G(Ω) ∩O(V ) and j = 1, . . . , k, we have

0 ≤ g(zj) ≤ cg(e) ≤ cβ

α
e

which gives

(2.2) 0 ≤ 〈x, g(zj)〉 ≤ 〈x, (cβ/α)e〉

for all x ∈ Ω. Pick γ ∈ (0, 1) such that γ <
εα2

c(β2 − α2)〈e, e〉
. Then

U = {v ∈ V : |〈γ(v + (β2 − α2)/(αβ) e), (cβ/α) e〉| < ε}.

is a weak neighbourhood of 0 in V . Since (α/β)e ≤ g(e) ≤ (β/α)e for all g ∈ G(Ω)∩O(V ),
by Lemma 2.7, we have

(α/β)〈e, e〉 ≤ 〈g(e), e〉 ≤ (β/α)〈e, e〉

and hence

0 <
γ(β2 − α2)

β2
〈e, e〉 ≤ γ(β2 − α2)

αβ
〈g(e), e〉 ≤ cγ(β2 − α2)

α2
〈e, e〉 < ε

for all g ∈ G(Ω) ∩O(V ).
Let x, y ∈ Q ⊂ [[(α/β)e, (β/α)e]]. We have

−
(
β

α
− α

β

)
e ≤ x− y ≤

(
β

α
− α

β

)
e =

β2 − α2

αβ
e
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and in particular, 0 ≤ (x− y) + (β2 − α2)/(αβ) e ≤ (x− y)/γ + (β2 − α2)/(αβ) e where
γ ∈ (0, 1). Hence x− y ∈ γU implies

0 ≤ 〈g(γ((x− y)/γ + (β2 − α2)/(αβ) e), zj〉
= 〈γ{(x− y)/γ + (β2 − α2)/(αβ) e}, g∗(zj)〉
≤ 〈γ{(x− y)/γ + (β2 − α2)/(αβ) e}, (cβ/α)e〉 < ε

by (2.2), which gives

−γ(β2 − α2)

αβ
〈g(e), zj〉 ≤ 〈g(x− y), zj〉 ≤ ε− γ(β2 − α2)

αβ
〈g(e), zj〉 < ε

where (2.2) implies

γ(β2 − α2)

αβ
〈g(e), zj〉 ≤

γ(β2 − α2)

αβ
〈e, cβ

α
e〉 < ε

and hence
|〈g(x− y), zj〉| < ε

for all g ∈ G(Ω) ∩O(V ) and j = 1, . . . , k. This proves equicontinuity of G(Ω) ∩O(V ).
Hence, by Kakutani’s fixed-point theorem [7, V.10.8], the group G(Ω) ∩ O(V ) has a

common fixed point, say, ω ∈ Q ⊂ [[(α/β)e, (β/α)e]] ⊂ Ω. The proof is complete. �

We note that a bounded linear operator T on a complex Hilbert space H is hermitian
if, and only if, ‖ exp itT‖ = 1 for all t ∈ R (cf. [2, p. 46]). If ‖ exp itT‖ ≤ M for some
M > 0 and all t ∈ R, then exp itT has spectral radius

ρ(exp itT ) = lim
n→∞

‖(exp itT )n‖1/n = lim
n→∞

‖ exp intT‖1/n ≤ lim
n→∞

M1/n = 1

and if iT is hermitian as well, then we have ‖ exp itT‖ = ρ(exp itT ) ≤ 1 for all t ∈ R,
which implies that T is hermitian and hence T = 0. Given X ∈ L(V ), by considering its
complexification XC : VC → VC on the complex Hilbert space VC and noting that exp tX
is an isometry on V if, and only if, exp tXC is a unitary operator on VC, we see that
‖ exp tX‖ = 1 for all t ∈ R if, and only if, X is skew-symmetric, that is, X∗ = −X. On
the other hand, if X∗ = X and if ‖ exp tX‖ ≤M for some M > 0 and for all t ∈ R, then
we must have X = 0.

The above observation implies that the Lie algebra of the Lie group K = G(Ω)∩O(V )
is given by

k = {X ∈ g(Ω) : exp tX ∈ G(Ω) ∩O(V ),∀t ∈ R}
= {X ∈ g(Ω) : X∗ = −X} ⊂ L(V ).

For X ∈ g(Ω), we have exp tX ∈ G(Ω) and exp tX∗ = (exp tX)∗ ∈ G(Ω) for all t ∈ R.
Hence X∗ ∈ g(Ω). Let

p = {X ∈ g(Ω) : X∗ = X}.
Then we have the direct sum decomposition g(Ω) = k⊕ p with Lie brackets

[k, p] ⊂ p, [p, p] ⊂ k.

This implies that the inclusion map ι : K ↪→ G(Ω) is an immersion, as its differential at
the identity, dι : k→ g(Ω), has an image with a direct sum complement p in g(Ω) (cf. [5,
Definition 2.1.16]).
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By Theorem 2.8, there is an order-unit ω ∈ Ω which is a fixed-point of the group
K = G(Ω) ∩O(V ). Given X ∈ k, we have exp tX ∈ K and

ω = exp tX(ω) = ω + tX(ω) +
t2

2!
X(ω) + · · · for all t ∈ R

which implies X(ω) =
d

dt

∣∣∣∣
t=0

exp tX(ω) = 0. In fact, the converse also holds.

Lemma 2.9. Let ω ∈ Ω be a fixed point of K = G(Ω) ∩ O(V ) with Lie algebra k. Then
we have

k = {X ∈ g(Ω) : X(ω) = 0}.

Proof. Let X ∈ g(Ω) and X(ω) = 0. We have the decomposition X = Xk + Xp ∈ k ⊕ p.
Since Xk(ω) = 0 as noted above, we have Xp(ω) = 0 and hence exp tXp(ω) = ω for
all t ∈ R. This implies ‖ exp tXp‖ω = ‖ω‖ω = 1 and there exists M > 0 such that
‖ exp tXp‖ ≤M for all t ∈ R since the order-unit norm ‖ · ‖ω is equivalent to the Hilbert
space norm ‖ · ‖. On the other hand, Xp ∈ p implies X∗p = Xp. Therefore we must have
Xp = 0 and X = Xk ∈ k. �

Remark 2.10. The above lemma implies that the Lie algebra

kω = {X ∈ g(Ω) : exp tX(ω) = ω, ∀t ∈ R}
of the isotropy subgroup

Kω = {g ∈ G(Ω) : g(ω) = ω} ⊃ K

coincides with the Lie algebra k of K, where g(Ω) = k⊕ p = kω ⊕ p. Hence, analogous to
the case of K, the inclusion map Kω ↪→ G(Ω) is an immersion.

The differential of the orbital map ρω : g ∈ G(Ω) 7→ g(ω) ∈ Ω at the identity of G(Ω)
is the evaluation map X ∈ g(Ω) 7→ X(ω) ∈ V . By homogeneity of Ω, we can identify
the Lie algebra g(Ω) = kω ⊕ p with the Lie algebra autΩ of analytic vector fields on
Ω that generate one-parameter subgroups of G(Ω) (cf. [17, p. 110]). This implies that
the evaluation map X ∈ g(Ω) 7→ X(ω) ∈ TωΩ = V is surjective. It follows that the
orbital map ρω is a submersion since kω is the kernel of the evaluation map, which is
complemented in g(Ω). In particular, ρω is an open map and the identity component G0

also acts transitively on Ω since Ω is connected and a disjoint union of open G0-orbits.

3. JH-algebras

In this final section, we extend to infinite dimension the celebrated result of Koecher
[11] and Vinberg [16] on the one-one correspondence between finite dimensional symmetric
cones and formally real Jordan algebras. This correspondence is furnished by the assertion
that given a finite dimensional formally real Jordan algebra A, which is a Hilbert space
in the trace norm, the interior of the cone {x2 : x ∈ A} is a symmetric cone and, every
symmetric cone in an Euclidean space is of this form. We show in Theorem 3.1 below
that symmetric cones of all dimensions are in one-one correspondence with the unital
JH-algebras.

Let H be a JH-algebra with identity 1 and let

H+ = {x2 : x ∈ H}.
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It has been shown in [5, Lemma 2.3.17] that H+ is a closed cone and its interior

(3.1) intH+ = {y ∈ H+ : 〈y, a〉 > 0,∀a ∈ H+\{0}}

is a symmetric cone consisting of invertible elements in H+. For each x2 ∈ H+, the left
multiplication Lx2 : H → H is a positive self-adjoint operator on the Hilbert space H [5,
p. 108]. Further, intH+ is a Hilbert manifold and a Riemannian symmetric space, which
can be infinite dimensional, with Riemannian metric

gω(u, v) = 〈Qω−1(u), v〉 (ω ∈ intH+, u, v ∈ H)

where the quadratic map Qx2 = 2L2
x2−Lx4 = Q2

x is a positive operator on H, for x2 ∈ H+.
In what follows, we retain the notation in the previous section.

Theorem 3.1. Let Ω be an open cone in a real Hilbert space. Then Ω is a symmetric
cone if, and only if, it is of the form

(3.2) Ω = int {a2 : a ∈ H}

for a unique unital JH-algebra H.

Proof. Given a unital JH-algebra H, the cone

Ω = int {a2 : a ∈ H}

is a symmetric cone by [5, Lemma 2.3.17], as noted above.
Conversely, let Ω be a symmetric cone in a real Hilbert space V . We show that it is of

the form in (3.2) for a unique JH-algebra H. In fact, we show that H is the Hilbert space
V itself, equipped with a suitable Jordan product. Our arguments are a natural extension,
albeit with some infinite dimensional adaptation, of Satake’s proof in [14, Theorem I.8.5]
for the finite dimensional case (see also [8]).

We first note that the JH-algebraH in (3.2) must be unique since (H,Ω) is an order-unit
space and hence H = Ω− Ω.

As before, let K = G(Ω) ∩ O(V ). By Theorem 2.8, K is contained in the isotropy
subgroup Kω of G(Ω) at some ω ∈ Ω. The Lie algebra g(Ω) of G(Ω) has a direct sum
decomposition

g(Ω) = kω ⊕ p

where kω is the Lie algebra of Kω.
As noted at the end of the previous section, homogeneity of Ω implies that the evaluation

map

X ∈ g(Ω) 7→ X(ω) ∈ V
is surjective. It follows that the map Φ : X ∈ p 7→ X(ω) ∈ V is a linear isomorphism
since it has kernel

{X ∈ g : X(ω) = 0} = kω

by Lemma 2.9 and Remark 2.10, where kω∩p = {0}. Denote the inverse of Φ by L : V → p
so that

L(x)ω = x (x ∈ V ).

On V , we defined a product

xy := L(x)y = L(x)L(y)ω (x, y ∈ V ).
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We show that V is a Jordan algebra with this product and moreover, it is a JH-algebra
with identity ω such that

Ω = int {x2 : x ∈ V }
which would complete the proof.

To see that V is a Jordan algebra in the above product, let x, y ∈ V . Then we have

xy = L(x)y = L(x)L(y)ω and xy − yx = [L(x), L(y)]ω = 0

where L(x), L(y) ∈ p implies [L(x), L(y)] ∈ kω. To prove the Jordan identity, we observe

x2(yx) = x2(L(y)L(x)ω) = L(x2)L(L(y)L(x)ω)ω = L(x2)L(y)L(x)ω

and

x(x2y) = L(x)L(L(x2)L(y)ω)ω = L(L(x2)L(y)ω)L(x)ω = L(x2)L(y)L(x)ω

which equals x2(yx). This proves that V is a Jordan algebra.
Evidently ω is the identity in V as xω = L(x)ω = x for all x ∈ V . To see that the

inner product 〈·, ·〉 is associative, we first note that L(x)∗ = L(x) since L(x) ∈ p. Given
x, y, z ∈ V , we have

〈xy, z〉 = 〈L(x)L(y)ω, z〉 = 〈L(y)ω, L(x)z〉 = 〈y, xz〉
which shows that V is a JH-algebra.

Finally, we show that Ω is identical with the symmetric cone

C := int {x2 : x ∈ V }.
Let x2 ∈ C. We have noted previously that the left multiplication La2 is a positive self-
adjoint operator on the Hilbert space V , for each a ∈ V . Since x2 is an interior point of
the cone, it has been shown in [5, p. 109] that x2 = a2 + βω for some a ∈ V and β > 0.
This implies that Lx2 = La2 + βLω, where Lω is the identity operator on V . Hence Lx2 is
a positive invertible operator in L(V ) and by spectral theory, there exists T ∈ L(V ) such
that Lx2 = expT . It follows that

x2 = Lx2(ω) = expT (ω) = expX(ω)

for some X ∈ p. Since expX ∈ G(Ω), we have expX(ω) ∈ Ω, that is, x2 ∈ Ω. We have
shown that C ⊂ Ω and they must be equal by self-duality.

�

In finite dimensions, the above theorem is exactly the aforementioned result of Koecher
and Vinberg since the finite dimensional unital JH-algebras coincide with the formally
real Jordan algebras. The following corollary of the theorem is immediate.

Corollary 3.2. A symmetric cone in a Hilbert space V carries the structure of a Rie-
mannian symmetric space.

We conclude with two examples of infinite dimensional unital JH-algebras.

Example 3.3. Given any real Hilbert space H with inner product 〈·, ·〉, the Hilbert space
direct sum H⊕R, called a spin factor, is a JH-algebra with identity 0⊕1 in the following
Jordan product

(a⊕ α)(b⊕ β) := (βa+ αb)⊕ (〈a, b〉+ αβ).

In particular, for a, b ∈ H, we have (a⊕0)(b⊕0) = 〈a, b〉(0⊕1), which is a scalar multiple
of the identity.
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Given a spin factor V , we denote by V0 the orthogonal complement of the identity in
V . In the above example, V0 is just the Hilbert space H. For each v ∈ V0, we observe
that v2 is a scalar multiple of the identity.

Example 3.4. Let Z = V ⊕W be the Hilbert space direct sum of two spin factors V and
W , equipped with coordinatewise Jordan product. Then it can be verified readily that
Z is a JH-algebra with identity (eV , eW ), where eV is the identity of V and eW that of
W . Further, Z is not a spin factor. Indeed, the orthogonal complement Z0 of the identity
contains V0 ⊕W0 and for z = (v, w) ∈ V0 ⊕W0, we have z2 = (v2, w2) which need not be
a scalar multiple of (eV , eW ).
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